1 | //! Numeric traits and functions for the built-in numeric types. |
2 | |
3 | #![stable (feature = "rust1" , since = "1.0.0" )] |
4 | |
5 | use crate::ascii; |
6 | use crate::hint; |
7 | use crate::intrinsics; |
8 | use crate::mem; |
9 | use crate::str::FromStr; |
10 | |
11 | // Used because the `?` operator is not allowed in a const context. |
12 | macro_rules! try_opt { |
13 | ($e:expr) => { |
14 | match $e { |
15 | Some(x) => x, |
16 | None => return None, |
17 | } |
18 | }; |
19 | } |
20 | |
21 | #[allow_internal_unstable (const_likely)] |
22 | macro_rules! unlikely { |
23 | ($e: expr) => { |
24 | intrinsics::unlikely($e) |
25 | }; |
26 | } |
27 | |
28 | // All these modules are technically private and only exposed for coretests: |
29 | #[cfg (not(no_fp_fmt_parse))] |
30 | pub mod bignum; |
31 | #[cfg (not(no_fp_fmt_parse))] |
32 | pub mod dec2flt; |
33 | #[cfg (not(no_fp_fmt_parse))] |
34 | pub mod diy_float; |
35 | #[cfg (not(no_fp_fmt_parse))] |
36 | pub mod flt2dec; |
37 | pub mod fmt; |
38 | |
39 | #[macro_use ] |
40 | mod int_macros; // import int_impl! |
41 | #[macro_use ] |
42 | mod uint_macros; // import uint_impl! |
43 | |
44 | mod error; |
45 | mod int_log10; |
46 | mod nonzero; |
47 | mod overflow_panic; |
48 | mod saturating; |
49 | mod wrapping; |
50 | |
51 | #[stable (feature = "saturating_int_impl" , since = "1.74.0" )] |
52 | pub use saturating::Saturating; |
53 | #[stable (feature = "rust1" , since = "1.0.0" )] |
54 | pub use wrapping::Wrapping; |
55 | |
56 | #[stable (feature = "rust1" , since = "1.0.0" )] |
57 | #[cfg (not(no_fp_fmt_parse))] |
58 | pub use dec2flt::ParseFloatError; |
59 | |
60 | #[stable (feature = "rust1" , since = "1.0.0" )] |
61 | pub use error::ParseIntError; |
62 | |
63 | #[unstable ( |
64 | feature = "nonzero_internals" , |
65 | reason = "implementation detail which may disappear or be replaced at any time" , |
66 | issue = "none" |
67 | )] |
68 | pub use nonzero::ZeroablePrimitive; |
69 | |
70 | #[stable (feature = "generic_nonzero" , since = "CURRENT_RUSTC_VERSION" )] |
71 | pub use nonzero::NonZero; |
72 | |
73 | #[stable (feature = "signed_nonzero" , since = "1.34.0" )] |
74 | pub use nonzero::{NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize}; |
75 | |
76 | #[stable (feature = "nonzero" , since = "1.28.0" )] |
77 | pub use nonzero::{NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize}; |
78 | |
79 | #[stable (feature = "try_from" , since = "1.34.0" )] |
80 | pub use error::TryFromIntError; |
81 | |
82 | #[stable (feature = "int_error_matching" , since = "1.55.0" )] |
83 | pub use error::IntErrorKind; |
84 | |
85 | macro_rules! usize_isize_to_xe_bytes_doc { |
86 | () => { |
87 | " |
88 | |
89 | **Note**: This function returns an array of length 2, 4 or 8 bytes |
90 | depending on the target pointer size. |
91 | |
92 | " |
93 | }; |
94 | } |
95 | |
96 | macro_rules! usize_isize_from_xe_bytes_doc { |
97 | () => { |
98 | " |
99 | |
100 | **Note**: This function takes an array of length 2, 4 or 8 bytes |
101 | depending on the target pointer size. |
102 | |
103 | " |
104 | }; |
105 | } |
106 | |
107 | macro_rules! midpoint_impl { |
108 | ($SelfT:ty, unsigned) => { |
109 | /// Calculates the middle point of `self` and `rhs`. |
110 | /// |
111 | /// `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a |
112 | /// sufficiently-large signed integral type. This implies that the result is |
113 | /// always rounded towards negative infinity and that no overflow will ever occur. |
114 | /// |
115 | /// # Examples |
116 | /// |
117 | /// ``` |
118 | /// #![feature(num_midpoint)] |
119 | #[doc = concat!("assert_eq!(0" , stringify!($SelfT), ".midpoint(4), 2);" )] |
120 | #[doc = concat!("assert_eq!(1" , stringify!($SelfT), ".midpoint(4), 2);" )] |
121 | /// ``` |
122 | #[unstable(feature = "num_midpoint" , issue = "110840" )] |
123 | #[rustc_const_unstable(feature = "const_num_midpoint" , issue = "110840" )] |
124 | #[must_use = "this returns the result of the operation, \ |
125 | without modifying the original" ] |
126 | #[inline] |
127 | pub const fn midpoint(self, rhs: $SelfT) -> $SelfT { |
128 | // Use the well known branchless algorithm from Hacker's Delight to compute |
129 | // `(a + b) / 2` without overflowing: `((a ^ b) >> 1) + (a & b)`. |
130 | ((self ^ rhs) >> 1) + (self & rhs) |
131 | } |
132 | }; |
133 | ($SelfT:ty, $WideT:ty, unsigned) => { |
134 | /// Calculates the middle point of `self` and `rhs`. |
135 | /// |
136 | /// `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a |
137 | /// sufficiently-large signed integral type. This implies that the result is |
138 | /// always rounded towards negative infinity and that no overflow will ever occur. |
139 | /// |
140 | /// # Examples |
141 | /// |
142 | /// ``` |
143 | /// #![feature(num_midpoint)] |
144 | #[doc = concat!("assert_eq!(0" , stringify!($SelfT), ".midpoint(4), 2);" )] |
145 | #[doc = concat!("assert_eq!(1" , stringify!($SelfT), ".midpoint(4), 2);" )] |
146 | /// ``` |
147 | #[unstable(feature = "num_midpoint" , issue = "110840" )] |
148 | #[rustc_const_unstable(feature = "const_num_midpoint" , issue = "110840" )] |
149 | #[must_use = "this returns the result of the operation, \ |
150 | without modifying the original" ] |
151 | #[inline] |
152 | pub const fn midpoint(self, rhs: $SelfT) -> $SelfT { |
153 | ((self as $WideT + rhs as $WideT) / 2) as $SelfT |
154 | } |
155 | }; |
156 | } |
157 | |
158 | macro_rules! widening_impl { |
159 | ($SelfT:ty, $WideT:ty, $BITS:literal, unsigned) => { |
160 | /// Calculates the complete product `self * rhs` without the possibility to overflow. |
161 | /// |
162 | /// This returns the low-order (wrapping) bits and the high-order (overflow) bits |
163 | /// of the result as two separate values, in that order. |
164 | /// |
165 | /// If you also need to add a carry to the wide result, then you want |
166 | /// [`Self::carrying_mul`] instead. |
167 | /// |
168 | /// # Examples |
169 | /// |
170 | /// Basic usage: |
171 | /// |
172 | /// Please note that this example is shared between integer types. |
173 | /// Which explains why `u32` is used here. |
174 | /// |
175 | /// ``` |
176 | /// #![feature(bigint_helper_methods)] |
177 | /// assert_eq!(5u32.widening_mul(2), (10, 0)); |
178 | /// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2)); |
179 | /// ``` |
180 | #[unstable(feature = "bigint_helper_methods" , issue = "85532" )] |
181 | #[rustc_const_unstable(feature = "const_bigint_helper_methods" , issue = "85532" )] |
182 | #[must_use = "this returns the result of the operation, \ |
183 | without modifying the original" ] |
184 | #[inline] |
185 | pub const fn widening_mul(self, rhs: Self) -> (Self, Self) { |
186 | // note: longer-term this should be done via an intrinsic, |
187 | // but for now we can deal without an impl for u128/i128 |
188 | // SAFETY: overflow will be contained within the wider types |
189 | let wide = unsafe { (self as $WideT).unchecked_mul(rhs as $WideT) }; |
190 | (wide as $SelfT, (wide >> $BITS) as $SelfT) |
191 | } |
192 | |
193 | /// Calculates the "full multiplication" `self * rhs + carry` |
194 | /// without the possibility to overflow. |
195 | /// |
196 | /// This returns the low-order (wrapping) bits and the high-order (overflow) bits |
197 | /// of the result as two separate values, in that order. |
198 | /// |
199 | /// Performs "long multiplication" which takes in an extra amount to add, and may return an |
200 | /// additional amount of overflow. This allows for chaining together multiple |
201 | /// multiplications to create "big integers" which represent larger values. |
202 | /// |
203 | /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead. |
204 | /// |
205 | /// # Examples |
206 | /// |
207 | /// Basic usage: |
208 | /// |
209 | /// Please note that this example is shared between integer types. |
210 | /// Which explains why `u32` is used here. |
211 | /// |
212 | /// ``` |
213 | /// #![feature(bigint_helper_methods)] |
214 | /// assert_eq!(5u32.carrying_mul(2, 0), (10, 0)); |
215 | /// assert_eq!(5u32.carrying_mul(2, 10), (20, 0)); |
216 | /// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2)); |
217 | /// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2)); |
218 | #[doc = concat!("assert_eq!(" , |
219 | stringify!($SelfT), "::MAX.carrying_mul(" , stringify!($SelfT), "::MAX, " , stringify!($SelfT), "::MAX), " , |
220 | "(0, " , stringify!($SelfT), "::MAX));" |
221 | )] |
222 | /// ``` |
223 | /// |
224 | /// This is the core operation needed for scalar multiplication when |
225 | /// implementing it for wider-than-native types. |
226 | /// |
227 | /// ``` |
228 | /// #![feature(bigint_helper_methods)] |
229 | /// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) { |
230 | /// let mut carry = 0; |
231 | /// for d in little_endian_digits.iter_mut() { |
232 | /// (*d, carry) = d.carrying_mul(multiplicand, carry); |
233 | /// } |
234 | /// if carry != 0 { |
235 | /// little_endian_digits.push(carry); |
236 | /// } |
237 | /// } |
238 | /// |
239 | /// let mut v = vec![10, 20]; |
240 | /// scalar_mul_eq(&mut v, 3); |
241 | /// assert_eq!(v, [30, 60]); |
242 | /// |
243 | /// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D); |
244 | /// let mut v = vec![0x4321, 0x8765]; |
245 | /// scalar_mul_eq(&mut v, 0xFEED); |
246 | /// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]); |
247 | /// ``` |
248 | /// |
249 | /// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul), |
250 | /// except that it gives the value of the overflow instead of just whether one happened: |
251 | /// |
252 | /// ``` |
253 | /// #![feature(bigint_helper_methods)] |
254 | /// let r = u8::carrying_mul(7, 13, 0); |
255 | /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13)); |
256 | /// let r = u8::carrying_mul(13, 42, 0); |
257 | /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42)); |
258 | /// ``` |
259 | /// |
260 | /// The value of the first field in the returned tuple matches what you'd get |
261 | /// by combining the [`wrapping_mul`](Self::wrapping_mul) and |
262 | /// [`wrapping_add`](Self::wrapping_add) methods: |
263 | /// |
264 | /// ``` |
265 | /// #![feature(bigint_helper_methods)] |
266 | /// assert_eq!( |
267 | /// 789_u16.carrying_mul(456, 123).0, |
268 | /// 789_u16.wrapping_mul(456).wrapping_add(123), |
269 | /// ); |
270 | /// ``` |
271 | #[unstable(feature = "bigint_helper_methods" , issue = "85532" )] |
272 | #[rustc_const_unstable(feature = "bigint_helper_methods" , issue = "85532" )] |
273 | #[must_use = "this returns the result of the operation, \ |
274 | without modifying the original" ] |
275 | #[inline] |
276 | pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) { |
277 | // note: longer-term this should be done via an intrinsic, |
278 | // but for now we can deal without an impl for u128/i128 |
279 | // SAFETY: overflow will be contained within the wider types |
280 | let wide = unsafe { |
281 | (self as $WideT).unchecked_mul(rhs as $WideT).unchecked_add(carry as $WideT) |
282 | }; |
283 | (wide as $SelfT, (wide >> $BITS) as $SelfT) |
284 | } |
285 | }; |
286 | } |
287 | |
288 | impl i8 { |
289 | int_impl! { |
290 | Self = i8, |
291 | ActualT = i8, |
292 | UnsignedT = u8, |
293 | BITS = 8, |
294 | BITS_MINUS_ONE = 7, |
295 | Min = -128, |
296 | Max = 127, |
297 | rot = 2, |
298 | rot_op = "-0x7e" , |
299 | rot_result = "0xa" , |
300 | swap_op = "0x12" , |
301 | swapped = "0x12" , |
302 | reversed = "0x48" , |
303 | le_bytes = "[0x12]" , |
304 | be_bytes = "[0x12]" , |
305 | to_xe_bytes_doc = "" , |
306 | from_xe_bytes_doc = "" , |
307 | bound_condition = "" , |
308 | } |
309 | } |
310 | |
311 | impl i16 { |
312 | int_impl! { |
313 | Self = i16, |
314 | ActualT = i16, |
315 | UnsignedT = u16, |
316 | BITS = 16, |
317 | BITS_MINUS_ONE = 15, |
318 | Min = -32768, |
319 | Max = 32767, |
320 | rot = 4, |
321 | rot_op = "-0x5ffd" , |
322 | rot_result = "0x3a" , |
323 | swap_op = "0x1234" , |
324 | swapped = "0x3412" , |
325 | reversed = "0x2c48" , |
326 | le_bytes = "[0x34, 0x12]" , |
327 | be_bytes = "[0x12, 0x34]" , |
328 | to_xe_bytes_doc = "" , |
329 | from_xe_bytes_doc = "" , |
330 | bound_condition = "" , |
331 | } |
332 | } |
333 | |
334 | impl i32 { |
335 | int_impl! { |
336 | Self = i32, |
337 | ActualT = i32, |
338 | UnsignedT = u32, |
339 | BITS = 32, |
340 | BITS_MINUS_ONE = 31, |
341 | Min = -2147483648, |
342 | Max = 2147483647, |
343 | rot = 8, |
344 | rot_op = "0x10000b3" , |
345 | rot_result = "0xb301" , |
346 | swap_op = "0x12345678" , |
347 | swapped = "0x78563412" , |
348 | reversed = "0x1e6a2c48" , |
349 | le_bytes = "[0x78, 0x56, 0x34, 0x12]" , |
350 | be_bytes = "[0x12, 0x34, 0x56, 0x78]" , |
351 | to_xe_bytes_doc = "" , |
352 | from_xe_bytes_doc = "" , |
353 | bound_condition = "" , |
354 | } |
355 | } |
356 | |
357 | impl i64 { |
358 | int_impl! { |
359 | Self = i64, |
360 | ActualT = i64, |
361 | UnsignedT = u64, |
362 | BITS = 64, |
363 | BITS_MINUS_ONE = 63, |
364 | Min = -9223372036854775808, |
365 | Max = 9223372036854775807, |
366 | rot = 12, |
367 | rot_op = "0xaa00000000006e1" , |
368 | rot_result = "0x6e10aa" , |
369 | swap_op = "0x1234567890123456" , |
370 | swapped = "0x5634129078563412" , |
371 | reversed = "0x6a2c48091e6a2c48" , |
372 | le_bytes = "[0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]" , |
373 | be_bytes = "[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]" , |
374 | to_xe_bytes_doc = "" , |
375 | from_xe_bytes_doc = "" , |
376 | bound_condition = "" , |
377 | } |
378 | } |
379 | |
380 | impl i128 { |
381 | int_impl! { |
382 | Self = i128, |
383 | ActualT = i128, |
384 | UnsignedT = u128, |
385 | BITS = 128, |
386 | BITS_MINUS_ONE = 127, |
387 | Min = -170141183460469231731687303715884105728, |
388 | Max = 170141183460469231731687303715884105727, |
389 | rot = 16, |
390 | rot_op = "0x13f40000000000000000000000004f76" , |
391 | rot_result = "0x4f7613f4" , |
392 | swap_op = "0x12345678901234567890123456789012" , |
393 | swapped = "0x12907856341290785634129078563412" , |
394 | reversed = "0x48091e6a2c48091e6a2c48091e6a2c48" , |
395 | le_bytes = "[0x12, 0x90, 0x78, 0x56, 0x34, 0x12, 0x90, 0x78, \ |
396 | 0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]" , |
397 | be_bytes = "[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, \ |
398 | 0x78, 0x90, 0x12, 0x34, 0x56, 0x78, 0x90, 0x12]" , |
399 | to_xe_bytes_doc = "" , |
400 | from_xe_bytes_doc = "" , |
401 | bound_condition = "" , |
402 | } |
403 | } |
404 | |
405 | #[cfg (target_pointer_width = "16" )] |
406 | impl isize { |
407 | int_impl! { |
408 | Self = isize, |
409 | ActualT = i16, |
410 | UnsignedT = usize, |
411 | BITS = 16, |
412 | BITS_MINUS_ONE = 15, |
413 | Min = -32768, |
414 | Max = 32767, |
415 | rot = 4, |
416 | rot_op = "-0x5ffd" , |
417 | rot_result = "0x3a" , |
418 | swap_op = "0x1234" , |
419 | swapped = "0x3412" , |
420 | reversed = "0x2c48" , |
421 | le_bytes = "[0x34, 0x12]" , |
422 | be_bytes = "[0x12, 0x34]" , |
423 | to_xe_bytes_doc = usize_isize_to_xe_bytes_doc!(), |
424 | from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(), |
425 | bound_condition = " on 16-bit targets" , |
426 | } |
427 | } |
428 | |
429 | #[cfg (target_pointer_width = "32" )] |
430 | impl isize { |
431 | int_impl! { |
432 | Self = isize, |
433 | ActualT = i32, |
434 | UnsignedT = usize, |
435 | BITS = 32, |
436 | BITS_MINUS_ONE = 31, |
437 | Min = -2147483648, |
438 | Max = 2147483647, |
439 | rot = 8, |
440 | rot_op = "0x10000b3" , |
441 | rot_result = "0xb301" , |
442 | swap_op = "0x12345678" , |
443 | swapped = "0x78563412" , |
444 | reversed = "0x1e6a2c48" , |
445 | le_bytes = "[0x78, 0x56, 0x34, 0x12]" , |
446 | be_bytes = "[0x12, 0x34, 0x56, 0x78]" , |
447 | to_xe_bytes_doc = usize_isize_to_xe_bytes_doc!(), |
448 | from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(), |
449 | bound_condition = " on 32-bit targets" , |
450 | } |
451 | } |
452 | |
453 | #[cfg (target_pointer_width = "64" )] |
454 | impl isize { |
455 | int_impl! { |
456 | Self = isize, |
457 | ActualT = i64, |
458 | UnsignedT = usize, |
459 | BITS = 64, |
460 | BITS_MINUS_ONE = 63, |
461 | Min = -9223372036854775808, |
462 | Max = 9223372036854775807, |
463 | rot = 12, |
464 | rot_op = "0xaa00000000006e1" , |
465 | rot_result = "0x6e10aa" , |
466 | swap_op = "0x1234567890123456" , |
467 | swapped = "0x5634129078563412" , |
468 | reversed = "0x6a2c48091e6a2c48" , |
469 | le_bytes = "[0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]" , |
470 | be_bytes = "[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]" , |
471 | to_xe_bytes_doc = usize_isize_to_xe_bytes_doc!(), |
472 | from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(), |
473 | bound_condition = " on 64-bit targets" , |
474 | } |
475 | } |
476 | |
477 | /// If the 6th bit is set ascii is lower case. |
478 | const ASCII_CASE_MASK: u8 = 0b0010_0000; |
479 | |
480 | impl u8 { |
481 | uint_impl! { |
482 | Self = u8, |
483 | ActualT = u8, |
484 | SignedT = i8, |
485 | NonZeroT = NonZero<u8>, |
486 | BITS = 8, |
487 | MAX = 255, |
488 | rot = 2, |
489 | rot_op = "0x82" , |
490 | rot_result = "0xa" , |
491 | swap_op = "0x12" , |
492 | swapped = "0x12" , |
493 | reversed = "0x48" , |
494 | le_bytes = "[0x12]" , |
495 | be_bytes = "[0x12]" , |
496 | to_xe_bytes_doc = "" , |
497 | from_xe_bytes_doc = "" , |
498 | bound_condition = "" , |
499 | } |
500 | widening_impl! { u8, u16, 8, unsigned } |
501 | midpoint_impl! { u8, u16, unsigned } |
502 | |
503 | /// Checks if the value is within the ASCII range. |
504 | /// |
505 | /// # Examples |
506 | /// |
507 | /// ``` |
508 | /// let ascii = 97u8; |
509 | /// let non_ascii = 150u8; |
510 | /// |
511 | /// assert!(ascii.is_ascii()); |
512 | /// assert!(!non_ascii.is_ascii()); |
513 | /// ``` |
514 | #[must_use ] |
515 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
516 | #[rustc_const_stable (feature = "const_u8_is_ascii" , since = "1.43.0" )] |
517 | #[inline ] |
518 | pub const fn is_ascii(&self) -> bool { |
519 | *self <= 127 |
520 | } |
521 | |
522 | /// If the value of this byte is within the ASCII range, returns it as an |
523 | /// [ASCII character](ascii::Char). Otherwise, returns `None`. |
524 | #[must_use ] |
525 | #[unstable (feature = "ascii_char" , issue = "110998" )] |
526 | #[inline ] |
527 | pub const fn as_ascii(&self) -> Option<ascii::Char> { |
528 | ascii::Char::from_u8(*self) |
529 | } |
530 | |
531 | /// Makes a copy of the value in its ASCII upper case equivalent. |
532 | /// |
533 | /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
534 | /// but non-ASCII letters are unchanged. |
535 | /// |
536 | /// To uppercase the value in-place, use [`make_ascii_uppercase`]. |
537 | /// |
538 | /// # Examples |
539 | /// |
540 | /// ``` |
541 | /// let lowercase_a = 97u8; |
542 | /// |
543 | /// assert_eq!(65, lowercase_a.to_ascii_uppercase()); |
544 | /// ``` |
545 | /// |
546 | /// [`make_ascii_uppercase`]: Self::make_ascii_uppercase |
547 | #[must_use = "to uppercase the value in-place, use `make_ascii_uppercase()`" ] |
548 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
549 | #[rustc_const_stable (feature = "const_ascii_methods_on_intrinsics" , since = "1.52.0" )] |
550 | #[inline ] |
551 | pub const fn to_ascii_uppercase(&self) -> u8 { |
552 | // Toggle the 6th bit if this is a lowercase letter |
553 | *self ^ ((self.is_ascii_lowercase() as u8) * ASCII_CASE_MASK) |
554 | } |
555 | |
556 | /// Makes a copy of the value in its ASCII lower case equivalent. |
557 | /// |
558 | /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
559 | /// but non-ASCII letters are unchanged. |
560 | /// |
561 | /// To lowercase the value in-place, use [`make_ascii_lowercase`]. |
562 | /// |
563 | /// # Examples |
564 | /// |
565 | /// ``` |
566 | /// let uppercase_a = 65u8; |
567 | /// |
568 | /// assert_eq!(97, uppercase_a.to_ascii_lowercase()); |
569 | /// ``` |
570 | /// |
571 | /// [`make_ascii_lowercase`]: Self::make_ascii_lowercase |
572 | #[must_use = "to lowercase the value in-place, use `make_ascii_lowercase()`" ] |
573 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
574 | #[rustc_const_stable (feature = "const_ascii_methods_on_intrinsics" , since = "1.52.0" )] |
575 | #[inline ] |
576 | pub const fn to_ascii_lowercase(&self) -> u8 { |
577 | // Set the 6th bit if this is an uppercase letter |
578 | *self | (self.is_ascii_uppercase() as u8 * ASCII_CASE_MASK) |
579 | } |
580 | |
581 | /// Assumes self is ascii |
582 | #[inline ] |
583 | pub(crate) const fn ascii_change_case_unchecked(&self) -> u8 { |
584 | *self ^ ASCII_CASE_MASK |
585 | } |
586 | |
587 | /// Checks that two values are an ASCII case-insensitive match. |
588 | /// |
589 | /// This is equivalent to `to_ascii_lowercase(a) == to_ascii_lowercase(b)`. |
590 | /// |
591 | /// # Examples |
592 | /// |
593 | /// ``` |
594 | /// let lowercase_a = 97u8; |
595 | /// let uppercase_a = 65u8; |
596 | /// |
597 | /// assert!(lowercase_a.eq_ignore_ascii_case(&uppercase_a)); |
598 | /// ``` |
599 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
600 | #[rustc_const_stable (feature = "const_ascii_methods_on_intrinsics" , since = "1.52.0" )] |
601 | #[inline ] |
602 | pub const fn eq_ignore_ascii_case(&self, other: &u8) -> bool { |
603 | self.to_ascii_lowercase() == other.to_ascii_lowercase() |
604 | } |
605 | |
606 | /// Converts this value to its ASCII upper case equivalent in-place. |
607 | /// |
608 | /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
609 | /// but non-ASCII letters are unchanged. |
610 | /// |
611 | /// To return a new uppercased value without modifying the existing one, use |
612 | /// [`to_ascii_uppercase`]. |
613 | /// |
614 | /// # Examples |
615 | /// |
616 | /// ``` |
617 | /// let mut byte = b'a' ; |
618 | /// |
619 | /// byte.make_ascii_uppercase(); |
620 | /// |
621 | /// assert_eq!(b'A' , byte); |
622 | /// ``` |
623 | /// |
624 | /// [`to_ascii_uppercase`]: Self::to_ascii_uppercase |
625 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
626 | #[inline ] |
627 | pub fn make_ascii_uppercase(&mut self) { |
628 | *self = self.to_ascii_uppercase(); |
629 | } |
630 | |
631 | /// Converts this value to its ASCII lower case equivalent in-place. |
632 | /// |
633 | /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
634 | /// but non-ASCII letters are unchanged. |
635 | /// |
636 | /// To return a new lowercased value without modifying the existing one, use |
637 | /// [`to_ascii_lowercase`]. |
638 | /// |
639 | /// # Examples |
640 | /// |
641 | /// ``` |
642 | /// let mut byte = b'A' ; |
643 | /// |
644 | /// byte.make_ascii_lowercase(); |
645 | /// |
646 | /// assert_eq!(b'a' , byte); |
647 | /// ``` |
648 | /// |
649 | /// [`to_ascii_lowercase`]: Self::to_ascii_lowercase |
650 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
651 | #[inline ] |
652 | pub fn make_ascii_lowercase(&mut self) { |
653 | *self = self.to_ascii_lowercase(); |
654 | } |
655 | |
656 | /// Checks if the value is an ASCII alphabetic character: |
657 | /// |
658 | /// - U+0041 'A' ..= U+005A 'Z', or |
659 | /// - U+0061 'a' ..= U+007A 'z'. |
660 | /// |
661 | /// # Examples |
662 | /// |
663 | /// ``` |
664 | /// let uppercase_a = b'A' ; |
665 | /// let uppercase_g = b'G' ; |
666 | /// let a = b'a' ; |
667 | /// let g = b'g' ; |
668 | /// let zero = b'0' ; |
669 | /// let percent = b'%' ; |
670 | /// let space = b' ' ; |
671 | /// let lf = b' \n' ; |
672 | /// let esc = b' \x1b' ; |
673 | /// |
674 | /// assert!(uppercase_a.is_ascii_alphabetic()); |
675 | /// assert!(uppercase_g.is_ascii_alphabetic()); |
676 | /// assert!(a.is_ascii_alphabetic()); |
677 | /// assert!(g.is_ascii_alphabetic()); |
678 | /// assert!(!zero.is_ascii_alphabetic()); |
679 | /// assert!(!percent.is_ascii_alphabetic()); |
680 | /// assert!(!space.is_ascii_alphabetic()); |
681 | /// assert!(!lf.is_ascii_alphabetic()); |
682 | /// assert!(!esc.is_ascii_alphabetic()); |
683 | /// ``` |
684 | #[must_use ] |
685 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
686 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
687 | #[inline ] |
688 | pub const fn is_ascii_alphabetic(&self) -> bool { |
689 | matches!(*self, b'A' ..=b'Z' | b'a' ..=b'z' ) |
690 | } |
691 | |
692 | /// Checks if the value is an ASCII uppercase character: |
693 | /// U+0041 'A' ..= U+005A 'Z'. |
694 | /// |
695 | /// # Examples |
696 | /// |
697 | /// ``` |
698 | /// let uppercase_a = b'A' ; |
699 | /// let uppercase_g = b'G' ; |
700 | /// let a = b'a' ; |
701 | /// let g = b'g' ; |
702 | /// let zero = b'0' ; |
703 | /// let percent = b'%' ; |
704 | /// let space = b' ' ; |
705 | /// let lf = b' \n' ; |
706 | /// let esc = b' \x1b' ; |
707 | /// |
708 | /// assert!(uppercase_a.is_ascii_uppercase()); |
709 | /// assert!(uppercase_g.is_ascii_uppercase()); |
710 | /// assert!(!a.is_ascii_uppercase()); |
711 | /// assert!(!g.is_ascii_uppercase()); |
712 | /// assert!(!zero.is_ascii_uppercase()); |
713 | /// assert!(!percent.is_ascii_uppercase()); |
714 | /// assert!(!space.is_ascii_uppercase()); |
715 | /// assert!(!lf.is_ascii_uppercase()); |
716 | /// assert!(!esc.is_ascii_uppercase()); |
717 | /// ``` |
718 | #[must_use ] |
719 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
720 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
721 | #[inline ] |
722 | pub const fn is_ascii_uppercase(&self) -> bool { |
723 | matches!(*self, b'A' ..=b'Z' ) |
724 | } |
725 | |
726 | /// Checks if the value is an ASCII lowercase character: |
727 | /// U+0061 'a' ..= U+007A 'z'. |
728 | /// |
729 | /// # Examples |
730 | /// |
731 | /// ``` |
732 | /// let uppercase_a = b'A' ; |
733 | /// let uppercase_g = b'G' ; |
734 | /// let a = b'a' ; |
735 | /// let g = b'g' ; |
736 | /// let zero = b'0' ; |
737 | /// let percent = b'%' ; |
738 | /// let space = b' ' ; |
739 | /// let lf = b' \n' ; |
740 | /// let esc = b' \x1b' ; |
741 | /// |
742 | /// assert!(!uppercase_a.is_ascii_lowercase()); |
743 | /// assert!(!uppercase_g.is_ascii_lowercase()); |
744 | /// assert!(a.is_ascii_lowercase()); |
745 | /// assert!(g.is_ascii_lowercase()); |
746 | /// assert!(!zero.is_ascii_lowercase()); |
747 | /// assert!(!percent.is_ascii_lowercase()); |
748 | /// assert!(!space.is_ascii_lowercase()); |
749 | /// assert!(!lf.is_ascii_lowercase()); |
750 | /// assert!(!esc.is_ascii_lowercase()); |
751 | /// ``` |
752 | #[must_use ] |
753 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
754 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
755 | #[inline ] |
756 | pub const fn is_ascii_lowercase(&self) -> bool { |
757 | matches!(*self, b'a' ..=b'z' ) |
758 | } |
759 | |
760 | /// Checks if the value is an ASCII alphanumeric character: |
761 | /// |
762 | /// - U+0041 'A' ..= U+005A 'Z', or |
763 | /// - U+0061 'a' ..= U+007A 'z', or |
764 | /// - U+0030 '0' ..= U+0039 '9'. |
765 | /// |
766 | /// # Examples |
767 | /// |
768 | /// ``` |
769 | /// let uppercase_a = b'A' ; |
770 | /// let uppercase_g = b'G' ; |
771 | /// let a = b'a' ; |
772 | /// let g = b'g' ; |
773 | /// let zero = b'0' ; |
774 | /// let percent = b'%' ; |
775 | /// let space = b' ' ; |
776 | /// let lf = b' \n' ; |
777 | /// let esc = b' \x1b' ; |
778 | /// |
779 | /// assert!(uppercase_a.is_ascii_alphanumeric()); |
780 | /// assert!(uppercase_g.is_ascii_alphanumeric()); |
781 | /// assert!(a.is_ascii_alphanumeric()); |
782 | /// assert!(g.is_ascii_alphanumeric()); |
783 | /// assert!(zero.is_ascii_alphanumeric()); |
784 | /// assert!(!percent.is_ascii_alphanumeric()); |
785 | /// assert!(!space.is_ascii_alphanumeric()); |
786 | /// assert!(!lf.is_ascii_alphanumeric()); |
787 | /// assert!(!esc.is_ascii_alphanumeric()); |
788 | /// ``` |
789 | #[must_use ] |
790 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
791 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
792 | #[inline ] |
793 | pub const fn is_ascii_alphanumeric(&self) -> bool { |
794 | matches!(*self, b'0' ..=b'9' ) | matches!(*self, b'A' ..=b'Z' ) | matches!(*self, b'a' ..=b'z' ) |
795 | } |
796 | |
797 | /// Checks if the value is an ASCII decimal digit: |
798 | /// U+0030 '0' ..= U+0039 '9'. |
799 | /// |
800 | /// # Examples |
801 | /// |
802 | /// ``` |
803 | /// let uppercase_a = b'A' ; |
804 | /// let uppercase_g = b'G' ; |
805 | /// let a = b'a' ; |
806 | /// let g = b'g' ; |
807 | /// let zero = b'0' ; |
808 | /// let percent = b'%' ; |
809 | /// let space = b' ' ; |
810 | /// let lf = b' \n' ; |
811 | /// let esc = b' \x1b' ; |
812 | /// |
813 | /// assert!(!uppercase_a.is_ascii_digit()); |
814 | /// assert!(!uppercase_g.is_ascii_digit()); |
815 | /// assert!(!a.is_ascii_digit()); |
816 | /// assert!(!g.is_ascii_digit()); |
817 | /// assert!(zero.is_ascii_digit()); |
818 | /// assert!(!percent.is_ascii_digit()); |
819 | /// assert!(!space.is_ascii_digit()); |
820 | /// assert!(!lf.is_ascii_digit()); |
821 | /// assert!(!esc.is_ascii_digit()); |
822 | /// ``` |
823 | #[must_use ] |
824 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
825 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
826 | #[inline ] |
827 | pub const fn is_ascii_digit(&self) -> bool { |
828 | matches!(*self, b'0' ..=b'9' ) |
829 | } |
830 | |
831 | /// Checks if the value is an ASCII octal digit: |
832 | /// U+0030 '0' ..= U+0037 '7'. |
833 | /// |
834 | /// # Examples |
835 | /// |
836 | /// ``` |
837 | /// #![feature(is_ascii_octdigit)] |
838 | /// |
839 | /// let uppercase_a = b'A' ; |
840 | /// let a = b'a' ; |
841 | /// let zero = b'0' ; |
842 | /// let seven = b'7' ; |
843 | /// let nine = b'9' ; |
844 | /// let percent = b'%' ; |
845 | /// let lf = b' \n' ; |
846 | /// |
847 | /// assert!(!uppercase_a.is_ascii_octdigit()); |
848 | /// assert!(!a.is_ascii_octdigit()); |
849 | /// assert!(zero.is_ascii_octdigit()); |
850 | /// assert!(seven.is_ascii_octdigit()); |
851 | /// assert!(!nine.is_ascii_octdigit()); |
852 | /// assert!(!percent.is_ascii_octdigit()); |
853 | /// assert!(!lf.is_ascii_octdigit()); |
854 | /// ``` |
855 | #[must_use ] |
856 | #[unstable (feature = "is_ascii_octdigit" , issue = "101288" )] |
857 | #[rustc_const_unstable (feature = "is_ascii_octdigit" , issue = "101288" )] |
858 | #[inline ] |
859 | pub const fn is_ascii_octdigit(&self) -> bool { |
860 | matches!(*self, b'0' ..=b'7' ) |
861 | } |
862 | |
863 | /// Checks if the value is an ASCII hexadecimal digit: |
864 | /// |
865 | /// - U+0030 '0' ..= U+0039 '9', or |
866 | /// - U+0041 'A' ..= U+0046 'F', or |
867 | /// - U+0061 'a' ..= U+0066 'f'. |
868 | /// |
869 | /// # Examples |
870 | /// |
871 | /// ``` |
872 | /// let uppercase_a = b'A' ; |
873 | /// let uppercase_g = b'G' ; |
874 | /// let a = b'a' ; |
875 | /// let g = b'g' ; |
876 | /// let zero = b'0' ; |
877 | /// let percent = b'%' ; |
878 | /// let space = b' ' ; |
879 | /// let lf = b' \n' ; |
880 | /// let esc = b' \x1b' ; |
881 | /// |
882 | /// assert!(uppercase_a.is_ascii_hexdigit()); |
883 | /// assert!(!uppercase_g.is_ascii_hexdigit()); |
884 | /// assert!(a.is_ascii_hexdigit()); |
885 | /// assert!(!g.is_ascii_hexdigit()); |
886 | /// assert!(zero.is_ascii_hexdigit()); |
887 | /// assert!(!percent.is_ascii_hexdigit()); |
888 | /// assert!(!space.is_ascii_hexdigit()); |
889 | /// assert!(!lf.is_ascii_hexdigit()); |
890 | /// assert!(!esc.is_ascii_hexdigit()); |
891 | /// ``` |
892 | #[must_use ] |
893 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
894 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
895 | #[inline ] |
896 | pub const fn is_ascii_hexdigit(&self) -> bool { |
897 | matches!(*self, b'0' ..=b'9' ) | matches!(*self, b'A' ..=b'F' ) | matches!(*self, b'a' ..=b'f' ) |
898 | } |
899 | |
900 | /// Checks if the value is an ASCII punctuation character: |
901 | /// |
902 | /// - U+0021 ..= U+002F `! " # $ % & ' ( ) * + , - . /`, or |
903 | /// - U+003A ..= U+0040 `: ; < = > ? @`, or |
904 | /// - U+005B ..= U+0060 `` [ \ ] ^ _ ` ``, or |
905 | /// - U+007B ..= U+007E `{ | } ~` |
906 | /// |
907 | /// # Examples |
908 | /// |
909 | /// ``` |
910 | /// let uppercase_a = b'A' ; |
911 | /// let uppercase_g = b'G' ; |
912 | /// let a = b'a' ; |
913 | /// let g = b'g' ; |
914 | /// let zero = b'0' ; |
915 | /// let percent = b'%' ; |
916 | /// let space = b' ' ; |
917 | /// let lf = b' \n' ; |
918 | /// let esc = b' \x1b' ; |
919 | /// |
920 | /// assert!(!uppercase_a.is_ascii_punctuation()); |
921 | /// assert!(!uppercase_g.is_ascii_punctuation()); |
922 | /// assert!(!a.is_ascii_punctuation()); |
923 | /// assert!(!g.is_ascii_punctuation()); |
924 | /// assert!(!zero.is_ascii_punctuation()); |
925 | /// assert!(percent.is_ascii_punctuation()); |
926 | /// assert!(!space.is_ascii_punctuation()); |
927 | /// assert!(!lf.is_ascii_punctuation()); |
928 | /// assert!(!esc.is_ascii_punctuation()); |
929 | /// ``` |
930 | #[must_use ] |
931 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
932 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
933 | #[inline ] |
934 | pub const fn is_ascii_punctuation(&self) -> bool { |
935 | matches!(*self, b'!' ..=b'/' ) |
936 | | matches!(*self, b':' ..=b'@' ) |
937 | | matches!(*self, b'[' ..=b'`' ) |
938 | | matches!(*self, b'{' ..=b'~' ) |
939 | } |
940 | |
941 | /// Checks if the value is an ASCII graphic character: |
942 | /// U+0021 '!' ..= U+007E '~'. |
943 | /// |
944 | /// # Examples |
945 | /// |
946 | /// ``` |
947 | /// let uppercase_a = b'A' ; |
948 | /// let uppercase_g = b'G' ; |
949 | /// let a = b'a' ; |
950 | /// let g = b'g' ; |
951 | /// let zero = b'0' ; |
952 | /// let percent = b'%' ; |
953 | /// let space = b' ' ; |
954 | /// let lf = b' \n' ; |
955 | /// let esc = b' \x1b' ; |
956 | /// |
957 | /// assert!(uppercase_a.is_ascii_graphic()); |
958 | /// assert!(uppercase_g.is_ascii_graphic()); |
959 | /// assert!(a.is_ascii_graphic()); |
960 | /// assert!(g.is_ascii_graphic()); |
961 | /// assert!(zero.is_ascii_graphic()); |
962 | /// assert!(percent.is_ascii_graphic()); |
963 | /// assert!(!space.is_ascii_graphic()); |
964 | /// assert!(!lf.is_ascii_graphic()); |
965 | /// assert!(!esc.is_ascii_graphic()); |
966 | /// ``` |
967 | #[must_use ] |
968 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
969 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
970 | #[inline ] |
971 | pub const fn is_ascii_graphic(&self) -> bool { |
972 | matches!(*self, b'!' ..=b'~' ) |
973 | } |
974 | |
975 | /// Checks if the value is an ASCII whitespace character: |
976 | /// U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, |
977 | /// U+000C FORM FEED, or U+000D CARRIAGE RETURN. |
978 | /// |
979 | /// Rust uses the WhatWG Infra Standard's [definition of ASCII |
980 | /// whitespace][infra-aw]. There are several other definitions in |
981 | /// wide use. For instance, [the POSIX locale][pct] includes |
982 | /// U+000B VERTICAL TAB as well as all the above characters, |
983 | /// but—from the very same specification—[the default rule for |
984 | /// "field splitting" in the Bourne shell][bfs] considers *only* |
985 | /// SPACE, HORIZONTAL TAB, and LINE FEED as whitespace. |
986 | /// |
987 | /// If you are writing a program that will process an existing |
988 | /// file format, check what that format's definition of whitespace is |
989 | /// before using this function. |
990 | /// |
991 | /// [infra-aw]: https://infra.spec.whatwg.org/#ascii-whitespace |
992 | /// [pct]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap07.html#tag_07_03_01 |
993 | /// [bfs]: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_05 |
994 | /// |
995 | /// # Examples |
996 | /// |
997 | /// ``` |
998 | /// let uppercase_a = b'A' ; |
999 | /// let uppercase_g = b'G' ; |
1000 | /// let a = b'a' ; |
1001 | /// let g = b'g' ; |
1002 | /// let zero = b'0' ; |
1003 | /// let percent = b'%' ; |
1004 | /// let space = b' ' ; |
1005 | /// let lf = b' \n' ; |
1006 | /// let esc = b' \x1b' ; |
1007 | /// |
1008 | /// assert!(!uppercase_a.is_ascii_whitespace()); |
1009 | /// assert!(!uppercase_g.is_ascii_whitespace()); |
1010 | /// assert!(!a.is_ascii_whitespace()); |
1011 | /// assert!(!g.is_ascii_whitespace()); |
1012 | /// assert!(!zero.is_ascii_whitespace()); |
1013 | /// assert!(!percent.is_ascii_whitespace()); |
1014 | /// assert!(space.is_ascii_whitespace()); |
1015 | /// assert!(lf.is_ascii_whitespace()); |
1016 | /// assert!(!esc.is_ascii_whitespace()); |
1017 | /// ``` |
1018 | #[must_use ] |
1019 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
1020 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
1021 | #[inline ] |
1022 | pub const fn is_ascii_whitespace(&self) -> bool { |
1023 | matches!(*self, b' \t' | b' \n' | b' \x0C' | b' \r' | b' ' ) |
1024 | } |
1025 | |
1026 | /// Checks if the value is an ASCII control character: |
1027 | /// U+0000 NUL ..= U+001F UNIT SEPARATOR, or U+007F DELETE. |
1028 | /// Note that most ASCII whitespace characters are control |
1029 | /// characters, but SPACE is not. |
1030 | /// |
1031 | /// # Examples |
1032 | /// |
1033 | /// ``` |
1034 | /// let uppercase_a = b'A' ; |
1035 | /// let uppercase_g = b'G' ; |
1036 | /// let a = b'a' ; |
1037 | /// let g = b'g' ; |
1038 | /// let zero = b'0' ; |
1039 | /// let percent = b'%' ; |
1040 | /// let space = b' ' ; |
1041 | /// let lf = b' \n' ; |
1042 | /// let esc = b' \x1b' ; |
1043 | /// |
1044 | /// assert!(!uppercase_a.is_ascii_control()); |
1045 | /// assert!(!uppercase_g.is_ascii_control()); |
1046 | /// assert!(!a.is_ascii_control()); |
1047 | /// assert!(!g.is_ascii_control()); |
1048 | /// assert!(!zero.is_ascii_control()); |
1049 | /// assert!(!percent.is_ascii_control()); |
1050 | /// assert!(!space.is_ascii_control()); |
1051 | /// assert!(lf.is_ascii_control()); |
1052 | /// assert!(esc.is_ascii_control()); |
1053 | /// ``` |
1054 | #[must_use ] |
1055 | #[stable (feature = "ascii_ctype_on_intrinsics" , since = "1.24.0" )] |
1056 | #[rustc_const_stable (feature = "const_ascii_ctype_on_intrinsics" , since = "1.47.0" )] |
1057 | #[inline ] |
1058 | pub const fn is_ascii_control(&self) -> bool { |
1059 | matches!(*self, b' \0' ..=b' \x1F' | b' \x7F' ) |
1060 | } |
1061 | |
1062 | /// Returns an iterator that produces an escaped version of a `u8`, |
1063 | /// treating it as an ASCII character. |
1064 | /// |
1065 | /// The behavior is identical to [`ascii::escape_default`]. |
1066 | /// |
1067 | /// # Examples |
1068 | /// |
1069 | /// ``` |
1070 | /// |
1071 | /// assert_eq!("0" , b'0' .escape_ascii().to_string()); |
1072 | /// assert_eq!(" \\t" , b' \t' .escape_ascii().to_string()); |
1073 | /// assert_eq!(" \\r" , b' \r' .escape_ascii().to_string()); |
1074 | /// assert_eq!(" \\n" , b' \n' .escape_ascii().to_string()); |
1075 | /// assert_eq!(" \\'" , b' \'' .escape_ascii().to_string()); |
1076 | /// assert_eq!(" \\\"" , b'"' .escape_ascii().to_string()); |
1077 | /// assert_eq!(" \\\\" , b' \\' .escape_ascii().to_string()); |
1078 | /// assert_eq!(" \\x9d" , b' \x9d' .escape_ascii().to_string()); |
1079 | /// ``` |
1080 | #[must_use = "this returns the escaped byte as an iterator, \ |
1081 | without modifying the original" ] |
1082 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
1083 | #[inline ] |
1084 | pub fn escape_ascii(self) -> ascii::EscapeDefault { |
1085 | ascii::escape_default(self) |
1086 | } |
1087 | |
1088 | #[inline ] |
1089 | pub(crate) const fn is_utf8_char_boundary(self) -> bool { |
1090 | // This is bit magic equivalent to: b < 128 || b >= 192 |
1091 | (self as i8) >= -0x40 |
1092 | } |
1093 | } |
1094 | |
1095 | impl u16 { |
1096 | uint_impl! { |
1097 | Self = u16, |
1098 | ActualT = u16, |
1099 | SignedT = i16, |
1100 | NonZeroT = NonZero<u16>, |
1101 | BITS = 16, |
1102 | MAX = 65535, |
1103 | rot = 4, |
1104 | rot_op = "0xa003" , |
1105 | rot_result = "0x3a" , |
1106 | swap_op = "0x1234" , |
1107 | swapped = "0x3412" , |
1108 | reversed = "0x2c48" , |
1109 | le_bytes = "[0x34, 0x12]" , |
1110 | be_bytes = "[0x12, 0x34]" , |
1111 | to_xe_bytes_doc = "" , |
1112 | from_xe_bytes_doc = "" , |
1113 | bound_condition = "" , |
1114 | } |
1115 | widening_impl! { u16, u32, 16, unsigned } |
1116 | midpoint_impl! { u16, u32, unsigned } |
1117 | |
1118 | /// Checks if the value is a Unicode surrogate code point, which are disallowed values for [`char`]. |
1119 | /// |
1120 | /// # Examples |
1121 | /// |
1122 | /// ``` |
1123 | /// #![feature(utf16_extra)] |
1124 | /// |
1125 | /// let low_non_surrogate = 0xA000u16; |
1126 | /// let low_surrogate = 0xD800u16; |
1127 | /// let high_surrogate = 0xDC00u16; |
1128 | /// let high_non_surrogate = 0xE000u16; |
1129 | /// |
1130 | /// assert!(!low_non_surrogate.is_utf16_surrogate()); |
1131 | /// assert!(low_surrogate.is_utf16_surrogate()); |
1132 | /// assert!(high_surrogate.is_utf16_surrogate()); |
1133 | /// assert!(!high_non_surrogate.is_utf16_surrogate()); |
1134 | /// ``` |
1135 | #[must_use ] |
1136 | #[unstable (feature = "utf16_extra" , issue = "94919" )] |
1137 | #[rustc_const_unstable (feature = "utf16_extra_const" , issue = "94919" )] |
1138 | #[inline ] |
1139 | pub const fn is_utf16_surrogate(self) -> bool { |
1140 | matches!(self, 0xD800..=0xDFFF) |
1141 | } |
1142 | } |
1143 | |
1144 | impl u32 { |
1145 | uint_impl! { |
1146 | Self = u32, |
1147 | ActualT = u32, |
1148 | SignedT = i32, |
1149 | NonZeroT = NonZero<u32>, |
1150 | BITS = 32, |
1151 | MAX = 4294967295, |
1152 | rot = 8, |
1153 | rot_op = "0x10000b3" , |
1154 | rot_result = "0xb301" , |
1155 | swap_op = "0x12345678" , |
1156 | swapped = "0x78563412" , |
1157 | reversed = "0x1e6a2c48" , |
1158 | le_bytes = "[0x78, 0x56, 0x34, 0x12]" , |
1159 | be_bytes = "[0x12, 0x34, 0x56, 0x78]" , |
1160 | to_xe_bytes_doc = "" , |
1161 | from_xe_bytes_doc = "" , |
1162 | bound_condition = "" , |
1163 | } |
1164 | widening_impl! { u32, u64, 32, unsigned } |
1165 | midpoint_impl! { u32, u64, unsigned } |
1166 | } |
1167 | |
1168 | impl u64 { |
1169 | uint_impl! { |
1170 | Self = u64, |
1171 | ActualT = u64, |
1172 | SignedT = i64, |
1173 | NonZeroT = NonZero<u64>, |
1174 | BITS = 64, |
1175 | MAX = 18446744073709551615, |
1176 | rot = 12, |
1177 | rot_op = "0xaa00000000006e1" , |
1178 | rot_result = "0x6e10aa" , |
1179 | swap_op = "0x1234567890123456" , |
1180 | swapped = "0x5634129078563412" , |
1181 | reversed = "0x6a2c48091e6a2c48" , |
1182 | le_bytes = "[0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]" , |
1183 | be_bytes = "[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]" , |
1184 | to_xe_bytes_doc = "" , |
1185 | from_xe_bytes_doc = "" , |
1186 | bound_condition = "" , |
1187 | } |
1188 | widening_impl! { u64, u128, 64, unsigned } |
1189 | midpoint_impl! { u64, u128, unsigned } |
1190 | } |
1191 | |
1192 | impl u128 { |
1193 | uint_impl! { |
1194 | Self = u128, |
1195 | ActualT = u128, |
1196 | SignedT = i128, |
1197 | NonZeroT = NonZero<u128>, |
1198 | BITS = 128, |
1199 | MAX = 340282366920938463463374607431768211455, |
1200 | rot = 16, |
1201 | rot_op = "0x13f40000000000000000000000004f76" , |
1202 | rot_result = "0x4f7613f4" , |
1203 | swap_op = "0x12345678901234567890123456789012" , |
1204 | swapped = "0x12907856341290785634129078563412" , |
1205 | reversed = "0x48091e6a2c48091e6a2c48091e6a2c48" , |
1206 | le_bytes = "[0x12, 0x90, 0x78, 0x56, 0x34, 0x12, 0x90, 0x78, \ |
1207 | 0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]" , |
1208 | be_bytes = "[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56, \ |
1209 | 0x78, 0x90, 0x12, 0x34, 0x56, 0x78, 0x90, 0x12]" , |
1210 | to_xe_bytes_doc = "" , |
1211 | from_xe_bytes_doc = "" , |
1212 | bound_condition = "" , |
1213 | } |
1214 | midpoint_impl! { u128, unsigned } |
1215 | } |
1216 | |
1217 | #[cfg (target_pointer_width = "16" )] |
1218 | impl usize { |
1219 | uint_impl! { |
1220 | Self = usize, |
1221 | ActualT = u16, |
1222 | SignedT = isize, |
1223 | NonZeroT = NonZero<usize>, |
1224 | BITS = 16, |
1225 | MAX = 65535, |
1226 | rot = 4, |
1227 | rot_op = "0xa003" , |
1228 | rot_result = "0x3a" , |
1229 | swap_op = "0x1234" , |
1230 | swapped = "0x3412" , |
1231 | reversed = "0x2c48" , |
1232 | le_bytes = "[0x34, 0x12]" , |
1233 | be_bytes = "[0x12, 0x34]" , |
1234 | to_xe_bytes_doc = usize_isize_to_xe_bytes_doc!(), |
1235 | from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(), |
1236 | bound_condition = " on 16-bit targets" , |
1237 | } |
1238 | widening_impl! { usize, u32, 16, unsigned } |
1239 | midpoint_impl! { usize, u32, unsigned } |
1240 | } |
1241 | |
1242 | #[cfg (target_pointer_width = "32" )] |
1243 | impl usize { |
1244 | uint_impl! { |
1245 | Self = usize, |
1246 | ActualT = u32, |
1247 | SignedT = isize, |
1248 | NonZeroT = NonZero<usize>, |
1249 | BITS = 32, |
1250 | MAX = 4294967295, |
1251 | rot = 8, |
1252 | rot_op = "0x10000b3" , |
1253 | rot_result = "0xb301" , |
1254 | swap_op = "0x12345678" , |
1255 | swapped = "0x78563412" , |
1256 | reversed = "0x1e6a2c48" , |
1257 | le_bytes = "[0x78, 0x56, 0x34, 0x12]" , |
1258 | be_bytes = "[0x12, 0x34, 0x56, 0x78]" , |
1259 | to_xe_bytes_doc = usize_isize_to_xe_bytes_doc!(), |
1260 | from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(), |
1261 | bound_condition = " on 32-bit targets" , |
1262 | } |
1263 | widening_impl! { usize, u64, 32, unsigned } |
1264 | midpoint_impl! { usize, u64, unsigned } |
1265 | } |
1266 | |
1267 | #[cfg (target_pointer_width = "64" )] |
1268 | impl usize { |
1269 | uint_impl! { |
1270 | Self = usize, |
1271 | ActualT = u64, |
1272 | SignedT = isize, |
1273 | NonZeroT = NonZero<usize>, |
1274 | BITS = 64, |
1275 | MAX = 18446744073709551615, |
1276 | rot = 12, |
1277 | rot_op = "0xaa00000000006e1" , |
1278 | rot_result = "0x6e10aa" , |
1279 | swap_op = "0x1234567890123456" , |
1280 | swapped = "0x5634129078563412" , |
1281 | reversed = "0x6a2c48091e6a2c48" , |
1282 | le_bytes = "[0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]" , |
1283 | be_bytes = "[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]" , |
1284 | to_xe_bytes_doc = usize_isize_to_xe_bytes_doc!(), |
1285 | from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(), |
1286 | bound_condition = " on 64-bit targets" , |
1287 | } |
1288 | widening_impl! { usize, u128, 64, unsigned } |
1289 | midpoint_impl! { usize, u128, unsigned } |
1290 | } |
1291 | |
1292 | impl usize { |
1293 | /// Returns an `usize` where every byte is equal to `x`. |
1294 | #[inline ] |
1295 | pub(crate) const fn repeat_u8(x: u8) -> usize { |
1296 | usize::from_ne_bytes([x; mem::size_of::<usize>()]) |
1297 | } |
1298 | |
1299 | /// Returns an `usize` where every byte pair is equal to `x`. |
1300 | #[inline ] |
1301 | pub(crate) const fn repeat_u16(x: u16) -> usize { |
1302 | let mut r: usize = 0usize; |
1303 | let mut i: usize = 0; |
1304 | while i < mem::size_of::<usize>() { |
1305 | // Use `wrapping_shl` to make it work on targets with 16-bit `usize` |
1306 | r = r.wrapping_shl(16) | (x as usize); |
1307 | i += 2; |
1308 | } |
1309 | r |
1310 | } |
1311 | } |
1312 | |
1313 | /// A classification of floating point numbers. |
1314 | /// |
1315 | /// This `enum` is used as the return type for [`f32::classify`] and [`f64::classify`]. See |
1316 | /// their documentation for more. |
1317 | /// |
1318 | /// # Examples |
1319 | /// |
1320 | /// ``` |
1321 | /// use std::num::FpCategory; |
1322 | /// |
1323 | /// let num = 12.4_f32; |
1324 | /// let inf = f32::INFINITY; |
1325 | /// let zero = 0f32; |
1326 | /// let sub: f32 = 1.1754942e-38; |
1327 | /// let nan = f32::NAN; |
1328 | /// |
1329 | /// assert_eq!(num.classify(), FpCategory::Normal); |
1330 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
1331 | /// assert_eq!(zero.classify(), FpCategory::Zero); |
1332 | /// assert_eq!(sub.classify(), FpCategory::Subnormal); |
1333 | /// assert_eq!(nan.classify(), FpCategory::Nan); |
1334 | /// ``` |
1335 | #[derive (Copy, Clone, PartialEq, Eq, Debug)] |
1336 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1337 | pub enum FpCategory { |
1338 | /// NaN (not a number): this value results from calculations like `(-1.0).sqrt()`. |
1339 | /// |
1340 | /// See [the documentation for `f32`](f32) for more information on the unusual properties |
1341 | /// of NaN. |
1342 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1343 | Nan, |
1344 | |
1345 | /// Positive or negative infinity, which often results from dividing a nonzero number |
1346 | /// by zero. |
1347 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1348 | Infinite, |
1349 | |
1350 | /// Positive or negative zero. |
1351 | /// |
1352 | /// See [the documentation for `f32`](f32) for more information on the signedness of zeroes. |
1353 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1354 | Zero, |
1355 | |
1356 | /// “Subnormal” or “denormal” floating point representation (less precise, relative to |
1357 | /// their magnitude, than [`Normal`]). |
1358 | /// |
1359 | /// Subnormal numbers are larger in magnitude than [`Zero`] but smaller in magnitude than all |
1360 | /// [`Normal`] numbers. |
1361 | /// |
1362 | /// [`Normal`]: Self::Normal |
1363 | /// [`Zero`]: Self::Zero |
1364 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1365 | Subnormal, |
1366 | |
1367 | /// A regular floating point number, not any of the exceptional categories. |
1368 | /// |
1369 | /// The smallest positive normal numbers are [`f32::MIN_POSITIVE`] and [`f64::MIN_POSITIVE`], |
1370 | /// and the largest positive normal numbers are [`f32::MAX`] and [`f64::MAX`]. (Unlike signed |
1371 | /// integers, floating point numbers are symmetric in their range, so negating any of these |
1372 | /// constants will produce their negative counterpart.) |
1373 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1374 | Normal, |
1375 | } |
1376 | |
1377 | macro_rules! from_str_radix_int_impl { |
1378 | ($($t:ty)*) => {$( |
1379 | #[stable(feature = "rust1" , since = "1.0.0" )] |
1380 | impl FromStr for $t { |
1381 | type Err = ParseIntError; |
1382 | fn from_str(src: &str) -> Result<Self, ParseIntError> { |
1383 | <$t>::from_str_radix(src, 10) |
1384 | } |
1385 | } |
1386 | )*} |
1387 | } |
1388 | from_str_radix_int_impl! { isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128 } |
1389 | |
1390 | /// Determines if a string of text of that length of that radix could be guaranteed to be |
1391 | /// stored in the given type T. |
1392 | /// Note that if the radix is known to the compiler, it is just the check of digits.len that |
1393 | /// is done at runtime. |
1394 | #[doc (hidden)] |
1395 | #[inline (always)] |
1396 | #[unstable (issue = "none" , feature = "std_internals" )] |
1397 | pub const fn can_not_overflow<T>(radix: u32, is_signed_ty: bool, digits: &[u8]) -> bool { |
1398 | radix <= 16 && digits.len() <= mem::size_of::<T>() * 2 - is_signed_ty as usize |
1399 | } |
1400 | |
1401 | #[track_caller ] |
1402 | const fn from_str_radix_panic_ct(_radix: u32) -> ! { |
1403 | panic!("from_str_radix_int: must lie in the range `[2, 36]`" ); |
1404 | } |
1405 | |
1406 | #[track_caller ] |
1407 | fn from_str_radix_panic_rt(radix: u32) -> ! { |
1408 | panic!("from_str_radix_int: must lie in the range `[2, 36]` - found {}" , radix); |
1409 | } |
1410 | |
1411 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
1412 | #[cfg_attr (feature = "panic_immediate_abort" , inline)] |
1413 | #[cold ] |
1414 | #[track_caller ] |
1415 | const fn from_str_radix_assert(radix: u32) { |
1416 | if 2 > radix || radix > 36 { |
1417 | // The only difference between these two functions is their panic message. |
1418 | intrinsics::const_eval_select((radix,), _called_in_const:from_str_radix_panic_ct, _called_at_rt:from_str_radix_panic_rt); |
1419 | } |
1420 | } |
1421 | |
1422 | macro_rules! from_str_radix { |
1423 | ($($int_ty:ty)+) => {$( |
1424 | impl $int_ty { |
1425 | /// Converts a string slice in a given base to an integer. |
1426 | /// |
1427 | /// The string is expected to be an optional `+` sign |
1428 | /// followed by digits. |
1429 | /// Leading and trailing whitespace represent an error. |
1430 | /// Digits are a subset of these characters, depending on `radix`: |
1431 | /// |
1432 | /// * `0-9` |
1433 | /// * `a-z` |
1434 | /// * `A-Z` |
1435 | /// |
1436 | /// # Panics |
1437 | /// |
1438 | /// This function panics if `radix` is not in the range from 2 to 36. |
1439 | /// |
1440 | /// # Examples |
1441 | /// |
1442 | /// Basic usage: |
1443 | /// |
1444 | /// ``` |
1445 | #[doc = concat!("assert_eq!(" , stringify!($int_ty), "::from_str_radix( \"A \", 16), Ok(10));" )] |
1446 | /// ``` |
1447 | #[stable(feature = "rust1" , since = "1.0.0" )] |
1448 | #[rustc_const_unstable(feature = "const_int_from_str" , issue = "59133" )] |
1449 | pub const fn from_str_radix(src: &str, radix: u32) -> Result<$int_ty, ParseIntError> { |
1450 | use self::IntErrorKind::*; |
1451 | use self::ParseIntError as PIE; |
1452 | |
1453 | from_str_radix_assert(radix); |
1454 | |
1455 | if src.is_empty() { |
1456 | return Err(PIE { kind: Empty }); |
1457 | } |
1458 | |
1459 | #[allow(unused_comparisons)] |
1460 | let is_signed_ty = 0 > <$int_ty>::MIN; |
1461 | |
1462 | // all valid digits are ascii, so we will just iterate over the utf8 bytes |
1463 | // and cast them to chars. .to_digit() will safely return None for anything |
1464 | // other than a valid ascii digit for the given radix, including the first-byte |
1465 | // of multi-byte sequences |
1466 | let src = src.as_bytes(); |
1467 | |
1468 | let (is_positive, mut digits) = match src { |
1469 | [b'+' | b'-' ] => { |
1470 | return Err(PIE { kind: InvalidDigit }); |
1471 | } |
1472 | [b'+' , rest @ ..] => (true, rest), |
1473 | [b'-' , rest @ ..] if is_signed_ty => (false, rest), |
1474 | _ => (true, src), |
1475 | }; |
1476 | |
1477 | let mut result = 0; |
1478 | |
1479 | macro_rules! unwrap_or_PIE { |
1480 | ($option:expr, $kind:ident) => { |
1481 | match $option { |
1482 | Some(value) => value, |
1483 | None => return Err(PIE { kind: $kind }), |
1484 | } |
1485 | }; |
1486 | } |
1487 | |
1488 | if can_not_overflow::<$int_ty>(radix, is_signed_ty, digits) { |
1489 | // If the len of the str is short compared to the range of the type |
1490 | // we are parsing into, then we can be certain that an overflow will not occur. |
1491 | // This bound is when `radix.pow(digits.len()) - 1 <= T::MAX` but the condition |
1492 | // above is a faster (conservative) approximation of this. |
1493 | // |
1494 | // Consider radix 16 as it has the highest information density per digit and will thus overflow the earliest: |
1495 | // `u8::MAX` is `ff` - any str of len 2 is guaranteed to not overflow. |
1496 | // `i8::MAX` is `7f` - only a str of len 1 is guaranteed to not overflow. |
1497 | macro_rules! run_unchecked_loop { |
1498 | ($unchecked_additive_op:tt) => {{ |
1499 | while let [c, rest @ ..] = digits { |
1500 | result = result * (radix as $int_ty); |
1501 | let x = unwrap_or_PIE!((*c as char).to_digit(radix), InvalidDigit); |
1502 | result = result $unchecked_additive_op (x as $int_ty); |
1503 | digits = rest; |
1504 | } |
1505 | }}; |
1506 | } |
1507 | if is_positive { |
1508 | run_unchecked_loop!(+) |
1509 | } else { |
1510 | run_unchecked_loop!(-) |
1511 | }; |
1512 | } else { |
1513 | macro_rules! run_checked_loop { |
1514 | ($checked_additive_op:ident, $overflow_err:ident) => {{ |
1515 | while let [c, rest @ ..] = digits { |
1516 | // When `radix` is passed in as a literal, rather than doing a slow `imul` |
1517 | // the compiler can use shifts if `radix` can be expressed as a |
1518 | // sum of powers of 2 (x*10 can be written as x*8 + x*2). |
1519 | // When the compiler can't use these optimisations, |
1520 | // the latency of the multiplication can be hidden by issuing it |
1521 | // before the result is needed to improve performance on |
1522 | // modern out-of-order CPU as multiplication here is slower |
1523 | // than the other instructions, we can get the end result faster |
1524 | // doing multiplication first and let the CPU spends other cycles |
1525 | // doing other computation and get multiplication result later. |
1526 | let mul = result.checked_mul(radix as $int_ty); |
1527 | let x = unwrap_or_PIE!((*c as char).to_digit(radix), InvalidDigit) as $int_ty; |
1528 | result = unwrap_or_PIE!(mul, $overflow_err); |
1529 | result = unwrap_or_PIE!(<$int_ty>::$checked_additive_op(result, x), $overflow_err); |
1530 | digits = rest; |
1531 | } |
1532 | }}; |
1533 | } |
1534 | if is_positive { |
1535 | run_checked_loop!(checked_add, PosOverflow) |
1536 | } else { |
1537 | run_checked_loop!(checked_sub, NegOverflow) |
1538 | }; |
1539 | } |
1540 | Ok(result) |
1541 | } |
1542 | } |
1543 | )+} |
1544 | } |
1545 | |
1546 | from_str_radix! { i8 u8 i16 u16 i32 u32 i64 u64 i128 u128 } |
1547 | |
1548 | // Re-use the relevant implementation of from_str_radix for isize and usize to avoid outputting two |
1549 | // identical functions. |
1550 | macro_rules! from_str_radix_size_impl { |
1551 | ($($t:ident $size:ty),*) => {$( |
1552 | impl $size { |
1553 | /// Converts a string slice in a given base to an integer. |
1554 | /// |
1555 | /// The string is expected to be an optional `+` sign |
1556 | /// followed by digits. |
1557 | /// Leading and trailing whitespace represent an error. |
1558 | /// Digits are a subset of these characters, depending on `radix`: |
1559 | /// |
1560 | /// * `0-9` |
1561 | /// * `a-z` |
1562 | /// * `A-Z` |
1563 | /// |
1564 | /// # Panics |
1565 | /// |
1566 | /// This function panics if `radix` is not in the range from 2 to 36. |
1567 | /// |
1568 | /// # Examples |
1569 | /// |
1570 | /// Basic usage: |
1571 | /// |
1572 | /// ``` |
1573 | #[doc = concat!("assert_eq!(" , stringify!($size), "::from_str_radix( \"A \", 16), Ok(10));" )] |
1574 | /// ``` |
1575 | #[stable(feature = "rust1" , since = "1.0.0" )] |
1576 | #[rustc_const_unstable(feature = "const_int_from_str" , issue = "59133" )] |
1577 | pub const fn from_str_radix(src: &str, radix: u32) -> Result<$size, ParseIntError> { |
1578 | match <$t>::from_str_radix(src, radix) { |
1579 | Ok(x) => Ok(x as $size), |
1580 | Err(e) => Err(e), |
1581 | } |
1582 | } |
1583 | })*} |
1584 | } |
1585 | |
1586 | #[cfg (target_pointer_width = "16" )] |
1587 | from_str_radix_size_impl! { i16 isize, u16 usize } |
1588 | #[cfg (target_pointer_width = "32" )] |
1589 | from_str_radix_size_impl! { i32 isize, u32 usize } |
1590 | #[cfg (target_pointer_width = "64" )] |
1591 | from_str_radix_size_impl! { i64 isize, u64 usize } |
1592 | |