1 | //! Constants for the `f32` single-precision floating point type. |
---|---|
2 | //! |
3 | //! *[See also the `f32` primitive type][f32].* |
4 | //! |
5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
6 | //! |
7 | //! For the constants defined directly in this module |
8 | //! (as distinct from those defined in the `consts` sub-module), |
9 | //! new code should instead use the associated constants |
10 | //! defined directly on the `f32` type. |
11 | |
12 | #![stable(feature = "rust1", since = "1.0.0")] |
13 | |
14 | use crate::convert::FloatToInt; |
15 | use crate::num::FpCategory; |
16 | use crate::panic::const_assert; |
17 | use crate::{cfg_select, intrinsics, mem}; |
18 | |
19 | /// The radix or base of the internal representation of `f32`. |
20 | /// Use [`f32::RADIX`] instead. |
21 | /// |
22 | /// # Examples |
23 | /// |
24 | /// ```rust |
25 | /// // deprecated way |
26 | /// # #[allow(deprecated, deprecated_in_future)] |
27 | /// let r = std::f32::RADIX; |
28 | /// |
29 | /// // intended way |
30 | /// let r = f32::RADIX; |
31 | /// ``` |
32 | #[stable(feature = "rust1", since = "1.0.0")] |
33 | #[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f32`")] |
34 | #[rustc_diagnostic_item= "f32_legacy_const_radix"] |
35 | pub const RADIX: u32 = f32::RADIX; |
36 | |
37 | /// Number of significant digits in base 2. |
38 | /// Use [`f32::MANTISSA_DIGITS`] instead. |
39 | /// |
40 | /// # Examples |
41 | /// |
42 | /// ```rust |
43 | /// // deprecated way |
44 | /// # #[allow(deprecated, deprecated_in_future)] |
45 | /// let d = std::f32::MANTISSA_DIGITS; |
46 | /// |
47 | /// // intended way |
48 | /// let d = f32::MANTISSA_DIGITS; |
49 | /// ``` |
50 | #[stable(feature = "rust1", since = "1.0.0")] |
51 | #[deprecated( |
52 | since = "TBD", |
53 | note = "replaced by the `MANTISSA_DIGITS` associated constant on `f32`" |
54 | )] |
55 | #[rustc_diagnostic_item= "f32_legacy_const_mantissa_dig"] |
56 | pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS; |
57 | |
58 | /// Approximate number of significant digits in base 10. |
59 | /// Use [`f32::DIGITS`] instead. |
60 | /// |
61 | /// # Examples |
62 | /// |
63 | /// ```rust |
64 | /// // deprecated way |
65 | /// # #[allow(deprecated, deprecated_in_future)] |
66 | /// let d = std::f32::DIGITS; |
67 | /// |
68 | /// // intended way |
69 | /// let d = f32::DIGITS; |
70 | /// ``` |
71 | #[stable(feature = "rust1", since = "1.0.0")] |
72 | #[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f32`")] |
73 | #[rustc_diagnostic_item= "f32_legacy_const_digits"] |
74 | pub const DIGITS: u32 = f32::DIGITS; |
75 | |
76 | /// [Machine epsilon] value for `f32`. |
77 | /// Use [`f32::EPSILON`] instead. |
78 | /// |
79 | /// This is the difference between `1.0` and the next larger representable number. |
80 | /// |
81 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
82 | /// |
83 | /// # Examples |
84 | /// |
85 | /// ```rust |
86 | /// // deprecated way |
87 | /// # #[allow(deprecated, deprecated_in_future)] |
88 | /// let e = std::f32::EPSILON; |
89 | /// |
90 | /// // intended way |
91 | /// let e = f32::EPSILON; |
92 | /// ``` |
93 | #[stable(feature = "rust1", since = "1.0.0")] |
94 | #[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f32`")] |
95 | #[rustc_diagnostic_item= "f32_legacy_const_epsilon"] |
96 | pub const EPSILON: f32 = f32::EPSILON; |
97 | |
98 | /// Smallest finite `f32` value. |
99 | /// Use [`f32::MIN`] instead. |
100 | /// |
101 | /// # Examples |
102 | /// |
103 | /// ```rust |
104 | /// // deprecated way |
105 | /// # #[allow(deprecated, deprecated_in_future)] |
106 | /// let min = std::f32::MIN; |
107 | /// |
108 | /// // intended way |
109 | /// let min = f32::MIN; |
110 | /// ``` |
111 | #[stable(feature = "rust1", since = "1.0.0")] |
112 | #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f32`")] |
113 | #[rustc_diagnostic_item= "f32_legacy_const_min"] |
114 | pub const MIN: f32 = f32::MIN; |
115 | |
116 | /// Smallest positive normal `f32` value. |
117 | /// Use [`f32::MIN_POSITIVE`] instead. |
118 | /// |
119 | /// # Examples |
120 | /// |
121 | /// ```rust |
122 | /// // deprecated way |
123 | /// # #[allow(deprecated, deprecated_in_future)] |
124 | /// let min = std::f32::MIN_POSITIVE; |
125 | /// |
126 | /// // intended way |
127 | /// let min = f32::MIN_POSITIVE; |
128 | /// ``` |
129 | #[stable(feature = "rust1", since = "1.0.0")] |
130 | #[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f32`")] |
131 | #[rustc_diagnostic_item= "f32_legacy_const_min_positive"] |
132 | pub const MIN_POSITIVE: f32 = f32::MIN_POSITIVE; |
133 | |
134 | /// Largest finite `f32` value. |
135 | /// Use [`f32::MAX`] instead. |
136 | /// |
137 | /// # Examples |
138 | /// |
139 | /// ```rust |
140 | /// // deprecated way |
141 | /// # #[allow(deprecated, deprecated_in_future)] |
142 | /// let max = std::f32::MAX; |
143 | /// |
144 | /// // intended way |
145 | /// let max = f32::MAX; |
146 | /// ``` |
147 | #[stable(feature = "rust1", since = "1.0.0")] |
148 | #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f32`")] |
149 | #[rustc_diagnostic_item= "f32_legacy_const_max"] |
150 | pub const MAX: f32 = f32::MAX; |
151 | |
152 | /// One greater than the minimum possible normal power of 2 exponent. |
153 | /// Use [`f32::MIN_EXP`] instead. |
154 | /// |
155 | /// # Examples |
156 | /// |
157 | /// ```rust |
158 | /// // deprecated way |
159 | /// # #[allow(deprecated, deprecated_in_future)] |
160 | /// let min = std::f32::MIN_EXP; |
161 | /// |
162 | /// // intended way |
163 | /// let min = f32::MIN_EXP; |
164 | /// ``` |
165 | #[stable(feature = "rust1", since = "1.0.0")] |
166 | #[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f32`")] |
167 | #[rustc_diagnostic_item= "f32_legacy_const_min_exp"] |
168 | pub const MIN_EXP: i32 = f32::MIN_EXP; |
169 | |
170 | /// Maximum possible power of 2 exponent. |
171 | /// Use [`f32::MAX_EXP`] instead. |
172 | /// |
173 | /// # Examples |
174 | /// |
175 | /// ```rust |
176 | /// // deprecated way |
177 | /// # #[allow(deprecated, deprecated_in_future)] |
178 | /// let max = std::f32::MAX_EXP; |
179 | /// |
180 | /// // intended way |
181 | /// let max = f32::MAX_EXP; |
182 | /// ``` |
183 | #[stable(feature = "rust1", since = "1.0.0")] |
184 | #[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f32`")] |
185 | #[rustc_diagnostic_item= "f32_legacy_const_max_exp"] |
186 | pub const MAX_EXP: i32 = f32::MAX_EXP; |
187 | |
188 | /// Minimum possible normal power of 10 exponent. |
189 | /// Use [`f32::MIN_10_EXP`] instead. |
190 | /// |
191 | /// # Examples |
192 | /// |
193 | /// ```rust |
194 | /// // deprecated way |
195 | /// # #[allow(deprecated, deprecated_in_future)] |
196 | /// let min = std::f32::MIN_10_EXP; |
197 | /// |
198 | /// // intended way |
199 | /// let min = f32::MIN_10_EXP; |
200 | /// ``` |
201 | #[stable(feature = "rust1", since = "1.0.0")] |
202 | #[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f32`")] |
203 | #[rustc_diagnostic_item= "f32_legacy_const_min_10_exp"] |
204 | pub const MIN_10_EXP: i32 = f32::MIN_10_EXP; |
205 | |
206 | /// Maximum possible power of 10 exponent. |
207 | /// Use [`f32::MAX_10_EXP`] instead. |
208 | /// |
209 | /// # Examples |
210 | /// |
211 | /// ```rust |
212 | /// // deprecated way |
213 | /// # #[allow(deprecated, deprecated_in_future)] |
214 | /// let max = std::f32::MAX_10_EXP; |
215 | /// |
216 | /// // intended way |
217 | /// let max = f32::MAX_10_EXP; |
218 | /// ``` |
219 | #[stable(feature = "rust1", since = "1.0.0")] |
220 | #[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f32`")] |
221 | #[rustc_diagnostic_item= "f32_legacy_const_max_10_exp"] |
222 | pub const MAX_10_EXP: i32 = f32::MAX_10_EXP; |
223 | |
224 | /// Not a Number (NaN). |
225 | /// Use [`f32::NAN`] instead. |
226 | /// |
227 | /// # Examples |
228 | /// |
229 | /// ```rust |
230 | /// // deprecated way |
231 | /// # #[allow(deprecated, deprecated_in_future)] |
232 | /// let nan = std::f32::NAN; |
233 | /// |
234 | /// // intended way |
235 | /// let nan = f32::NAN; |
236 | /// ``` |
237 | #[stable(feature = "rust1", since = "1.0.0")] |
238 | #[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f32`")] |
239 | #[rustc_diagnostic_item= "f32_legacy_const_nan"] |
240 | pub const NAN: f32 = f32::NAN; |
241 | |
242 | /// Infinity (∞). |
243 | /// Use [`f32::INFINITY`] instead. |
244 | /// |
245 | /// # Examples |
246 | /// |
247 | /// ```rust |
248 | /// // deprecated way |
249 | /// # #[allow(deprecated, deprecated_in_future)] |
250 | /// let inf = std::f32::INFINITY; |
251 | /// |
252 | /// // intended way |
253 | /// let inf = f32::INFINITY; |
254 | /// ``` |
255 | #[stable(feature = "rust1", since = "1.0.0")] |
256 | #[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f32`")] |
257 | #[rustc_diagnostic_item= "f32_legacy_const_infinity"] |
258 | pub const INFINITY: f32 = f32::INFINITY; |
259 | |
260 | /// Negative infinity (−∞). |
261 | /// Use [`f32::NEG_INFINITY`] instead. |
262 | /// |
263 | /// # Examples |
264 | /// |
265 | /// ```rust |
266 | /// // deprecated way |
267 | /// # #[allow(deprecated, deprecated_in_future)] |
268 | /// let ninf = std::f32::NEG_INFINITY; |
269 | /// |
270 | /// // intended way |
271 | /// let ninf = f32::NEG_INFINITY; |
272 | /// ``` |
273 | #[stable(feature = "rust1", since = "1.0.0")] |
274 | #[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f32`")] |
275 | #[rustc_diagnostic_item= "f32_legacy_const_neg_infinity"] |
276 | pub const NEG_INFINITY: f32 = f32::NEG_INFINITY; |
277 | |
278 | /// Basic mathematical constants. |
279 | #[stable(feature = "rust1", since = "1.0.0")] |
280 | pub mod consts { |
281 | // FIXME: replace with mathematical constants from cmath. |
282 | |
283 | /// Archimedes' constant (π) |
284 | #[stable(feature = "rust1", since = "1.0.0")] |
285 | pub const PI: f32 = 3.14159265358979323846264338327950288_f32; |
286 | |
287 | /// The full circle constant (τ) |
288 | /// |
289 | /// Equal to 2π. |
290 | #[stable(feature = "tau_constant", since = "1.47.0")] |
291 | pub const TAU: f32 = 6.28318530717958647692528676655900577_f32; |
292 | |
293 | /// The golden ratio (φ) |
294 | #[unstable(feature = "more_float_constants", issue = "103883")] |
295 | pub const PHI: f32 = 1.618033988749894848204586834365638118_f32; |
296 | |
297 | /// The Euler-Mascheroni constant (γ) |
298 | #[unstable(feature = "more_float_constants", issue = "103883")] |
299 | pub const EGAMMA: f32 = 0.577215664901532860606512090082402431_f32; |
300 | |
301 | /// π/2 |
302 | #[stable(feature = "rust1", since = "1.0.0")] |
303 | pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32; |
304 | |
305 | /// π/3 |
306 | #[stable(feature = "rust1", since = "1.0.0")] |
307 | pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32; |
308 | |
309 | /// π/4 |
310 | #[stable(feature = "rust1", since = "1.0.0")] |
311 | pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32; |
312 | |
313 | /// π/6 |
314 | #[stable(feature = "rust1", since = "1.0.0")] |
315 | pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32; |
316 | |
317 | /// π/8 |
318 | #[stable(feature = "rust1", since = "1.0.0")] |
319 | pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32; |
320 | |
321 | /// 1/π |
322 | #[stable(feature = "rust1", since = "1.0.0")] |
323 | pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32; |
324 | |
325 | /// 1/sqrt(π) |
326 | #[unstable(feature = "more_float_constants", issue = "103883")] |
327 | pub const FRAC_1_SQRT_PI: f32 = 0.564189583547756286948079451560772586_f32; |
328 | |
329 | /// 1/sqrt(2π) |
330 | #[doc(alias = "FRAC_1_SQRT_TAU")] |
331 | #[unstable(feature = "more_float_constants", issue = "103883")] |
332 | pub const FRAC_1_SQRT_2PI: f32 = 0.398942280401432677939946059934381868_f32; |
333 | |
334 | /// 2/π |
335 | #[stable(feature = "rust1", since = "1.0.0")] |
336 | pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32; |
337 | |
338 | /// 2/sqrt(π) |
339 | #[stable(feature = "rust1", since = "1.0.0")] |
340 | pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32; |
341 | |
342 | /// sqrt(2) |
343 | #[stable(feature = "rust1", since = "1.0.0")] |
344 | pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32; |
345 | |
346 | /// 1/sqrt(2) |
347 | #[stable(feature = "rust1", since = "1.0.0")] |
348 | pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32; |
349 | |
350 | /// sqrt(3) |
351 | #[unstable(feature = "more_float_constants", issue = "103883")] |
352 | pub const SQRT_3: f32 = 1.732050807568877293527446341505872367_f32; |
353 | |
354 | /// 1/sqrt(3) |
355 | #[unstable(feature = "more_float_constants", issue = "103883")] |
356 | pub const FRAC_1_SQRT_3: f32 = 0.577350269189625764509148780501957456_f32; |
357 | |
358 | /// Euler's number (e) |
359 | #[stable(feature = "rust1", since = "1.0.0")] |
360 | pub const E: f32 = 2.71828182845904523536028747135266250_f32; |
361 | |
362 | /// log<sub>2</sub>(e) |
363 | #[stable(feature = "rust1", since = "1.0.0")] |
364 | pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32; |
365 | |
366 | /// log<sub>2</sub>(10) |
367 | #[stable(feature = "extra_log_consts", since = "1.43.0")] |
368 | pub const LOG2_10: f32 = 3.32192809488736234787031942948939018_f32; |
369 | |
370 | /// log<sub>10</sub>(e) |
371 | #[stable(feature = "rust1", since = "1.0.0")] |
372 | pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32; |
373 | |
374 | /// log<sub>10</sub>(2) |
375 | #[stable(feature = "extra_log_consts", since = "1.43.0")] |
376 | pub const LOG10_2: f32 = 0.301029995663981195213738894724493027_f32; |
377 | |
378 | /// ln(2) |
379 | #[stable(feature = "rust1", since = "1.0.0")] |
380 | pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32; |
381 | |
382 | /// ln(10) |
383 | #[stable(feature = "rust1", since = "1.0.0")] |
384 | pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32; |
385 | } |
386 | |
387 | impl f32 { |
388 | /// The radix or base of the internal representation of `f32`. |
389 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
390 | pub const RADIX: u32 = 2; |
391 | |
392 | /// Number of significant digits in base 2. |
393 | /// |
394 | /// Note that the size of the mantissa in the bitwise representation is one |
395 | /// smaller than this since the leading 1 is not stored explicitly. |
396 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
397 | pub const MANTISSA_DIGITS: u32 = 24; |
398 | |
399 | /// Approximate number of significant digits in base 10. |
400 | /// |
401 | /// This is the maximum <i>x</i> such that any decimal number with <i>x</i> |
402 | /// significant digits can be converted to `f32` and back without loss. |
403 | /// |
404 | /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>). |
405 | /// |
406 | /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS |
407 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
408 | pub const DIGITS: u32 = 6; |
409 | |
410 | /// [Machine epsilon] value for `f32`. |
411 | /// |
412 | /// This is the difference between `1.0` and the next larger representable number. |
413 | /// |
414 | /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>. |
415 | /// |
416 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
417 | /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS |
418 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
419 | #[rustc_diagnostic_item= "f32_epsilon"] |
420 | pub const EPSILON: f32 = 1.19209290e-07_f32; |
421 | |
422 | /// Smallest finite `f32` value. |
423 | /// |
424 | /// Equal to −[`MAX`]. |
425 | /// |
426 | /// [`MAX`]: f32::MAX |
427 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
428 | pub const MIN: f32 = -3.40282347e+38_f32; |
429 | /// Smallest positive normal `f32` value. |
430 | /// |
431 | /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>. |
432 | /// |
433 | /// [`MIN_EXP`]: f32::MIN_EXP |
434 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
435 | pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32; |
436 | /// Largest finite `f32` value. |
437 | /// |
438 | /// Equal to |
439 | /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>. |
440 | /// |
441 | /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS |
442 | /// [`MAX_EXP`]: f32::MAX_EXP |
443 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
444 | pub const MAX: f32 = 3.40282347e+38_f32; |
445 | |
446 | /// One greater than the minimum possible *normal* power of 2 exponent |
447 | /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition). |
448 | /// |
449 | /// This corresponds to the exact minimum possible *normal* power of 2 exponent |
450 | /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition). |
451 | /// In other words, all normal numbers representable by this type are |
452 | /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>. |
453 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
454 | pub const MIN_EXP: i32 = -125; |
455 | /// One greater than the maximum possible power of 2 exponent |
456 | /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition). |
457 | /// |
458 | /// This corresponds to the exact maximum possible power of 2 exponent |
459 | /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition). |
460 | /// In other words, all numbers representable by this type are |
461 | /// strictly less than 2<sup><i>MAX_EXP</i></sup>. |
462 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
463 | pub const MAX_EXP: i32 = 128; |
464 | |
465 | /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
466 | /// |
467 | /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]). |
468 | /// |
469 | /// [`MIN_POSITIVE`]: f32::MIN_POSITIVE |
470 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
471 | pub const MIN_10_EXP: i32 = -37; |
472 | /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
473 | /// |
474 | /// Equal to floor(log<sub>10</sub> [`MAX`]). |
475 | /// |
476 | /// [`MAX`]: f32::MAX |
477 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
478 | pub const MAX_10_EXP: i32 = 38; |
479 | |
480 | /// Not a Number (NaN). |
481 | /// |
482 | /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are |
483 | /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and |
484 | /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern) |
485 | /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more |
486 | /// info. |
487 | /// |
488 | /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions |
489 | /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is |
490 | /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary. |
491 | /// The concrete bit pattern may change across Rust versions and target platforms. |
492 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
493 | #[rustc_diagnostic_item= "f32_nan"] |
494 | #[allow(clippy::eq_op)] |
495 | pub const NAN: f32 = 0.0_f32 / 0.0_f32; |
496 | /// Infinity (∞). |
497 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
498 | pub const INFINITY: f32 = 1.0_f32 / 0.0_f32; |
499 | /// Negative infinity (−∞). |
500 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
501 | pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32; |
502 | |
503 | /// Sign bit |
504 | pub(crate) const SIGN_MASK: u32 = 0x8000_0000; |
505 | |
506 | /// Exponent mask |
507 | pub(crate) const EXP_MASK: u32 = 0x7f80_0000; |
508 | |
509 | /// Mantissa mask |
510 | pub(crate) const MAN_MASK: u32 = 0x007f_ffff; |
511 | |
512 | /// Minimum representable positive value (min subnormal) |
513 | const TINY_BITS: u32 = 0x1; |
514 | |
515 | /// Minimum representable negative value (min negative subnormal) |
516 | const NEG_TINY_BITS: u32 = Self::TINY_BITS | Self::SIGN_MASK; |
517 | |
518 | /// Returns `true` if this value is NaN. |
519 | /// |
520 | /// ``` |
521 | /// let nan = f32::NAN; |
522 | /// let f = 7.0_f32; |
523 | /// |
524 | /// assert!(nan.is_nan()); |
525 | /// assert!(!f.is_nan()); |
526 | /// ``` |
527 | #[must_use] |
528 | #[stable(feature = "rust1", since = "1.0.0")] |
529 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
530 | #[inline] |
531 | #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :) |
532 | pub const fn is_nan(self) -> bool { |
533 | self != self |
534 | } |
535 | |
536 | /// Returns `true` if this value is positive infinity or negative infinity, and |
537 | /// `false` otherwise. |
538 | /// |
539 | /// ``` |
540 | /// let f = 7.0f32; |
541 | /// let inf = f32::INFINITY; |
542 | /// let neg_inf = f32::NEG_INFINITY; |
543 | /// let nan = f32::NAN; |
544 | /// |
545 | /// assert!(!f.is_infinite()); |
546 | /// assert!(!nan.is_infinite()); |
547 | /// |
548 | /// assert!(inf.is_infinite()); |
549 | /// assert!(neg_inf.is_infinite()); |
550 | /// ``` |
551 | #[must_use] |
552 | #[stable(feature = "rust1", since = "1.0.0")] |
553 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
554 | #[inline] |
555 | pub const fn is_infinite(self) -> bool { |
556 | // Getting clever with transmutation can result in incorrect answers on some FPUs |
557 | // FIXME: alter the Rust <-> Rust calling convention to prevent this problem. |
558 | // See https://github.com/rust-lang/rust/issues/72327 |
559 | (self == f32::INFINITY) | (self == f32::NEG_INFINITY) |
560 | } |
561 | |
562 | /// Returns `true` if this number is neither infinite nor NaN. |
563 | /// |
564 | /// ``` |
565 | /// let f = 7.0f32; |
566 | /// let inf = f32::INFINITY; |
567 | /// let neg_inf = f32::NEG_INFINITY; |
568 | /// let nan = f32::NAN; |
569 | /// |
570 | /// assert!(f.is_finite()); |
571 | /// |
572 | /// assert!(!nan.is_finite()); |
573 | /// assert!(!inf.is_finite()); |
574 | /// assert!(!neg_inf.is_finite()); |
575 | /// ``` |
576 | #[must_use] |
577 | #[stable(feature = "rust1", since = "1.0.0")] |
578 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
579 | #[inline] |
580 | pub const fn is_finite(self) -> bool { |
581 | // There's no need to handle NaN separately: if self is NaN, |
582 | // the comparison is not true, exactly as desired. |
583 | self.abs() < Self::INFINITY |
584 | } |
585 | |
586 | /// Returns `true` if the number is [subnormal]. |
587 | /// |
588 | /// ``` |
589 | /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
590 | /// let max = f32::MAX; |
591 | /// let lower_than_min = 1.0e-40_f32; |
592 | /// let zero = 0.0_f32; |
593 | /// |
594 | /// assert!(!min.is_subnormal()); |
595 | /// assert!(!max.is_subnormal()); |
596 | /// |
597 | /// assert!(!zero.is_subnormal()); |
598 | /// assert!(!f32::NAN.is_subnormal()); |
599 | /// assert!(!f32::INFINITY.is_subnormal()); |
600 | /// // Values between `0` and `min` are Subnormal. |
601 | /// assert!(lower_than_min.is_subnormal()); |
602 | /// ``` |
603 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
604 | #[must_use] |
605 | #[stable(feature = "is_subnormal", since = "1.53.0")] |
606 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
607 | #[inline] |
608 | pub const fn is_subnormal(self) -> bool { |
609 | matches!(self.classify(), FpCategory::Subnormal) |
610 | } |
611 | |
612 | /// Returns `true` if the number is neither zero, infinite, |
613 | /// [subnormal], or NaN. |
614 | /// |
615 | /// ``` |
616 | /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
617 | /// let max = f32::MAX; |
618 | /// let lower_than_min = 1.0e-40_f32; |
619 | /// let zero = 0.0_f32; |
620 | /// |
621 | /// assert!(min.is_normal()); |
622 | /// assert!(max.is_normal()); |
623 | /// |
624 | /// assert!(!zero.is_normal()); |
625 | /// assert!(!f32::NAN.is_normal()); |
626 | /// assert!(!f32::INFINITY.is_normal()); |
627 | /// // Values between `0` and `min` are Subnormal. |
628 | /// assert!(!lower_than_min.is_normal()); |
629 | /// ``` |
630 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
631 | #[must_use] |
632 | #[stable(feature = "rust1", since = "1.0.0")] |
633 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
634 | #[inline] |
635 | pub const fn is_normal(self) -> bool { |
636 | matches!(self.classify(), FpCategory::Normal) |
637 | } |
638 | |
639 | /// Returns the floating point category of the number. If only one property |
640 | /// is going to be tested, it is generally faster to use the specific |
641 | /// predicate instead. |
642 | /// |
643 | /// ``` |
644 | /// use std::num::FpCategory; |
645 | /// |
646 | /// let num = 12.4_f32; |
647 | /// let inf = f32::INFINITY; |
648 | /// |
649 | /// assert_eq!(num.classify(), FpCategory::Normal); |
650 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
651 | /// ``` |
652 | #[stable(feature = "rust1", since = "1.0.0")] |
653 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
654 | pub const fn classify(self) -> FpCategory { |
655 | // We used to have complicated logic here that avoids the simple bit-based tests to work |
656 | // around buggy codegen for x87 targets (see |
657 | // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none |
658 | // of our tests is able to find any difference between the complicated and the naive |
659 | // version, so now we are back to the naive version. |
660 | let b = self.to_bits(); |
661 | match (b & Self::MAN_MASK, b & Self::EXP_MASK) { |
662 | (0, Self::EXP_MASK) => FpCategory::Infinite, |
663 | (_, Self::EXP_MASK) => FpCategory::Nan, |
664 | (0, 0) => FpCategory::Zero, |
665 | (_, 0) => FpCategory::Subnormal, |
666 | _ => FpCategory::Normal, |
667 | } |
668 | } |
669 | |
670 | /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with |
671 | /// positive sign bit and positive infinity. |
672 | /// |
673 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
674 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
675 | /// conserved over arithmetic operations, the result of `is_sign_positive` on |
676 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
677 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0` |
678 | /// if you need fully portable behavior (will return `false` for all NaNs). |
679 | /// |
680 | /// ``` |
681 | /// let f = 7.0_f32; |
682 | /// let g = -7.0_f32; |
683 | /// |
684 | /// assert!(f.is_sign_positive()); |
685 | /// assert!(!g.is_sign_positive()); |
686 | /// ``` |
687 | #[must_use] |
688 | #[stable(feature = "rust1", since = "1.0.0")] |
689 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
690 | #[inline] |
691 | pub const fn is_sign_positive(self) -> bool { |
692 | !self.is_sign_negative() |
693 | } |
694 | |
695 | /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with |
696 | /// negative sign bit and negative infinity. |
697 | /// |
698 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
699 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
700 | /// conserved over arithmetic operations, the result of `is_sign_negative` on |
701 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
702 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0` |
703 | /// if you need fully portable behavior (will return `false` for all NaNs). |
704 | /// |
705 | /// ``` |
706 | /// let f = 7.0f32; |
707 | /// let g = -7.0f32; |
708 | /// |
709 | /// assert!(!f.is_sign_negative()); |
710 | /// assert!(g.is_sign_negative()); |
711 | /// ``` |
712 | #[must_use] |
713 | #[stable(feature = "rust1", since = "1.0.0")] |
714 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
715 | #[inline] |
716 | pub const fn is_sign_negative(self) -> bool { |
717 | // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus |
718 | // applies to zeros and NaNs as well. |
719 | self.to_bits() & 0x8000_0000 != 0 |
720 | } |
721 | |
722 | /// Returns the least number greater than `self`. |
723 | /// |
724 | /// Let `TINY` be the smallest representable positive `f32`. Then, |
725 | /// - if `self.is_nan()`, this returns `self`; |
726 | /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`]; |
727 | /// - if `self` is `-TINY`, this returns -0.0; |
728 | /// - if `self` is -0.0 or +0.0, this returns `TINY`; |
729 | /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`]; |
730 | /// - otherwise the unique least value greater than `self` is returned. |
731 | /// |
732 | /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x` |
733 | /// is finite `x == x.next_up().next_down()` also holds. |
734 | /// |
735 | /// ```rust |
736 | /// // f32::EPSILON is the difference between 1.0 and the next number up. |
737 | /// assert_eq!(1.0f32.next_up(), 1.0 + f32::EPSILON); |
738 | /// // But not for most numbers. |
739 | /// assert!(0.1f32.next_up() < 0.1 + f32::EPSILON); |
740 | /// assert_eq!(16777216f32.next_up(), 16777218.0); |
741 | /// ``` |
742 | /// |
743 | /// This operation corresponds to IEEE-754 `nextUp`. |
744 | /// |
745 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
746 | /// [`INFINITY`]: Self::INFINITY |
747 | /// [`MIN`]: Self::MIN |
748 | /// [`MAX`]: Self::MAX |
749 | #[inline] |
750 | #[doc(alias = "nextUp")] |
751 | #[stable(feature = "float_next_up_down", since = "1.86.0")] |
752 | #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")] |
753 | pub const fn next_up(self) -> Self { |
754 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
755 | // denormals to zero. This is in general unsound and unsupported, but here |
756 | // we do our best to still produce the correct result on such targets. |
757 | let bits = self.to_bits(); |
758 | if self.is_nan() || bits == Self::INFINITY.to_bits() { |
759 | return self; |
760 | } |
761 | |
762 | let abs = bits & !Self::SIGN_MASK; |
763 | let next_bits = if abs == 0 { |
764 | Self::TINY_BITS |
765 | } else if bits == abs { |
766 | bits + 1 |
767 | } else { |
768 | bits - 1 |
769 | }; |
770 | Self::from_bits(next_bits) |
771 | } |
772 | |
773 | /// Returns the greatest number less than `self`. |
774 | /// |
775 | /// Let `TINY` be the smallest representable positive `f32`. Then, |
776 | /// - if `self.is_nan()`, this returns `self`; |
777 | /// - if `self` is [`INFINITY`], this returns [`MAX`]; |
778 | /// - if `self` is `TINY`, this returns 0.0; |
779 | /// - if `self` is -0.0 or +0.0, this returns `-TINY`; |
780 | /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`]; |
781 | /// - otherwise the unique greatest value less than `self` is returned. |
782 | /// |
783 | /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x` |
784 | /// is finite `x == x.next_down().next_up()` also holds. |
785 | /// |
786 | /// ```rust |
787 | /// let x = 1.0f32; |
788 | /// // Clamp value into range [0, 1). |
789 | /// let clamped = x.clamp(0.0, 1.0f32.next_down()); |
790 | /// assert!(clamped < 1.0); |
791 | /// assert_eq!(clamped.next_up(), 1.0); |
792 | /// ``` |
793 | /// |
794 | /// This operation corresponds to IEEE-754 `nextDown`. |
795 | /// |
796 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
797 | /// [`INFINITY`]: Self::INFINITY |
798 | /// [`MIN`]: Self::MIN |
799 | /// [`MAX`]: Self::MAX |
800 | #[inline] |
801 | #[doc(alias = "nextDown")] |
802 | #[stable(feature = "float_next_up_down", since = "1.86.0")] |
803 | #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")] |
804 | pub const fn next_down(self) -> Self { |
805 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
806 | // denormals to zero. This is in general unsound and unsupported, but here |
807 | // we do our best to still produce the correct result on such targets. |
808 | let bits = self.to_bits(); |
809 | if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { |
810 | return self; |
811 | } |
812 | |
813 | let abs = bits & !Self::SIGN_MASK; |
814 | let next_bits = if abs == 0 { |
815 | Self::NEG_TINY_BITS |
816 | } else if bits == abs { |
817 | bits - 1 |
818 | } else { |
819 | bits + 1 |
820 | }; |
821 | Self::from_bits(next_bits) |
822 | } |
823 | |
824 | /// Takes the reciprocal (inverse) of a number, `1/x`. |
825 | /// |
826 | /// ``` |
827 | /// let x = 2.0_f32; |
828 | /// let abs_difference = (x.recip() - (1.0 / x)).abs(); |
829 | /// |
830 | /// assert!(abs_difference <= f32::EPSILON); |
831 | /// ``` |
832 | #[must_use= "this returns the result of the operation, without modifying the original"] |
833 | #[stable(feature = "rust1", since = "1.0.0")] |
834 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
835 | #[inline] |
836 | pub const fn recip(self) -> f32 { |
837 | 1.0 / self |
838 | } |
839 | |
840 | /// Converts radians to degrees. |
841 | /// |
842 | /// ``` |
843 | /// let angle = std::f32::consts::PI; |
844 | /// |
845 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
846 | /// # #[cfg(any(not(target_arch = "x86"), target_feature = "sse2"))] |
847 | /// assert!(abs_difference <= f32::EPSILON); |
848 | /// ``` |
849 | #[must_use= "this returns the result of the operation, \ |
850 | without modifying the original"] |
851 | #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")] |
852 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
853 | #[inline] |
854 | pub const fn to_degrees(self) -> f32 { |
855 | // Use a constant for better precision. |
856 | const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32; |
857 | self * PIS_IN_180 |
858 | } |
859 | |
860 | /// Converts degrees to radians. |
861 | /// |
862 | /// ``` |
863 | /// let angle = 180.0f32; |
864 | /// |
865 | /// let abs_difference = (angle.to_radians() - std::f32::consts::PI).abs(); |
866 | /// |
867 | /// assert!(abs_difference <= f32::EPSILON); |
868 | /// ``` |
869 | #[must_use= "this returns the result of the operation, \ |
870 | without modifying the original"] |
871 | #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")] |
872 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
873 | #[inline] |
874 | pub const fn to_radians(self) -> f32 { |
875 | const RADS_PER_DEG: f32 = consts::PI / 180.0; |
876 | self * RADS_PER_DEG |
877 | } |
878 | |
879 | /// Returns the maximum of the two numbers, ignoring NaN. |
880 | /// |
881 | /// If one of the arguments is NaN, then the other argument is returned. |
882 | /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; |
883 | /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. |
884 | /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal |
885 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
886 | /// |
887 | /// ``` |
888 | /// let x = 1.0f32; |
889 | /// let y = 2.0f32; |
890 | /// |
891 | /// assert_eq!(x.max(y), y); |
892 | /// ``` |
893 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
894 | #[stable(feature = "rust1", since = "1.0.0")] |
895 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
896 | #[inline] |
897 | pub const fn max(self, other: f32) -> f32 { |
898 | intrinsics::maxnumf32(self, other) |
899 | } |
900 | |
901 | /// Returns the minimum of the two numbers, ignoring NaN. |
902 | /// |
903 | /// If one of the arguments is NaN, then the other argument is returned. |
904 | /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; |
905 | /// this function handles all NaNs the same way and avoids minNum's problems with associativity. |
906 | /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal |
907 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
908 | /// |
909 | /// ``` |
910 | /// let x = 1.0f32; |
911 | /// let y = 2.0f32; |
912 | /// |
913 | /// assert_eq!(x.min(y), x); |
914 | /// ``` |
915 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
916 | #[stable(feature = "rust1", since = "1.0.0")] |
917 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
918 | #[inline] |
919 | pub const fn min(self, other: f32) -> f32 { |
920 | intrinsics::minnumf32(self, other) |
921 | } |
922 | |
923 | /// Returns the maximum of the two numbers, propagating NaN. |
924 | /// |
925 | /// This returns NaN when *either* argument is NaN, as opposed to |
926 | /// [`f32::max`] which only returns NaN when *both* arguments are NaN. |
927 | /// |
928 | /// ``` |
929 | /// #![feature(float_minimum_maximum)] |
930 | /// let x = 1.0f32; |
931 | /// let y = 2.0f32; |
932 | /// |
933 | /// assert_eq!(x.maximum(y), y); |
934 | /// assert!(x.maximum(f32::NAN).is_nan()); |
935 | /// ``` |
936 | /// |
937 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater |
938 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
939 | /// Note that this follows the semantics specified in IEEE 754-2019. |
940 | /// |
941 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
942 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
943 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
944 | #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
945 | #[inline] |
946 | pub const fn maximum(self, other: f32) -> f32 { |
947 | intrinsics::maximumf32(self, other) |
948 | } |
949 | |
950 | /// Returns the minimum of the two numbers, propagating NaN. |
951 | /// |
952 | /// This returns NaN when *either* argument is NaN, as opposed to |
953 | /// [`f32::min`] which only returns NaN when *both* arguments are NaN. |
954 | /// |
955 | /// ``` |
956 | /// #![feature(float_minimum_maximum)] |
957 | /// let x = 1.0f32; |
958 | /// let y = 2.0f32; |
959 | /// |
960 | /// assert_eq!(x.minimum(y), x); |
961 | /// assert!(x.minimum(f32::NAN).is_nan()); |
962 | /// ``` |
963 | /// |
964 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser |
965 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
966 | /// Note that this follows the semantics specified in IEEE 754-2019. |
967 | /// |
968 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
969 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
970 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
971 | #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
972 | #[inline] |
973 | pub const fn minimum(self, other: f32) -> f32 { |
974 | intrinsics::minimumf32(self, other) |
975 | } |
976 | |
977 | /// Calculates the midpoint (average) between `self` and `rhs`. |
978 | /// |
979 | /// This returns NaN when *either* argument is NaN or if a combination of |
980 | /// +inf and -inf is provided as arguments. |
981 | /// |
982 | /// # Examples |
983 | /// |
984 | /// ``` |
985 | /// assert_eq!(1f32.midpoint(4.0), 2.5); |
986 | /// assert_eq!((-5.5f32).midpoint(8.0), 1.25); |
987 | /// ``` |
988 | #[inline] |
989 | #[doc(alias = "average")] |
990 | #[stable(feature = "num_midpoint", since = "1.85.0")] |
991 | #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")] |
992 | pub const fn midpoint(self, other: f32) -> f32 { |
993 | cfg_select! { |
994 | // Allow faster implementation that have known good 64-bit float |
995 | // implementations. Falling back to the branchy code on targets that don't |
996 | // have 64-bit hardware floats or buggy implementations. |
997 | // https://github.com/rust-lang/rust/pull/121062#issuecomment-2123408114 |
998 | any( |
999 | target_arch = "x86_64", |
1000 | target_arch = "aarch64", |
1001 | all(any(target_arch = "riscv32", target_arch = "riscv64"), target_feature = "d"), |
1002 | all(target_arch = "loongarch64", target_feature = "d"), |
1003 | all(target_arch = "arm", target_feature = "vfp2"), |
1004 | target_arch = "wasm32", |
1005 | target_arch = "wasm64", |
1006 | ) => { |
1007 | ((self as f64 + other as f64) / 2.0) as f32 |
1008 | } |
1009 | _ => { |
1010 | const LO: f32 = f32::MIN_POSITIVE * 2.; |
1011 | const HI: f32 = f32::MAX / 2.; |
1012 | |
1013 | let (a, b) = (self, other); |
1014 | let abs_a = a.abs(); |
1015 | let abs_b = b.abs(); |
1016 | |
1017 | if abs_a <= HI && abs_b <= HI { |
1018 | // Overflow is impossible |
1019 | (a + b) / 2. |
1020 | } else if abs_a < LO { |
1021 | // Not safe to halve `a` (would underflow) |
1022 | a + (b / 2.) |
1023 | } else if abs_b < LO { |
1024 | // Not safe to halve `b` (would underflow) |
1025 | (a / 2.) + b |
1026 | } else { |
1027 | // Safe to halve `a` and `b` |
1028 | (a / 2.) + (b / 2.) |
1029 | } |
1030 | } |
1031 | } |
1032 | } |
1033 | |
1034 | /// Rounds toward zero and converts to any primitive integer type, |
1035 | /// assuming that the value is finite and fits in that type. |
1036 | /// |
1037 | /// ``` |
1038 | /// let value = 4.6_f32; |
1039 | /// let rounded = unsafe { value.to_int_unchecked::<u16>() }; |
1040 | /// assert_eq!(rounded, 4); |
1041 | /// |
1042 | /// let value = -128.9_f32; |
1043 | /// let rounded = unsafe { value.to_int_unchecked::<i8>() }; |
1044 | /// assert_eq!(rounded, i8::MIN); |
1045 | /// ``` |
1046 | /// |
1047 | /// # Safety |
1048 | /// |
1049 | /// The value must: |
1050 | /// |
1051 | /// * Not be `NaN` |
1052 | /// * Not be infinite |
1053 | /// * Be representable in the return type `Int`, after truncating off its fractional part |
1054 | #[must_use= "this returns the result of the operation, \ |
1055 | without modifying the original"] |
1056 | #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")] |
1057 | #[inline] |
1058 | pub unsafe fn to_int_unchecked<Int>(self) -> Int |
1059 | where |
1060 | Self: FloatToInt<Int>, |
1061 | { |
1062 | // SAFETY: the caller must uphold the safety contract for |
1063 | // `FloatToInt::to_int_unchecked`. |
1064 | unsafe { FloatToInt::<Int>::to_int_unchecked(self) } |
1065 | } |
1066 | |
1067 | /// Raw transmutation to `u32`. |
1068 | /// |
1069 | /// This is currently identical to `transmute::<f32, u32>(self)` on all platforms. |
1070 | /// |
1071 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1072 | /// portability of this operation (there are almost no issues). |
1073 | /// |
1074 | /// Note that this function is distinct from `as` casting, which attempts to |
1075 | /// preserve the *numeric* value, and not the bitwise value. |
1076 | /// |
1077 | /// # Examples |
1078 | /// |
1079 | /// ``` |
1080 | /// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting! |
1081 | /// assert_eq!((12.5f32).to_bits(), 0x41480000); |
1082 | /// |
1083 | /// ``` |
1084 | #[must_use= "this returns the result of the operation, \ |
1085 | without modifying the original"] |
1086 | #[stable(feature = "float_bits_conv", since = "1.20.0")] |
1087 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1088 | #[inline] |
1089 | #[allow(unnecessary_transmutes)] |
1090 | pub const fn to_bits(self) -> u32 { |
1091 | // SAFETY: `u32` is a plain old datatype so we can always transmute to it. |
1092 | unsafe { mem::transmute(self) } |
1093 | } |
1094 | |
1095 | /// Raw transmutation from `u32`. |
1096 | /// |
1097 | /// This is currently identical to `transmute::<u32, f32>(v)` on all platforms. |
1098 | /// It turns out this is incredibly portable, for two reasons: |
1099 | /// |
1100 | /// * Floats and Ints have the same endianness on all supported platforms. |
1101 | /// * IEEE 754 very precisely specifies the bit layout of floats. |
1102 | /// |
1103 | /// However there is one caveat: prior to the 2008 version of IEEE 754, how |
1104 | /// to interpret the NaN signaling bit wasn't actually specified. Most platforms |
1105 | /// (notably x86 and ARM) picked the interpretation that was ultimately |
1106 | /// standardized in 2008, but some didn't (notably MIPS). As a result, all |
1107 | /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. |
1108 | /// |
1109 | /// Rather than trying to preserve signaling-ness cross-platform, this |
1110 | /// implementation favors preserving the exact bits. This means that |
1111 | /// any payloads encoded in NaNs will be preserved even if the result of |
1112 | /// this method is sent over the network from an x86 machine to a MIPS one. |
1113 | /// |
1114 | /// If the results of this method are only manipulated by the same |
1115 | /// architecture that produced them, then there is no portability concern. |
1116 | /// |
1117 | /// If the input isn't NaN, then there is no portability concern. |
1118 | /// |
1119 | /// If you don't care about signalingness (very likely), then there is no |
1120 | /// portability concern. |
1121 | /// |
1122 | /// Note that this function is distinct from `as` casting, which attempts to |
1123 | /// preserve the *numeric* value, and not the bitwise value. |
1124 | /// |
1125 | /// # Examples |
1126 | /// |
1127 | /// ``` |
1128 | /// let v = f32::from_bits(0x41480000); |
1129 | /// assert_eq!(v, 12.5); |
1130 | /// ``` |
1131 | #[stable(feature = "float_bits_conv", since = "1.20.0")] |
1132 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1133 | #[must_use] |
1134 | #[inline] |
1135 | #[allow(unnecessary_transmutes)] |
1136 | pub const fn from_bits(v: u32) -> Self { |
1137 | // It turns out the safety issues with sNaN were overblown! Hooray! |
1138 | // SAFETY: `u32` is a plain old datatype so we can always transmute from it. |
1139 | unsafe { mem::transmute(v) } |
1140 | } |
1141 | |
1142 | /// Returns the memory representation of this floating point number as a byte array in |
1143 | /// big-endian (network) byte order. |
1144 | /// |
1145 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1146 | /// portability of this operation (there are almost no issues). |
1147 | /// |
1148 | /// # Examples |
1149 | /// |
1150 | /// ``` |
1151 | /// let bytes = 12.5f32.to_be_bytes(); |
1152 | /// assert_eq!(bytes, [0x41, 0x48, 0x00, 0x00]); |
1153 | /// ``` |
1154 | #[must_use= "this returns the result of the operation, \ |
1155 | without modifying the original"] |
1156 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1157 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1158 | #[inline] |
1159 | pub const fn to_be_bytes(self) -> [u8; 4] { |
1160 | self.to_bits().to_be_bytes() |
1161 | } |
1162 | |
1163 | /// Returns the memory representation of this floating point number as a byte array in |
1164 | /// little-endian byte order. |
1165 | /// |
1166 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1167 | /// portability of this operation (there are almost no issues). |
1168 | /// |
1169 | /// # Examples |
1170 | /// |
1171 | /// ``` |
1172 | /// let bytes = 12.5f32.to_le_bytes(); |
1173 | /// assert_eq!(bytes, [0x00, 0x00, 0x48, 0x41]); |
1174 | /// ``` |
1175 | #[must_use= "this returns the result of the operation, \ |
1176 | without modifying the original"] |
1177 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1178 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1179 | #[inline] |
1180 | pub const fn to_le_bytes(self) -> [u8; 4] { |
1181 | self.to_bits().to_le_bytes() |
1182 | } |
1183 | |
1184 | /// Returns the memory representation of this floating point number as a byte array in |
1185 | /// native byte order. |
1186 | /// |
1187 | /// As the target platform's native endianness is used, portable code |
1188 | /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. |
1189 | /// |
1190 | /// [`to_be_bytes`]: f32::to_be_bytes |
1191 | /// [`to_le_bytes`]: f32::to_le_bytes |
1192 | /// |
1193 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1194 | /// portability of this operation (there are almost no issues). |
1195 | /// |
1196 | /// # Examples |
1197 | /// |
1198 | /// ``` |
1199 | /// let bytes = 12.5f32.to_ne_bytes(); |
1200 | /// assert_eq!( |
1201 | /// bytes, |
1202 | /// if cfg!(target_endian = "big") { |
1203 | /// [0x41, 0x48, 0x00, 0x00] |
1204 | /// } else { |
1205 | /// [0x00, 0x00, 0x48, 0x41] |
1206 | /// } |
1207 | /// ); |
1208 | /// ``` |
1209 | #[must_use= "this returns the result of the operation, \ |
1210 | without modifying the original"] |
1211 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1212 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1213 | #[inline] |
1214 | pub const fn to_ne_bytes(self) -> [u8; 4] { |
1215 | self.to_bits().to_ne_bytes() |
1216 | } |
1217 | |
1218 | /// Creates a floating point value from its representation as a byte array in big endian. |
1219 | /// |
1220 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1221 | /// portability of this operation (there are almost no issues). |
1222 | /// |
1223 | /// # Examples |
1224 | /// |
1225 | /// ``` |
1226 | /// let value = f32::from_be_bytes([0x41, 0x48, 0x00, 0x00]); |
1227 | /// assert_eq!(value, 12.5); |
1228 | /// ``` |
1229 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1230 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1231 | #[must_use] |
1232 | #[inline] |
1233 | pub const fn from_be_bytes(bytes: [u8; 4]) -> Self { |
1234 | Self::from_bits(u32::from_be_bytes(bytes)) |
1235 | } |
1236 | |
1237 | /// Creates a floating point value from its representation as a byte array in little endian. |
1238 | /// |
1239 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1240 | /// portability of this operation (there are almost no issues). |
1241 | /// |
1242 | /// # Examples |
1243 | /// |
1244 | /// ``` |
1245 | /// let value = f32::from_le_bytes([0x00, 0x00, 0x48, 0x41]); |
1246 | /// assert_eq!(value, 12.5); |
1247 | /// ``` |
1248 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1249 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1250 | #[must_use] |
1251 | #[inline] |
1252 | pub const fn from_le_bytes(bytes: [u8; 4]) -> Self { |
1253 | Self::from_bits(u32::from_le_bytes(bytes)) |
1254 | } |
1255 | |
1256 | /// Creates a floating point value from its representation as a byte array in native endian. |
1257 | /// |
1258 | /// As the target platform's native endianness is used, portable code |
1259 | /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as |
1260 | /// appropriate instead. |
1261 | /// |
1262 | /// [`from_be_bytes`]: f32::from_be_bytes |
1263 | /// [`from_le_bytes`]: f32::from_le_bytes |
1264 | /// |
1265 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1266 | /// portability of this operation (there are almost no issues). |
1267 | /// |
1268 | /// # Examples |
1269 | /// |
1270 | /// ``` |
1271 | /// let value = f32::from_ne_bytes(if cfg!(target_endian = "big") { |
1272 | /// [0x41, 0x48, 0x00, 0x00] |
1273 | /// } else { |
1274 | /// [0x00, 0x00, 0x48, 0x41] |
1275 | /// }); |
1276 | /// assert_eq!(value, 12.5); |
1277 | /// ``` |
1278 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1279 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1280 | #[must_use] |
1281 | #[inline] |
1282 | pub const fn from_ne_bytes(bytes: [u8; 4]) -> Self { |
1283 | Self::from_bits(u32::from_ne_bytes(bytes)) |
1284 | } |
1285 | |
1286 | /// Returns the ordering between `self` and `other`. |
1287 | /// |
1288 | /// Unlike the standard partial comparison between floating point numbers, |
1289 | /// this comparison always produces an ordering in accordance to |
1290 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
1291 | /// floating point standard. The values are ordered in the following sequence: |
1292 | /// |
1293 | /// - negative quiet NaN |
1294 | /// - negative signaling NaN |
1295 | /// - negative infinity |
1296 | /// - negative numbers |
1297 | /// - negative subnormal numbers |
1298 | /// - negative zero |
1299 | /// - positive zero |
1300 | /// - positive subnormal numbers |
1301 | /// - positive numbers |
1302 | /// - positive infinity |
1303 | /// - positive signaling NaN |
1304 | /// - positive quiet NaN. |
1305 | /// |
1306 | /// The ordering established by this function does not always agree with the |
1307 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f32`. For example, |
1308 | /// they consider negative and positive zero equal, while `total_cmp` |
1309 | /// doesn't. |
1310 | /// |
1311 | /// The interpretation of the signaling NaN bit follows the definition in |
1312 | /// the IEEE 754 standard, which may not match the interpretation by some of |
1313 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
1314 | /// |
1315 | /// # Example |
1316 | /// |
1317 | /// ``` |
1318 | /// struct GoodBoy { |
1319 | /// name: String, |
1320 | /// weight: f32, |
1321 | /// } |
1322 | /// |
1323 | /// let mut bois = vec![ |
1324 | /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 }, |
1325 | /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 }, |
1326 | /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 }, |
1327 | /// GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY }, |
1328 | /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN }, |
1329 | /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 }, |
1330 | /// ]; |
1331 | /// |
1332 | /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); |
1333 | /// |
1334 | /// // `f32::NAN` could be positive or negative, which will affect the sort order. |
1335 | /// if f32::NAN.is_sign_negative() { |
1336 | /// assert!(bois.into_iter().map(|b| b.weight) |
1337 | /// .zip([f32::NAN, -5.0, 0.1, 10.0, 99.0, f32::INFINITY].iter()) |
1338 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1339 | /// } else { |
1340 | /// assert!(bois.into_iter().map(|b| b.weight) |
1341 | /// .zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter()) |
1342 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1343 | /// } |
1344 | /// ``` |
1345 | #[stable(feature = "total_cmp", since = "1.62.0")] |
1346 | #[must_use] |
1347 | #[inline] |
1348 | pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { |
1349 | let mut left = self.to_bits() as i32; |
1350 | let mut right = other.to_bits() as i32; |
1351 | |
1352 | // In case of negatives, flip all the bits except the sign |
1353 | // to achieve a similar layout as two's complement integers |
1354 | // |
1355 | // Why does this work? IEEE 754 floats consist of three fields: |
1356 | // Sign bit, exponent and mantissa. The set of exponent and mantissa |
1357 | // fields as a whole have the property that their bitwise order is |
1358 | // equal to the numeric magnitude where the magnitude is defined. |
1359 | // The magnitude is not normally defined on NaN values, but |
1360 | // IEEE 754 totalOrder defines the NaN values also to follow the |
1361 | // bitwise order. This leads to order explained in the doc comment. |
1362 | // However, the representation of magnitude is the same for negative |
1363 | // and positive numbers – only the sign bit is different. |
1364 | // To easily compare the floats as signed integers, we need to |
1365 | // flip the exponent and mantissa bits in case of negative numbers. |
1366 | // We effectively convert the numbers to "two's complement" form. |
1367 | // |
1368 | // To do the flipping, we construct a mask and XOR against it. |
1369 | // We branchlessly calculate an "all-ones except for the sign bit" |
1370 | // mask from negative-signed values: right shifting sign-extends |
1371 | // the integer, so we "fill" the mask with sign bits, and then |
1372 | // convert to unsigned to push one more zero bit. |
1373 | // On positive values, the mask is all zeros, so it's a no-op. |
1374 | left ^= (((left >> 31) as u32) >> 1) as i32; |
1375 | right ^= (((right >> 31) as u32) >> 1) as i32; |
1376 | |
1377 | left.cmp(&right) |
1378 | } |
1379 | |
1380 | /// Restrict a value to a certain interval unless it is NaN. |
1381 | /// |
1382 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is |
1383 | /// less than `min`. Otherwise this returns `self`. |
1384 | /// |
1385 | /// Note that this function returns NaN if the initial value was NaN as |
1386 | /// well. |
1387 | /// |
1388 | /// # Panics |
1389 | /// |
1390 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
1391 | /// |
1392 | /// # Examples |
1393 | /// |
1394 | /// ``` |
1395 | /// assert!((-3.0f32).clamp(-2.0, 1.0) == -2.0); |
1396 | /// assert!((0.0f32).clamp(-2.0, 1.0) == 0.0); |
1397 | /// assert!((2.0f32).clamp(-2.0, 1.0) == 1.0); |
1398 | /// assert!((f32::NAN).clamp(-2.0, 1.0).is_nan()); |
1399 | /// ``` |
1400 | #[must_use= "method returns a new number and does not mutate the original value"] |
1401 | #[stable(feature = "clamp", since = "1.50.0")] |
1402 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1403 | #[inline] |
1404 | pub const fn clamp(mut self, min: f32, max: f32) -> f32 { |
1405 | const_assert!( |
1406 | min <= max, |
1407 | "min > max, or either was NaN", |
1408 | "min > max, or either was NaN. min ={min:?} , max ={max:?} ", |
1409 | min: f32, |
1410 | max: f32, |
1411 | ); |
1412 | |
1413 | if self < min { |
1414 | self = min; |
1415 | } |
1416 | if self > max { |
1417 | self = max; |
1418 | } |
1419 | self |
1420 | } |
1421 | |
1422 | /// Computes the absolute value of `self`. |
1423 | /// |
1424 | /// This function always returns the precise result. |
1425 | /// |
1426 | /// # Examples |
1427 | /// |
1428 | /// ``` |
1429 | /// let x = 3.5_f32; |
1430 | /// let y = -3.5_f32; |
1431 | /// |
1432 | /// assert_eq!(x.abs(), x); |
1433 | /// assert_eq!(y.abs(), -y); |
1434 | /// |
1435 | /// assert!(f32::NAN.abs().is_nan()); |
1436 | /// ``` |
1437 | #[must_use= "method returns a new number and does not mutate the original value"] |
1438 | #[stable(feature = "rust1", since = "1.0.0")] |
1439 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1440 | #[inline] |
1441 | pub const fn abs(self) -> f32 { |
1442 | // SAFETY: this is actually a safe intrinsic |
1443 | unsafe { intrinsics::fabsf32(self) } |
1444 | } |
1445 | |
1446 | /// Returns a number that represents the sign of `self`. |
1447 | /// |
1448 | /// - `1.0` if the number is positive, `+0.0` or `INFINITY` |
1449 | /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` |
1450 | /// - NaN if the number is NaN |
1451 | /// |
1452 | /// # Examples |
1453 | /// |
1454 | /// ``` |
1455 | /// let f = 3.5_f32; |
1456 | /// |
1457 | /// assert_eq!(f.signum(), 1.0); |
1458 | /// assert_eq!(f32::NEG_INFINITY.signum(), -1.0); |
1459 | /// |
1460 | /// assert!(f32::NAN.signum().is_nan()); |
1461 | /// ``` |
1462 | #[must_use= "method returns a new number and does not mutate the original value"] |
1463 | #[stable(feature = "rust1", since = "1.0.0")] |
1464 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1465 | #[inline] |
1466 | pub const fn signum(self) -> f32 { |
1467 | if self.is_nan() { Self::NAN } else { 1.0_f32.copysign(self) } |
1468 | } |
1469 | |
1470 | /// Returns a number composed of the magnitude of `self` and the sign of |
1471 | /// `sign`. |
1472 | /// |
1473 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
1474 | /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is |
1475 | /// returned. |
1476 | /// |
1477 | /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note |
1478 | /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust |
1479 | /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the |
1480 | /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable |
1481 | /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more |
1482 | /// info. |
1483 | /// |
1484 | /// # Examples |
1485 | /// |
1486 | /// ``` |
1487 | /// let f = 3.5_f32; |
1488 | /// |
1489 | /// assert_eq!(f.copysign(0.42), 3.5_f32); |
1490 | /// assert_eq!(f.copysign(-0.42), -3.5_f32); |
1491 | /// assert_eq!((-f).copysign(0.42), 3.5_f32); |
1492 | /// assert_eq!((-f).copysign(-0.42), -3.5_f32); |
1493 | /// |
1494 | /// assert!(f32::NAN.copysign(1.0).is_nan()); |
1495 | /// ``` |
1496 | #[must_use= "method returns a new number and does not mutate the original value"] |
1497 | #[inline] |
1498 | #[stable(feature = "copysign", since = "1.35.0")] |
1499 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1500 | pub const fn copysign(self, sign: f32) -> f32 { |
1501 | // SAFETY: this is actually a safe intrinsic |
1502 | unsafe { intrinsics::copysignf32(self, sign) } |
1503 | } |
1504 | |
1505 | /// Float addition that allows optimizations based on algebraic rules. |
1506 | /// |
1507 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1508 | #[must_use= "method returns a new number and does not mutate the original value"] |
1509 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1510 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1511 | #[inline] |
1512 | pub const fn algebraic_add(self, rhs: f32) -> f32 { |
1513 | intrinsics::fadd_algebraic(self, rhs) |
1514 | } |
1515 | |
1516 | /// Float subtraction that allows optimizations based on algebraic rules. |
1517 | /// |
1518 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1519 | #[must_use= "method returns a new number and does not mutate the original value"] |
1520 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1521 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1522 | #[inline] |
1523 | pub const fn algebraic_sub(self, rhs: f32) -> f32 { |
1524 | intrinsics::fsub_algebraic(self, rhs) |
1525 | } |
1526 | |
1527 | /// Float multiplication that allows optimizations based on algebraic rules. |
1528 | /// |
1529 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1530 | #[must_use= "method returns a new number and does not mutate the original value"] |
1531 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1532 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1533 | #[inline] |
1534 | pub const fn algebraic_mul(self, rhs: f32) -> f32 { |
1535 | intrinsics::fmul_algebraic(self, rhs) |
1536 | } |
1537 | |
1538 | /// Float division that allows optimizations based on algebraic rules. |
1539 | /// |
1540 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1541 | #[must_use= "method returns a new number and does not mutate the original value"] |
1542 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1543 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1544 | #[inline] |
1545 | pub const fn algebraic_div(self, rhs: f32) -> f32 { |
1546 | intrinsics::fdiv_algebraic(self, rhs) |
1547 | } |
1548 | |
1549 | /// Float remainder that allows optimizations based on algebraic rules. |
1550 | /// |
1551 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1552 | #[must_use= "method returns a new number and does not mutate the original value"] |
1553 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1554 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1555 | #[inline] |
1556 | pub const fn algebraic_rem(self, rhs: f32) -> f32 { |
1557 | intrinsics::frem_algebraic(self, rhs) |
1558 | } |
1559 | } |
1560 | |
1561 | /// Experimental implementations of floating point functions in `core`. |
1562 | /// |
1563 | /// _The standalone functions in this module are for testing only. |
1564 | /// They will be stabilized as inherent methods._ |
1565 | #[unstable(feature = "core_float_math", issue = "137578")] |
1566 | pub mod math { |
1567 | use crate::intrinsics; |
1568 | use crate::num::libm; |
1569 | |
1570 | /// Experimental version of `floor` in `core`. See [`f32::floor`] for details. |
1571 | /// |
1572 | /// # Examples |
1573 | /// |
1574 | /// ``` |
1575 | /// #![feature(core_float_math)] |
1576 | /// |
1577 | /// use core::f32; |
1578 | /// |
1579 | /// let f = 3.7_f32; |
1580 | /// let g = 3.0_f32; |
1581 | /// let h = -3.7_f32; |
1582 | /// |
1583 | /// assert_eq!(f32::math::floor(f), 3.0); |
1584 | /// assert_eq!(f32::math::floor(g), 3.0); |
1585 | /// assert_eq!(f32::math::floor(h), -4.0); |
1586 | /// ``` |
1587 | /// |
1588 | /// _This standalone function is for testing only. |
1589 | /// It will be stabilized as an inherent method._ |
1590 | /// |
1591 | /// [`f32::floor`]: ../../../std/primitive.f32.html#method.floor |
1592 | #[inline] |
1593 | #[unstable(feature = "core_float_math", issue = "137578")] |
1594 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1595 | #[must_use= "method returns a new number and does not mutate the original value"] |
1596 | pub const fn floor(x: f32) -> f32 { |
1597 | // SAFETY: intrinsic with no preconditions |
1598 | unsafe { intrinsics::floorf32(x) } |
1599 | } |
1600 | |
1601 | /// Experimental version of `ceil` in `core`. See [`f32::ceil`] for details. |
1602 | /// |
1603 | /// # Examples |
1604 | /// |
1605 | /// ``` |
1606 | /// #![feature(core_float_math)] |
1607 | /// |
1608 | /// use core::f32; |
1609 | /// |
1610 | /// let f = 3.01_f32; |
1611 | /// let g = 4.0_f32; |
1612 | /// |
1613 | /// assert_eq!(f32::math::ceil(f), 4.0); |
1614 | /// assert_eq!(f32::math::ceil(g), 4.0); |
1615 | /// ``` |
1616 | /// |
1617 | /// _This standalone function is for testing only. |
1618 | /// It will be stabilized as an inherent method._ |
1619 | /// |
1620 | /// [`f32::ceil`]: ../../../std/primitive.f32.html#method.ceil |
1621 | #[inline] |
1622 | #[doc(alias = "ceiling")] |
1623 | #[must_use= "method returns a new number and does not mutate the original value"] |
1624 | #[unstable(feature = "core_float_math", issue = "137578")] |
1625 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1626 | pub const fn ceil(x: f32) -> f32 { |
1627 | // SAFETY: intrinsic with no preconditions |
1628 | unsafe { intrinsics::ceilf32(x) } |
1629 | } |
1630 | |
1631 | /// Experimental version of `round` in `core`. See [`f32::round`] for details. |
1632 | /// |
1633 | /// # Examples |
1634 | /// |
1635 | /// ``` |
1636 | /// #![feature(core_float_math)] |
1637 | /// |
1638 | /// use core::f32; |
1639 | /// |
1640 | /// let f = 3.3_f32; |
1641 | /// let g = -3.3_f32; |
1642 | /// let h = -3.7_f32; |
1643 | /// let i = 3.5_f32; |
1644 | /// let j = 4.5_f32; |
1645 | /// |
1646 | /// assert_eq!(f32::math::round(f), 3.0); |
1647 | /// assert_eq!(f32::math::round(g), -3.0); |
1648 | /// assert_eq!(f32::math::round(h), -4.0); |
1649 | /// assert_eq!(f32::math::round(i), 4.0); |
1650 | /// assert_eq!(f32::math::round(j), 5.0); |
1651 | /// ``` |
1652 | /// |
1653 | /// _This standalone function is for testing only. |
1654 | /// It will be stabilized as an inherent method._ |
1655 | /// |
1656 | /// [`f32::round`]: ../../../std/primitive.f32.html#method.round |
1657 | #[inline] |
1658 | #[unstable(feature = "core_float_math", issue = "137578")] |
1659 | #[must_use= "method returns a new number and does not mutate the original value"] |
1660 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1661 | pub const fn round(x: f32) -> f32 { |
1662 | // SAFETY: intrinsic with no preconditions |
1663 | unsafe { intrinsics::roundf32(x) } |
1664 | } |
1665 | |
1666 | /// Experimental version of `round_ties_even` in `core`. See [`f32::round_ties_even`] for |
1667 | /// details. |
1668 | /// |
1669 | /// # Examples |
1670 | /// |
1671 | /// ``` |
1672 | /// #![feature(core_float_math)] |
1673 | /// |
1674 | /// use core::f32; |
1675 | /// |
1676 | /// let f = 3.3_f32; |
1677 | /// let g = -3.3_f32; |
1678 | /// let h = 3.5_f32; |
1679 | /// let i = 4.5_f32; |
1680 | /// |
1681 | /// assert_eq!(f32::math::round_ties_even(f), 3.0); |
1682 | /// assert_eq!(f32::math::round_ties_even(g), -3.0); |
1683 | /// assert_eq!(f32::math::round_ties_even(h), 4.0); |
1684 | /// assert_eq!(f32::math::round_ties_even(i), 4.0); |
1685 | /// ``` |
1686 | /// |
1687 | /// _This standalone function is for testing only. |
1688 | /// It will be stabilized as an inherent method._ |
1689 | /// |
1690 | /// [`f32::round_ties_even`]: ../../../std/primitive.f32.html#method.round_ties_even |
1691 | #[inline] |
1692 | #[unstable(feature = "core_float_math", issue = "137578")] |
1693 | #[must_use= "method returns a new number and does not mutate the original value"] |
1694 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1695 | pub const fn round_ties_even(x: f32) -> f32 { |
1696 | intrinsics::round_ties_even_f32(x) |
1697 | } |
1698 | |
1699 | /// Experimental version of `trunc` in `core`. See [`f32::trunc`] for details. |
1700 | /// |
1701 | /// # Examples |
1702 | /// |
1703 | /// ``` |
1704 | /// #![feature(core_float_math)] |
1705 | /// |
1706 | /// use core::f32; |
1707 | /// |
1708 | /// let f = 3.7_f32; |
1709 | /// let g = 3.0_f32; |
1710 | /// let h = -3.7_f32; |
1711 | /// |
1712 | /// assert_eq!(f32::math::trunc(f), 3.0); |
1713 | /// assert_eq!(f32::math::trunc(g), 3.0); |
1714 | /// assert_eq!(f32::math::trunc(h), -3.0); |
1715 | /// ``` |
1716 | /// |
1717 | /// _This standalone function is for testing only. |
1718 | /// It will be stabilized as an inherent method._ |
1719 | /// |
1720 | /// [`f32::trunc`]: ../../../std/primitive.f32.html#method.trunc |
1721 | #[inline] |
1722 | #[doc(alias = "truncate")] |
1723 | #[must_use= "method returns a new number and does not mutate the original value"] |
1724 | #[unstable(feature = "core_float_math", issue = "137578")] |
1725 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1726 | pub const fn trunc(x: f32) -> f32 { |
1727 | // SAFETY: intrinsic with no preconditions |
1728 | unsafe { intrinsics::truncf32(x) } |
1729 | } |
1730 | |
1731 | /// Experimental version of `fract` in `core`. See [`f32::fract`] for details. |
1732 | /// |
1733 | /// # Examples |
1734 | /// |
1735 | /// ``` |
1736 | /// #![feature(core_float_math)] |
1737 | /// |
1738 | /// use core::f32; |
1739 | /// |
1740 | /// let x = 3.6_f32; |
1741 | /// let y = -3.6_f32; |
1742 | /// let abs_difference_x = (f32::math::fract(x) - 0.6).abs(); |
1743 | /// let abs_difference_y = (f32::math::fract(y) - (-0.6)).abs(); |
1744 | /// |
1745 | /// assert!(abs_difference_x <= f32::EPSILON); |
1746 | /// assert!(abs_difference_y <= f32::EPSILON); |
1747 | /// ``` |
1748 | /// |
1749 | /// _This standalone function is for testing only. |
1750 | /// It will be stabilized as an inherent method._ |
1751 | /// |
1752 | /// [`f32::fract`]: ../../../std/primitive.f32.html#method.fract |
1753 | #[inline] |
1754 | #[unstable(feature = "core_float_math", issue = "137578")] |
1755 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1756 | #[must_use= "method returns a new number and does not mutate the original value"] |
1757 | pub const fn fract(x: f32) -> f32 { |
1758 | x - trunc(x) |
1759 | } |
1760 | |
1761 | /// Experimental version of `mul_add` in `core`. See [`f32::mul_add`] for details. |
1762 | /// |
1763 | /// # Examples |
1764 | /// |
1765 | /// ``` |
1766 | /// #![feature(core_float_math)] |
1767 | /// |
1768 | /// # // FIXME(#140515): mingw has an incorrect fma |
1769 | /// # // https://sourceforge.net/p/mingw-w64/bugs/848/ |
1770 | /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] { |
1771 | /// use core::f32; |
1772 | /// |
1773 | /// let m = 10.0_f32; |
1774 | /// let x = 4.0_f32; |
1775 | /// let b = 60.0_f32; |
1776 | /// |
1777 | /// assert_eq!(f32::math::mul_add(m, x, b), 100.0); |
1778 | /// assert_eq!(m * x + b, 100.0); |
1779 | /// |
1780 | /// let one_plus_eps = 1.0_f32 + f32::EPSILON; |
1781 | /// let one_minus_eps = 1.0_f32 - f32::EPSILON; |
1782 | /// let minus_one = -1.0_f32; |
1783 | /// |
1784 | /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. |
1785 | /// assert_eq!( |
1786 | /// f32::math::mul_add(one_plus_eps, one_minus_eps, minus_one), |
1787 | /// -f32::EPSILON * f32::EPSILON |
1788 | /// ); |
1789 | /// // Different rounding with the non-fused multiply and add. |
1790 | /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); |
1791 | /// # } |
1792 | /// ``` |
1793 | /// |
1794 | /// _This standalone function is for testing only. |
1795 | /// It will be stabilized as an inherent method._ |
1796 | /// |
1797 | /// [`f32::mul_add`]: ../../../std/primitive.f32.html#method.mul_add |
1798 | #[inline] |
1799 | #[doc(alias = "fmaf", alias = "fusedMultiplyAdd")] |
1800 | #[must_use= "method returns a new number and does not mutate the original value"] |
1801 | #[unstable(feature = "core_float_math", issue = "137578")] |
1802 | pub fn mul_add(x: f32, y: f32, z: f32) -> f32 { |
1803 | // SAFETY: intrinsic with no preconditions |
1804 | unsafe { intrinsics::fmaf32(x, y, z) } |
1805 | } |
1806 | |
1807 | /// Experimental version of `div_euclid` in `core`. See [`f32::div_euclid`] for details. |
1808 | /// |
1809 | /// # Examples |
1810 | /// |
1811 | /// ``` |
1812 | /// #![feature(core_float_math)] |
1813 | /// |
1814 | /// use core::f32; |
1815 | /// |
1816 | /// let a: f32 = 7.0; |
1817 | /// let b = 4.0; |
1818 | /// assert_eq!(f32::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0 |
1819 | /// assert_eq!(f32::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0 |
1820 | /// assert_eq!(f32::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0 |
1821 | /// assert_eq!(f32::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0 |
1822 | /// ``` |
1823 | /// |
1824 | /// _This standalone function is for testing only. |
1825 | /// It will be stabilized as an inherent method._ |
1826 | /// |
1827 | /// [`f32::div_euclid`]: ../../../std/primitive.f32.html#method.div_euclid |
1828 | #[inline] |
1829 | #[unstable(feature = "core_float_math", issue = "137578")] |
1830 | #[must_use= "method returns a new number and does not mutate the original value"] |
1831 | pub fn div_euclid(x: f32, rhs: f32) -> f32 { |
1832 | let q = trunc(x / rhs); |
1833 | if x % rhs < 0.0 { |
1834 | return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; |
1835 | } |
1836 | q |
1837 | } |
1838 | |
1839 | /// Experimental version of `rem_euclid` in `core`. See [`f32::rem_euclid`] for details. |
1840 | /// |
1841 | /// # Examples |
1842 | /// |
1843 | /// ``` |
1844 | /// #![feature(core_float_math)] |
1845 | /// |
1846 | /// use core::f32; |
1847 | /// |
1848 | /// let a: f32 = 7.0; |
1849 | /// let b = 4.0; |
1850 | /// assert_eq!(f32::math::rem_euclid(a, b), 3.0); |
1851 | /// assert_eq!(f32::math::rem_euclid(-a, b), 1.0); |
1852 | /// assert_eq!(f32::math::rem_euclid(a, -b), 3.0); |
1853 | /// assert_eq!(f32::math::rem_euclid(-a, -b), 1.0); |
1854 | /// // limitation due to round-off error |
1855 | /// assert!(f32::math::rem_euclid(-f32::EPSILON, 3.0) != 0.0); |
1856 | /// ``` |
1857 | /// |
1858 | /// _This standalone function is for testing only. |
1859 | /// It will be stabilized as an inherent method._ |
1860 | /// |
1861 | /// [`f32::rem_euclid`]: ../../../std/primitive.f32.html#method.rem_euclid |
1862 | #[inline] |
1863 | #[doc(alias = "modulo", alias = "mod")] |
1864 | #[unstable(feature = "core_float_math", issue = "137578")] |
1865 | #[must_use= "method returns a new number and does not mutate the original value"] |
1866 | pub fn rem_euclid(x: f32, rhs: f32) -> f32 { |
1867 | let r = x % rhs; |
1868 | if r < 0.0 { r + rhs.abs() } else { r } |
1869 | } |
1870 | |
1871 | /// Experimental version of `powi` in `core`. See [`f32::powi`] for details. |
1872 | /// |
1873 | /// # Examples |
1874 | /// |
1875 | /// ``` |
1876 | /// #![feature(core_float_math)] |
1877 | /// |
1878 | /// use core::f32; |
1879 | /// |
1880 | /// let x = 2.0_f32; |
1881 | /// let abs_difference = (f32::math::powi(x, 2) - (x * x)).abs(); |
1882 | /// assert!(abs_difference <= 1e-5); |
1883 | /// |
1884 | /// assert_eq!(f32::math::powi(f32::NAN, 0), 1.0); |
1885 | /// ``` |
1886 | /// |
1887 | /// _This standalone function is for testing only. |
1888 | /// It will be stabilized as an inherent method._ |
1889 | /// |
1890 | /// [`f32::powi`]: ../../../std/primitive.f32.html#method.powi |
1891 | #[inline] |
1892 | #[must_use= "method returns a new number and does not mutate the original value"] |
1893 | #[unstable(feature = "core_float_math", issue = "137578")] |
1894 | pub fn powi(x: f32, n: i32) -> f32 { |
1895 | // SAFETY: intrinsic with no preconditions |
1896 | unsafe { intrinsics::powif32(x, n) } |
1897 | } |
1898 | |
1899 | /// Experimental version of `sqrt` in `core`. See [`f32::sqrt`] for details. |
1900 | /// |
1901 | /// # Examples |
1902 | /// |
1903 | /// ``` |
1904 | /// #![feature(core_float_math)] |
1905 | /// |
1906 | /// use core::f32; |
1907 | /// |
1908 | /// let positive = 4.0_f32; |
1909 | /// let negative = -4.0_f32; |
1910 | /// let negative_zero = -0.0_f32; |
1911 | /// |
1912 | /// assert_eq!(f32::math::sqrt(positive), 2.0); |
1913 | /// assert!(f32::math::sqrt(negative).is_nan()); |
1914 | /// assert_eq!(f32::math::sqrt(negative_zero), negative_zero); |
1915 | /// ``` |
1916 | /// |
1917 | /// _This standalone function is for testing only. |
1918 | /// It will be stabilized as an inherent method._ |
1919 | /// |
1920 | /// [`f32::sqrt`]: ../../../std/primitive.f32.html#method.sqrt |
1921 | #[inline] |
1922 | #[doc(alias = "squareRoot")] |
1923 | #[unstable(feature = "core_float_math", issue = "137578")] |
1924 | #[must_use= "method returns a new number and does not mutate the original value"] |
1925 | pub fn sqrt(x: f32) -> f32 { |
1926 | // SAFETY: intrinsic with no preconditions |
1927 | unsafe { intrinsics::sqrtf32(x) } |
1928 | } |
1929 | |
1930 | /// Experimental version of `abs_sub` in `core`. See [`f32::abs_sub`] for details. |
1931 | /// |
1932 | /// # Examples |
1933 | /// |
1934 | /// ``` |
1935 | /// #![feature(core_float_math)] |
1936 | /// |
1937 | /// use core::f32; |
1938 | /// |
1939 | /// let x = 3.0f32; |
1940 | /// let y = -3.0f32; |
1941 | /// |
1942 | /// let abs_difference_x = (f32::math::abs_sub(x, 1.0) - 2.0).abs(); |
1943 | /// let abs_difference_y = (f32::math::abs_sub(y, 1.0) - 0.0).abs(); |
1944 | /// |
1945 | /// assert!(abs_difference_x <= f32::EPSILON); |
1946 | /// assert!(abs_difference_y <= f32::EPSILON); |
1947 | /// ``` |
1948 | /// |
1949 | /// _This standalone function is for testing only. |
1950 | /// It will be stabilized as an inherent method._ |
1951 | /// |
1952 | /// [`f32::abs_sub`]: ../../../std/primitive.f32.html#method.abs_sub |
1953 | #[inline] |
1954 | #[stable(feature = "rust1", since = "1.0.0")] |
1955 | #[deprecated( |
1956 | since = "1.10.0", |
1957 | note = "you probably meant `(self - other).abs()`: \ |
1958 | this operation is `(self - other).max(0.0)` \ |
1959 | except that `abs_sub` also propagates NaNs (also \ |
1960 | known as `fdimf` in C). If you truly need the positive \ |
1961 | difference, consider using that expression or the C function \ |
1962 | `fdimf`, depending on how you wish to handle NaN (please consider \ |
1963 | filing an issue describing your use-case too)." |
1964 | )] |
1965 | #[must_use= "method returns a new number and does not mutate the original value"] |
1966 | pub fn abs_sub(x: f32, other: f32) -> f32 { |
1967 | libm::fdimf(x, other) |
1968 | } |
1969 | |
1970 | /// Experimental version of `cbrt` in `core`. See [`f32::cbrt`] for details. |
1971 | /// |
1972 | /// # Unspecified precision |
1973 | /// |
1974 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
1975 | /// can even differ within the same execution from one invocation to the next. |
1976 | /// This function currently corresponds to the `cbrtf` from libc on Unix |
1977 | /// and Windows. Note that this might change in the future. |
1978 | /// |
1979 | /// # Examples |
1980 | /// |
1981 | /// ``` |
1982 | /// #![feature(core_float_math)] |
1983 | /// |
1984 | /// use core::f32; |
1985 | /// |
1986 | /// let x = 8.0f32; |
1987 | /// |
1988 | /// // x^(1/3) - 2 == 0 |
1989 | /// let abs_difference = (f32::math::cbrt(x) - 2.0).abs(); |
1990 | /// |
1991 | /// assert!(abs_difference <= f32::EPSILON); |
1992 | /// ``` |
1993 | /// |
1994 | /// _This standalone function is for testing only. |
1995 | /// It will be stabilized as an inherent method._ |
1996 | /// |
1997 | /// [`f32::cbrt`]: ../../../std/primitive.f32.html#method.cbrt |
1998 | #[inline] |
1999 | #[must_use= "method returns a new number and does not mutate the original value"] |
2000 | #[unstable(feature = "core_float_math", issue = "137578")] |
2001 | pub fn cbrt(x: f32) -> f32 { |
2002 | libm::cbrtf(x) |
2003 | } |
2004 | } |
2005 |
Definitions
- is_nan
- is_infinite
- is_finite
- is_subnormal
- is_normal
- classify
- is_sign_positive
- is_sign_negative
- next_up
- next_down
- recip
- to_degrees
- to_radians
- max
- min
- maximum
- minimum
- midpoint
- to_int_unchecked
- to_bits
- from_bits
- to_be_bytes
- to_le_bytes
- to_ne_bytes
- from_be_bytes
- from_le_bytes
- from_ne_bytes
- total_cmp
- clamp
- abs
- signum
- copysign
- algebraic_add
- algebraic_sub
- algebraic_mul
- algebraic_div
- algebraic_rem
- floor
- ceil
- round
- round_ties_even
- trunc
- fract
- mul_add
- div_euclid
- rem_euclid
- powi
- sqrt
- abs_sub
Learn Rust with the experts
Find out more