| 1 | //! Utilities for the array primitive type. |
| 2 | //! |
| 3 | //! *[See also the array primitive type](array).* |
| 4 | |
| 5 | #![stable (feature = "core_array" , since = "1.35.0" )] |
| 6 | |
| 7 | use crate::borrow::{Borrow, BorrowMut}; |
| 8 | use crate::cmp::Ordering; |
| 9 | use crate::convert::Infallible; |
| 10 | use crate::error::Error; |
| 11 | use crate::fmt; |
| 12 | use crate::hash::{self, Hash}; |
| 13 | use crate::intrinsics::transmute_unchecked; |
| 14 | use crate::iter::{UncheckedIterator, repeat_n}; |
| 15 | use crate::mem::{self, MaybeUninit}; |
| 16 | use crate::ops::{ |
| 17 | ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try, |
| 18 | }; |
| 19 | use crate::ptr::{null, null_mut}; |
| 20 | use crate::slice::{Iter, IterMut}; |
| 21 | |
| 22 | mod ascii; |
| 23 | mod drain; |
| 24 | mod equality; |
| 25 | mod iter; |
| 26 | |
| 27 | pub(crate) use drain::drain_array_with; |
| 28 | #[stable (feature = "array_value_iter" , since = "1.51.0" )] |
| 29 | pub use iter::IntoIter; |
| 30 | |
| 31 | /// Creates an array of type `[T; N]` by repeatedly cloning a value. |
| 32 | /// |
| 33 | /// This is the same as `[val; N]`, but it also works for types that do not |
| 34 | /// implement [`Copy`]. |
| 35 | /// |
| 36 | /// The provided value will be used as an element of the resulting array and |
| 37 | /// will be cloned N - 1 times to fill up the rest. If N is zero, the value |
| 38 | /// will be dropped. |
| 39 | /// |
| 40 | /// # Example |
| 41 | /// |
| 42 | /// Creating multiple copies of a `String`: |
| 43 | /// ```rust |
| 44 | /// #![feature(array_repeat)] |
| 45 | /// |
| 46 | /// use std::array; |
| 47 | /// |
| 48 | /// let string = "Hello there!" .to_string(); |
| 49 | /// let strings = array::repeat(string); |
| 50 | /// assert_eq!(strings, ["Hello there!" , "Hello there!" ]); |
| 51 | /// ``` |
| 52 | #[inline ] |
| 53 | #[unstable (feature = "array_repeat" , issue = "126695" )] |
| 54 | pub fn repeat<T: Clone, const N: usize>(val: T) -> [T; N] { |
| 55 | from_trusted_iterator(iter:repeat_n(element:val, N)) |
| 56 | } |
| 57 | |
| 58 | /// Creates an array where each element is produced by calling `f` with |
| 59 | /// that element's index while walking forward through the array. |
| 60 | /// |
| 61 | /// This is essentially the same as writing |
| 62 | /// ```text |
| 63 | /// [f(0), f(1), f(2), …, f(N - 2), f(N - 1)] |
| 64 | /// ``` |
| 65 | /// and is similar to `(0..i).map(f)`, just for arrays not iterators. |
| 66 | /// |
| 67 | /// If `N == 0`, this produces an empty array without ever calling `f`. |
| 68 | /// |
| 69 | /// # Example |
| 70 | /// |
| 71 | /// ```rust |
| 72 | /// // type inference is helping us here, the way `from_fn` knows how many |
| 73 | /// // elements to produce is the length of array down there: only arrays of |
| 74 | /// // equal lengths can be compared, so the const generic parameter `N` is |
| 75 | /// // inferred to be 5, thus creating array of 5 elements. |
| 76 | /// |
| 77 | /// let array = core::array::from_fn(|i| i); |
| 78 | /// // indexes are: 0 1 2 3 4 |
| 79 | /// assert_eq!(array, [0, 1, 2, 3, 4]); |
| 80 | /// |
| 81 | /// let array2: [usize; 8] = core::array::from_fn(|i| i * 2); |
| 82 | /// // indexes are: 0 1 2 3 4 5 6 7 |
| 83 | /// assert_eq!(array2, [0, 2, 4, 6, 8, 10, 12, 14]); |
| 84 | /// |
| 85 | /// let bool_arr = core::array::from_fn::<_, 5, _>(|i| i % 2 == 0); |
| 86 | /// // indexes are: 0 1 2 3 4 |
| 87 | /// assert_eq!(bool_arr, [true, false, true, false, true]); |
| 88 | /// ``` |
| 89 | /// |
| 90 | /// You can also capture things, for example to create an array full of clones |
| 91 | /// where you can't just use `[item; N]` because it's not `Copy`: |
| 92 | /// ``` |
| 93 | /// # // TBH `array::repeat` would be better for this, but it's not stable yet. |
| 94 | /// let my_string = String::from("Hello" ); |
| 95 | /// let clones: [String; 42] = std::array::from_fn(|_| my_string.clone()); |
| 96 | /// assert!(clones.iter().all(|x| *x == my_string)); |
| 97 | /// ``` |
| 98 | /// |
| 99 | /// The array is generated in ascending index order, starting from the front |
| 100 | /// and going towards the back, so you can use closures with mutable state: |
| 101 | /// ``` |
| 102 | /// let mut state = 1; |
| 103 | /// let a = std::array::from_fn(|_| { let x = state; state *= 2; x }); |
| 104 | /// assert_eq!(a, [1, 2, 4, 8, 16, 32]); |
| 105 | /// ``` |
| 106 | #[inline ] |
| 107 | #[stable (feature = "array_from_fn" , since = "1.63.0" )] |
| 108 | pub fn from_fn<T, const N: usize, F>(f: F) -> [T; N] |
| 109 | where |
| 110 | F: FnMut(usize) -> T, |
| 111 | { |
| 112 | try_from_fn(cb:NeverShortCircuit::wrap_mut_1(f)).0 |
| 113 | } |
| 114 | |
| 115 | /// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call. |
| 116 | /// Unlike [`from_fn`], where the element creation can't fail, this version will return an error |
| 117 | /// if any element creation was unsuccessful. |
| 118 | /// |
| 119 | /// The return type of this function depends on the return type of the closure. |
| 120 | /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`. |
| 121 | /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`. |
| 122 | /// |
| 123 | /// # Arguments |
| 124 | /// |
| 125 | /// * `cb`: Callback where the passed argument is the current array index. |
| 126 | /// |
| 127 | /// # Example |
| 128 | /// |
| 129 | /// ```rust |
| 130 | /// #![feature(array_try_from_fn)] |
| 131 | /// |
| 132 | /// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into()); |
| 133 | /// assert_eq!(array, Ok([0, 1, 2, 3, 4])); |
| 134 | /// |
| 135 | /// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into()); |
| 136 | /// assert!(array.is_err()); |
| 137 | /// |
| 138 | /// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100)); |
| 139 | /// assert_eq!(array, Some([100, 101, 102, 103])); |
| 140 | /// |
| 141 | /// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100)); |
| 142 | /// assert_eq!(array, None); |
| 143 | /// ``` |
| 144 | #[inline ] |
| 145 | #[unstable (feature = "array_try_from_fn" , issue = "89379" )] |
| 146 | pub fn try_from_fn<R, const N: usize, F>(cb: F) -> ChangeOutputType<R, [R::Output; N]> |
| 147 | where |
| 148 | F: FnMut(usize) -> R, |
| 149 | R: Try, |
| 150 | R::Residual: Residual<[R::Output; N]>, |
| 151 | { |
| 152 | let mut array: [MaybeUninit>; N] = [const { MaybeUninit::uninit() }; N]; |
| 153 | match try_from_fn_erased(&mut array, generator:cb) { |
| 154 | ControlFlow::Break(r: impl Residual<[impl Residual<…>; N]>) => FromResidual::from_residual(r), |
| 155 | ControlFlow::Continue(()) => { |
| 156 | // SAFETY: All elements of the array were populated. |
| 157 | try { unsafe { MaybeUninit::array_assume_init(array) } } |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | /// Converts a reference to `T` into a reference to an array of length 1 (without copying). |
| 163 | #[stable (feature = "array_from_ref" , since = "1.53.0" )] |
| 164 | #[rustc_const_stable (feature = "const_array_from_ref_shared" , since = "1.63.0" )] |
| 165 | pub const fn from_ref<T>(s: &T) -> &[T; 1] { |
| 166 | // SAFETY: Converting `&T` to `&[T; 1]` is sound. |
| 167 | unsafe { &*(s as *const T).cast::<[T; 1]>() } |
| 168 | } |
| 169 | |
| 170 | /// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying). |
| 171 | #[stable (feature = "array_from_ref" , since = "1.53.0" )] |
| 172 | #[rustc_const_stable (feature = "const_array_from_ref" , since = "1.83.0" )] |
| 173 | pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] { |
| 174 | // SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound. |
| 175 | unsafe { &mut *(s as *mut T).cast::<[T; 1]>() } |
| 176 | } |
| 177 | |
| 178 | /// The error type returned when a conversion from a slice to an array fails. |
| 179 | #[stable (feature = "try_from" , since = "1.34.0" )] |
| 180 | #[derive (Debug, Copy, Clone)] |
| 181 | pub struct TryFromSliceError(()); |
| 182 | |
| 183 | #[stable (feature = "core_array" , since = "1.35.0" )] |
| 184 | impl fmt::Display for TryFromSliceError { |
| 185 | #[inline ] |
| 186 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 187 | #[allow (deprecated)] |
| 188 | self.description().fmt(f) |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | #[stable (feature = "try_from" , since = "1.34.0" )] |
| 193 | impl Error for TryFromSliceError { |
| 194 | #[allow (deprecated)] |
| 195 | fn description(&self) -> &str { |
| 196 | "could not convert slice to array" |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | #[stable (feature = "try_from_slice_error" , since = "1.36.0" )] |
| 201 | impl From<Infallible> for TryFromSliceError { |
| 202 | fn from(x: Infallible) -> TryFromSliceError { |
| 203 | match x {} |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 208 | impl<T, const N: usize> AsRef<[T]> for [T; N] { |
| 209 | #[inline ] |
| 210 | fn as_ref(&self) -> &[T] { |
| 211 | &self[..] |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 216 | impl<T, const N: usize> AsMut<[T]> for [T; N] { |
| 217 | #[inline ] |
| 218 | fn as_mut(&mut self) -> &mut [T] { |
| 219 | &mut self[..] |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | #[stable (feature = "array_borrow" , since = "1.4.0" )] |
| 224 | impl<T, const N: usize> Borrow<[T]> for [T; N] { |
| 225 | fn borrow(&self) -> &[T] { |
| 226 | self |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | #[stable (feature = "array_borrow" , since = "1.4.0" )] |
| 231 | impl<T, const N: usize> BorrowMut<[T]> for [T; N] { |
| 232 | fn borrow_mut(&mut self) -> &mut [T] { |
| 233 | self |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | /// Tries to create an array `[T; N]` by copying from a slice `&[T]`. |
| 238 | /// Succeeds if `slice.len() == N`. |
| 239 | /// |
| 240 | /// ``` |
| 241 | /// let bytes: [u8; 3] = [1, 0, 2]; |
| 242 | /// |
| 243 | /// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap(); |
| 244 | /// assert_eq!(1, u16::from_le_bytes(bytes_head)); |
| 245 | /// |
| 246 | /// let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap(); |
| 247 | /// assert_eq!(512, u16::from_le_bytes(bytes_tail)); |
| 248 | /// ``` |
| 249 | #[stable (feature = "try_from" , since = "1.34.0" )] |
| 250 | impl<T, const N: usize> TryFrom<&[T]> for [T; N] |
| 251 | where |
| 252 | T: Copy, |
| 253 | { |
| 254 | type Error = TryFromSliceError; |
| 255 | |
| 256 | #[inline ] |
| 257 | fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> { |
| 258 | <&Self>::try_from(slice).copied() |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | /// Tries to create an array `[T; N]` by copying from a mutable slice `&mut [T]`. |
| 263 | /// Succeeds if `slice.len() == N`. |
| 264 | /// |
| 265 | /// ``` |
| 266 | /// let mut bytes: [u8; 3] = [1, 0, 2]; |
| 267 | /// |
| 268 | /// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap(); |
| 269 | /// assert_eq!(1, u16::from_le_bytes(bytes_head)); |
| 270 | /// |
| 271 | /// let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap(); |
| 272 | /// assert_eq!(512, u16::from_le_bytes(bytes_tail)); |
| 273 | /// ``` |
| 274 | #[stable (feature = "try_from_mut_slice_to_array" , since = "1.59.0" )] |
| 275 | impl<T, const N: usize> TryFrom<&mut [T]> for [T; N] |
| 276 | where |
| 277 | T: Copy, |
| 278 | { |
| 279 | type Error = TryFromSliceError; |
| 280 | |
| 281 | #[inline ] |
| 282 | fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> { |
| 283 | <Self>::try_from(&*slice) |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | /// Tries to create an array ref `&[T; N]` from a slice ref `&[T]`. Succeeds if |
| 288 | /// `slice.len() == N`. |
| 289 | /// |
| 290 | /// ``` |
| 291 | /// let bytes: [u8; 3] = [1, 0, 2]; |
| 292 | /// |
| 293 | /// let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap(); |
| 294 | /// assert_eq!(1, u16::from_le_bytes(*bytes_head)); |
| 295 | /// |
| 296 | /// let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap(); |
| 297 | /// assert_eq!(512, u16::from_le_bytes(*bytes_tail)); |
| 298 | /// ``` |
| 299 | #[stable (feature = "try_from" , since = "1.34.0" )] |
| 300 | impl<'a, T, const N: usize> TryFrom<&'a [T]> for &'a [T; N] { |
| 301 | type Error = TryFromSliceError; |
| 302 | |
| 303 | #[inline ] |
| 304 | fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError> { |
| 305 | slice.as_array().ok_or(err:TryFromSliceError(())) |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | /// Tries to create a mutable array ref `&mut [T; N]` from a mutable slice ref |
| 310 | /// `&mut [T]`. Succeeds if `slice.len() == N`. |
| 311 | /// |
| 312 | /// ``` |
| 313 | /// let mut bytes: [u8; 3] = [1, 0, 2]; |
| 314 | /// |
| 315 | /// let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap(); |
| 316 | /// assert_eq!(1, u16::from_le_bytes(*bytes_head)); |
| 317 | /// |
| 318 | /// let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap(); |
| 319 | /// assert_eq!(512, u16::from_le_bytes(*bytes_tail)); |
| 320 | /// ``` |
| 321 | #[stable (feature = "try_from" , since = "1.34.0" )] |
| 322 | impl<'a, T, const N: usize> TryFrom<&'a mut [T]> for &'a mut [T; N] { |
| 323 | type Error = TryFromSliceError; |
| 324 | |
| 325 | #[inline ] |
| 326 | fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError> { |
| 327 | slice.as_mut_array().ok_or(err:TryFromSliceError(())) |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// The hash of an array is the same as that of the corresponding slice, |
| 332 | /// as required by the `Borrow` implementation. |
| 333 | /// |
| 334 | /// ``` |
| 335 | /// use std::hash::BuildHasher; |
| 336 | /// |
| 337 | /// let b = std::hash::RandomState::new(); |
| 338 | /// let a: [u8; 3] = [0xa8, 0x3c, 0x09]; |
| 339 | /// let s: &[u8] = &[0xa8, 0x3c, 0x09]; |
| 340 | /// assert_eq!(b.hash_one(a), b.hash_one(s)); |
| 341 | /// ``` |
| 342 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 343 | impl<T: Hash, const N: usize> Hash for [T; N] { |
| 344 | fn hash<H: hash::Hasher>(&self, state: &mut H) { |
| 345 | Hash::hash(&self[..], state) |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 350 | impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] { |
| 351 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 352 | fmt::Debug::fmt(&&self[..], f) |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 357 | impl<'a, T, const N: usize> IntoIterator for &'a [T; N] { |
| 358 | type Item = &'a T; |
| 359 | type IntoIter = Iter<'a, T>; |
| 360 | |
| 361 | fn into_iter(self) -> Iter<'a, T> { |
| 362 | self.iter() |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 367 | impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] { |
| 368 | type Item = &'a mut T; |
| 369 | type IntoIter = IterMut<'a, T>; |
| 370 | |
| 371 | fn into_iter(self) -> IterMut<'a, T> { |
| 372 | self.iter_mut() |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | #[stable (feature = "index_trait_on_arrays" , since = "1.50.0" )] |
| 377 | impl<T, I, const N: usize> Index<I> for [T; N] |
| 378 | where |
| 379 | [T]: Index<I>, |
| 380 | { |
| 381 | type Output = <[T] as Index<I>>::Output; |
| 382 | |
| 383 | #[inline ] |
| 384 | fn index(&self, index: I) -> &Self::Output { |
| 385 | Index::index(self as &[T], index) |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | #[stable (feature = "index_trait_on_arrays" , since = "1.50.0" )] |
| 390 | impl<T, I, const N: usize> IndexMut<I> for [T; N] |
| 391 | where |
| 392 | [T]: IndexMut<I>, |
| 393 | { |
| 394 | #[inline ] |
| 395 | fn index_mut(&mut self, index: I) -> &mut Self::Output { |
| 396 | IndexMut::index_mut(self as &mut [T], index) |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | /// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison). |
| 401 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 402 | impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] { |
| 403 | #[inline ] |
| 404 | fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> { |
| 405 | PartialOrd::partial_cmp(&&self[..], &&other[..]) |
| 406 | } |
| 407 | #[inline ] |
| 408 | fn lt(&self, other: &[T; N]) -> bool { |
| 409 | PartialOrd::lt(&&self[..], &&other[..]) |
| 410 | } |
| 411 | #[inline ] |
| 412 | fn le(&self, other: &[T; N]) -> bool { |
| 413 | PartialOrd::le(&&self[..], &&other[..]) |
| 414 | } |
| 415 | #[inline ] |
| 416 | fn ge(&self, other: &[T; N]) -> bool { |
| 417 | PartialOrd::ge(&&self[..], &&other[..]) |
| 418 | } |
| 419 | #[inline ] |
| 420 | fn gt(&self, other: &[T; N]) -> bool { |
| 421 | PartialOrd::gt(&&self[..], &&other[..]) |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | /// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison). |
| 426 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 427 | impl<T: Ord, const N: usize> Ord for [T; N] { |
| 428 | #[inline ] |
| 429 | fn cmp(&self, other: &[T; N]) -> Ordering { |
| 430 | Ord::cmp(&&self[..], &&other[..]) |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | #[stable (feature = "copy_clone_array_lib" , since = "1.58.0" )] |
| 435 | impl<T: Copy, const N: usize> Copy for [T; N] {} |
| 436 | |
| 437 | #[stable (feature = "copy_clone_array_lib" , since = "1.58.0" )] |
| 438 | impl<T: Clone, const N: usize> Clone for [T; N] { |
| 439 | #[inline ] |
| 440 | fn clone(&self) -> Self { |
| 441 | SpecArrayClone::clone(self) |
| 442 | } |
| 443 | |
| 444 | #[inline ] |
| 445 | fn clone_from(&mut self, other: &Self) { |
| 446 | self.clone_from_slice(src:other); |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | trait SpecArrayClone: Clone { |
| 451 | fn clone<const N: usize>(array: &[Self; N]) -> [Self; N]; |
| 452 | } |
| 453 | |
| 454 | impl<T: Clone> SpecArrayClone for T { |
| 455 | #[inline ] |
| 456 | default fn clone<const N: usize>(array: &[T; N]) -> [T; N] { |
| 457 | from_trusted_iterator(iter:array.iter().cloned()) |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | impl<T: Copy> SpecArrayClone for T { |
| 462 | #[inline ] |
| 463 | fn clone<const N: usize>(array: &[T; N]) -> [T; N] { |
| 464 | *array |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | // The Default impls cannot be done with const generics because `[T; 0]` doesn't |
| 469 | // require Default to be implemented, and having different impl blocks for |
| 470 | // different numbers isn't supported yet. |
| 471 | |
| 472 | macro_rules! array_impl_default { |
| 473 | {$n:expr, $t:ident $($ts:ident)*} => { |
| 474 | #[stable(since = "1.4.0" , feature = "array_default" )] |
| 475 | impl<T> Default for [T; $n] where T: Default { |
| 476 | fn default() -> [T; $n] { |
| 477 | [$t::default(), $($ts::default()),*] |
| 478 | } |
| 479 | } |
| 480 | array_impl_default!{($n - 1), $($ts)*} |
| 481 | }; |
| 482 | {$n:expr,} => { |
| 483 | #[stable(since = "1.4.0" , feature = "array_default" )] |
| 484 | impl<T> Default for [T; $n] { |
| 485 | fn default() -> [T; $n] { [] } |
| 486 | } |
| 487 | }; |
| 488 | } |
| 489 | |
| 490 | array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T} |
| 491 | |
| 492 | impl<T, const N: usize> [T; N] { |
| 493 | /// Returns an array of the same size as `self`, with function `f` applied to each element |
| 494 | /// in order. |
| 495 | /// |
| 496 | /// If you don't necessarily need a new fixed-size array, consider using |
| 497 | /// [`Iterator::map`] instead. |
| 498 | /// |
| 499 | /// |
| 500 | /// # Note on performance and stack usage |
| 501 | /// |
| 502 | /// Unfortunately, usages of this method are currently not always optimized |
| 503 | /// as well as they could be. This mainly concerns large arrays, as mapping |
| 504 | /// over small arrays seem to be optimized just fine. Also note that in |
| 505 | /// debug mode (i.e. without any optimizations), this method can use a lot |
| 506 | /// of stack space (a few times the size of the array or more). |
| 507 | /// |
| 508 | /// Therefore, in performance-critical code, try to avoid using this method |
| 509 | /// on large arrays or check the emitted code. Also try to avoid chained |
| 510 | /// maps (e.g. `arr.map(...).map(...)`). |
| 511 | /// |
| 512 | /// In many cases, you can instead use [`Iterator::map`] by calling `.iter()` |
| 513 | /// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you |
| 514 | /// really need a new array of the same size as the result. Rust's lazy |
| 515 | /// iterators tend to get optimized very well. |
| 516 | /// |
| 517 | /// |
| 518 | /// # Examples |
| 519 | /// |
| 520 | /// ``` |
| 521 | /// let x = [1, 2, 3]; |
| 522 | /// let y = x.map(|v| v + 1); |
| 523 | /// assert_eq!(y, [2, 3, 4]); |
| 524 | /// |
| 525 | /// let x = [1, 2, 3]; |
| 526 | /// let mut temp = 0; |
| 527 | /// let y = x.map(|v| { temp += 1; v * temp }); |
| 528 | /// assert_eq!(y, [1, 4, 9]); |
| 529 | /// |
| 530 | /// let x = ["Ferris" , "Bueller's" , "Day" , "Off" ]; |
| 531 | /// let y = x.map(|v| v.len()); |
| 532 | /// assert_eq!(y, [6, 9, 3, 3]); |
| 533 | /// ``` |
| 534 | #[must_use ] |
| 535 | #[stable (feature = "array_map" , since = "1.55.0" )] |
| 536 | pub fn map<F, U>(self, f: F) -> [U; N] |
| 537 | where |
| 538 | F: FnMut(T) -> U, |
| 539 | { |
| 540 | self.try_map(NeverShortCircuit::wrap_mut_1(f)).0 |
| 541 | } |
| 542 | |
| 543 | /// A fallible function `f` applied to each element on array `self` in order to |
| 544 | /// return an array the same size as `self` or the first error encountered. |
| 545 | /// |
| 546 | /// The return type of this function depends on the return type of the closure. |
| 547 | /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`. |
| 548 | /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`. |
| 549 | /// |
| 550 | /// # Examples |
| 551 | /// |
| 552 | /// ``` |
| 553 | /// #![feature(array_try_map)] |
| 554 | /// |
| 555 | /// let a = ["1" , "2" , "3" ]; |
| 556 | /// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1); |
| 557 | /// assert_eq!(b, [2, 3, 4]); |
| 558 | /// |
| 559 | /// let a = ["1" , "2a" , "3" ]; |
| 560 | /// let b = a.try_map(|v| v.parse::<u32>()); |
| 561 | /// assert!(b.is_err()); |
| 562 | /// |
| 563 | /// use std::num::NonZero; |
| 564 | /// |
| 565 | /// let z = [1, 2, 0, 3, 4]; |
| 566 | /// assert_eq!(z.try_map(NonZero::new), None); |
| 567 | /// |
| 568 | /// let a = [1, 2, 3]; |
| 569 | /// let b = a.try_map(NonZero::new); |
| 570 | /// let c = b.map(|x| x.map(NonZero::get)); |
| 571 | /// assert_eq!(c, Some(a)); |
| 572 | /// ``` |
| 573 | #[unstable (feature = "array_try_map" , issue = "79711" )] |
| 574 | pub fn try_map<R>(self, f: impl FnMut(T) -> R) -> ChangeOutputType<R, [R::Output; N]> |
| 575 | where |
| 576 | R: Try<Residual: Residual<[R::Output; N]>>, |
| 577 | { |
| 578 | drain_array_with(self, |iter| try_from_trusted_iterator(iter.map(f))) |
| 579 | } |
| 580 | |
| 581 | /// Returns a slice containing the entire array. Equivalent to `&s[..]`. |
| 582 | #[stable (feature = "array_as_slice" , since = "1.57.0" )] |
| 583 | #[rustc_const_stable (feature = "array_as_slice" , since = "1.57.0" )] |
| 584 | pub const fn as_slice(&self) -> &[T] { |
| 585 | self |
| 586 | } |
| 587 | |
| 588 | /// Returns a mutable slice containing the entire array. Equivalent to |
| 589 | /// `&mut s[..]`. |
| 590 | #[stable (feature = "array_as_slice" , since = "1.57.0" )] |
| 591 | #[rustc_const_stable (feature = "const_array_as_mut_slice" , since = "CURRENT_RUSTC_VERSION" )] |
| 592 | pub const fn as_mut_slice(&mut self) -> &mut [T] { |
| 593 | self |
| 594 | } |
| 595 | |
| 596 | /// Borrows each element and returns an array of references with the same |
| 597 | /// size as `self`. |
| 598 | /// |
| 599 | /// |
| 600 | /// # Example |
| 601 | /// |
| 602 | /// ``` |
| 603 | /// let floats = [3.1, 2.7, -1.0]; |
| 604 | /// let float_refs: [&f64; 3] = floats.each_ref(); |
| 605 | /// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]); |
| 606 | /// ``` |
| 607 | /// |
| 608 | /// This method is particularly useful if combined with other methods, like |
| 609 | /// [`map`](#method.map). This way, you can avoid moving the original |
| 610 | /// array if its elements are not [`Copy`]. |
| 611 | /// |
| 612 | /// ``` |
| 613 | /// let strings = ["Ferris" .to_string(), "♥" .to_string(), "Rust" .to_string()]; |
| 614 | /// let is_ascii = strings.each_ref().map(|s| s.is_ascii()); |
| 615 | /// assert_eq!(is_ascii, [true, false, true]); |
| 616 | /// |
| 617 | /// // We can still access the original array: it has not been moved. |
| 618 | /// assert_eq!(strings.len(), 3); |
| 619 | /// ``` |
| 620 | #[stable (feature = "array_methods" , since = "1.77.0" )] |
| 621 | #[rustc_const_unstable (feature = "const_array_each_ref" , issue = "133289" )] |
| 622 | pub const fn each_ref(&self) -> [&T; N] { |
| 623 | let mut buf = [null::<T>(); N]; |
| 624 | |
| 625 | // FIXME(const-hack): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions. |
| 626 | let mut i = 0; |
| 627 | while i < N { |
| 628 | buf[i] = &raw const self[i]; |
| 629 | |
| 630 | i += 1; |
| 631 | } |
| 632 | |
| 633 | // SAFETY: `*const T` has the same layout as `&T`, and we've also initialised each pointer as a valid reference. |
| 634 | unsafe { transmute_unchecked(buf) } |
| 635 | } |
| 636 | |
| 637 | /// Borrows each element mutably and returns an array of mutable references |
| 638 | /// with the same size as `self`. |
| 639 | /// |
| 640 | /// |
| 641 | /// # Example |
| 642 | /// |
| 643 | /// ``` |
| 644 | /// |
| 645 | /// let mut floats = [3.1, 2.7, -1.0]; |
| 646 | /// let float_refs: [&mut f64; 3] = floats.each_mut(); |
| 647 | /// *float_refs[0] = 0.0; |
| 648 | /// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]); |
| 649 | /// assert_eq!(floats, [0.0, 2.7, -1.0]); |
| 650 | /// ``` |
| 651 | #[stable (feature = "array_methods" , since = "1.77.0" )] |
| 652 | #[rustc_const_unstable (feature = "const_array_each_ref" , issue = "133289" )] |
| 653 | pub const fn each_mut(&mut self) -> [&mut T; N] { |
| 654 | let mut buf = [null_mut::<T>(); N]; |
| 655 | |
| 656 | // FIXME(const-hack): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions. |
| 657 | let mut i = 0; |
| 658 | while i < N { |
| 659 | buf[i] = &raw mut self[i]; |
| 660 | |
| 661 | i += 1; |
| 662 | } |
| 663 | |
| 664 | // SAFETY: `*mut T` has the same layout as `&mut T`, and we've also initialised each pointer as a valid reference. |
| 665 | unsafe { transmute_unchecked(buf) } |
| 666 | } |
| 667 | |
| 668 | /// Divides one array reference into two at an index. |
| 669 | /// |
| 670 | /// The first will contain all indices from `[0, M)` (excluding |
| 671 | /// the index `M` itself) and the second will contain all |
| 672 | /// indices from `[M, N)` (excluding the index `N` itself). |
| 673 | /// |
| 674 | /// # Panics |
| 675 | /// |
| 676 | /// Panics if `M > N`. |
| 677 | /// |
| 678 | /// # Examples |
| 679 | /// |
| 680 | /// ``` |
| 681 | /// #![feature(split_array)] |
| 682 | /// |
| 683 | /// let v = [1, 2, 3, 4, 5, 6]; |
| 684 | /// |
| 685 | /// { |
| 686 | /// let (left, right) = v.split_array_ref::<0>(); |
| 687 | /// assert_eq!(left, &[]); |
| 688 | /// assert_eq!(right, &[1, 2, 3, 4, 5, 6]); |
| 689 | /// } |
| 690 | /// |
| 691 | /// { |
| 692 | /// let (left, right) = v.split_array_ref::<2>(); |
| 693 | /// assert_eq!(left, &[1, 2]); |
| 694 | /// assert_eq!(right, &[3, 4, 5, 6]); |
| 695 | /// } |
| 696 | /// |
| 697 | /// { |
| 698 | /// let (left, right) = v.split_array_ref::<6>(); |
| 699 | /// assert_eq!(left, &[1, 2, 3, 4, 5, 6]); |
| 700 | /// assert_eq!(right, &[]); |
| 701 | /// } |
| 702 | /// ``` |
| 703 | #[unstable ( |
| 704 | feature = "split_array" , |
| 705 | reason = "return type should have array as 2nd element" , |
| 706 | issue = "90091" |
| 707 | )] |
| 708 | #[inline ] |
| 709 | pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) { |
| 710 | (&self[..]).split_first_chunk::<M>().unwrap() |
| 711 | } |
| 712 | |
| 713 | /// Divides one mutable array reference into two at an index. |
| 714 | /// |
| 715 | /// The first will contain all indices from `[0, M)` (excluding |
| 716 | /// the index `M` itself) and the second will contain all |
| 717 | /// indices from `[M, N)` (excluding the index `N` itself). |
| 718 | /// |
| 719 | /// # Panics |
| 720 | /// |
| 721 | /// Panics if `M > N`. |
| 722 | /// |
| 723 | /// # Examples |
| 724 | /// |
| 725 | /// ``` |
| 726 | /// #![feature(split_array)] |
| 727 | /// |
| 728 | /// let mut v = [1, 0, 3, 0, 5, 6]; |
| 729 | /// let (left, right) = v.split_array_mut::<2>(); |
| 730 | /// assert_eq!(left, &mut [1, 0][..]); |
| 731 | /// assert_eq!(right, &mut [3, 0, 5, 6]); |
| 732 | /// left[1] = 2; |
| 733 | /// right[1] = 4; |
| 734 | /// assert_eq!(v, [1, 2, 3, 4, 5, 6]); |
| 735 | /// ``` |
| 736 | #[unstable ( |
| 737 | feature = "split_array" , |
| 738 | reason = "return type should have array as 2nd element" , |
| 739 | issue = "90091" |
| 740 | )] |
| 741 | #[inline ] |
| 742 | pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) { |
| 743 | (&mut self[..]).split_first_chunk_mut::<M>().unwrap() |
| 744 | } |
| 745 | |
| 746 | /// Divides one array reference into two at an index from the end. |
| 747 | /// |
| 748 | /// The first will contain all indices from `[0, N - M)` (excluding |
| 749 | /// the index `N - M` itself) and the second will contain all |
| 750 | /// indices from `[N - M, N)` (excluding the index `N` itself). |
| 751 | /// |
| 752 | /// # Panics |
| 753 | /// |
| 754 | /// Panics if `M > N`. |
| 755 | /// |
| 756 | /// # Examples |
| 757 | /// |
| 758 | /// ``` |
| 759 | /// #![feature(split_array)] |
| 760 | /// |
| 761 | /// let v = [1, 2, 3, 4, 5, 6]; |
| 762 | /// |
| 763 | /// { |
| 764 | /// let (left, right) = v.rsplit_array_ref::<0>(); |
| 765 | /// assert_eq!(left, &[1, 2, 3, 4, 5, 6]); |
| 766 | /// assert_eq!(right, &[]); |
| 767 | /// } |
| 768 | /// |
| 769 | /// { |
| 770 | /// let (left, right) = v.rsplit_array_ref::<2>(); |
| 771 | /// assert_eq!(left, &[1, 2, 3, 4]); |
| 772 | /// assert_eq!(right, &[5, 6]); |
| 773 | /// } |
| 774 | /// |
| 775 | /// { |
| 776 | /// let (left, right) = v.rsplit_array_ref::<6>(); |
| 777 | /// assert_eq!(left, &[]); |
| 778 | /// assert_eq!(right, &[1, 2, 3, 4, 5, 6]); |
| 779 | /// } |
| 780 | /// ``` |
| 781 | #[unstable ( |
| 782 | feature = "split_array" , |
| 783 | reason = "return type should have array as 2nd element" , |
| 784 | issue = "90091" |
| 785 | )] |
| 786 | #[inline ] |
| 787 | pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) { |
| 788 | (&self[..]).split_last_chunk::<M>().unwrap() |
| 789 | } |
| 790 | |
| 791 | /// Divides one mutable array reference into two at an index from the end. |
| 792 | /// |
| 793 | /// The first will contain all indices from `[0, N - M)` (excluding |
| 794 | /// the index `N - M` itself) and the second will contain all |
| 795 | /// indices from `[N - M, N)` (excluding the index `N` itself). |
| 796 | /// |
| 797 | /// # Panics |
| 798 | /// |
| 799 | /// Panics if `M > N`. |
| 800 | /// |
| 801 | /// # Examples |
| 802 | /// |
| 803 | /// ``` |
| 804 | /// #![feature(split_array)] |
| 805 | /// |
| 806 | /// let mut v = [1, 0, 3, 0, 5, 6]; |
| 807 | /// let (left, right) = v.rsplit_array_mut::<4>(); |
| 808 | /// assert_eq!(left, &mut [1, 0]); |
| 809 | /// assert_eq!(right, &mut [3, 0, 5, 6][..]); |
| 810 | /// left[1] = 2; |
| 811 | /// right[1] = 4; |
| 812 | /// assert_eq!(v, [1, 2, 3, 4, 5, 6]); |
| 813 | /// ``` |
| 814 | #[unstable ( |
| 815 | feature = "split_array" , |
| 816 | reason = "return type should have array as 2nd element" , |
| 817 | issue = "90091" |
| 818 | )] |
| 819 | #[inline ] |
| 820 | pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) { |
| 821 | (&mut self[..]).split_last_chunk_mut::<M>().unwrap() |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | /// Populate an array from the first `N` elements of `iter` |
| 826 | /// |
| 827 | /// # Panics |
| 828 | /// |
| 829 | /// If the iterator doesn't actually have enough items. |
| 830 | /// |
| 831 | /// By depending on `TrustedLen`, however, we can do that check up-front (where |
| 832 | /// it easily optimizes away) so it doesn't impact the loop that fills the array. |
| 833 | #[inline ] |
| 834 | fn from_trusted_iterator<T, const N: usize>(iter: impl UncheckedIterator<Item = T>) -> [T; N] { |
| 835 | try_from_trusted_iterator(iter.map(NeverShortCircuit)).0 |
| 836 | } |
| 837 | |
| 838 | #[inline ] |
| 839 | fn try_from_trusted_iterator<T, R, const N: usize>( |
| 840 | iter: impl UncheckedIterator<Item = R>, |
| 841 | ) -> ChangeOutputType<R, [T; N]> |
| 842 | where |
| 843 | R: Try<Output = T>, |
| 844 | R::Residual: Residual<[T; N]>, |
| 845 | { |
| 846 | assert!(iter.size_hint().0 >= N); |
| 847 | fn next<T>(mut iter: impl UncheckedIterator<Item = T>) -> impl FnMut(usize) -> T { |
| 848 | move |_| { |
| 849 | // SAFETY: We know that `from_fn` will call this at most N times, |
| 850 | // and we checked to ensure that we have at least that many items. |
| 851 | unsafe { iter.next_unchecked() } |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | try_from_fn(cb:next(iter)) |
| 856 | } |
| 857 | |
| 858 | /// Version of [`try_from_fn`] using a passed-in slice in order to avoid |
| 859 | /// needing to monomorphize for every array length. |
| 860 | /// |
| 861 | /// This takes a generator rather than an iterator so that *at the type level* |
| 862 | /// it never needs to worry about running out of items. When combined with |
| 863 | /// an infallible `Try` type, that means the loop canonicalizes easily, allowing |
| 864 | /// it to optimize well. |
| 865 | /// |
| 866 | /// It would be *possible* to unify this and [`iter_next_chunk_erased`] into one |
| 867 | /// function that does the union of both things, but last time it was that way |
| 868 | /// it resulted in poor codegen from the "are there enough source items?" checks |
| 869 | /// not optimizing away. So if you give it a shot, make sure to watch what |
| 870 | /// happens in the codegen tests. |
| 871 | #[inline ] |
| 872 | fn try_from_fn_erased<T, R>( |
| 873 | buffer: &mut [MaybeUninit<T>], |
| 874 | mut generator: impl FnMut(usize) -> R, |
| 875 | ) -> ControlFlow<R::Residual> |
| 876 | where |
| 877 | R: Try<Output = T>, |
| 878 | { |
| 879 | let mut guard: Guard<'_, T> = Guard { array_mut: buffer, initialized: 0 }; |
| 880 | |
| 881 | while guard.initialized < guard.array_mut.len() { |
| 882 | let item: T = generator(guard.initialized).branch()?; |
| 883 | |
| 884 | // SAFETY: The loop condition ensures we have space to push the item |
| 885 | unsafe { guard.push_unchecked(item) }; |
| 886 | } |
| 887 | |
| 888 | mem::forget(guard); |
| 889 | ControlFlow::Continue(()) |
| 890 | } |
| 891 | |
| 892 | /// Panic guard for incremental initialization of arrays. |
| 893 | /// |
| 894 | /// Disarm the guard with `mem::forget` once the array has been initialized. |
| 895 | /// |
| 896 | /// # Safety |
| 897 | /// |
| 898 | /// All write accesses to this structure are unsafe and must maintain a correct |
| 899 | /// count of `initialized` elements. |
| 900 | /// |
| 901 | /// To minimize indirection fields are still pub but callers should at least use |
| 902 | /// `push_unchecked` to signal that something unsafe is going on. |
| 903 | struct Guard<'a, T> { |
| 904 | /// The array to be initialized. |
| 905 | pub array_mut: &'a mut [MaybeUninit<T>], |
| 906 | /// The number of items that have been initialized so far. |
| 907 | pub initialized: usize, |
| 908 | } |
| 909 | |
| 910 | impl<T> Guard<'_, T> { |
| 911 | /// Adds an item to the array and updates the initialized item counter. |
| 912 | /// |
| 913 | /// # Safety |
| 914 | /// |
| 915 | /// No more than N elements must be initialized. |
| 916 | #[inline ] |
| 917 | pub(crate) unsafe fn push_unchecked(&mut self, item: T) { |
| 918 | // SAFETY: If `initialized` was correct before and the caller does not |
| 919 | // invoke this method more than N times then writes will be in-bounds |
| 920 | // and slots will not be initialized more than once. |
| 921 | unsafe { |
| 922 | self.array_mut.get_unchecked_mut(self.initialized).write(val:item); |
| 923 | self.initialized = self.initialized.unchecked_add(1); |
| 924 | } |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | impl<T> Drop for Guard<'_, T> { |
| 929 | #[inline ] |
| 930 | fn drop(&mut self) { |
| 931 | debug_assert!(self.initialized <= self.array_mut.len()); |
| 932 | |
| 933 | // SAFETY: this slice will contain only initialized objects. |
| 934 | unsafe { |
| 935 | self.array_mut.get_unchecked_mut(..self.initialized).assume_init_drop(); |
| 936 | } |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | /// Pulls `N` items from `iter` and returns them as an array. If the iterator |
| 941 | /// yields fewer than `N` items, `Err` is returned containing an iterator over |
| 942 | /// the already yielded items. |
| 943 | /// |
| 944 | /// Since the iterator is passed as a mutable reference and this function calls |
| 945 | /// `next` at most `N` times, the iterator can still be used afterwards to |
| 946 | /// retrieve the remaining items. |
| 947 | /// |
| 948 | /// If `iter.next()` panicks, all items already yielded by the iterator are |
| 949 | /// dropped. |
| 950 | /// |
| 951 | /// Used for [`Iterator::next_chunk`]. |
| 952 | #[inline ] |
| 953 | pub(crate) fn iter_next_chunk<T, const N: usize>( |
| 954 | iter: &mut impl Iterator<Item = T>, |
| 955 | ) -> Result<[T; N], IntoIter<T, N>> { |
| 956 | let mut array: [MaybeUninit; N] = [const { MaybeUninit::uninit() }; N]; |
| 957 | let r: Result<(), usize> = iter_next_chunk_erased(&mut array, iter); |
| 958 | match r { |
| 959 | Ok(()) => { |
| 960 | // SAFETY: All elements of `array` were populated. |
| 961 | Ok(unsafe { MaybeUninit::array_assume_init(array) }) |
| 962 | } |
| 963 | Err(initialized: usize) => { |
| 964 | // SAFETY: Only the first `initialized` elements were populated |
| 965 | Err(unsafe { IntoIter::new_unchecked(buffer:array, initialized:0..initialized) }) |
| 966 | } |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | /// Version of [`iter_next_chunk`] using a passed-in slice in order to avoid |
| 971 | /// needing to monomorphize for every array length. |
| 972 | /// |
| 973 | /// Unfortunately this loop has two exit conditions, the buffer filling up |
| 974 | /// or the iterator running out of items, making it tend to optimize poorly. |
| 975 | #[inline ] |
| 976 | fn iter_next_chunk_erased<T>( |
| 977 | buffer: &mut [MaybeUninit<T>], |
| 978 | iter: &mut impl Iterator<Item = T>, |
| 979 | ) -> Result<(), usize> { |
| 980 | let mut guard: Guard<'_, T> = Guard { array_mut: buffer, initialized: 0 }; |
| 981 | while guard.initialized < guard.array_mut.len() { |
| 982 | let Some(item: T) = iter.next() else { |
| 983 | // Unlike `try_from_fn_erased`, we want to keep the partial results, |
| 984 | // so we need to defuse the guard instead of using `?`. |
| 985 | let initialized: usize = guard.initialized; |
| 986 | mem::forget(guard); |
| 987 | return Err(initialized); |
| 988 | }; |
| 989 | |
| 990 | // SAFETY: The loop condition ensures we have space to push the item |
| 991 | unsafe { guard.push_unchecked(item) }; |
| 992 | } |
| 993 | |
| 994 | mem::forget(guard); |
| 995 | Ok(()) |
| 996 | } |
| 997 | |