| 1 | use super::TrustedLen; |
| 2 | |
| 3 | /// Conversion from an [`Iterator`]. |
| 4 | /// |
| 5 | /// By implementing `FromIterator` for a type, you define how it will be |
| 6 | /// created from an iterator. This is common for types which describe a |
| 7 | /// collection of some kind. |
| 8 | /// |
| 9 | /// If you want to create a collection from the contents of an iterator, the |
| 10 | /// [`Iterator::collect()`] method is preferred. However, when you need to |
| 11 | /// specify the container type, [`FromIterator::from_iter()`] can be more |
| 12 | /// readable than using a turbofish (e.g. `::<Vec<_>>()`). See the |
| 13 | /// [`Iterator::collect()`] documentation for more examples of its use. |
| 14 | /// |
| 15 | /// See also: [`IntoIterator`]. |
| 16 | /// |
| 17 | /// # Examples |
| 18 | /// |
| 19 | /// Basic usage: |
| 20 | /// |
| 21 | /// ``` |
| 22 | /// let five_fives = std::iter::repeat(5).take(5); |
| 23 | /// |
| 24 | /// let v = Vec::from_iter(five_fives); |
| 25 | /// |
| 26 | /// assert_eq!(v, vec![5, 5, 5, 5, 5]); |
| 27 | /// ``` |
| 28 | /// |
| 29 | /// Using [`Iterator::collect()`] to implicitly use `FromIterator`: |
| 30 | /// |
| 31 | /// ``` |
| 32 | /// let five_fives = std::iter::repeat(5).take(5); |
| 33 | /// |
| 34 | /// let v: Vec<i32> = five_fives.collect(); |
| 35 | /// |
| 36 | /// assert_eq!(v, vec![5, 5, 5, 5, 5]); |
| 37 | /// ``` |
| 38 | /// |
| 39 | /// Using [`FromIterator::from_iter()`] as a more readable alternative to |
| 40 | /// [`Iterator::collect()`]: |
| 41 | /// |
| 42 | /// ``` |
| 43 | /// use std::collections::VecDeque; |
| 44 | /// let first = (0..10).collect::<VecDeque<i32>>(); |
| 45 | /// let second = VecDeque::from_iter(0..10); |
| 46 | /// |
| 47 | /// assert_eq!(first, second); |
| 48 | /// ``` |
| 49 | /// |
| 50 | /// Implementing `FromIterator` for your type: |
| 51 | /// |
| 52 | /// ``` |
| 53 | /// // A sample collection, that's just a wrapper over Vec<T> |
| 54 | /// #[derive(Debug)] |
| 55 | /// struct MyCollection(Vec<i32>); |
| 56 | /// |
| 57 | /// // Let's give it some methods so we can create one and add things |
| 58 | /// // to it. |
| 59 | /// impl MyCollection { |
| 60 | /// fn new() -> MyCollection { |
| 61 | /// MyCollection(Vec::new()) |
| 62 | /// } |
| 63 | /// |
| 64 | /// fn add(&mut self, elem: i32) { |
| 65 | /// self.0.push(elem); |
| 66 | /// } |
| 67 | /// } |
| 68 | /// |
| 69 | /// // and we'll implement FromIterator |
| 70 | /// impl FromIterator<i32> for MyCollection { |
| 71 | /// fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self { |
| 72 | /// let mut c = MyCollection::new(); |
| 73 | /// |
| 74 | /// for i in iter { |
| 75 | /// c.add(i); |
| 76 | /// } |
| 77 | /// |
| 78 | /// c |
| 79 | /// } |
| 80 | /// } |
| 81 | /// |
| 82 | /// // Now we can make a new iterator... |
| 83 | /// let iter = (0..5).into_iter(); |
| 84 | /// |
| 85 | /// // ... and make a MyCollection out of it |
| 86 | /// let c = MyCollection::from_iter(iter); |
| 87 | /// |
| 88 | /// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); |
| 89 | /// |
| 90 | /// // collect works too! |
| 91 | /// |
| 92 | /// let iter = (0..5).into_iter(); |
| 93 | /// let c: MyCollection = iter.collect(); |
| 94 | /// |
| 95 | /// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); |
| 96 | /// ``` |
| 97 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 98 | #[rustc_on_unimplemented ( |
| 99 | on( |
| 100 | Self = "&[{A}]" , |
| 101 | message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere" , |
| 102 | label = "try explicitly collecting into a `Vec<{A}>`" , |
| 103 | ), |
| 104 | on( |
| 105 | all(A = "{integer}" , any(Self = "&[{integral}]" ,)), |
| 106 | message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere" , |
| 107 | label = "try explicitly collecting into a `Vec<{A}>`" , |
| 108 | ), |
| 109 | on( |
| 110 | Self = "[{A}]" , |
| 111 | message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size" , |
| 112 | label = "try explicitly collecting into a `Vec<{A}>`" , |
| 113 | ), |
| 114 | on( |
| 115 | all(A = "{integer}" , any(Self = "[{integral}]" ,)), |
| 116 | message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size" , |
| 117 | label = "try explicitly collecting into a `Vec<{A}>`" , |
| 118 | ), |
| 119 | on( |
| 120 | Self = "[{A}; _]" , |
| 121 | message = "an array of type `{Self}` cannot be built directly from an iterator" , |
| 122 | label = "try collecting into a `Vec<{A}>`, then using `.try_into()`" , |
| 123 | ), |
| 124 | on( |
| 125 | all(A = "{integer}" , any(Self = "[{integral}; _]" ,)), |
| 126 | message = "an array of type `{Self}` cannot be built directly from an iterator" , |
| 127 | label = "try collecting into a `Vec<{A}>`, then using `.try_into()`" , |
| 128 | ), |
| 129 | message = "a value of type `{Self}` cannot be built from an iterator \ |
| 130 | over elements of type `{A}`" , |
| 131 | label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`" |
| 132 | )] |
| 133 | #[rustc_diagnostic_item = "FromIterator" ] |
| 134 | pub trait FromIterator<A>: Sized { |
| 135 | /// Creates a value from an iterator. |
| 136 | /// |
| 137 | /// See the [module-level documentation] for more. |
| 138 | /// |
| 139 | /// [module-level documentation]: crate::iter |
| 140 | /// |
| 141 | /// # Examples |
| 142 | /// |
| 143 | /// ``` |
| 144 | /// let five_fives = std::iter::repeat(5).take(5); |
| 145 | /// |
| 146 | /// let v = Vec::from_iter(five_fives); |
| 147 | /// |
| 148 | /// assert_eq!(v, vec![5, 5, 5, 5, 5]); |
| 149 | /// ``` |
| 150 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 151 | #[rustc_diagnostic_item = "from_iter_fn" ] |
| 152 | fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self; |
| 153 | } |
| 154 | |
| 155 | /// Conversion into an [`Iterator`]. |
| 156 | /// |
| 157 | /// By implementing `IntoIterator` for a type, you define how it will be |
| 158 | /// converted to an iterator. This is common for types which describe a |
| 159 | /// collection of some kind. |
| 160 | /// |
| 161 | /// One benefit of implementing `IntoIterator` is that your type will [work |
| 162 | /// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator). |
| 163 | /// |
| 164 | /// See also: [`FromIterator`]. |
| 165 | /// |
| 166 | /// # Examples |
| 167 | /// |
| 168 | /// Basic usage: |
| 169 | /// |
| 170 | /// ``` |
| 171 | /// let v = [1, 2, 3]; |
| 172 | /// let mut iter = v.into_iter(); |
| 173 | /// |
| 174 | /// assert_eq!(Some(1), iter.next()); |
| 175 | /// assert_eq!(Some(2), iter.next()); |
| 176 | /// assert_eq!(Some(3), iter.next()); |
| 177 | /// assert_eq!(None, iter.next()); |
| 178 | /// ``` |
| 179 | /// Implementing `IntoIterator` for your type: |
| 180 | /// |
| 181 | /// ``` |
| 182 | /// // A sample collection, that's just a wrapper over Vec<T> |
| 183 | /// #[derive(Debug)] |
| 184 | /// struct MyCollection(Vec<i32>); |
| 185 | /// |
| 186 | /// // Let's give it some methods so we can create one and add things |
| 187 | /// // to it. |
| 188 | /// impl MyCollection { |
| 189 | /// fn new() -> MyCollection { |
| 190 | /// MyCollection(Vec::new()) |
| 191 | /// } |
| 192 | /// |
| 193 | /// fn add(&mut self, elem: i32) { |
| 194 | /// self.0.push(elem); |
| 195 | /// } |
| 196 | /// } |
| 197 | /// |
| 198 | /// // and we'll implement IntoIterator |
| 199 | /// impl IntoIterator for MyCollection { |
| 200 | /// type Item = i32; |
| 201 | /// type IntoIter = std::vec::IntoIter<Self::Item>; |
| 202 | /// |
| 203 | /// fn into_iter(self) -> Self::IntoIter { |
| 204 | /// self.0.into_iter() |
| 205 | /// } |
| 206 | /// } |
| 207 | /// |
| 208 | /// // Now we can make a new collection... |
| 209 | /// let mut c = MyCollection::new(); |
| 210 | /// |
| 211 | /// // ... add some stuff to it ... |
| 212 | /// c.add(0); |
| 213 | /// c.add(1); |
| 214 | /// c.add(2); |
| 215 | /// |
| 216 | /// // ... and then turn it into an Iterator: |
| 217 | /// for (i, n) in c.into_iter().enumerate() { |
| 218 | /// assert_eq!(i as i32, n); |
| 219 | /// } |
| 220 | /// ``` |
| 221 | /// |
| 222 | /// It is common to use `IntoIterator` as a trait bound. This allows |
| 223 | /// the input collection type to change, so long as it is still an |
| 224 | /// iterator. Additional bounds can be specified by restricting on |
| 225 | /// `Item`: |
| 226 | /// |
| 227 | /// ```rust |
| 228 | /// fn collect_as_strings<T>(collection: T) -> Vec<String> |
| 229 | /// where |
| 230 | /// T: IntoIterator, |
| 231 | /// T::Item: std::fmt::Debug, |
| 232 | /// { |
| 233 | /// collection |
| 234 | /// .into_iter() |
| 235 | /// .map(|item| format!("{item:?}" )) |
| 236 | /// .collect() |
| 237 | /// } |
| 238 | /// ``` |
| 239 | #[rustc_diagnostic_item = "IntoIterator" ] |
| 240 | #[rustc_on_unimplemented ( |
| 241 | on( |
| 242 | Self = "core::ops::range::RangeTo<Idx>" , |
| 243 | label = "if you meant to iterate until a value, add a starting value" , |
| 244 | note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \ |
| 245 | bounded `Range`: `0..end`" |
| 246 | ), |
| 247 | on( |
| 248 | Self = "core::ops::range::RangeToInclusive<Idx>" , |
| 249 | label = "if you meant to iterate until a value (including it), add a starting value" , |
| 250 | note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \ |
| 251 | to have a bounded `RangeInclusive`: `0..=end`" |
| 252 | ), |
| 253 | on( |
| 254 | Self = "[]" , |
| 255 | label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`" |
| 256 | ), |
| 257 | on(Self = "&[]" , label = "`{Self}` is not an iterator; try calling `.iter()`" ), |
| 258 | on( |
| 259 | Self = "alloc::vec::Vec<T, A>" , |
| 260 | label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`" |
| 261 | ), |
| 262 | on(Self = "&str" , label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`" ), |
| 263 | on( |
| 264 | Self = "alloc::string::String" , |
| 265 | label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`" |
| 266 | ), |
| 267 | on( |
| 268 | Self = "{integral}" , |
| 269 | note = "if you want to iterate between `start` until a value `end`, use the exclusive range \ |
| 270 | syntax `start..end` or the inclusive range syntax `start..=end`" |
| 271 | ), |
| 272 | on( |
| 273 | Self = "{float}" , |
| 274 | note = "if you want to iterate between `start` until a value `end`, use the exclusive range \ |
| 275 | syntax `start..end` or the inclusive range syntax `start..=end`" |
| 276 | ), |
| 277 | label = "`{Self}` is not an iterator" , |
| 278 | message = "`{Self}` is not an iterator" |
| 279 | )] |
| 280 | #[rustc_skip_during_method_dispatch(array, boxed_slice)] |
| 281 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 282 | pub trait IntoIterator { |
| 283 | /// The type of the elements being iterated over. |
| 284 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 285 | type Item; |
| 286 | |
| 287 | /// Which kind of iterator are we turning this into? |
| 288 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 289 | type IntoIter: Iterator<Item = Self::Item>; |
| 290 | |
| 291 | /// Creates an iterator from a value. |
| 292 | /// |
| 293 | /// See the [module-level documentation] for more. |
| 294 | /// |
| 295 | /// [module-level documentation]: crate::iter |
| 296 | /// |
| 297 | /// # Examples |
| 298 | /// |
| 299 | /// ``` |
| 300 | /// let v = [1, 2, 3]; |
| 301 | /// let mut iter = v.into_iter(); |
| 302 | /// |
| 303 | /// assert_eq!(Some(1), iter.next()); |
| 304 | /// assert_eq!(Some(2), iter.next()); |
| 305 | /// assert_eq!(Some(3), iter.next()); |
| 306 | /// assert_eq!(None, iter.next()); |
| 307 | /// ``` |
| 308 | #[lang = "into_iter" ] |
| 309 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 310 | fn into_iter(self) -> Self::IntoIter; |
| 311 | } |
| 312 | |
| 313 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 314 | impl<I: Iterator> IntoIterator for I { |
| 315 | type Item = I::Item; |
| 316 | type IntoIter = I; |
| 317 | |
| 318 | #[inline ] |
| 319 | fn into_iter(self) -> I { |
| 320 | self |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | /// Extend a collection with the contents of an iterator. |
| 325 | /// |
| 326 | /// Iterators produce a series of values, and collections can also be thought |
| 327 | /// of as a series of values. The `Extend` trait bridges this gap, allowing you |
| 328 | /// to extend a collection by including the contents of that iterator. When |
| 329 | /// extending a collection with an already existing key, that entry is updated |
| 330 | /// or, in the case of collections that permit multiple entries with equal |
| 331 | /// keys, that entry is inserted. |
| 332 | /// |
| 333 | /// # Examples |
| 334 | /// |
| 335 | /// Basic usage: |
| 336 | /// |
| 337 | /// ``` |
| 338 | /// // You can extend a String with some chars: |
| 339 | /// let mut message = String::from("The first three letters are: " ); |
| 340 | /// |
| 341 | /// message.extend(&['a' , 'b' , 'c' ]); |
| 342 | /// |
| 343 | /// assert_eq!("abc" , &message[29..32]); |
| 344 | /// ``` |
| 345 | /// |
| 346 | /// Implementing `Extend`: |
| 347 | /// |
| 348 | /// ``` |
| 349 | /// // A sample collection, that's just a wrapper over Vec<T> |
| 350 | /// #[derive(Debug)] |
| 351 | /// struct MyCollection(Vec<i32>); |
| 352 | /// |
| 353 | /// // Let's give it some methods so we can create one and add things |
| 354 | /// // to it. |
| 355 | /// impl MyCollection { |
| 356 | /// fn new() -> MyCollection { |
| 357 | /// MyCollection(Vec::new()) |
| 358 | /// } |
| 359 | /// |
| 360 | /// fn add(&mut self, elem: i32) { |
| 361 | /// self.0.push(elem); |
| 362 | /// } |
| 363 | /// } |
| 364 | /// |
| 365 | /// // since MyCollection has a list of i32s, we implement Extend for i32 |
| 366 | /// impl Extend<i32> for MyCollection { |
| 367 | /// |
| 368 | /// // This is a bit simpler with the concrete type signature: we can call |
| 369 | /// // extend on anything which can be turned into an Iterator which gives |
| 370 | /// // us i32s. Because we need i32s to put into MyCollection. |
| 371 | /// fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) { |
| 372 | /// |
| 373 | /// // The implementation is very straightforward: loop through the |
| 374 | /// // iterator, and add() each element to ourselves. |
| 375 | /// for elem in iter { |
| 376 | /// self.add(elem); |
| 377 | /// } |
| 378 | /// } |
| 379 | /// } |
| 380 | /// |
| 381 | /// let mut c = MyCollection::new(); |
| 382 | /// |
| 383 | /// c.add(5); |
| 384 | /// c.add(6); |
| 385 | /// c.add(7); |
| 386 | /// |
| 387 | /// // let's extend our collection with three more numbers |
| 388 | /// c.extend(vec![1, 2, 3]); |
| 389 | /// |
| 390 | /// // we've added these elements onto the end |
| 391 | /// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])" , format!("{c:?}" )); |
| 392 | /// ``` |
| 393 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 394 | pub trait Extend<A> { |
| 395 | /// Extends a collection with the contents of an iterator. |
| 396 | /// |
| 397 | /// As this is the only required method for this trait, the [trait-level] docs |
| 398 | /// contain more details. |
| 399 | /// |
| 400 | /// [trait-level]: Extend |
| 401 | /// |
| 402 | /// # Examples |
| 403 | /// |
| 404 | /// ``` |
| 405 | /// // You can extend a String with some chars: |
| 406 | /// let mut message = String::from("abc" ); |
| 407 | /// |
| 408 | /// message.extend(['d' , 'e' , 'f' ].iter()); |
| 409 | /// |
| 410 | /// assert_eq!("abcdef" , &message); |
| 411 | /// ``` |
| 412 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 413 | fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T); |
| 414 | |
| 415 | /// Extends a collection with exactly one element. |
| 416 | #[unstable (feature = "extend_one" , issue = "72631" )] |
| 417 | fn extend_one(&mut self, item: A) { |
| 418 | self.extend(Some(item)); |
| 419 | } |
| 420 | |
| 421 | /// Reserves capacity in a collection for the given number of additional elements. |
| 422 | /// |
| 423 | /// The default implementation does nothing. |
| 424 | #[unstable (feature = "extend_one" , issue = "72631" )] |
| 425 | fn extend_reserve(&mut self, additional: usize) { |
| 426 | let _ = additional; |
| 427 | } |
| 428 | |
| 429 | /// Extends a collection with one element, without checking there is enough capacity for it. |
| 430 | /// |
| 431 | /// # Safety |
| 432 | /// |
| 433 | /// **For callers:** This must only be called when we know the collection has enough capacity |
| 434 | /// to contain the new item, for example because we previously called `extend_reserve`. |
| 435 | /// |
| 436 | /// **For implementors:** For a collection to unsafely rely on this method's safety precondition (that is, |
| 437 | /// invoke UB if they are violated), it must implement `extend_reserve` correctly. In other words, |
| 438 | /// callers may assume that if they `extend_reserve`ed enough space they can call this method. |
| 439 | |
| 440 | // This method is for internal usage only. It is only on the trait because of specialization's limitations. |
| 441 | #[unstable (feature = "extend_one_unchecked" , issue = "none" )] |
| 442 | #[doc (hidden)] |
| 443 | unsafe fn extend_one_unchecked(&mut self, item: A) |
| 444 | where |
| 445 | Self: Sized, |
| 446 | { |
| 447 | self.extend_one(item); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | #[stable (feature = "extend_for_unit" , since = "1.28.0" )] |
| 452 | impl Extend<()> for () { |
| 453 | fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) { |
| 454 | iter.into_iter().for_each(drop) |
| 455 | } |
| 456 | fn extend_one(&mut self, _item: ()) {} |
| 457 | } |
| 458 | |
| 459 | macro_rules! spec_tuple_impl { |
| 460 | ( |
| 461 | ( |
| 462 | $ty_name:ident, $var_name:ident, $extend_ty_name: ident, |
| 463 | $trait_name:ident, $default_fn_name:ident, $cnt:tt |
| 464 | ), |
| 465 | ) => { |
| 466 | spec_tuple_impl!( |
| 467 | $trait_name, |
| 468 | $default_fn_name, |
| 469 | #[doc(fake_variadic)] |
| 470 | #[doc = "This trait is implemented for tuples up to twelve items long. The `impl`s for \ |
| 471 | 1- and 3- through 12-ary tuples were stabilized after 2-tuples, in \ |
| 472 | 1.85.0." ] |
| 473 | => ($ty_name, $var_name, $extend_ty_name, $cnt), |
| 474 | ); |
| 475 | }; |
| 476 | ( |
| 477 | ( |
| 478 | $ty_name:ident, $var_name:ident, $extend_ty_name: ident, |
| 479 | $trait_name:ident, $default_fn_name:ident, $cnt:tt |
| 480 | ), |
| 481 | $( |
| 482 | ( |
| 483 | $ty_names:ident, $var_names:ident, $extend_ty_names:ident, |
| 484 | $trait_names:ident, $default_fn_names:ident, $cnts:tt |
| 485 | ), |
| 486 | )* |
| 487 | ) => { |
| 488 | spec_tuple_impl!( |
| 489 | $( |
| 490 | ( |
| 491 | $ty_names, $var_names, $extend_ty_names, |
| 492 | $trait_names, $default_fn_names, $cnts |
| 493 | ), |
| 494 | )* |
| 495 | ); |
| 496 | spec_tuple_impl!( |
| 497 | $trait_name, |
| 498 | $default_fn_name, |
| 499 | #[doc(hidden)] |
| 500 | => ( |
| 501 | $ty_name, $var_name, $extend_ty_name, $cnt |
| 502 | ), |
| 503 | $( |
| 504 | ( |
| 505 | $ty_names, $var_names, $extend_ty_names, $cnts |
| 506 | ), |
| 507 | )* |
| 508 | ); |
| 509 | }; |
| 510 | ( |
| 511 | $trait_name:ident, $default_fn_name:ident, #[$meta:meta] |
| 512 | $(#[$doctext:meta])? => $( |
| 513 | ( |
| 514 | $ty_names:ident, $var_names:ident, $extend_ty_names:ident, $cnts:tt |
| 515 | ), |
| 516 | )* |
| 517 | ) => { |
| 518 | #[$meta] |
| 519 | $(#[$doctext])? |
| 520 | #[stable(feature = "extend_for_tuple" , since = "1.56.0" )] |
| 521 | impl<$($ty_names,)* $($extend_ty_names,)*> Extend<($($ty_names,)*)> for ($($extend_ty_names,)*) |
| 522 | where |
| 523 | $($extend_ty_names: Extend<$ty_names>,)* |
| 524 | { |
| 525 | /// Allows to `extend` a tuple of collections that also implement `Extend`. |
| 526 | /// |
| 527 | /// See also: [`Iterator::unzip`] |
| 528 | /// |
| 529 | /// # Examples |
| 530 | /// ``` |
| 531 | /// // Example given for a 2-tuple, but 1- through 12-tuples are supported |
| 532 | /// let mut tuple = (vec![0], vec![1]); |
| 533 | /// tuple.extend([(2, 3), (4, 5), (6, 7)]); |
| 534 | /// assert_eq!(tuple.0, [0, 2, 4, 6]); |
| 535 | /// assert_eq!(tuple.1, [1, 3, 5, 7]); |
| 536 | /// |
| 537 | /// // also allows for arbitrarily nested tuples as elements |
| 538 | /// let mut nested_tuple = (vec![1], (vec![2], vec![3])); |
| 539 | /// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]); |
| 540 | /// |
| 541 | /// let (a, (b, c)) = nested_tuple; |
| 542 | /// assert_eq!(a, [1, 4, 7]); |
| 543 | /// assert_eq!(b, [2, 5, 8]); |
| 544 | /// assert_eq!(c, [3, 6, 9]); |
| 545 | /// ``` |
| 546 | fn extend<T: IntoIterator<Item = ($($ty_names,)*)>>(&mut self, into_iter: T) { |
| 547 | let ($($var_names,)*) = self; |
| 548 | let iter = into_iter.into_iter(); |
| 549 | $trait_name::extend(iter, $($var_names,)*); |
| 550 | } |
| 551 | |
| 552 | fn extend_one(&mut self, item: ($($ty_names,)*)) { |
| 553 | $(self.$cnts.extend_one(item.$cnts);)* |
| 554 | } |
| 555 | |
| 556 | fn extend_reserve(&mut self, additional: usize) { |
| 557 | $(self.$cnts.extend_reserve(additional);)* |
| 558 | } |
| 559 | |
| 560 | unsafe fn extend_one_unchecked(&mut self, item: ($($ty_names,)*)) { |
| 561 | // SAFETY: Those are our safety preconditions, and we correctly forward `extend_reserve`. |
| 562 | unsafe { |
| 563 | $(self.$cnts.extend_one_unchecked(item.$cnts);)* |
| 564 | } |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | trait $trait_name<$($ty_names),*> { |
| 569 | fn extend(self, $($var_names: &mut $ty_names,)*); |
| 570 | } |
| 571 | |
| 572 | fn $default_fn_name<$($ty_names,)* $($extend_ty_names,)*>( |
| 573 | iter: impl Iterator<Item = ($($ty_names,)*)>, |
| 574 | $($var_names: &mut $extend_ty_names,)* |
| 575 | ) where |
| 576 | $($extend_ty_names: Extend<$ty_names>,)* |
| 577 | { |
| 578 | fn extend<'a, $($ty_names,)*>( |
| 579 | $($var_names: &'a mut impl Extend<$ty_names>,)* |
| 580 | ) -> impl FnMut((), ($($ty_names,)*)) + 'a { |
| 581 | #[allow(non_snake_case)] |
| 582 | move |(), ($($extend_ty_names,)*)| { |
| 583 | $($var_names.extend_one($extend_ty_names);)* |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | let (lower_bound, _) = iter.size_hint(); |
| 588 | if lower_bound > 0 { |
| 589 | $($var_names.extend_reserve(lower_bound);)* |
| 590 | } |
| 591 | |
| 592 | iter.fold((), extend($($var_names,)*)); |
| 593 | } |
| 594 | |
| 595 | impl<$($ty_names,)* $($extend_ty_names,)* Iter> $trait_name<$($extend_ty_names),*> for Iter |
| 596 | where |
| 597 | $($extend_ty_names: Extend<$ty_names>,)* |
| 598 | Iter: Iterator<Item = ($($ty_names,)*)>, |
| 599 | { |
| 600 | default fn extend(self, $($var_names: &mut $extend_ty_names),*) { |
| 601 | $default_fn_name(self, $($var_names),*); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | impl<$($ty_names,)* $($extend_ty_names,)* Iter> $trait_name<$($extend_ty_names),*> for Iter |
| 606 | where |
| 607 | $($extend_ty_names: Extend<$ty_names>,)* |
| 608 | Iter: TrustedLen<Item = ($($ty_names,)*)>, |
| 609 | { |
| 610 | fn extend(self, $($var_names: &mut $extend_ty_names,)*) { |
| 611 | fn extend<'a, $($ty_names,)*>( |
| 612 | $($var_names: &'a mut impl Extend<$ty_names>,)* |
| 613 | ) -> impl FnMut((), ($($ty_names,)*)) + 'a { |
| 614 | #[allow(non_snake_case)] |
| 615 | // SAFETY: We reserve enough space for the `size_hint`, and the iterator is |
| 616 | // `TrustedLen` so its `size_hint` is exact. |
| 617 | move |(), ($($extend_ty_names,)*)| unsafe { |
| 618 | $($var_names.extend_one_unchecked($extend_ty_names);)* |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | let (lower_bound, upper_bound) = self.size_hint(); |
| 623 | |
| 624 | if upper_bound.is_none() { |
| 625 | // We cannot reserve more than `usize::MAX` items, and this is likely to go out of memory anyway. |
| 626 | $default_fn_name(self, $($var_names,)*); |
| 627 | return; |
| 628 | } |
| 629 | |
| 630 | if lower_bound > 0 { |
| 631 | $($var_names.extend_reserve(lower_bound);)* |
| 632 | } |
| 633 | |
| 634 | self.fold((), extend($($var_names,)*)); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | /// This implementation turns an iterator of tuples into a tuple of types which implement |
| 639 | /// [`Default`] and [`Extend`]. |
| 640 | /// |
| 641 | /// This is similar to [`Iterator::unzip`], but is also composable with other [`FromIterator`] |
| 642 | /// implementations: |
| 643 | /// |
| 644 | /// ```rust |
| 645 | /// # fn main() -> Result<(), core::num::ParseIntError> { |
| 646 | /// let string = "1,2,123,4"; |
| 647 | /// |
| 648 | /// // Example given for a 2-tuple, but 1- through 12-tuples are supported |
| 649 | /// let (numbers, lengths): (Vec<_>, Vec<_>) = string |
| 650 | /// .split(',') |
| 651 | /// .map(|s| s.parse().map(|n: u32| (n, s.len()))) |
| 652 | /// .collect::<Result<_, _>>()?; |
| 653 | /// |
| 654 | /// assert_eq!(numbers, [1, 2, 123, 4]); |
| 655 | /// assert_eq!(lengths, [1, 1, 3, 1]); |
| 656 | /// # Ok(()) } |
| 657 | /// ``` |
| 658 | #[$meta] |
| 659 | $(#[$doctext])? |
| 660 | #[stable(feature = "from_iterator_for_tuple" , since = "1.79.0" )] |
| 661 | impl<$($ty_names,)* $($extend_ty_names,)*> FromIterator<($($extend_ty_names,)*)> for ($($ty_names,)*) |
| 662 | where |
| 663 | $($ty_names: Default + Extend<$extend_ty_names>,)* |
| 664 | { |
| 665 | fn from_iter<Iter: IntoIterator<Item = ($($extend_ty_names,)*)>>(iter: Iter) -> Self { |
| 666 | let mut res = <($($ty_names,)*)>::default(); |
| 667 | res.extend(iter); |
| 668 | |
| 669 | res |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | }; |
| 674 | } |
| 675 | |
| 676 | spec_tuple_impl!( |
| 677 | (L, l, EL, TraitL, default_extend_tuple_l, 11), |
| 678 | (K, k, EK, TraitK, default_extend_tuple_k, 10), |
| 679 | (J, j, EJ, TraitJ, default_extend_tuple_j, 9), |
| 680 | (I, i, EI, TraitI, default_extend_tuple_i, 8), |
| 681 | (H, h, EH, TraitH, default_extend_tuple_h, 7), |
| 682 | (G, g, EG, TraitG, default_extend_tuple_g, 6), |
| 683 | (F, f, EF, TraitF, default_extend_tuple_f, 5), |
| 684 | (E, e, EE, TraitE, default_extend_tuple_e, 4), |
| 685 | (D, d, ED, TraitD, default_extend_tuple_d, 3), |
| 686 | (C, c, EC, TraitC, default_extend_tuple_c, 2), |
| 687 | (B, b, EB, TraitB, default_extend_tuple_b, 1), |
| 688 | (A, a, EA, TraitA, default_extend_tuple_a, 0), |
| 689 | ); |
| 690 | |