1 | //! Optional values. |
2 | //! |
3 | //! Type [`Option`] represents an optional value: every [`Option`] |
4 | //! is either [`Some`] and contains a value, or [`None`], and |
5 | //! does not. [`Option`] types are very common in Rust code, as |
6 | //! they have a number of uses: |
7 | //! |
8 | //! * Initial values |
9 | //! * Return values for functions that are not defined |
10 | //! over their entire input range (partial functions) |
11 | //! * Return value for otherwise reporting simple errors, where [`None`] is |
12 | //! returned on error |
13 | //! * Optional struct fields |
14 | //! * Struct fields that can be loaned or "taken" |
15 | //! * Optional function arguments |
16 | //! * Nullable pointers |
17 | //! * Swapping things out of difficult situations |
18 | //! |
19 | //! [`Option`]s are commonly paired with pattern matching to query the presence |
20 | //! of a value and take action, always accounting for the [`None`] case. |
21 | //! |
22 | //! ``` |
23 | //! fn divide(numerator: f64, denominator: f64) -> Option<f64> { |
24 | //! if denominator == 0.0 { |
25 | //! None |
26 | //! } else { |
27 | //! Some(numerator / denominator) |
28 | //! } |
29 | //! } |
30 | //! |
31 | //! // The return value of the function is an option |
32 | //! let result = divide(2.0, 3.0); |
33 | //! |
34 | //! // Pattern match to retrieve the value |
35 | //! match result { |
36 | //! // The division was valid |
37 | //! Some(x) => println!("Result: {x}" ), |
38 | //! // The division was invalid |
39 | //! None => println!("Cannot divide by 0" ), |
40 | //! } |
41 | //! ``` |
42 | //! |
43 | // |
44 | // FIXME: Show how `Option` is used in practice, with lots of methods |
45 | // |
46 | //! # Options and pointers ("nullable" pointers) |
47 | //! |
48 | //! Rust's pointer types must always point to a valid location; there are |
49 | //! no "null" references. Instead, Rust has *optional* pointers, like |
50 | //! the optional owned box, <code>[Option]<[Box\<T>]></code>. |
51 | //! |
52 | //! [Box\<T>]: ../../std/boxed/struct.Box.html |
53 | //! |
54 | //! The following example uses [`Option`] to create an optional box of |
55 | //! [`i32`]. Notice that in order to use the inner [`i32`] value, the |
56 | //! `check_optional` function first needs to use pattern matching to |
57 | //! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or |
58 | //! not ([`None`]). |
59 | //! |
60 | //! ``` |
61 | //! let optional = None; |
62 | //! check_optional(optional); |
63 | //! |
64 | //! let optional = Some(Box::new(9000)); |
65 | //! check_optional(optional); |
66 | //! |
67 | //! fn check_optional(optional: Option<Box<i32>>) { |
68 | //! match optional { |
69 | //! Some(p) => println!("has value {p}" ), |
70 | //! None => println!("has no value" ), |
71 | //! } |
72 | //! } |
73 | //! ``` |
74 | //! |
75 | //! # The question mark operator, `?` |
76 | //! |
77 | //! Similar to the [`Result`] type, when writing code that calls many functions that return the |
78 | //! [`Option`] type, handling `Some`/`None` can be tedious. The question mark |
79 | //! operator, [`?`], hides some of the boilerplate of propagating values |
80 | //! up the call stack. |
81 | //! |
82 | //! It replaces this: |
83 | //! |
84 | //! ``` |
85 | //! # #![allow(dead_code)] |
86 | //! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> { |
87 | //! let a = stack.pop(); |
88 | //! let b = stack.pop(); |
89 | //! |
90 | //! match (a, b) { |
91 | //! (Some(x), Some(y)) => Some(x + y), |
92 | //! _ => None, |
93 | //! } |
94 | //! } |
95 | //! |
96 | //! ``` |
97 | //! |
98 | //! With this: |
99 | //! |
100 | //! ``` |
101 | //! # #![allow(dead_code)] |
102 | //! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> { |
103 | //! Some(stack.pop()? + stack.pop()?) |
104 | //! } |
105 | //! ``` |
106 | //! |
107 | //! *It's much nicer!* |
108 | //! |
109 | //! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the |
110 | //! result is [`None`], in which case [`None`] is returned early from the enclosing function. |
111 | //! |
112 | //! [`?`] can be used in functions that return [`Option`] because of the |
113 | //! early return of [`None`] that it provides. |
114 | //! |
115 | //! [`?`]: crate::ops::Try |
116 | //! [`Some`]: Some |
117 | //! [`None`]: None |
118 | //! |
119 | //! # Representation |
120 | //! |
121 | //! Rust guarantees to optimize the following types `T` such that |
122 | //! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some |
123 | //! of these cases, Rust further guarantees that |
124 | //! `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and |
125 | //! produces `Option::<T>::None`. These cases are identified by the |
126 | //! second column: |
127 | //! |
128 | //! | `T` | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? | |
129 | //! |---------------------------------------------------------------------|----------------------------------------------------------------------| |
130 | //! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` | |
131 | //! | `&U` | when `U: Sized` | |
132 | //! | `&mut U` | when `U: Sized` | |
133 | //! | `fn`, `extern "C" fn`[^extern_fn] | always | |
134 | //! | [`num::NonZero*`] | always | |
135 | //! | [`ptr::NonNull<U>`] | when `U: Sized` | |
136 | //! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type | |
137 | //! |
138 | //! [^extern_fn]: this remains true for any argument/return types and any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`) |
139 | //! |
140 | //! [`Box<U>`]: ../../std/boxed/struct.Box.html |
141 | //! [`num::NonZero*`]: crate::num |
142 | //! [`ptr::NonNull<U>`]: crate::ptr::NonNull |
143 | //! [function call ABI]: ../primitive.fn.html#abi-compatibility |
144 | //! |
145 | //! This is called the "null pointer optimization" or NPO. |
146 | //! |
147 | //! It is further guaranteed that, for the cases above, one can |
148 | //! [`mem::transmute`] from all valid values of `T` to `Option<T>` and |
149 | //! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T` |
150 | //! is undefined behaviour). |
151 | //! |
152 | //! # Method overview |
153 | //! |
154 | //! In addition to working with pattern matching, [`Option`] provides a wide |
155 | //! variety of different methods. |
156 | //! |
157 | //! ## Querying the variant |
158 | //! |
159 | //! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`] |
160 | //! is [`Some`] or [`None`], respectively. |
161 | //! |
162 | //! [`is_none`]: Option::is_none |
163 | //! [`is_some`]: Option::is_some |
164 | //! |
165 | //! ## Adapters for working with references |
166 | //! |
167 | //! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code> |
168 | //! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code> |
169 | //! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to |
170 | //! <code>[Option]<[&]T::[Target]></code> |
171 | //! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to |
172 | //! <code>[Option]<[&mut] T::[Target]></code> |
173 | //! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to |
174 | //! <code>[Option]<[Pin]<[&]T>></code> |
175 | //! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to |
176 | //! <code>[Option]<[Pin]<[&mut] T>></code> |
177 | //! |
178 | //! [&]: reference "shared reference" |
179 | //! [&mut]: reference "mutable reference" |
180 | //! [Target]: Deref::Target "ops::Deref::Target" |
181 | //! [`as_deref`]: Option::as_deref |
182 | //! [`as_deref_mut`]: Option::as_deref_mut |
183 | //! [`as_mut`]: Option::as_mut |
184 | //! [`as_pin_mut`]: Option::as_pin_mut |
185 | //! [`as_pin_ref`]: Option::as_pin_ref |
186 | //! [`as_ref`]: Option::as_ref |
187 | //! |
188 | //! ## Extracting the contained value |
189 | //! |
190 | //! These methods extract the contained value in an [`Option<T>`] when it |
191 | //! is the [`Some`] variant. If the [`Option`] is [`None`]: |
192 | //! |
193 | //! * [`expect`] panics with a provided custom message |
194 | //! * [`unwrap`] panics with a generic message |
195 | //! * [`unwrap_or`] returns the provided default value |
196 | //! * [`unwrap_or_default`] returns the default value of the type `T` |
197 | //! (which must implement the [`Default`] trait) |
198 | //! * [`unwrap_or_else`] returns the result of evaluating the provided |
199 | //! function |
200 | //! |
201 | //! [`expect`]: Option::expect |
202 | //! [`unwrap`]: Option::unwrap |
203 | //! [`unwrap_or`]: Option::unwrap_or |
204 | //! [`unwrap_or_default`]: Option::unwrap_or_default |
205 | //! [`unwrap_or_else`]: Option::unwrap_or_else |
206 | //! |
207 | //! ## Transforming contained values |
208 | //! |
209 | //! These methods transform [`Option`] to [`Result`]: |
210 | //! |
211 | //! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to |
212 | //! [`Err(err)`] using the provided default `err` value |
213 | //! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to |
214 | //! a value of [`Err`] using the provided function |
215 | //! * [`transpose`] transposes an [`Option`] of a [`Result`] into a |
216 | //! [`Result`] of an [`Option`] |
217 | //! |
218 | //! [`Err(err)`]: Err |
219 | //! [`Ok(v)`]: Ok |
220 | //! [`Some(v)`]: Some |
221 | //! [`ok_or`]: Option::ok_or |
222 | //! [`ok_or_else`]: Option::ok_or_else |
223 | //! [`transpose`]: Option::transpose |
224 | //! |
225 | //! These methods transform the [`Some`] variant: |
226 | //! |
227 | //! * [`filter`] calls the provided predicate function on the contained |
228 | //! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`] |
229 | //! if the function returns `true`; otherwise, returns [`None`] |
230 | //! * [`flatten`] removes one level of nesting from an |
231 | //! [`Option<Option<T>>`] |
232 | //! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the |
233 | //! provided function to the contained value of [`Some`] and leaving |
234 | //! [`None`] values unchanged |
235 | //! |
236 | //! [`Some(t)`]: Some |
237 | //! [`filter`]: Option::filter |
238 | //! [`flatten`]: Option::flatten |
239 | //! [`map`]: Option::map |
240 | //! |
241 | //! These methods transform [`Option<T>`] to a value of a possibly |
242 | //! different type `U`: |
243 | //! |
244 | //! * [`map_or`] applies the provided function to the contained value of |
245 | //! [`Some`], or returns the provided default value if the [`Option`] is |
246 | //! [`None`] |
247 | //! * [`map_or_else`] applies the provided function to the contained value |
248 | //! of [`Some`], or returns the result of evaluating the provided |
249 | //! fallback function if the [`Option`] is [`None`] |
250 | //! |
251 | //! [`map_or`]: Option::map_or |
252 | //! [`map_or_else`]: Option::map_or_else |
253 | //! |
254 | //! These methods combine the [`Some`] variants of two [`Option`] values: |
255 | //! |
256 | //! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the |
257 | //! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`] |
258 | //! * [`zip_with`] calls the provided function `f` and returns |
259 | //! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided |
260 | //! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`] |
261 | //! |
262 | //! [`Some(f(s, o))`]: Some |
263 | //! [`Some(o)`]: Some |
264 | //! [`Some(s)`]: Some |
265 | //! [`Some((s, o))`]: Some |
266 | //! [`zip`]: Option::zip |
267 | //! [`zip_with`]: Option::zip_with |
268 | //! |
269 | //! ## Boolean operators |
270 | //! |
271 | //! These methods treat the [`Option`] as a boolean value, where [`Some`] |
272 | //! acts like [`true`] and [`None`] acts like [`false`]. There are two |
273 | //! categories of these methods: ones that take an [`Option`] as input, and |
274 | //! ones that take a function as input (to be lazily evaluated). |
275 | //! |
276 | //! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as |
277 | //! input, and produce an [`Option`] as output. Only the [`and`] method can |
278 | //! produce an [`Option<U>`] value having a different inner type `U` than |
279 | //! [`Option<T>`]. |
280 | //! |
281 | //! | method | self | input | output | |
282 | //! |---------|-----------|-----------|-----------| |
283 | //! | [`and`] | `None` | (ignored) | `None` | |
284 | //! | [`and`] | `Some(x)` | `None` | `None` | |
285 | //! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` | |
286 | //! | [`or`] | `None` | `None` | `None` | |
287 | //! | [`or`] | `None` | `Some(y)` | `Some(y)` | |
288 | //! | [`or`] | `Some(x)` | (ignored) | `Some(x)` | |
289 | //! | [`xor`] | `None` | `None` | `None` | |
290 | //! | [`xor`] | `None` | `Some(y)` | `Some(y)` | |
291 | //! | [`xor`] | `Some(x)` | `None` | `Some(x)` | |
292 | //! | [`xor`] | `Some(x)` | `Some(y)` | `None` | |
293 | //! |
294 | //! [`and`]: Option::and |
295 | //! [`or`]: Option::or |
296 | //! [`xor`]: Option::xor |
297 | //! |
298 | //! The [`and_then`] and [`or_else`] methods take a function as input, and |
299 | //! only evaluate the function when they need to produce a new value. Only |
300 | //! the [`and_then`] method can produce an [`Option<U>`] value having a |
301 | //! different inner type `U` than [`Option<T>`]. |
302 | //! |
303 | //! | method | self | function input | function result | output | |
304 | //! |--------------|-----------|----------------|-----------------|-----------| |
305 | //! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` | |
306 | //! | [`and_then`] | `Some(x)` | `x` | `None` | `None` | |
307 | //! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` | |
308 | //! | [`or_else`] | `None` | (not provided) | `None` | `None` | |
309 | //! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` | |
310 | //! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` | |
311 | //! |
312 | //! [`and_then`]: Option::and_then |
313 | //! [`or_else`]: Option::or_else |
314 | //! |
315 | //! This is an example of using methods like [`and_then`] and [`or`] in a |
316 | //! pipeline of method calls. Early stages of the pipeline pass failure |
317 | //! values ([`None`]) through unchanged, and continue processing on |
318 | //! success values ([`Some`]). Toward the end, [`or`] substitutes an error |
319 | //! message if it receives [`None`]. |
320 | //! |
321 | //! ``` |
322 | //! # use std::collections::BTreeMap; |
323 | //! let mut bt = BTreeMap::new(); |
324 | //! bt.insert(20u8, "foo" ); |
325 | //! bt.insert(42u8, "bar" ); |
326 | //! let res = [0u8, 1, 11, 200, 22] |
327 | //! .into_iter() |
328 | //! .map(|x| { |
329 | //! // `checked_sub()` returns `None` on error |
330 | //! x.checked_sub(1) |
331 | //! // same with `checked_mul()` |
332 | //! .and_then(|x| x.checked_mul(2)) |
333 | //! // `BTreeMap::get` returns `None` on error |
334 | //! .and_then(|x| bt.get(&x)) |
335 | //! // Substitute an error message if we have `None` so far |
336 | //! .or(Some(&"error!" )) |
337 | //! .copied() |
338 | //! // Won't panic because we unconditionally used `Some` above |
339 | //! .unwrap() |
340 | //! }) |
341 | //! .collect::<Vec<_>>(); |
342 | //! assert_eq!(res, ["error!" , "error!" , "foo" , "error!" , "bar" ]); |
343 | //! ``` |
344 | //! |
345 | //! ## Comparison operators |
346 | //! |
347 | //! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its |
348 | //! [`PartialOrd`] implementation. With this order, [`None`] compares as |
349 | //! less than any [`Some`], and two [`Some`] compare the same way as their |
350 | //! contained values would in `T`. If `T` also implements |
351 | //! [`Ord`], then so does [`Option<T>`]. |
352 | //! |
353 | //! ``` |
354 | //! assert!(None < Some(0)); |
355 | //! assert!(Some(0) < Some(1)); |
356 | //! ``` |
357 | //! |
358 | //! ## Iterating over `Option` |
359 | //! |
360 | //! An [`Option`] can be iterated over. This can be helpful if you need an |
361 | //! iterator that is conditionally empty. The iterator will either produce |
362 | //! a single value (when the [`Option`] is [`Some`]), or produce no values |
363 | //! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like |
364 | //! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if |
365 | //! the [`Option`] is [`None`]. |
366 | //! |
367 | //! [`Some(v)`]: Some |
368 | //! [`empty()`]: crate::iter::empty |
369 | //! [`once(v)`]: crate::iter::once |
370 | //! |
371 | //! Iterators over [`Option<T>`] come in three types: |
372 | //! |
373 | //! * [`into_iter`] consumes the [`Option`] and produces the contained |
374 | //! value |
375 | //! * [`iter`] produces an immutable reference of type `&T` to the |
376 | //! contained value |
377 | //! * [`iter_mut`] produces a mutable reference of type `&mut T` to the |
378 | //! contained value |
379 | //! |
380 | //! [`into_iter`]: Option::into_iter |
381 | //! [`iter`]: Option::iter |
382 | //! [`iter_mut`]: Option::iter_mut |
383 | //! |
384 | //! An iterator over [`Option`] can be useful when chaining iterators, for |
385 | //! example, to conditionally insert items. (It's not always necessary to |
386 | //! explicitly call an iterator constructor: many [`Iterator`] methods that |
387 | //! accept other iterators will also accept iterable types that implement |
388 | //! [`IntoIterator`], which includes [`Option`].) |
389 | //! |
390 | //! ``` |
391 | //! let yep = Some(42); |
392 | //! let nope = None; |
393 | //! // chain() already calls into_iter(), so we don't have to do so |
394 | //! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect(); |
395 | //! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]); |
396 | //! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect(); |
397 | //! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]); |
398 | //! ``` |
399 | //! |
400 | //! One reason to chain iterators in this way is that a function returning |
401 | //! `impl Iterator` must have all possible return values be of the same |
402 | //! concrete type. Chaining an iterated [`Option`] can help with that. |
403 | //! |
404 | //! ``` |
405 | //! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> { |
406 | //! // Explicit returns to illustrate return types matching |
407 | //! match do_insert { |
408 | //! true => return (0..4).chain(Some(42)).chain(4..8), |
409 | //! false => return (0..4).chain(None).chain(4..8), |
410 | //! } |
411 | //! } |
412 | //! println!("{:?}" , make_iter(true).collect::<Vec<_>>()); |
413 | //! println!("{:?}" , make_iter(false).collect::<Vec<_>>()); |
414 | //! ``` |
415 | //! |
416 | //! If we try to do the same thing, but using [`once()`] and [`empty()`], |
417 | //! we can't return `impl Iterator` anymore because the concrete types of |
418 | //! the return values differ. |
419 | //! |
420 | //! [`empty()`]: crate::iter::empty |
421 | //! [`once()`]: crate::iter::once |
422 | //! |
423 | //! ```compile_fail,E0308 |
424 | //! # use std::iter::{empty, once}; |
425 | //! // This won't compile because all possible returns from the function |
426 | //! // must have the same concrete type. |
427 | //! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> { |
428 | //! // Explicit returns to illustrate return types not matching |
429 | //! match do_insert { |
430 | //! true => return (0..4).chain(once(42)).chain(4..8), |
431 | //! false => return (0..4).chain(empty()).chain(4..8), |
432 | //! } |
433 | //! } |
434 | //! ``` |
435 | //! |
436 | //! ## Collecting into `Option` |
437 | //! |
438 | //! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait, |
439 | //! which allows an iterator over [`Option`] values to be collected into an |
440 | //! [`Option`] of a collection of each contained value of the original |
441 | //! [`Option`] values, or [`None`] if any of the elements was [`None`]. |
442 | //! |
443 | //! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E |
444 | //! |
445 | //! ``` |
446 | //! let v = [Some(2), Some(4), None, Some(8)]; |
447 | //! let res: Option<Vec<_>> = v.into_iter().collect(); |
448 | //! assert_eq!(res, None); |
449 | //! let v = [Some(2), Some(4), Some(8)]; |
450 | //! let res: Option<Vec<_>> = v.into_iter().collect(); |
451 | //! assert_eq!(res, Some(vec![2, 4, 8])); |
452 | //! ``` |
453 | //! |
454 | //! [`Option`] also implements the [`Product`][impl-Product] and |
455 | //! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values |
456 | //! to provide the [`product`][Iterator::product] and |
457 | //! [`sum`][Iterator::sum] methods. |
458 | //! |
459 | //! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E |
460 | //! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E |
461 | //! |
462 | //! ``` |
463 | //! let v = [None, Some(1), Some(2), Some(3)]; |
464 | //! let res: Option<i32> = v.into_iter().sum(); |
465 | //! assert_eq!(res, None); |
466 | //! let v = [Some(1), Some(2), Some(21)]; |
467 | //! let res: Option<i32> = v.into_iter().product(); |
468 | //! assert_eq!(res, Some(42)); |
469 | //! ``` |
470 | //! |
471 | //! ## Modifying an [`Option`] in-place |
472 | //! |
473 | //! These methods return a mutable reference to the contained value of an |
474 | //! [`Option<T>`]: |
475 | //! |
476 | //! * [`insert`] inserts a value, dropping any old contents |
477 | //! * [`get_or_insert`] gets the current value, inserting a provided |
478 | //! default value if it is [`None`] |
479 | //! * [`get_or_insert_default`] gets the current value, inserting the |
480 | //! default value of type `T` (which must implement [`Default`]) if it is |
481 | //! [`None`] |
482 | //! * [`get_or_insert_with`] gets the current value, inserting a default |
483 | //! computed by the provided function if it is [`None`] |
484 | //! |
485 | //! [`get_or_insert`]: Option::get_or_insert |
486 | //! [`get_or_insert_default`]: Option::get_or_insert_default |
487 | //! [`get_or_insert_with`]: Option::get_or_insert_with |
488 | //! [`insert`]: Option::insert |
489 | //! |
490 | //! These methods transfer ownership of the contained value of an |
491 | //! [`Option`]: |
492 | //! |
493 | //! * [`take`] takes ownership of the contained value of an [`Option`], if |
494 | //! any, replacing the [`Option`] with [`None`] |
495 | //! * [`replace`] takes ownership of the contained value of an [`Option`], |
496 | //! if any, replacing the [`Option`] with a [`Some`] containing the |
497 | //! provided value |
498 | //! |
499 | //! [`replace`]: Option::replace |
500 | //! [`take`]: Option::take |
501 | //! |
502 | //! # Examples |
503 | //! |
504 | //! Basic pattern matching on [`Option`]: |
505 | //! |
506 | //! ``` |
507 | //! let msg = Some("howdy" ); |
508 | //! |
509 | //! // Take a reference to the contained string |
510 | //! if let Some(m) = &msg { |
511 | //! println!("{}" , *m); |
512 | //! } |
513 | //! |
514 | //! // Remove the contained string, destroying the Option |
515 | //! let unwrapped_msg = msg.unwrap_or("default message" ); |
516 | //! ``` |
517 | //! |
518 | //! Initialize a result to [`None`] before a loop: |
519 | //! |
520 | //! ``` |
521 | //! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) } |
522 | //! |
523 | //! // A list of data to search through. |
524 | //! let all_the_big_things = [ |
525 | //! Kingdom::Plant(250, "redwood" ), |
526 | //! Kingdom::Plant(230, "noble fir" ), |
527 | //! Kingdom::Plant(229, "sugar pine" ), |
528 | //! Kingdom::Animal(25, "blue whale" ), |
529 | //! Kingdom::Animal(19, "fin whale" ), |
530 | //! Kingdom::Animal(15, "north pacific right whale" ), |
531 | //! ]; |
532 | //! |
533 | //! // We're going to search for the name of the biggest animal, |
534 | //! // but to start with we've just got `None`. |
535 | //! let mut name_of_biggest_animal = None; |
536 | //! let mut size_of_biggest_animal = 0; |
537 | //! for big_thing in &all_the_big_things { |
538 | //! match *big_thing { |
539 | //! Kingdom::Animal(size, name) if size > size_of_biggest_animal => { |
540 | //! // Now we've found the name of some big animal |
541 | //! size_of_biggest_animal = size; |
542 | //! name_of_biggest_animal = Some(name); |
543 | //! } |
544 | //! Kingdom::Animal(..) | Kingdom::Plant(..) => () |
545 | //! } |
546 | //! } |
547 | //! |
548 | //! match name_of_biggest_animal { |
549 | //! Some(name) => println!("the biggest animal is {name}" ), |
550 | //! None => println!("there are no animals :(" ), |
551 | //! } |
552 | //! ``` |
553 | |
554 | #![stable (feature = "rust1" , since = "1.0.0" )] |
555 | |
556 | use crate::iter::{self, FusedIterator, TrustedLen}; |
557 | use crate::panicking::{panic, panic_display}; |
558 | use crate::pin::Pin; |
559 | use crate::{ |
560 | cmp, convert, hint, mem, |
561 | ops::{self, ControlFlow, Deref, DerefMut}, |
562 | slice, |
563 | }; |
564 | |
565 | /// The `Option` type. See [the module level documentation](self) for more. |
566 | #[derive (Copy, Eq, Debug, Hash)] |
567 | #[rustc_diagnostic_item = "Option" ] |
568 | #[lang = "Option" ] |
569 | #[stable (feature = "rust1" , since = "1.0.0" )] |
570 | #[allow (clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently |
571 | pub enum Option<T> { |
572 | /// No value. |
573 | #[lang = "None" ] |
574 | #[stable (feature = "rust1" , since = "1.0.0" )] |
575 | None, |
576 | /// Some value of type `T`. |
577 | #[lang = "Some" ] |
578 | #[stable (feature = "rust1" , since = "1.0.0" )] |
579 | Some(#[stable (feature = "rust1" , since = "1.0.0" )] T), |
580 | } |
581 | |
582 | ///////////////////////////////////////////////////////////////////////////// |
583 | // Type implementation |
584 | ///////////////////////////////////////////////////////////////////////////// |
585 | |
586 | impl<T> Option<T> { |
587 | ///////////////////////////////////////////////////////////////////////// |
588 | // Querying the contained values |
589 | ///////////////////////////////////////////////////////////////////////// |
590 | |
591 | /// Returns `true` if the option is a [`Some`] value. |
592 | /// |
593 | /// # Examples |
594 | /// |
595 | /// ``` |
596 | /// let x: Option<u32> = Some(2); |
597 | /// assert_eq!(x.is_some(), true); |
598 | /// |
599 | /// let x: Option<u32> = None; |
600 | /// assert_eq!(x.is_some(), false); |
601 | /// ``` |
602 | #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead" ] |
603 | #[inline ] |
604 | #[stable (feature = "rust1" , since = "1.0.0" )] |
605 | #[rustc_const_stable (feature = "const_option_basics" , since = "1.48.0" )] |
606 | pub const fn is_some(&self) -> bool { |
607 | matches!(*self, Some(_)) |
608 | } |
609 | |
610 | /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate. |
611 | /// |
612 | /// # Examples |
613 | /// |
614 | /// ``` |
615 | /// let x: Option<u32> = Some(2); |
616 | /// assert_eq!(x.is_some_and(|x| x > 1), true); |
617 | /// |
618 | /// let x: Option<u32> = Some(0); |
619 | /// assert_eq!(x.is_some_and(|x| x > 1), false); |
620 | /// |
621 | /// let x: Option<u32> = None; |
622 | /// assert_eq!(x.is_some_and(|x| x > 1), false); |
623 | /// ``` |
624 | #[must_use ] |
625 | #[inline ] |
626 | #[stable (feature = "is_some_and" , since = "1.70.0" )] |
627 | pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool { |
628 | match self { |
629 | None => false, |
630 | Some(x) => f(x), |
631 | } |
632 | } |
633 | |
634 | /// Returns `true` if the option is a [`None`] value. |
635 | /// |
636 | /// # Examples |
637 | /// |
638 | /// ``` |
639 | /// let x: Option<u32> = Some(2); |
640 | /// assert_eq!(x.is_none(), false); |
641 | /// |
642 | /// let x: Option<u32> = None; |
643 | /// assert_eq!(x.is_none(), true); |
644 | /// ``` |
645 | #[must_use = "if you intended to assert that this doesn't have a value, consider \ |
646 | wrapping this in an `assert!()` instead" ] |
647 | #[inline ] |
648 | #[stable (feature = "rust1" , since = "1.0.0" )] |
649 | #[rustc_const_stable (feature = "const_option_basics" , since = "1.48.0" )] |
650 | pub const fn is_none(&self) -> bool { |
651 | !self.is_some() |
652 | } |
653 | |
654 | ///////////////////////////////////////////////////////////////////////// |
655 | // Adapter for working with references |
656 | ///////////////////////////////////////////////////////////////////////// |
657 | |
658 | /// Converts from `&Option<T>` to `Option<&T>`. |
659 | /// |
660 | /// # Examples |
661 | /// |
662 | /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code> |
663 | /// without moving the [`String`]. The [`map`] method takes the `self` argument by value, |
664 | /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a |
665 | /// reference to the value inside the original. |
666 | /// |
667 | /// [`map`]: Option::map |
668 | /// [String]: ../../std/string/struct.String.html "String" |
669 | /// [`String`]: ../../std/string/struct.String.html "String" |
670 | /// |
671 | /// ``` |
672 | /// let text: Option<String> = Some("Hello, world!" .to_string()); |
673 | /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`, |
674 | /// // then consume *that* with `map`, leaving `text` on the stack. |
675 | /// let text_length: Option<usize> = text.as_ref().map(|s| s.len()); |
676 | /// println!("still can print text: {text:?}" ); |
677 | /// ``` |
678 | #[inline ] |
679 | #[rustc_const_stable (feature = "const_option_basics" , since = "1.48.0" )] |
680 | #[stable (feature = "rust1" , since = "1.0.0" )] |
681 | pub const fn as_ref(&self) -> Option<&T> { |
682 | match *self { |
683 | Some(ref x) => Some(x), |
684 | None => None, |
685 | } |
686 | } |
687 | |
688 | /// Converts from `&mut Option<T>` to `Option<&mut T>`. |
689 | /// |
690 | /// # Examples |
691 | /// |
692 | /// ``` |
693 | /// let mut x = Some(2); |
694 | /// match x.as_mut() { |
695 | /// Some(v) => *v = 42, |
696 | /// None => {}, |
697 | /// } |
698 | /// assert_eq!(x, Some(42)); |
699 | /// ``` |
700 | #[inline ] |
701 | #[stable (feature = "rust1" , since = "1.0.0" )] |
702 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
703 | pub const fn as_mut(&mut self) -> Option<&mut T> { |
704 | match *self { |
705 | Some(ref mut x) => Some(x), |
706 | None => None, |
707 | } |
708 | } |
709 | |
710 | /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>. |
711 | /// |
712 | /// [&]: reference "shared reference" |
713 | #[inline ] |
714 | #[must_use ] |
715 | #[stable (feature = "pin" , since = "1.33.0" )] |
716 | #[rustc_const_unstable (feature = "const_option_ext" , issue = "91930" )] |
717 | pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> { |
718 | match Pin::get_ref(self).as_ref() { |
719 | // SAFETY: `x` is guaranteed to be pinned because it comes from `self` |
720 | // which is pinned. |
721 | Some(x) => unsafe { Some(Pin::new_unchecked(x)) }, |
722 | None => None, |
723 | } |
724 | } |
725 | |
726 | /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>. |
727 | /// |
728 | /// [&mut]: reference "mutable reference" |
729 | #[inline ] |
730 | #[must_use ] |
731 | #[stable (feature = "pin" , since = "1.33.0" )] |
732 | #[rustc_const_unstable (feature = "const_option_ext" , issue = "91930" )] |
733 | pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> { |
734 | // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`. |
735 | // `x` is guaranteed to be pinned because it comes from `self` which is pinned. |
736 | unsafe { |
737 | match Pin::get_unchecked_mut(self).as_mut() { |
738 | Some(x) => Some(Pin::new_unchecked(x)), |
739 | None => None, |
740 | } |
741 | } |
742 | } |
743 | |
744 | /// Returns a slice of the contained value, if any. If this is `None`, an |
745 | /// empty slice is returned. This can be useful to have a single type of |
746 | /// iterator over an `Option` or slice. |
747 | /// |
748 | /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`, |
749 | /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`. |
750 | /// |
751 | /// # Examples |
752 | /// |
753 | /// ```rust |
754 | /// assert_eq!( |
755 | /// [Some(1234).as_slice(), None.as_slice()], |
756 | /// [&[1234][..], &[][..]], |
757 | /// ); |
758 | /// ``` |
759 | /// |
760 | /// The inverse of this function is (discounting |
761 | /// borrowing) [`[_]::first`](slice::first): |
762 | /// |
763 | /// ```rust |
764 | /// for i in [Some(1234_u16), None] { |
765 | /// assert_eq!(i.as_ref(), i.as_slice().first()); |
766 | /// } |
767 | /// ``` |
768 | #[inline ] |
769 | #[must_use ] |
770 | #[stable (feature = "option_as_slice" , since = "1.75.0" )] |
771 | pub fn as_slice(&self) -> &[T] { |
772 | // SAFETY: When the `Option` is `Some`, we're using the actual pointer |
773 | // to the payload, with a length of 1, so this is equivalent to |
774 | // `slice::from_ref`, and thus is safe. |
775 | // When the `Option` is `None`, the length used is 0, so to be safe it |
776 | // just needs to be aligned, which it is because `&self` is aligned and |
777 | // the offset used is a multiple of alignment. |
778 | // |
779 | // In the new version, the intrinsic always returns a pointer to an |
780 | // in-bounds and correctly aligned position for a `T` (even if in the |
781 | // `None` case it's just padding). |
782 | unsafe { |
783 | slice::from_raw_parts( |
784 | (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(), |
785 | usize::from(self.is_some()), |
786 | ) |
787 | } |
788 | } |
789 | |
790 | /// Returns a mutable slice of the contained value, if any. If this is |
791 | /// `None`, an empty slice is returned. This can be useful to have a |
792 | /// single type of iterator over an `Option` or slice. |
793 | /// |
794 | /// Note: Should you have an `Option<&mut T>` instead of a |
795 | /// `&mut Option<T>`, which this method takes, you can obtain a mutable |
796 | /// slice via `opt.map_or(&mut [], std::slice::from_mut)`. |
797 | /// |
798 | /// # Examples |
799 | /// |
800 | /// ```rust |
801 | /// assert_eq!( |
802 | /// [Some(1234).as_mut_slice(), None.as_mut_slice()], |
803 | /// [&mut [1234][..], &mut [][..]], |
804 | /// ); |
805 | /// ``` |
806 | /// |
807 | /// The result is a mutable slice of zero or one items that points into |
808 | /// our original `Option`: |
809 | /// |
810 | /// ```rust |
811 | /// let mut x = Some(1234); |
812 | /// x.as_mut_slice()[0] += 1; |
813 | /// assert_eq!(x, Some(1235)); |
814 | /// ``` |
815 | /// |
816 | /// The inverse of this method (discounting borrowing) |
817 | /// is [`[_]::first_mut`](slice::first_mut): |
818 | /// |
819 | /// ```rust |
820 | /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123)) |
821 | /// ``` |
822 | #[inline ] |
823 | #[must_use ] |
824 | #[stable (feature = "option_as_slice" , since = "1.75.0" )] |
825 | pub fn as_mut_slice(&mut self) -> &mut [T] { |
826 | // SAFETY: When the `Option` is `Some`, we're using the actual pointer |
827 | // to the payload, with a length of 1, so this is equivalent to |
828 | // `slice::from_mut`, and thus is safe. |
829 | // When the `Option` is `None`, the length used is 0, so to be safe it |
830 | // just needs to be aligned, which it is because `&self` is aligned and |
831 | // the offset used is a multiple of alignment. |
832 | // |
833 | // In the new version, the intrinsic creates a `*const T` from a |
834 | // mutable reference so it is safe to cast back to a mutable pointer |
835 | // here. As with `as_slice`, the intrinsic always returns a pointer to |
836 | // an in-bounds and correctly aligned position for a `T` (even if in |
837 | // the `None` case it's just padding). |
838 | unsafe { |
839 | slice::from_raw_parts_mut( |
840 | (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(), |
841 | usize::from(self.is_some()), |
842 | ) |
843 | } |
844 | } |
845 | |
846 | ///////////////////////////////////////////////////////////////////////// |
847 | // Getting to contained values |
848 | ///////////////////////////////////////////////////////////////////////// |
849 | |
850 | /// Returns the contained [`Some`] value, consuming the `self` value. |
851 | /// |
852 | /// # Panics |
853 | /// |
854 | /// Panics if the value is a [`None`] with a custom panic message provided by |
855 | /// `msg`. |
856 | /// |
857 | /// # Examples |
858 | /// |
859 | /// ``` |
860 | /// let x = Some("value" ); |
861 | /// assert_eq!(x.expect("fruits are healthy" ), "value" ); |
862 | /// ``` |
863 | /// |
864 | /// ```should_panic |
865 | /// let x: Option<&str> = None; |
866 | /// x.expect("fruits are healthy" ); // panics with `fruits are healthy` |
867 | /// ``` |
868 | /// |
869 | /// # Recommended Message Style |
870 | /// |
871 | /// We recommend that `expect` messages are used to describe the reason you |
872 | /// _expect_ the `Option` should be `Some`. |
873 | /// |
874 | /// ```should_panic |
875 | /// # let slice: &[u8] = &[]; |
876 | /// let item = slice.get(0) |
877 | /// .expect("slice should not be empty" ); |
878 | /// ``` |
879 | /// |
880 | /// **Hint**: If you're having trouble remembering how to phrase expect |
881 | /// error messages remember to focus on the word "should" as in "env |
882 | /// variable should be set by blah" or "the given binary should be available |
883 | /// and executable by the current user". |
884 | /// |
885 | /// For more detail on expect message styles and the reasoning behind our |
886 | /// recommendation please refer to the section on ["Common Message |
887 | /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs. |
888 | #[inline ] |
889 | #[track_caller ] |
890 | #[stable (feature = "rust1" , since = "1.0.0" )] |
891 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
892 | pub const fn expect(self, msg: &str) -> T { |
893 | match self { |
894 | Some(val) => val, |
895 | None => expect_failed(msg), |
896 | } |
897 | } |
898 | |
899 | /// Returns the contained [`Some`] value, consuming the `self` value. |
900 | /// |
901 | /// Because this function may panic, its use is generally discouraged. |
902 | /// Instead, prefer to use pattern matching and handle the [`None`] |
903 | /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or |
904 | /// [`unwrap_or_default`]. |
905 | /// |
906 | /// [`unwrap_or`]: Option::unwrap_or |
907 | /// [`unwrap_or_else`]: Option::unwrap_or_else |
908 | /// [`unwrap_or_default`]: Option::unwrap_or_default |
909 | /// |
910 | /// # Panics |
911 | /// |
912 | /// Panics if the self value equals [`None`]. |
913 | /// |
914 | /// # Examples |
915 | /// |
916 | /// ``` |
917 | /// let x = Some("air" ); |
918 | /// assert_eq!(x.unwrap(), "air" ); |
919 | /// ``` |
920 | /// |
921 | /// ```should_panic |
922 | /// let x: Option<&str> = None; |
923 | /// assert_eq!(x.unwrap(), "air" ); // fails |
924 | /// ``` |
925 | #[inline (always)] |
926 | #[track_caller ] |
927 | #[stable (feature = "rust1" , since = "1.0.0" )] |
928 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
929 | pub const fn unwrap(self) -> T { |
930 | match self { |
931 | Some(val) => val, |
932 | None => unwrap_failed(), |
933 | } |
934 | } |
935 | |
936 | /// Returns the contained [`Some`] value or a provided default. |
937 | /// |
938 | /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing |
939 | /// the result of a function call, it is recommended to use [`unwrap_or_else`], |
940 | /// which is lazily evaluated. |
941 | /// |
942 | /// [`unwrap_or_else`]: Option::unwrap_or_else |
943 | /// |
944 | /// # Examples |
945 | /// |
946 | /// ``` |
947 | /// assert_eq!(Some("car" ).unwrap_or("bike" ), "car" ); |
948 | /// assert_eq!(None.unwrap_or("bike" ), "bike" ); |
949 | /// ``` |
950 | #[inline ] |
951 | #[stable (feature = "rust1" , since = "1.0.0" )] |
952 | pub fn unwrap_or(self, default: T) -> T { |
953 | match self { |
954 | Some(x) => x, |
955 | None => default, |
956 | } |
957 | } |
958 | |
959 | /// Returns the contained [`Some`] value or computes it from a closure. |
960 | /// |
961 | /// # Examples |
962 | /// |
963 | /// ``` |
964 | /// let k = 10; |
965 | /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4); |
966 | /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20); |
967 | /// ``` |
968 | #[inline ] |
969 | #[track_caller ] |
970 | #[stable (feature = "rust1" , since = "1.0.0" )] |
971 | pub fn unwrap_or_else<F>(self, f: F) -> T |
972 | where |
973 | F: FnOnce() -> T, |
974 | { |
975 | match self { |
976 | Some(x) => x, |
977 | None => f(), |
978 | } |
979 | } |
980 | |
981 | /// Returns the contained [`Some`] value or a default. |
982 | /// |
983 | /// Consumes the `self` argument then, if [`Some`], returns the contained |
984 | /// value, otherwise if [`None`], returns the [default value] for that |
985 | /// type. |
986 | /// |
987 | /// # Examples |
988 | /// |
989 | /// ``` |
990 | /// let x: Option<u32> = None; |
991 | /// let y: Option<u32> = Some(12); |
992 | /// |
993 | /// assert_eq!(x.unwrap_or_default(), 0); |
994 | /// assert_eq!(y.unwrap_or_default(), 12); |
995 | /// ``` |
996 | /// |
997 | /// [default value]: Default::default |
998 | /// [`parse`]: str::parse |
999 | /// [`FromStr`]: crate::str::FromStr |
1000 | #[inline ] |
1001 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1002 | pub fn unwrap_or_default(self) -> T |
1003 | where |
1004 | T: Default, |
1005 | { |
1006 | match self { |
1007 | Some(x) => x, |
1008 | None => T::default(), |
1009 | } |
1010 | } |
1011 | |
1012 | /// Returns the contained [`Some`] value, consuming the `self` value, |
1013 | /// without checking that the value is not [`None`]. |
1014 | /// |
1015 | /// # Safety |
1016 | /// |
1017 | /// Calling this method on [`None`] is *[undefined behavior]*. |
1018 | /// |
1019 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
1020 | /// |
1021 | /// # Examples |
1022 | /// |
1023 | /// ``` |
1024 | /// let x = Some("air" ); |
1025 | /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air" ); |
1026 | /// ``` |
1027 | /// |
1028 | /// ```no_run |
1029 | /// let x: Option<&str> = None; |
1030 | /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air" ); // Undefined behavior! |
1031 | /// ``` |
1032 | #[inline ] |
1033 | #[track_caller ] |
1034 | #[stable (feature = "option_result_unwrap_unchecked" , since = "1.58.0" )] |
1035 | #[rustc_const_unstable (feature = "const_option_ext" , issue = "91930" )] |
1036 | pub const unsafe fn unwrap_unchecked(self) -> T { |
1037 | match self { |
1038 | Some(val) => val, |
1039 | // SAFETY: the safety contract must be upheld by the caller. |
1040 | None => unsafe { hint::unreachable_unchecked() }, |
1041 | } |
1042 | } |
1043 | |
1044 | ///////////////////////////////////////////////////////////////////////// |
1045 | // Transforming contained values |
1046 | ///////////////////////////////////////////////////////////////////////// |
1047 | |
1048 | /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`). |
1049 | /// |
1050 | /// # Examples |
1051 | /// |
1052 | /// Calculates the length of an <code>Option<[String]></code> as an |
1053 | /// <code>Option<[usize]></code>, consuming the original: |
1054 | /// |
1055 | /// [String]: ../../std/string/struct.String.html "String" |
1056 | /// ``` |
1057 | /// let maybe_some_string = Some(String::from("Hello, World!" )); |
1058 | /// // `Option::map` takes self *by value*, consuming `maybe_some_string` |
1059 | /// let maybe_some_len = maybe_some_string.map(|s| s.len()); |
1060 | /// assert_eq!(maybe_some_len, Some(13)); |
1061 | /// |
1062 | /// let x: Option<&str> = None; |
1063 | /// assert_eq!(x.map(|s| s.len()), None); |
1064 | /// ``` |
1065 | #[inline ] |
1066 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1067 | pub fn map<U, F>(self, f: F) -> Option<U> |
1068 | where |
1069 | F: FnOnce(T) -> U, |
1070 | { |
1071 | match self { |
1072 | Some(x) => Some(f(x)), |
1073 | None => None, |
1074 | } |
1075 | } |
1076 | |
1077 | /// Calls a function with a reference to the contained value if [`Some`]. |
1078 | /// |
1079 | /// Returns the original option. |
1080 | /// |
1081 | /// # Examples |
1082 | /// |
1083 | /// ``` |
1084 | /// let list = vec![1, 2, 3]; |
1085 | /// |
1086 | /// // prints "got: 2" |
1087 | /// let x = list |
1088 | /// .get(1) |
1089 | /// .inspect(|x| println!("got: {x}" )) |
1090 | /// .expect("list should be long enough" ); |
1091 | /// |
1092 | /// // prints nothing |
1093 | /// list.get(5).inspect(|x| println!("got: {x}" )); |
1094 | /// ``` |
1095 | #[inline ] |
1096 | #[stable (feature = "result_option_inspect" , since = "1.76.0" )] |
1097 | pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self { |
1098 | if let Some(ref x) = self { |
1099 | f(x); |
1100 | } |
1101 | |
1102 | self |
1103 | } |
1104 | |
1105 | /// Returns the provided default result (if none), |
1106 | /// or applies a function to the contained value (if any). |
1107 | /// |
1108 | /// Arguments passed to `map_or` are eagerly evaluated; if you are passing |
1109 | /// the result of a function call, it is recommended to use [`map_or_else`], |
1110 | /// which is lazily evaluated. |
1111 | /// |
1112 | /// [`map_or_else`]: Option::map_or_else |
1113 | /// |
1114 | /// # Examples |
1115 | /// |
1116 | /// ``` |
1117 | /// let x = Some("foo" ); |
1118 | /// assert_eq!(x.map_or(42, |v| v.len()), 3); |
1119 | /// |
1120 | /// let x: Option<&str> = None; |
1121 | /// assert_eq!(x.map_or(42, |v| v.len()), 42); |
1122 | /// ``` |
1123 | #[inline ] |
1124 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1125 | #[must_use = "if you don't need the returned value, use `if let` instead" ] |
1126 | pub fn map_or<U, F>(self, default: U, f: F) -> U |
1127 | where |
1128 | F: FnOnce(T) -> U, |
1129 | { |
1130 | match self { |
1131 | Some(t) => f(t), |
1132 | None => default, |
1133 | } |
1134 | } |
1135 | |
1136 | /// Computes a default function result (if none), or |
1137 | /// applies a different function to the contained value (if any). |
1138 | /// |
1139 | /// # Basic examples |
1140 | /// |
1141 | /// ``` |
1142 | /// let k = 21; |
1143 | /// |
1144 | /// let x = Some("foo" ); |
1145 | /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3); |
1146 | /// |
1147 | /// let x: Option<&str> = None; |
1148 | /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42); |
1149 | /// ``` |
1150 | /// |
1151 | /// # Handling a Result-based fallback |
1152 | /// |
1153 | /// A somewhat common occurrence when dealing with optional values |
1154 | /// in combination with [`Result<T, E>`] is the case where one wants to invoke |
1155 | /// a fallible fallback if the option is not present. This example |
1156 | /// parses a command line argument (if present), or the contents of a file to |
1157 | /// an integer. However, unlike accessing the command line argument, reading |
1158 | /// the file is fallible, so it must be wrapped with `Ok`. |
1159 | /// |
1160 | /// ```no_run |
1161 | /// # fn main() -> Result<(), Box<dyn std::error::Error>> { |
1162 | /// let v: u64 = std::env::args() |
1163 | /// .nth(1) |
1164 | /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf" ), Ok)? |
1165 | /// .parse()?; |
1166 | /// # Ok(()) |
1167 | /// # } |
1168 | /// ``` |
1169 | #[inline ] |
1170 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1171 | pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U |
1172 | where |
1173 | D: FnOnce() -> U, |
1174 | F: FnOnce(T) -> U, |
1175 | { |
1176 | match self { |
1177 | Some(t) => f(t), |
1178 | None => default(), |
1179 | } |
1180 | } |
1181 | |
1182 | /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to |
1183 | /// [`Ok(v)`] and [`None`] to [`Err(err)`]. |
1184 | /// |
1185 | /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the |
1186 | /// result of a function call, it is recommended to use [`ok_or_else`], which is |
1187 | /// lazily evaluated. |
1188 | /// |
1189 | /// [`Ok(v)`]: Ok |
1190 | /// [`Err(err)`]: Err |
1191 | /// [`Some(v)`]: Some |
1192 | /// [`ok_or_else`]: Option::ok_or_else |
1193 | /// |
1194 | /// # Examples |
1195 | /// |
1196 | /// ``` |
1197 | /// let x = Some("foo" ); |
1198 | /// assert_eq!(x.ok_or(0), Ok("foo" )); |
1199 | /// |
1200 | /// let x: Option<&str> = None; |
1201 | /// assert_eq!(x.ok_or(0), Err(0)); |
1202 | /// ``` |
1203 | #[inline ] |
1204 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1205 | pub fn ok_or<E>(self, err: E) -> Result<T, E> { |
1206 | match self { |
1207 | Some(v) => Ok(v), |
1208 | None => Err(err), |
1209 | } |
1210 | } |
1211 | |
1212 | /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to |
1213 | /// [`Ok(v)`] and [`None`] to [`Err(err())`]. |
1214 | /// |
1215 | /// [`Ok(v)`]: Ok |
1216 | /// [`Err(err())`]: Err |
1217 | /// [`Some(v)`]: Some |
1218 | /// |
1219 | /// # Examples |
1220 | /// |
1221 | /// ``` |
1222 | /// let x = Some("foo" ); |
1223 | /// assert_eq!(x.ok_or_else(|| 0), Ok("foo" )); |
1224 | /// |
1225 | /// let x: Option<&str> = None; |
1226 | /// assert_eq!(x.ok_or_else(|| 0), Err(0)); |
1227 | /// ``` |
1228 | #[inline ] |
1229 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1230 | pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E> |
1231 | where |
1232 | F: FnOnce() -> E, |
1233 | { |
1234 | match self { |
1235 | Some(v) => Ok(v), |
1236 | None => Err(err()), |
1237 | } |
1238 | } |
1239 | |
1240 | /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`. |
1241 | /// |
1242 | /// Leaves the original Option in-place, creating a new one with a reference |
1243 | /// to the original one, additionally coercing the contents via [`Deref`]. |
1244 | /// |
1245 | /// # Examples |
1246 | /// |
1247 | /// ``` |
1248 | /// let x: Option<String> = Some("hey" .to_owned()); |
1249 | /// assert_eq!(x.as_deref(), Some("hey" )); |
1250 | /// |
1251 | /// let x: Option<String> = None; |
1252 | /// assert_eq!(x.as_deref(), None); |
1253 | /// ``` |
1254 | #[inline ] |
1255 | #[stable (feature = "option_deref" , since = "1.40.0" )] |
1256 | pub fn as_deref(&self) -> Option<&T::Target> |
1257 | where |
1258 | T: Deref, |
1259 | { |
1260 | match self.as_ref() { |
1261 | Some(t) => Some(t.deref()), |
1262 | None => None, |
1263 | } |
1264 | } |
1265 | |
1266 | /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`. |
1267 | /// |
1268 | /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to |
1269 | /// the inner type's [`Deref::Target`] type. |
1270 | /// |
1271 | /// # Examples |
1272 | /// |
1273 | /// ``` |
1274 | /// let mut x: Option<String> = Some("hey" .to_owned()); |
1275 | /// assert_eq!(x.as_deref_mut().map(|x| { |
1276 | /// x.make_ascii_uppercase(); |
1277 | /// x |
1278 | /// }), Some("HEY" .to_owned().as_mut_str())); |
1279 | /// ``` |
1280 | #[inline ] |
1281 | #[stable (feature = "option_deref" , since = "1.40.0" )] |
1282 | pub fn as_deref_mut(&mut self) -> Option<&mut T::Target> |
1283 | where |
1284 | T: DerefMut, |
1285 | { |
1286 | match self.as_mut() { |
1287 | Some(t) => Some(t.deref_mut()), |
1288 | None => None, |
1289 | } |
1290 | } |
1291 | |
1292 | ///////////////////////////////////////////////////////////////////////// |
1293 | // Iterator constructors |
1294 | ///////////////////////////////////////////////////////////////////////// |
1295 | |
1296 | /// Returns an iterator over the possibly contained value. |
1297 | /// |
1298 | /// # Examples |
1299 | /// |
1300 | /// ``` |
1301 | /// let x = Some(4); |
1302 | /// assert_eq!(x.iter().next(), Some(&4)); |
1303 | /// |
1304 | /// let x: Option<u32> = None; |
1305 | /// assert_eq!(x.iter().next(), None); |
1306 | /// ``` |
1307 | #[inline ] |
1308 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
1309 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1310 | pub const fn iter(&self) -> Iter<'_, T> { |
1311 | Iter { inner: Item { opt: self.as_ref() } } |
1312 | } |
1313 | |
1314 | /// Returns a mutable iterator over the possibly contained value. |
1315 | /// |
1316 | /// # Examples |
1317 | /// |
1318 | /// ``` |
1319 | /// let mut x = Some(4); |
1320 | /// match x.iter_mut().next() { |
1321 | /// Some(v) => *v = 42, |
1322 | /// None => {}, |
1323 | /// } |
1324 | /// assert_eq!(x, Some(42)); |
1325 | /// |
1326 | /// let mut x: Option<u32> = None; |
1327 | /// assert_eq!(x.iter_mut().next(), None); |
1328 | /// ``` |
1329 | #[inline ] |
1330 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1331 | pub fn iter_mut(&mut self) -> IterMut<'_, T> { |
1332 | IterMut { inner: Item { opt: self.as_mut() } } |
1333 | } |
1334 | |
1335 | ///////////////////////////////////////////////////////////////////////// |
1336 | // Boolean operations on the values, eager and lazy |
1337 | ///////////////////////////////////////////////////////////////////////// |
1338 | |
1339 | /// Returns [`None`] if the option is [`None`], otherwise returns `optb`. |
1340 | /// |
1341 | /// Arguments passed to `and` are eagerly evaluated; if you are passing the |
1342 | /// result of a function call, it is recommended to use [`and_then`], which is |
1343 | /// lazily evaluated. |
1344 | /// |
1345 | /// [`and_then`]: Option::and_then |
1346 | /// |
1347 | /// # Examples |
1348 | /// |
1349 | /// ``` |
1350 | /// let x = Some(2); |
1351 | /// let y: Option<&str> = None; |
1352 | /// assert_eq!(x.and(y), None); |
1353 | /// |
1354 | /// let x: Option<u32> = None; |
1355 | /// let y = Some("foo" ); |
1356 | /// assert_eq!(x.and(y), None); |
1357 | /// |
1358 | /// let x = Some(2); |
1359 | /// let y = Some("foo" ); |
1360 | /// assert_eq!(x.and(y), Some("foo" )); |
1361 | /// |
1362 | /// let x: Option<u32> = None; |
1363 | /// let y: Option<&str> = None; |
1364 | /// assert_eq!(x.and(y), None); |
1365 | /// ``` |
1366 | #[inline ] |
1367 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1368 | pub fn and<U>(self, optb: Option<U>) -> Option<U> { |
1369 | match self { |
1370 | Some(_) => optb, |
1371 | None => None, |
1372 | } |
1373 | } |
1374 | |
1375 | /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the |
1376 | /// wrapped value and returns the result. |
1377 | /// |
1378 | /// Some languages call this operation flatmap. |
1379 | /// |
1380 | /// # Examples |
1381 | /// |
1382 | /// ``` |
1383 | /// fn sq_then_to_string(x: u32) -> Option<String> { |
1384 | /// x.checked_mul(x).map(|sq| sq.to_string()) |
1385 | /// } |
1386 | /// |
1387 | /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string())); |
1388 | /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed! |
1389 | /// assert_eq!(None.and_then(sq_then_to_string), None); |
1390 | /// ``` |
1391 | /// |
1392 | /// Often used to chain fallible operations that may return [`None`]. |
1393 | /// |
1394 | /// ``` |
1395 | /// let arr_2d = [["A0" , "A1" ], ["B0" , "B1" ]]; |
1396 | /// |
1397 | /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1)); |
1398 | /// assert_eq!(item_0_1, Some(&"A1" )); |
1399 | /// |
1400 | /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0)); |
1401 | /// assert_eq!(item_2_0, None); |
1402 | /// ``` |
1403 | #[doc (alias = "flatmap" )] |
1404 | #[inline ] |
1405 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1406 | #[rustc_confusables ("flat_map" , "flatmap" )] |
1407 | pub fn and_then<U, F>(self, f: F) -> Option<U> |
1408 | where |
1409 | F: FnOnce(T) -> Option<U>, |
1410 | { |
1411 | match self { |
1412 | Some(x) => f(x), |
1413 | None => None, |
1414 | } |
1415 | } |
1416 | |
1417 | /// Returns [`None`] if the option is [`None`], otherwise calls `predicate` |
1418 | /// with the wrapped value and returns: |
1419 | /// |
1420 | /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped |
1421 | /// value), and |
1422 | /// - [`None`] if `predicate` returns `false`. |
1423 | /// |
1424 | /// This function works similar to [`Iterator::filter()`]. You can imagine |
1425 | /// the `Option<T>` being an iterator over one or zero elements. `filter()` |
1426 | /// lets you decide which elements to keep. |
1427 | /// |
1428 | /// # Examples |
1429 | /// |
1430 | /// ```rust |
1431 | /// fn is_even(n: &i32) -> bool { |
1432 | /// n % 2 == 0 |
1433 | /// } |
1434 | /// |
1435 | /// assert_eq!(None.filter(is_even), None); |
1436 | /// assert_eq!(Some(3).filter(is_even), None); |
1437 | /// assert_eq!(Some(4).filter(is_even), Some(4)); |
1438 | /// ``` |
1439 | /// |
1440 | /// [`Some(t)`]: Some |
1441 | #[inline ] |
1442 | #[stable (feature = "option_filter" , since = "1.27.0" )] |
1443 | pub fn filter<P>(self, predicate: P) -> Self |
1444 | where |
1445 | P: FnOnce(&T) -> bool, |
1446 | { |
1447 | if let Some(x) = self { |
1448 | if predicate(&x) { |
1449 | return Some(x); |
1450 | } |
1451 | } |
1452 | None |
1453 | } |
1454 | |
1455 | /// Returns the option if it contains a value, otherwise returns `optb`. |
1456 | /// |
1457 | /// Arguments passed to `or` are eagerly evaluated; if you are passing the |
1458 | /// result of a function call, it is recommended to use [`or_else`], which is |
1459 | /// lazily evaluated. |
1460 | /// |
1461 | /// [`or_else`]: Option::or_else |
1462 | /// |
1463 | /// # Examples |
1464 | /// |
1465 | /// ``` |
1466 | /// let x = Some(2); |
1467 | /// let y = None; |
1468 | /// assert_eq!(x.or(y), Some(2)); |
1469 | /// |
1470 | /// let x = None; |
1471 | /// let y = Some(100); |
1472 | /// assert_eq!(x.or(y), Some(100)); |
1473 | /// |
1474 | /// let x = Some(2); |
1475 | /// let y = Some(100); |
1476 | /// assert_eq!(x.or(y), Some(2)); |
1477 | /// |
1478 | /// let x: Option<u32> = None; |
1479 | /// let y = None; |
1480 | /// assert_eq!(x.or(y), None); |
1481 | /// ``` |
1482 | #[inline ] |
1483 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1484 | pub fn or(self, optb: Option<T>) -> Option<T> { |
1485 | match self { |
1486 | x @ Some(_) => x, |
1487 | None => optb, |
1488 | } |
1489 | } |
1490 | |
1491 | /// Returns the option if it contains a value, otherwise calls `f` and |
1492 | /// returns the result. |
1493 | /// |
1494 | /// # Examples |
1495 | /// |
1496 | /// ``` |
1497 | /// fn nobody() -> Option<&'static str> { None } |
1498 | /// fn vikings() -> Option<&'static str> { Some("vikings" ) } |
1499 | /// |
1500 | /// assert_eq!(Some("barbarians" ).or_else(vikings), Some("barbarians" )); |
1501 | /// assert_eq!(None.or_else(vikings), Some("vikings" )); |
1502 | /// assert_eq!(None.or_else(nobody), None); |
1503 | /// ``` |
1504 | #[inline ] |
1505 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1506 | pub fn or_else<F>(self, f: F) -> Option<T> |
1507 | where |
1508 | F: FnOnce() -> Option<T>, |
1509 | { |
1510 | match self { |
1511 | x @ Some(_) => x, |
1512 | None => f(), |
1513 | } |
1514 | } |
1515 | |
1516 | /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`]. |
1517 | /// |
1518 | /// # Examples |
1519 | /// |
1520 | /// ``` |
1521 | /// let x = Some(2); |
1522 | /// let y: Option<u32> = None; |
1523 | /// assert_eq!(x.xor(y), Some(2)); |
1524 | /// |
1525 | /// let x: Option<u32> = None; |
1526 | /// let y = Some(2); |
1527 | /// assert_eq!(x.xor(y), Some(2)); |
1528 | /// |
1529 | /// let x = Some(2); |
1530 | /// let y = Some(2); |
1531 | /// assert_eq!(x.xor(y), None); |
1532 | /// |
1533 | /// let x: Option<u32> = None; |
1534 | /// let y: Option<u32> = None; |
1535 | /// assert_eq!(x.xor(y), None); |
1536 | /// ``` |
1537 | #[inline ] |
1538 | #[stable (feature = "option_xor" , since = "1.37.0" )] |
1539 | pub fn xor(self, optb: Option<T>) -> Option<T> { |
1540 | match (self, optb) { |
1541 | (a @ Some(_), None) => a, |
1542 | (None, b @ Some(_)) => b, |
1543 | _ => None, |
1544 | } |
1545 | } |
1546 | |
1547 | ///////////////////////////////////////////////////////////////////////// |
1548 | // Entry-like operations to insert a value and return a reference |
1549 | ///////////////////////////////////////////////////////////////////////// |
1550 | |
1551 | /// Inserts `value` into the option, then returns a mutable reference to it. |
1552 | /// |
1553 | /// If the option already contains a value, the old value is dropped. |
1554 | /// |
1555 | /// See also [`Option::get_or_insert`], which doesn't update the value if |
1556 | /// the option already contains [`Some`]. |
1557 | /// |
1558 | /// # Example |
1559 | /// |
1560 | /// ``` |
1561 | /// let mut opt = None; |
1562 | /// let val = opt.insert(1); |
1563 | /// assert_eq!(*val, 1); |
1564 | /// assert_eq!(opt.unwrap(), 1); |
1565 | /// let val = opt.insert(2); |
1566 | /// assert_eq!(*val, 2); |
1567 | /// *val = 3; |
1568 | /// assert_eq!(opt.unwrap(), 3); |
1569 | /// ``` |
1570 | #[must_use = "if you intended to set a value, consider assignment instead" ] |
1571 | #[inline ] |
1572 | #[stable (feature = "option_insert" , since = "1.53.0" )] |
1573 | pub fn insert(&mut self, value: T) -> &mut T { |
1574 | *self = Some(value); |
1575 | |
1576 | // SAFETY: the code above just filled the option |
1577 | unsafe { self.as_mut().unwrap_unchecked() } |
1578 | } |
1579 | |
1580 | /// Inserts `value` into the option if it is [`None`], then |
1581 | /// returns a mutable reference to the contained value. |
1582 | /// |
1583 | /// See also [`Option::insert`], which updates the value even if |
1584 | /// the option already contains [`Some`]. |
1585 | /// |
1586 | /// # Examples |
1587 | /// |
1588 | /// ``` |
1589 | /// let mut x = None; |
1590 | /// |
1591 | /// { |
1592 | /// let y: &mut u32 = x.get_or_insert(5); |
1593 | /// assert_eq!(y, &5); |
1594 | /// |
1595 | /// *y = 7; |
1596 | /// } |
1597 | /// |
1598 | /// assert_eq!(x, Some(7)); |
1599 | /// ``` |
1600 | #[inline ] |
1601 | #[stable (feature = "option_entry" , since = "1.20.0" )] |
1602 | pub fn get_or_insert(&mut self, value: T) -> &mut T { |
1603 | if let None = *self { |
1604 | *self = Some(value); |
1605 | } |
1606 | |
1607 | // SAFETY: a `None` variant for `self` would have been replaced by a `Some` |
1608 | // variant in the code above. |
1609 | unsafe { self.as_mut().unwrap_unchecked() } |
1610 | } |
1611 | |
1612 | /// Inserts the default value into the option if it is [`None`], then |
1613 | /// returns a mutable reference to the contained value. |
1614 | /// |
1615 | /// # Examples |
1616 | /// |
1617 | /// ``` |
1618 | /// #![feature(option_get_or_insert_default)] |
1619 | /// |
1620 | /// let mut x = None; |
1621 | /// |
1622 | /// { |
1623 | /// let y: &mut u32 = x.get_or_insert_default(); |
1624 | /// assert_eq!(y, &0); |
1625 | /// |
1626 | /// *y = 7; |
1627 | /// } |
1628 | /// |
1629 | /// assert_eq!(x, Some(7)); |
1630 | /// ``` |
1631 | #[inline ] |
1632 | #[unstable (feature = "option_get_or_insert_default" , issue = "82901" )] |
1633 | pub fn get_or_insert_default(&mut self) -> &mut T |
1634 | where |
1635 | T: Default, |
1636 | { |
1637 | self.get_or_insert_with(T::default) |
1638 | } |
1639 | |
1640 | /// Inserts a value computed from `f` into the option if it is [`None`], |
1641 | /// then returns a mutable reference to the contained value. |
1642 | /// |
1643 | /// # Examples |
1644 | /// |
1645 | /// ``` |
1646 | /// let mut x = None; |
1647 | /// |
1648 | /// { |
1649 | /// let y: &mut u32 = x.get_or_insert_with(|| 5); |
1650 | /// assert_eq!(y, &5); |
1651 | /// |
1652 | /// *y = 7; |
1653 | /// } |
1654 | /// |
1655 | /// assert_eq!(x, Some(7)); |
1656 | /// ``` |
1657 | #[inline ] |
1658 | #[stable (feature = "option_entry" , since = "1.20.0" )] |
1659 | pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T |
1660 | where |
1661 | F: FnOnce() -> T, |
1662 | { |
1663 | if let None = self { |
1664 | *self = Some(f()); |
1665 | } |
1666 | |
1667 | // SAFETY: a `None` variant for `self` would have been replaced by a `Some` |
1668 | // variant in the code above. |
1669 | unsafe { self.as_mut().unwrap_unchecked() } |
1670 | } |
1671 | |
1672 | ///////////////////////////////////////////////////////////////////////// |
1673 | // Misc |
1674 | ///////////////////////////////////////////////////////////////////////// |
1675 | |
1676 | /// Takes the value out of the option, leaving a [`None`] in its place. |
1677 | /// |
1678 | /// # Examples |
1679 | /// |
1680 | /// ``` |
1681 | /// let mut x = Some(2); |
1682 | /// let y = x.take(); |
1683 | /// assert_eq!(x, None); |
1684 | /// assert_eq!(y, Some(2)); |
1685 | /// |
1686 | /// let mut x: Option<u32> = None; |
1687 | /// let y = x.take(); |
1688 | /// assert_eq!(x, None); |
1689 | /// assert_eq!(y, None); |
1690 | /// ``` |
1691 | #[inline ] |
1692 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1693 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
1694 | pub const fn take(&mut self) -> Option<T> { |
1695 | // FIXME replace `mem::replace` by `mem::take` when the latter is const ready |
1696 | mem::replace(self, None) |
1697 | } |
1698 | |
1699 | /// Takes the value out of the option, but only if the predicate evaluates to |
1700 | /// `true` on a mutable reference to the value. |
1701 | /// |
1702 | /// In other words, replaces `self` with `None` if the predicate returns `true`. |
1703 | /// This method operates similar to [`Option::take`] but conditional. |
1704 | /// |
1705 | /// # Examples |
1706 | /// |
1707 | /// ``` |
1708 | /// #![feature(option_take_if)] |
1709 | /// |
1710 | /// let mut x = Some(42); |
1711 | /// |
1712 | /// let prev = x.take_if(|v| if *v == 42 { |
1713 | /// *v += 1; |
1714 | /// false |
1715 | /// } else { |
1716 | /// false |
1717 | /// }); |
1718 | /// assert_eq!(x, Some(43)); |
1719 | /// assert_eq!(prev, None); |
1720 | /// |
1721 | /// let prev = x.take_if(|v| *v == 43); |
1722 | /// assert_eq!(x, None); |
1723 | /// assert_eq!(prev, Some(43)); |
1724 | /// ``` |
1725 | #[inline ] |
1726 | #[unstable (feature = "option_take_if" , issue = "98934" )] |
1727 | pub fn take_if<P>(&mut self, predicate: P) -> Option<T> |
1728 | where |
1729 | P: FnOnce(&mut T) -> bool, |
1730 | { |
1731 | if self.as_mut().map_or(false, predicate) { self.take() } else { None } |
1732 | } |
1733 | |
1734 | /// Replaces the actual value in the option by the value given in parameter, |
1735 | /// returning the old value if present, |
1736 | /// leaving a [`Some`] in its place without deinitializing either one. |
1737 | /// |
1738 | /// # Examples |
1739 | /// |
1740 | /// ``` |
1741 | /// let mut x = Some(2); |
1742 | /// let old = x.replace(5); |
1743 | /// assert_eq!(x, Some(5)); |
1744 | /// assert_eq!(old, Some(2)); |
1745 | /// |
1746 | /// let mut x = None; |
1747 | /// let old = x.replace(3); |
1748 | /// assert_eq!(x, Some(3)); |
1749 | /// assert_eq!(old, None); |
1750 | /// ``` |
1751 | #[inline ] |
1752 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
1753 | #[stable (feature = "option_replace" , since = "1.31.0" )] |
1754 | pub const fn replace(&mut self, value: T) -> Option<T> { |
1755 | mem::replace(self, Some(value)) |
1756 | } |
1757 | |
1758 | /// Zips `self` with another `Option`. |
1759 | /// |
1760 | /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`. |
1761 | /// Otherwise, `None` is returned. |
1762 | /// |
1763 | /// # Examples |
1764 | /// |
1765 | /// ``` |
1766 | /// let x = Some(1); |
1767 | /// let y = Some("hi" ); |
1768 | /// let z = None::<u8>; |
1769 | /// |
1770 | /// assert_eq!(x.zip(y), Some((1, "hi" ))); |
1771 | /// assert_eq!(x.zip(z), None); |
1772 | /// ``` |
1773 | #[stable (feature = "option_zip_option" , since = "1.46.0" )] |
1774 | pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)> { |
1775 | match (self, other) { |
1776 | (Some(a), Some(b)) => Some((a, b)), |
1777 | _ => None, |
1778 | } |
1779 | } |
1780 | |
1781 | /// Zips `self` and another `Option` with function `f`. |
1782 | /// |
1783 | /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`. |
1784 | /// Otherwise, `None` is returned. |
1785 | /// |
1786 | /// # Examples |
1787 | /// |
1788 | /// ``` |
1789 | /// #![feature(option_zip)] |
1790 | /// |
1791 | /// #[derive(Debug, PartialEq)] |
1792 | /// struct Point { |
1793 | /// x: f64, |
1794 | /// y: f64, |
1795 | /// } |
1796 | /// |
1797 | /// impl Point { |
1798 | /// fn new(x: f64, y: f64) -> Self { |
1799 | /// Self { x, y } |
1800 | /// } |
1801 | /// } |
1802 | /// |
1803 | /// let x = Some(17.5); |
1804 | /// let y = Some(42.7); |
1805 | /// |
1806 | /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 })); |
1807 | /// assert_eq!(x.zip_with(None, Point::new), None); |
1808 | /// ``` |
1809 | #[unstable (feature = "option_zip" , issue = "70086" )] |
1810 | pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R> |
1811 | where |
1812 | F: FnOnce(T, U) -> R, |
1813 | { |
1814 | match (self, other) { |
1815 | (Some(a), Some(b)) => Some(f(a, b)), |
1816 | _ => None, |
1817 | } |
1818 | } |
1819 | } |
1820 | |
1821 | impl<T, U> Option<(T, U)> { |
1822 | /// Unzips an option containing a tuple of two options. |
1823 | /// |
1824 | /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`. |
1825 | /// Otherwise, `(None, None)` is returned. |
1826 | /// |
1827 | /// # Examples |
1828 | /// |
1829 | /// ``` |
1830 | /// let x = Some((1, "hi" )); |
1831 | /// let y = None::<(u8, u32)>; |
1832 | /// |
1833 | /// assert_eq!(x.unzip(), (Some(1), Some("hi" ))); |
1834 | /// assert_eq!(y.unzip(), (None, None)); |
1835 | /// ``` |
1836 | #[inline ] |
1837 | #[stable (feature = "unzip_option" , since = "1.66.0" )] |
1838 | pub fn unzip(self) -> (Option<T>, Option<U>) { |
1839 | match self { |
1840 | Some((a: T, b: U)) => (Some(a), Some(b)), |
1841 | None => (None, None), |
1842 | } |
1843 | } |
1844 | } |
1845 | |
1846 | impl<T> Option<&T> { |
1847 | /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the |
1848 | /// option. |
1849 | /// |
1850 | /// # Examples |
1851 | /// |
1852 | /// ``` |
1853 | /// let x = 12; |
1854 | /// let opt_x = Some(&x); |
1855 | /// assert_eq!(opt_x, Some(&12)); |
1856 | /// let copied = opt_x.copied(); |
1857 | /// assert_eq!(copied, Some(12)); |
1858 | /// ``` |
1859 | #[must_use = "`self` will be dropped if the result is not used" ] |
1860 | #[stable (feature = "copied" , since = "1.35.0" )] |
1861 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
1862 | pub const fn copied(self) -> Option<T> |
1863 | where |
1864 | T: Copy, |
1865 | { |
1866 | // FIXME: this implementation, which sidesteps using `Option::map` since it's not const |
1867 | // ready yet, should be reverted when possible to avoid code repetition |
1868 | match self { |
1869 | Some(&v) => Some(v), |
1870 | None => None, |
1871 | } |
1872 | } |
1873 | |
1874 | /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the |
1875 | /// option. |
1876 | /// |
1877 | /// # Examples |
1878 | /// |
1879 | /// ``` |
1880 | /// let x = 12; |
1881 | /// let opt_x = Some(&x); |
1882 | /// assert_eq!(opt_x, Some(&12)); |
1883 | /// let cloned = opt_x.cloned(); |
1884 | /// assert_eq!(cloned, Some(12)); |
1885 | /// ``` |
1886 | #[must_use = "`self` will be dropped if the result is not used" ] |
1887 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1888 | pub fn cloned(self) -> Option<T> |
1889 | where |
1890 | T: Clone, |
1891 | { |
1892 | match self { |
1893 | Some(t) => Some(t.clone()), |
1894 | None => None, |
1895 | } |
1896 | } |
1897 | } |
1898 | |
1899 | impl<T> Option<&mut T> { |
1900 | /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the |
1901 | /// option. |
1902 | /// |
1903 | /// # Examples |
1904 | /// |
1905 | /// ``` |
1906 | /// let mut x = 12; |
1907 | /// let opt_x = Some(&mut x); |
1908 | /// assert_eq!(opt_x, Some(&mut 12)); |
1909 | /// let copied = opt_x.copied(); |
1910 | /// assert_eq!(copied, Some(12)); |
1911 | /// ``` |
1912 | #[must_use = "`self` will be dropped if the result is not used" ] |
1913 | #[stable (feature = "copied" , since = "1.35.0" )] |
1914 | #[rustc_const_unstable (feature = "const_option_ext" , issue = "91930" )] |
1915 | pub const fn copied(self) -> Option<T> |
1916 | where |
1917 | T: Copy, |
1918 | { |
1919 | match self { |
1920 | Some(&mut t) => Some(t), |
1921 | None => None, |
1922 | } |
1923 | } |
1924 | |
1925 | /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the |
1926 | /// option. |
1927 | /// |
1928 | /// # Examples |
1929 | /// |
1930 | /// ``` |
1931 | /// let mut x = 12; |
1932 | /// let opt_x = Some(&mut x); |
1933 | /// assert_eq!(opt_x, Some(&mut 12)); |
1934 | /// let cloned = opt_x.cloned(); |
1935 | /// assert_eq!(cloned, Some(12)); |
1936 | /// ``` |
1937 | #[must_use = "`self` will be dropped if the result is not used" ] |
1938 | #[stable (since = "1.26.0" , feature = "option_ref_mut_cloned" )] |
1939 | pub fn cloned(self) -> Option<T> |
1940 | where |
1941 | T: Clone, |
1942 | { |
1943 | match self { |
1944 | Some(t) => Some(t.clone()), |
1945 | None => None, |
1946 | } |
1947 | } |
1948 | } |
1949 | |
1950 | impl<T, E> Option<Result<T, E>> { |
1951 | /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`. |
1952 | /// |
1953 | /// [`None`] will be mapped to <code>[Ok]\([None])</code>. |
1954 | /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to |
1955 | /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>. |
1956 | /// |
1957 | /// # Examples |
1958 | /// |
1959 | /// ``` |
1960 | /// #[derive(Debug, Eq, PartialEq)] |
1961 | /// struct SomeErr; |
1962 | /// |
1963 | /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5)); |
1964 | /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5)); |
1965 | /// assert_eq!(x, y.transpose()); |
1966 | /// ``` |
1967 | #[inline ] |
1968 | #[stable (feature = "transpose_result" , since = "1.33.0" )] |
1969 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
1970 | pub const fn transpose(self) -> Result<Option<T>, E> { |
1971 | match self { |
1972 | Some(Ok(x)) => Ok(Some(x)), |
1973 | Some(Err(e)) => Err(e), |
1974 | None => Ok(None), |
1975 | } |
1976 | } |
1977 | } |
1978 | |
1979 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
1980 | #[cfg_attr (feature = "panic_immediate_abort" , inline)] |
1981 | #[cold ] |
1982 | #[track_caller ] |
1983 | const fn unwrap_failed() -> ! { |
1984 | panic(expr:"called `Option::unwrap()` on a `None` value" ) |
1985 | } |
1986 | |
1987 | // This is a separate function to reduce the code size of .expect() itself. |
1988 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
1989 | #[cfg_attr (feature = "panic_immediate_abort" , inline)] |
1990 | #[cold ] |
1991 | #[track_caller ] |
1992 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
1993 | const fn expect_failed(msg: &str) -> ! { |
1994 | panic_display(&msg) |
1995 | } |
1996 | |
1997 | ///////////////////////////////////////////////////////////////////////////// |
1998 | // Trait implementations |
1999 | ///////////////////////////////////////////////////////////////////////////// |
2000 | |
2001 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2002 | impl<T> Clone for Option<T> |
2003 | where |
2004 | T: Clone, |
2005 | { |
2006 | #[inline ] |
2007 | fn clone(&self) -> Self { |
2008 | match self { |
2009 | Some(x: &T) => Some(x.clone()), |
2010 | None => None, |
2011 | } |
2012 | } |
2013 | |
2014 | #[inline ] |
2015 | fn clone_from(&mut self, source: &Self) { |
2016 | match (self, source) { |
2017 | (Some(to: &mut T), Some(from: &T)) => to.clone_from(source:from), |
2018 | (to: &mut Option, from: &Option) => *to = from.clone(), |
2019 | } |
2020 | } |
2021 | } |
2022 | |
2023 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2024 | impl<T> Default for Option<T> { |
2025 | /// Returns [`None`][Option::None]. |
2026 | /// |
2027 | /// # Examples |
2028 | /// |
2029 | /// ``` |
2030 | /// let opt: Option<u32> = Option::default(); |
2031 | /// assert!(opt.is_none()); |
2032 | /// ``` |
2033 | #[inline ] |
2034 | fn default() -> Option<T> { |
2035 | None |
2036 | } |
2037 | } |
2038 | |
2039 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2040 | impl<T> IntoIterator for Option<T> { |
2041 | type Item = T; |
2042 | type IntoIter = IntoIter<T>; |
2043 | |
2044 | /// Returns a consuming iterator over the possibly contained value. |
2045 | /// |
2046 | /// # Examples |
2047 | /// |
2048 | /// ``` |
2049 | /// let x = Some("string" ); |
2050 | /// let v: Vec<&str> = x.into_iter().collect(); |
2051 | /// assert_eq!(v, ["string" ]); |
2052 | /// |
2053 | /// let x = None; |
2054 | /// let v: Vec<&str> = x.into_iter().collect(); |
2055 | /// assert!(v.is_empty()); |
2056 | /// ``` |
2057 | #[inline ] |
2058 | fn into_iter(self) -> IntoIter<T> { |
2059 | IntoIter { inner: Item { opt: self } } |
2060 | } |
2061 | } |
2062 | |
2063 | #[stable (since = "1.4.0" , feature = "option_iter" )] |
2064 | impl<'a, T> IntoIterator for &'a Option<T> { |
2065 | type Item = &'a T; |
2066 | type IntoIter = Iter<'a, T>; |
2067 | |
2068 | fn into_iter(self) -> Iter<'a, T> { |
2069 | self.iter() |
2070 | } |
2071 | } |
2072 | |
2073 | #[stable (since = "1.4.0" , feature = "option_iter" )] |
2074 | impl<'a, T> IntoIterator for &'a mut Option<T> { |
2075 | type Item = &'a mut T; |
2076 | type IntoIter = IterMut<'a, T>; |
2077 | |
2078 | fn into_iter(self) -> IterMut<'a, T> { |
2079 | self.iter_mut() |
2080 | } |
2081 | } |
2082 | |
2083 | #[stable (since = "1.12.0" , feature = "option_from" )] |
2084 | impl<T> From<T> for Option<T> { |
2085 | /// Moves `val` into a new [`Some`]. |
2086 | /// |
2087 | /// # Examples |
2088 | /// |
2089 | /// ``` |
2090 | /// let o: Option<u8> = Option::from(67); |
2091 | /// |
2092 | /// assert_eq!(Some(67), o); |
2093 | /// ``` |
2094 | fn from(val: T) -> Option<T> { |
2095 | Some(val) |
2096 | } |
2097 | } |
2098 | |
2099 | #[stable (feature = "option_ref_from_ref_option" , since = "1.30.0" )] |
2100 | impl<'a, T> From<&'a Option<T>> for Option<&'a T> { |
2101 | /// Converts from `&Option<T>` to `Option<&T>`. |
2102 | /// |
2103 | /// # Examples |
2104 | /// |
2105 | /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving |
2106 | /// the original. The [`map`] method takes the `self` argument by value, consuming the original, |
2107 | /// so this technique uses `from` to first take an [`Option`] to a reference |
2108 | /// to the value inside the original. |
2109 | /// |
2110 | /// [`map`]: Option::map |
2111 | /// [String]: ../../std/string/struct.String.html "String" |
2112 | /// |
2113 | /// ``` |
2114 | /// let s: Option<String> = Some(String::from("Hello, Rustaceans!" )); |
2115 | /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len()); |
2116 | /// |
2117 | /// println!("Can still print s: {s:?}" ); |
2118 | /// |
2119 | /// assert_eq!(o, Some(18)); |
2120 | /// ``` |
2121 | fn from(o: &'a Option<T>) -> Option<&'a T> { |
2122 | o.as_ref() |
2123 | } |
2124 | } |
2125 | |
2126 | #[stable (feature = "option_ref_from_ref_option" , since = "1.30.0" )] |
2127 | impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> { |
2128 | /// Converts from `&mut Option<T>` to `Option<&mut T>` |
2129 | /// |
2130 | /// # Examples |
2131 | /// |
2132 | /// ``` |
2133 | /// let mut s = Some(String::from("Hello" )); |
2134 | /// let o: Option<&mut String> = Option::from(&mut s); |
2135 | /// |
2136 | /// match o { |
2137 | /// Some(t) => *t = String::from("Hello, Rustaceans!" ), |
2138 | /// None => (), |
2139 | /// } |
2140 | /// |
2141 | /// assert_eq!(s, Some(String::from("Hello, Rustaceans!" ))); |
2142 | /// ``` |
2143 | fn from(o: &'a mut Option<T>) -> Option<&'a mut T> { |
2144 | o.as_mut() |
2145 | } |
2146 | } |
2147 | |
2148 | // Ideally, LLVM should be able to optimize our derive code to this. |
2149 | // Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can |
2150 | // go back to deriving `PartialEq`. |
2151 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2152 | impl<T> crate::marker::StructuralPartialEq for Option<T> {} |
2153 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2154 | impl<T: PartialEq> PartialEq for Option<T> { |
2155 | #[inline ] |
2156 | fn eq(&self, other: &Self) -> bool { |
2157 | // Spelling out the cases explicitly optimizes better than |
2158 | // `_ => false` |
2159 | match (self, other) { |
2160 | (Some(l: &T), Some(r: &T)) => *l == *r, |
2161 | (Some(_), None) => false, |
2162 | (None, Some(_)) => false, |
2163 | (None, None) => true, |
2164 | } |
2165 | } |
2166 | } |
2167 | |
2168 | // Manually implementing here somewhat improves codegen for |
2169 | // https://github.com/rust-lang/rust/issues/49892, although still |
2170 | // not optimal. |
2171 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2172 | impl<T: PartialOrd> PartialOrd for Option<T> { |
2173 | #[inline ] |
2174 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
2175 | match (self, other) { |
2176 | (Some(l: &T), Some(r: &T)) => l.partial_cmp(r), |
2177 | (Some(_), None) => Some(cmp::Ordering::Greater), |
2178 | (None, Some(_)) => Some(cmp::Ordering::Less), |
2179 | (None, None) => Some(cmp::Ordering::Equal), |
2180 | } |
2181 | } |
2182 | } |
2183 | |
2184 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2185 | impl<T: Ord> Ord for Option<T> { |
2186 | #[inline ] |
2187 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
2188 | match (self, other) { |
2189 | (Some(l: &T), Some(r: &T)) => l.cmp(r), |
2190 | (Some(_), None) => cmp::Ordering::Greater, |
2191 | (None, Some(_)) => cmp::Ordering::Less, |
2192 | (None, None) => cmp::Ordering::Equal, |
2193 | } |
2194 | } |
2195 | } |
2196 | |
2197 | ///////////////////////////////////////////////////////////////////////////// |
2198 | // The Option Iterators |
2199 | ///////////////////////////////////////////////////////////////////////////// |
2200 | |
2201 | #[derive (Clone, Debug)] |
2202 | struct Item<A> { |
2203 | opt: Option<A>, |
2204 | } |
2205 | |
2206 | impl<A> Iterator for Item<A> { |
2207 | type Item = A; |
2208 | |
2209 | #[inline ] |
2210 | fn next(&mut self) -> Option<A> { |
2211 | self.opt.take() |
2212 | } |
2213 | |
2214 | #[inline ] |
2215 | fn size_hint(&self) -> (usize, Option<usize>) { |
2216 | match self.opt { |
2217 | Some(_) => (1, Some(1)), |
2218 | None => (0, Some(0)), |
2219 | } |
2220 | } |
2221 | } |
2222 | |
2223 | impl<A> DoubleEndedIterator for Item<A> { |
2224 | #[inline ] |
2225 | fn next_back(&mut self) -> Option<A> { |
2226 | self.opt.take() |
2227 | } |
2228 | } |
2229 | |
2230 | impl<A> ExactSizeIterator for Item<A> {} |
2231 | impl<A> FusedIterator for Item<A> {} |
2232 | unsafe impl<A> TrustedLen for Item<A> {} |
2233 | |
2234 | /// An iterator over a reference to the [`Some`] variant of an [`Option`]. |
2235 | /// |
2236 | /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. |
2237 | /// |
2238 | /// This `struct` is created by the [`Option::iter`] function. |
2239 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2240 | #[derive (Debug)] |
2241 | pub struct Iter<'a, A: 'a> { |
2242 | inner: Item<&'a A>, |
2243 | } |
2244 | |
2245 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2246 | impl<'a, A> Iterator for Iter<'a, A> { |
2247 | type Item = &'a A; |
2248 | |
2249 | #[inline ] |
2250 | fn next(&mut self) -> Option<&'a A> { |
2251 | self.inner.next() |
2252 | } |
2253 | #[inline ] |
2254 | fn size_hint(&self) -> (usize, Option<usize>) { |
2255 | self.inner.size_hint() |
2256 | } |
2257 | } |
2258 | |
2259 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2260 | impl<'a, A> DoubleEndedIterator for Iter<'a, A> { |
2261 | #[inline ] |
2262 | fn next_back(&mut self) -> Option<&'a A> { |
2263 | self.inner.next_back() |
2264 | } |
2265 | } |
2266 | |
2267 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2268 | impl<A> ExactSizeIterator for Iter<'_, A> {} |
2269 | |
2270 | #[stable (feature = "fused" , since = "1.26.0" )] |
2271 | impl<A> FusedIterator for Iter<'_, A> {} |
2272 | |
2273 | #[unstable (feature = "trusted_len" , issue = "37572" )] |
2274 | unsafe impl<A> TrustedLen for Iter<'_, A> {} |
2275 | |
2276 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2277 | impl<A> Clone for Iter<'_, A> { |
2278 | #[inline ] |
2279 | fn clone(&self) -> Self { |
2280 | Iter { inner: self.inner.clone() } |
2281 | } |
2282 | } |
2283 | |
2284 | /// An iterator over a mutable reference to the [`Some`] variant of an [`Option`]. |
2285 | /// |
2286 | /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. |
2287 | /// |
2288 | /// This `struct` is created by the [`Option::iter_mut`] function. |
2289 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2290 | #[derive (Debug)] |
2291 | pub struct IterMut<'a, A: 'a> { |
2292 | inner: Item<&'a mut A>, |
2293 | } |
2294 | |
2295 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2296 | impl<'a, A> Iterator for IterMut<'a, A> { |
2297 | type Item = &'a mut A; |
2298 | |
2299 | #[inline ] |
2300 | fn next(&mut self) -> Option<&'a mut A> { |
2301 | self.inner.next() |
2302 | } |
2303 | #[inline ] |
2304 | fn size_hint(&self) -> (usize, Option<usize>) { |
2305 | self.inner.size_hint() |
2306 | } |
2307 | } |
2308 | |
2309 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2310 | impl<'a, A> DoubleEndedIterator for IterMut<'a, A> { |
2311 | #[inline ] |
2312 | fn next_back(&mut self) -> Option<&'a mut A> { |
2313 | self.inner.next_back() |
2314 | } |
2315 | } |
2316 | |
2317 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2318 | impl<A> ExactSizeIterator for IterMut<'_, A> {} |
2319 | |
2320 | #[stable (feature = "fused" , since = "1.26.0" )] |
2321 | impl<A> FusedIterator for IterMut<'_, A> {} |
2322 | #[unstable (feature = "trusted_len" , issue = "37572" )] |
2323 | unsafe impl<A> TrustedLen for IterMut<'_, A> {} |
2324 | |
2325 | /// An iterator over the value in [`Some`] variant of an [`Option`]. |
2326 | /// |
2327 | /// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none. |
2328 | /// |
2329 | /// This `struct` is created by the [`Option::into_iter`] function. |
2330 | #[derive (Clone, Debug)] |
2331 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2332 | pub struct IntoIter<A> { |
2333 | inner: Item<A>, |
2334 | } |
2335 | |
2336 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2337 | impl<A> Iterator for IntoIter<A> { |
2338 | type Item = A; |
2339 | |
2340 | #[inline ] |
2341 | fn next(&mut self) -> Option<A> { |
2342 | self.inner.next() |
2343 | } |
2344 | #[inline ] |
2345 | fn size_hint(&self) -> (usize, Option<usize>) { |
2346 | self.inner.size_hint() |
2347 | } |
2348 | } |
2349 | |
2350 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2351 | impl<A> DoubleEndedIterator for IntoIter<A> { |
2352 | #[inline ] |
2353 | fn next_back(&mut self) -> Option<A> { |
2354 | self.inner.next_back() |
2355 | } |
2356 | } |
2357 | |
2358 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2359 | impl<A> ExactSizeIterator for IntoIter<A> {} |
2360 | |
2361 | #[stable (feature = "fused" , since = "1.26.0" )] |
2362 | impl<A> FusedIterator for IntoIter<A> {} |
2363 | |
2364 | #[unstable (feature = "trusted_len" , issue = "37572" )] |
2365 | unsafe impl<A> TrustedLen for IntoIter<A> {} |
2366 | |
2367 | ///////////////////////////////////////////////////////////////////////////// |
2368 | // FromIterator |
2369 | ///////////////////////////////////////////////////////////////////////////// |
2370 | |
2371 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2372 | impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> { |
2373 | /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None], |
2374 | /// no further elements are taken, and the [`None`][Option::None] is |
2375 | /// returned. Should no [`None`][Option::None] occur, a container of type |
2376 | /// `V` containing the values of each [`Option`] is returned. |
2377 | /// |
2378 | /// # Examples |
2379 | /// |
2380 | /// Here is an example which increments every integer in a vector. |
2381 | /// We use the checked variant of `add` that returns `None` when the |
2382 | /// calculation would result in an overflow. |
2383 | /// |
2384 | /// ``` |
2385 | /// let items = vec![0_u16, 1, 2]; |
2386 | /// |
2387 | /// let res: Option<Vec<u16>> = items |
2388 | /// .iter() |
2389 | /// .map(|x| x.checked_add(1)) |
2390 | /// .collect(); |
2391 | /// |
2392 | /// assert_eq!(res, Some(vec![1, 2, 3])); |
2393 | /// ``` |
2394 | /// |
2395 | /// As you can see, this will return the expected, valid items. |
2396 | /// |
2397 | /// Here is another example that tries to subtract one from another list |
2398 | /// of integers, this time checking for underflow: |
2399 | /// |
2400 | /// ``` |
2401 | /// let items = vec![2_u16, 1, 0]; |
2402 | /// |
2403 | /// let res: Option<Vec<u16>> = items |
2404 | /// .iter() |
2405 | /// .map(|x| x.checked_sub(1)) |
2406 | /// .collect(); |
2407 | /// |
2408 | /// assert_eq!(res, None); |
2409 | /// ``` |
2410 | /// |
2411 | /// Since the last element is zero, it would underflow. Thus, the resulting |
2412 | /// value is `None`. |
2413 | /// |
2414 | /// Here is a variation on the previous example, showing that no |
2415 | /// further elements are taken from `iter` after the first `None`. |
2416 | /// |
2417 | /// ``` |
2418 | /// let items = vec![3_u16, 2, 1, 10]; |
2419 | /// |
2420 | /// let mut shared = 0; |
2421 | /// |
2422 | /// let res: Option<Vec<u16>> = items |
2423 | /// .iter() |
2424 | /// .map(|x| { shared += x; x.checked_sub(2) }) |
2425 | /// .collect(); |
2426 | /// |
2427 | /// assert_eq!(res, None); |
2428 | /// assert_eq!(shared, 6); |
2429 | /// ``` |
2430 | /// |
2431 | /// Since the third element caused an underflow, no further elements were taken, |
2432 | /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16. |
2433 | #[inline ] |
2434 | fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> { |
2435 | // FIXME(#11084): This could be replaced with Iterator::scan when this |
2436 | // performance bug is closed. |
2437 | |
2438 | iter::try_process(iter.into_iter(), |i| i.collect()) |
2439 | } |
2440 | } |
2441 | |
2442 | #[unstable (feature = "try_trait_v2" , issue = "84277" )] |
2443 | impl<T> ops::Try for Option<T> { |
2444 | type Output = T; |
2445 | type Residual = Option<convert::Infallible>; |
2446 | |
2447 | #[inline ] |
2448 | fn from_output(output: Self::Output) -> Self { |
2449 | Some(output) |
2450 | } |
2451 | |
2452 | #[inline ] |
2453 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
2454 | match self { |
2455 | Some(v: T) => ControlFlow::Continue(v), |
2456 | None => ControlFlow::Break(None), |
2457 | } |
2458 | } |
2459 | } |
2460 | |
2461 | #[unstable (feature = "try_trait_v2" , issue = "84277" )] |
2462 | impl<T> ops::FromResidual for Option<T> { |
2463 | #[inline ] |
2464 | fn from_residual(residual: Option<convert::Infallible>) -> Self { |
2465 | match residual { |
2466 | None => None, |
2467 | } |
2468 | } |
2469 | } |
2470 | |
2471 | #[unstable (feature = "try_trait_v2_yeet" , issue = "96374" )] |
2472 | impl<T> ops::FromResidual<ops::Yeet<()>> for Option<T> { |
2473 | #[inline ] |
2474 | fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self { |
2475 | None |
2476 | } |
2477 | } |
2478 | |
2479 | #[unstable (feature = "try_trait_v2_residual" , issue = "91285" )] |
2480 | impl<T> ops::Residual<T> for Option<convert::Infallible> { |
2481 | type TryType = Option<T>; |
2482 | } |
2483 | |
2484 | impl<T> Option<Option<T>> { |
2485 | /// Converts from `Option<Option<T>>` to `Option<T>`. |
2486 | /// |
2487 | /// # Examples |
2488 | /// |
2489 | /// Basic usage: |
2490 | /// |
2491 | /// ``` |
2492 | /// let x: Option<Option<u32>> = Some(Some(6)); |
2493 | /// assert_eq!(Some(6), x.flatten()); |
2494 | /// |
2495 | /// let x: Option<Option<u32>> = Some(None); |
2496 | /// assert_eq!(None, x.flatten()); |
2497 | /// |
2498 | /// let x: Option<Option<u32>> = None; |
2499 | /// assert_eq!(None, x.flatten()); |
2500 | /// ``` |
2501 | /// |
2502 | /// Flattening only removes one level of nesting at a time: |
2503 | /// |
2504 | /// ``` |
2505 | /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6))); |
2506 | /// assert_eq!(Some(Some(6)), x.flatten()); |
2507 | /// assert_eq!(Some(6), x.flatten().flatten()); |
2508 | /// ``` |
2509 | #[inline ] |
2510 | #[stable (feature = "option_flattening" , since = "1.40.0" )] |
2511 | #[rustc_const_unstable (feature = "const_option" , issue = "67441" )] |
2512 | pub const fn flatten(self) -> Option<T> { |
2513 | match self { |
2514 | Some(inner) => inner, |
2515 | None => None, |
2516 | } |
2517 | } |
2518 | } |
2519 | |