1 | /// Conversion from an [`Iterator`]. |
2 | /// |
3 | /// By implementing `FromIterator` for a type, you define how it will be |
4 | /// created from an iterator. This is common for types which describe a |
5 | /// collection of some kind. |
6 | /// |
7 | /// If you want to create a collection from the contents of an iterator, the |
8 | /// [`Iterator::collect()`] method is preferred. However, when you need to |
9 | /// specify the container type, [`FromIterator::from_iter()`] can be more |
10 | /// readable than using a turbofish (e.g. `::<Vec<_>>()`). See the |
11 | /// [`Iterator::collect()`] documentation for more examples of its use. |
12 | /// |
13 | /// See also: [`IntoIterator`]. |
14 | /// |
15 | /// # Examples |
16 | /// |
17 | /// Basic usage: |
18 | /// |
19 | /// ``` |
20 | /// let five_fives = std::iter::repeat(5).take(5); |
21 | /// |
22 | /// let v = Vec::from_iter(five_fives); |
23 | /// |
24 | /// assert_eq!(v, vec![5, 5, 5, 5, 5]); |
25 | /// ``` |
26 | /// |
27 | /// Using [`Iterator::collect()`] to implicitly use `FromIterator`: |
28 | /// |
29 | /// ``` |
30 | /// let five_fives = std::iter::repeat(5).take(5); |
31 | /// |
32 | /// let v: Vec<i32> = five_fives.collect(); |
33 | /// |
34 | /// assert_eq!(v, vec![5, 5, 5, 5, 5]); |
35 | /// ``` |
36 | /// |
37 | /// Using [`FromIterator::from_iter()`] as a more readable alternative to |
38 | /// [`Iterator::collect()`]: |
39 | /// |
40 | /// ``` |
41 | /// use std::collections::VecDeque; |
42 | /// let first = (0..10).collect::<VecDeque<i32>>(); |
43 | /// let second = VecDeque::from_iter(0..10); |
44 | /// |
45 | /// assert_eq!(first, second); |
46 | /// ``` |
47 | /// |
48 | /// Implementing `FromIterator` for your type: |
49 | /// |
50 | /// ``` |
51 | /// // A sample collection, that's just a wrapper over Vec<T> |
52 | /// #[derive(Debug)] |
53 | /// struct MyCollection(Vec<i32>); |
54 | /// |
55 | /// // Let's give it some methods so we can create one and add things |
56 | /// // to it. |
57 | /// impl MyCollection { |
58 | /// fn new() -> MyCollection { |
59 | /// MyCollection(Vec::new()) |
60 | /// } |
61 | /// |
62 | /// fn add(&mut self, elem: i32) { |
63 | /// self.0.push(elem); |
64 | /// } |
65 | /// } |
66 | /// |
67 | /// // and we'll implement FromIterator |
68 | /// impl FromIterator<i32> for MyCollection { |
69 | /// fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self { |
70 | /// let mut c = MyCollection::new(); |
71 | /// |
72 | /// for i in iter { |
73 | /// c.add(i); |
74 | /// } |
75 | /// |
76 | /// c |
77 | /// } |
78 | /// } |
79 | /// |
80 | /// // Now we can make a new iterator... |
81 | /// let iter = (0..5).into_iter(); |
82 | /// |
83 | /// // ... and make a MyCollection out of it |
84 | /// let c = MyCollection::from_iter(iter); |
85 | /// |
86 | /// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); |
87 | /// |
88 | /// // collect works too! |
89 | /// |
90 | /// let iter = (0..5).into_iter(); |
91 | /// let c: MyCollection = iter.collect(); |
92 | /// |
93 | /// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); |
94 | /// ``` |
95 | #[stable (feature = "rust1" , since = "1.0.0" )] |
96 | #[rustc_on_unimplemented ( |
97 | on( |
98 | _Self = "&[{A}]" , |
99 | message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere" , |
100 | label = "try explicitly collecting into a `Vec<{A}>`" , |
101 | ), |
102 | on( |
103 | all(A = "{integer}" , any(_Self = "&[{integral}]" ,)), |
104 | message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere" , |
105 | label = "try explicitly collecting into a `Vec<{A}>`" , |
106 | ), |
107 | on( |
108 | _Self = "[{A}]" , |
109 | message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size" , |
110 | label = "try explicitly collecting into a `Vec<{A}>`" , |
111 | ), |
112 | on( |
113 | all(A = "{integer}" , any(_Self = "[{integral}]" ,)), |
114 | message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size" , |
115 | label = "try explicitly collecting into a `Vec<{A}>`" , |
116 | ), |
117 | on( |
118 | _Self = "[{A}; _]" , |
119 | message = "an array of type `{Self}` cannot be built directly from an iterator" , |
120 | label = "try collecting into a `Vec<{A}>`, then using `.try_into()`" , |
121 | ), |
122 | on( |
123 | all(A = "{integer}" , any(_Self = "[{integral}; _]" ,)), |
124 | message = "an array of type `{Self}` cannot be built directly from an iterator" , |
125 | label = "try collecting into a `Vec<{A}>`, then using `.try_into()`" , |
126 | ), |
127 | message = "a value of type `{Self}` cannot be built from an iterator \ |
128 | over elements of type `{A}`" , |
129 | label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`" |
130 | )] |
131 | #[rustc_diagnostic_item = "FromIterator" ] |
132 | pub trait FromIterator<A>: Sized { |
133 | /// Creates a value from an iterator. |
134 | /// |
135 | /// See the [module-level documentation] for more. |
136 | /// |
137 | /// [module-level documentation]: crate::iter |
138 | /// |
139 | /// # Examples |
140 | /// |
141 | /// ``` |
142 | /// let five_fives = std::iter::repeat(5).take(5); |
143 | /// |
144 | /// let v = Vec::from_iter(five_fives); |
145 | /// |
146 | /// assert_eq!(v, vec![5, 5, 5, 5, 5]); |
147 | /// ``` |
148 | #[stable (feature = "rust1" , since = "1.0.0" )] |
149 | #[rustc_diagnostic_item = "from_iter_fn" ] |
150 | fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self; |
151 | } |
152 | |
153 | /// This implementation turns an iterator of tuples into a tuple of types which implement |
154 | /// [`Default`] and [`Extend`]. |
155 | /// |
156 | /// This is similar to [`Iterator::unzip`], but is also composable with other [`FromIterator`] |
157 | /// implementations: |
158 | /// |
159 | /// ```rust |
160 | /// # fn main() -> Result<(), core::num::ParseIntError> { |
161 | /// let string = "1,2,123,4" ; |
162 | /// |
163 | /// let (numbers, lengths): (Vec<_>, Vec<_>) = string |
164 | /// .split(',' ) |
165 | /// .map(|s| s.parse().map(|n: u32| (n, s.len()))) |
166 | /// .collect::<Result<_, _>>()?; |
167 | /// |
168 | /// assert_eq!(numbers, [1, 2, 123, 4]); |
169 | /// assert_eq!(lengths, [1, 1, 3, 1]); |
170 | /// # Ok(()) } |
171 | /// ``` |
172 | #[stable (feature = "from_iterator_for_tuple" , since = "CURRENT_RUSTC_VERSION" )] |
173 | impl<A, B, AE, BE> FromIterator<(AE, BE)> for (A, B) |
174 | where |
175 | A: Default + Extend<AE>, |
176 | B: Default + Extend<BE>, |
177 | { |
178 | fn from_iter<I: IntoIterator<Item = (AE, BE)>>(iter: I) -> Self { |
179 | let mut res: (A, B) = <(A, B)>::default(); |
180 | res.extend(iter); |
181 | |
182 | res |
183 | } |
184 | } |
185 | |
186 | /// Conversion into an [`Iterator`]. |
187 | /// |
188 | /// By implementing `IntoIterator` for a type, you define how it will be |
189 | /// converted to an iterator. This is common for types which describe a |
190 | /// collection of some kind. |
191 | /// |
192 | /// One benefit of implementing `IntoIterator` is that your type will [work |
193 | /// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator). |
194 | /// |
195 | /// See also: [`FromIterator`]. |
196 | /// |
197 | /// # Examples |
198 | /// |
199 | /// Basic usage: |
200 | /// |
201 | /// ``` |
202 | /// let v = [1, 2, 3]; |
203 | /// let mut iter = v.into_iter(); |
204 | /// |
205 | /// assert_eq!(Some(1), iter.next()); |
206 | /// assert_eq!(Some(2), iter.next()); |
207 | /// assert_eq!(Some(3), iter.next()); |
208 | /// assert_eq!(None, iter.next()); |
209 | /// ``` |
210 | /// Implementing `IntoIterator` for your type: |
211 | /// |
212 | /// ``` |
213 | /// // A sample collection, that's just a wrapper over Vec<T> |
214 | /// #[derive(Debug)] |
215 | /// struct MyCollection(Vec<i32>); |
216 | /// |
217 | /// // Let's give it some methods so we can create one and add things |
218 | /// // to it. |
219 | /// impl MyCollection { |
220 | /// fn new() -> MyCollection { |
221 | /// MyCollection(Vec::new()) |
222 | /// } |
223 | /// |
224 | /// fn add(&mut self, elem: i32) { |
225 | /// self.0.push(elem); |
226 | /// } |
227 | /// } |
228 | /// |
229 | /// // and we'll implement IntoIterator |
230 | /// impl IntoIterator for MyCollection { |
231 | /// type Item = i32; |
232 | /// type IntoIter = std::vec::IntoIter<Self::Item>; |
233 | /// |
234 | /// fn into_iter(self) -> Self::IntoIter { |
235 | /// self.0.into_iter() |
236 | /// } |
237 | /// } |
238 | /// |
239 | /// // Now we can make a new collection... |
240 | /// let mut c = MyCollection::new(); |
241 | /// |
242 | /// // ... add some stuff to it ... |
243 | /// c.add(0); |
244 | /// c.add(1); |
245 | /// c.add(2); |
246 | /// |
247 | /// // ... and then turn it into an Iterator: |
248 | /// for (i, n) in c.into_iter().enumerate() { |
249 | /// assert_eq!(i as i32, n); |
250 | /// } |
251 | /// ``` |
252 | /// |
253 | /// It is common to use `IntoIterator` as a trait bound. This allows |
254 | /// the input collection type to change, so long as it is still an |
255 | /// iterator. Additional bounds can be specified by restricting on |
256 | /// `Item`: |
257 | /// |
258 | /// ```rust |
259 | /// fn collect_as_strings<T>(collection: T) -> Vec<String> |
260 | /// where |
261 | /// T: IntoIterator, |
262 | /// T::Item: std::fmt::Debug, |
263 | /// { |
264 | /// collection |
265 | /// .into_iter() |
266 | /// .map(|item| format!("{item:?}" )) |
267 | /// .collect() |
268 | /// } |
269 | /// ``` |
270 | #[rustc_diagnostic_item = "IntoIterator" ] |
271 | #[rustc_skip_array_during_method_dispatch ] |
272 | #[rustc_on_unimplemented ( |
273 | on( |
274 | _Self = "core::ops::range::RangeTo<Idx>" , |
275 | label = "if you meant to iterate until a value, add a starting value" , |
276 | note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \ |
277 | bounded `Range`: `0..end`" |
278 | ), |
279 | on( |
280 | _Self = "core::ops::range::RangeToInclusive<Idx>" , |
281 | label = "if you meant to iterate until a value (including it), add a starting value" , |
282 | note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \ |
283 | to have a bounded `RangeInclusive`: `0..=end`" |
284 | ), |
285 | on( |
286 | _Self = "[]" , |
287 | label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`" |
288 | ), |
289 | on(_Self = "&[]" , label = "`{Self}` is not an iterator; try calling `.iter()`" ), |
290 | on( |
291 | _Self = "alloc::vec::Vec<T, A>" , |
292 | label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`" |
293 | ), |
294 | on( |
295 | _Self = "&str" , |
296 | label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`" |
297 | ), |
298 | on( |
299 | _Self = "alloc::string::String" , |
300 | label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`" |
301 | ), |
302 | on( |
303 | _Self = "{integral}" , |
304 | note = "if you want to iterate between `start` until a value `end`, use the exclusive range \ |
305 | syntax `start..end` or the inclusive range syntax `start..=end`" |
306 | ), |
307 | on( |
308 | _Self = "{float}" , |
309 | note = "if you want to iterate between `start` until a value `end`, use the exclusive range \ |
310 | syntax `start..end` or the inclusive range syntax `start..=end`" |
311 | ), |
312 | label = "`{Self}` is not an iterator" , |
313 | message = "`{Self}` is not an iterator" |
314 | )] |
315 | #[stable (feature = "rust1" , since = "1.0.0" )] |
316 | pub trait IntoIterator { |
317 | /// The type of the elements being iterated over. |
318 | #[stable (feature = "rust1" , since = "1.0.0" )] |
319 | type Item; |
320 | |
321 | /// Which kind of iterator are we turning this into? |
322 | #[stable (feature = "rust1" , since = "1.0.0" )] |
323 | type IntoIter: Iterator<Item = Self::Item>; |
324 | |
325 | /// Creates an iterator from a value. |
326 | /// |
327 | /// See the [module-level documentation] for more. |
328 | /// |
329 | /// [module-level documentation]: crate::iter |
330 | /// |
331 | /// # Examples |
332 | /// |
333 | /// ``` |
334 | /// let v = [1, 2, 3]; |
335 | /// let mut iter = v.into_iter(); |
336 | /// |
337 | /// assert_eq!(Some(1), iter.next()); |
338 | /// assert_eq!(Some(2), iter.next()); |
339 | /// assert_eq!(Some(3), iter.next()); |
340 | /// assert_eq!(None, iter.next()); |
341 | /// ``` |
342 | #[lang = "into_iter" ] |
343 | #[stable (feature = "rust1" , since = "1.0.0" )] |
344 | fn into_iter(self) -> Self::IntoIter; |
345 | } |
346 | |
347 | #[rustc_const_unstable (feature = "const_intoiterator_identity" , issue = "90603" )] |
348 | #[stable (feature = "rust1" , since = "1.0.0" )] |
349 | impl<I: Iterator> IntoIterator for I { |
350 | type Item = I::Item; |
351 | type IntoIter = I; |
352 | |
353 | #[inline ] |
354 | fn into_iter(self) -> I { |
355 | self |
356 | } |
357 | } |
358 | |
359 | /// Extend a collection with the contents of an iterator. |
360 | /// |
361 | /// Iterators produce a series of values, and collections can also be thought |
362 | /// of as a series of values. The `Extend` trait bridges this gap, allowing you |
363 | /// to extend a collection by including the contents of that iterator. When |
364 | /// extending a collection with an already existing key, that entry is updated |
365 | /// or, in the case of collections that permit multiple entries with equal |
366 | /// keys, that entry is inserted. |
367 | /// |
368 | /// # Examples |
369 | /// |
370 | /// Basic usage: |
371 | /// |
372 | /// ``` |
373 | /// // You can extend a String with some chars: |
374 | /// let mut message = String::from("The first three letters are: " ); |
375 | /// |
376 | /// message.extend(&['a' , 'b' , 'c' ]); |
377 | /// |
378 | /// assert_eq!("abc" , &message[29..32]); |
379 | /// ``` |
380 | /// |
381 | /// Implementing `Extend`: |
382 | /// |
383 | /// ``` |
384 | /// // A sample collection, that's just a wrapper over Vec<T> |
385 | /// #[derive(Debug)] |
386 | /// struct MyCollection(Vec<i32>); |
387 | /// |
388 | /// // Let's give it some methods so we can create one and add things |
389 | /// // to it. |
390 | /// impl MyCollection { |
391 | /// fn new() -> MyCollection { |
392 | /// MyCollection(Vec::new()) |
393 | /// } |
394 | /// |
395 | /// fn add(&mut self, elem: i32) { |
396 | /// self.0.push(elem); |
397 | /// } |
398 | /// } |
399 | /// |
400 | /// // since MyCollection has a list of i32s, we implement Extend for i32 |
401 | /// impl Extend<i32> for MyCollection { |
402 | /// |
403 | /// // This is a bit simpler with the concrete type signature: we can call |
404 | /// // extend on anything which can be turned into an Iterator which gives |
405 | /// // us i32s. Because we need i32s to put into MyCollection. |
406 | /// fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) { |
407 | /// |
408 | /// // The implementation is very straightforward: loop through the |
409 | /// // iterator, and add() each element to ourselves. |
410 | /// for elem in iter { |
411 | /// self.add(elem); |
412 | /// } |
413 | /// } |
414 | /// } |
415 | /// |
416 | /// let mut c = MyCollection::new(); |
417 | /// |
418 | /// c.add(5); |
419 | /// c.add(6); |
420 | /// c.add(7); |
421 | /// |
422 | /// // let's extend our collection with three more numbers |
423 | /// c.extend(vec![1, 2, 3]); |
424 | /// |
425 | /// // we've added these elements onto the end |
426 | /// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])" , format!("{c:?}" )); |
427 | /// ``` |
428 | #[stable (feature = "rust1" , since = "1.0.0" )] |
429 | pub trait Extend<A> { |
430 | /// Extends a collection with the contents of an iterator. |
431 | /// |
432 | /// As this is the only required method for this trait, the [trait-level] docs |
433 | /// contain more details. |
434 | /// |
435 | /// [trait-level]: Extend |
436 | /// |
437 | /// # Examples |
438 | /// |
439 | /// ``` |
440 | /// // You can extend a String with some chars: |
441 | /// let mut message = String::from("abc" ); |
442 | /// |
443 | /// message.extend(['d' , 'e' , 'f' ].iter()); |
444 | /// |
445 | /// assert_eq!("abcdef" , &message); |
446 | /// ``` |
447 | #[stable (feature = "rust1" , since = "1.0.0" )] |
448 | fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T); |
449 | |
450 | /// Extends a collection with exactly one element. |
451 | #[unstable (feature = "extend_one" , issue = "72631" )] |
452 | fn extend_one(&mut self, item: A) { |
453 | self.extend(Some(item)); |
454 | } |
455 | |
456 | /// Reserves capacity in a collection for the given number of additional elements. |
457 | /// |
458 | /// The default implementation does nothing. |
459 | #[unstable (feature = "extend_one" , issue = "72631" )] |
460 | fn extend_reserve(&mut self, additional: usize) { |
461 | let _ = additional; |
462 | } |
463 | } |
464 | |
465 | #[stable (feature = "extend_for_unit" , since = "1.28.0" )] |
466 | impl Extend<()> for () { |
467 | fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) { |
468 | iter.into_iter().for_each(drop) |
469 | } |
470 | fn extend_one(&mut self, _item: ()) {} |
471 | } |
472 | |
473 | #[stable (feature = "extend_for_tuple" , since = "1.56.0" )] |
474 | impl<A, B, ExtendA, ExtendB> Extend<(A, B)> for (ExtendA, ExtendB) |
475 | where |
476 | ExtendA: Extend<A>, |
477 | ExtendB: Extend<B>, |
478 | { |
479 | /// Allows to `extend` a tuple of collections that also implement `Extend`. |
480 | /// |
481 | /// See also: [`Iterator::unzip`] |
482 | /// |
483 | /// # Examples |
484 | /// ``` |
485 | /// let mut tuple = (vec![0], vec![1]); |
486 | /// tuple.extend([(2, 3), (4, 5), (6, 7)]); |
487 | /// assert_eq!(tuple.0, [0, 2, 4, 6]); |
488 | /// assert_eq!(tuple.1, [1, 3, 5, 7]); |
489 | /// |
490 | /// // also allows for arbitrarily nested tuples as elements |
491 | /// let mut nested_tuple = (vec![1], (vec![2], vec![3])); |
492 | /// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]); |
493 | /// |
494 | /// let (a, (b, c)) = nested_tuple; |
495 | /// assert_eq!(a, [1, 4, 7]); |
496 | /// assert_eq!(b, [2, 5, 8]); |
497 | /// assert_eq!(c, [3, 6, 9]); |
498 | /// ``` |
499 | fn extend<T: IntoIterator<Item = (A, B)>>(&mut self, into_iter: T) { |
500 | let (a, b) = self; |
501 | let iter = into_iter.into_iter(); |
502 | |
503 | fn extend<'a, A, B>( |
504 | a: &'a mut impl Extend<A>, |
505 | b: &'a mut impl Extend<B>, |
506 | ) -> impl FnMut((), (A, B)) + 'a { |
507 | move |(), (t, u)| { |
508 | a.extend_one(t); |
509 | b.extend_one(u); |
510 | } |
511 | } |
512 | |
513 | let (lower_bound, _) = iter.size_hint(); |
514 | if lower_bound > 0 { |
515 | a.extend_reserve(lower_bound); |
516 | b.extend_reserve(lower_bound); |
517 | } |
518 | |
519 | iter.fold((), extend(a, b)); |
520 | } |
521 | |
522 | fn extend_one(&mut self, item: (A, B)) { |
523 | self.0.extend_one(item.0); |
524 | self.1.extend_one(item.1); |
525 | } |
526 | |
527 | fn extend_reserve(&mut self, additional: usize) { |
528 | self.0.extend_reserve(additional); |
529 | self.1.extend_reserve(additional); |
530 | } |
531 | } |
532 | |