1 | //! Constants for the `f64` double-precision floating point type. |
---|---|
2 | //! |
3 | //! *[See also the `f64` primitive type][f64].* |
4 | //! |
5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
6 | //! |
7 | //! For the constants defined directly in this module |
8 | //! (as distinct from those defined in the `consts` sub-module), |
9 | //! new code should instead use the associated constants |
10 | //! defined directly on the `f64` type. |
11 | |
12 | #![stable(feature = "rust1", since = "1.0.0")] |
13 | |
14 | use crate::convert::FloatToInt; |
15 | use crate::num::FpCategory; |
16 | use crate::panic::const_assert; |
17 | use crate::{intrinsics, mem}; |
18 | |
19 | /// The radix or base of the internal representation of `f64`. |
20 | /// Use [`f64::RADIX`] instead. |
21 | /// |
22 | /// # Examples |
23 | /// |
24 | /// ```rust |
25 | /// // deprecated way |
26 | /// # #[allow(deprecated, deprecated_in_future)] |
27 | /// let r = std::f64::RADIX; |
28 | /// |
29 | /// // intended way |
30 | /// let r = f64::RADIX; |
31 | /// ``` |
32 | #[stable(feature = "rust1", since = "1.0.0")] |
33 | #[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")] |
34 | #[rustc_diagnostic_item= "f64_legacy_const_radix"] |
35 | pub const RADIX: u32 = f64::RADIX; |
36 | |
37 | /// Number of significant digits in base 2. |
38 | /// Use [`f64::MANTISSA_DIGITS`] instead. |
39 | /// |
40 | /// # Examples |
41 | /// |
42 | /// ```rust |
43 | /// // deprecated way |
44 | /// # #[allow(deprecated, deprecated_in_future)] |
45 | /// let d = std::f64::MANTISSA_DIGITS; |
46 | /// |
47 | /// // intended way |
48 | /// let d = f64::MANTISSA_DIGITS; |
49 | /// ``` |
50 | #[stable(feature = "rust1", since = "1.0.0")] |
51 | #[deprecated( |
52 | since = "TBD", |
53 | note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`" |
54 | )] |
55 | #[rustc_diagnostic_item= "f64_legacy_const_mantissa_dig"] |
56 | pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS; |
57 | |
58 | /// Approximate number of significant digits in base 10. |
59 | /// Use [`f64::DIGITS`] instead. |
60 | /// |
61 | /// # Examples |
62 | /// |
63 | /// ```rust |
64 | /// // deprecated way |
65 | /// # #[allow(deprecated, deprecated_in_future)] |
66 | /// let d = std::f64::DIGITS; |
67 | /// |
68 | /// // intended way |
69 | /// let d = f64::DIGITS; |
70 | /// ``` |
71 | #[stable(feature = "rust1", since = "1.0.0")] |
72 | #[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")] |
73 | #[rustc_diagnostic_item= "f64_legacy_const_digits"] |
74 | pub const DIGITS: u32 = f64::DIGITS; |
75 | |
76 | /// [Machine epsilon] value for `f64`. |
77 | /// Use [`f64::EPSILON`] instead. |
78 | /// |
79 | /// This is the difference between `1.0` and the next larger representable number. |
80 | /// |
81 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
82 | /// |
83 | /// # Examples |
84 | /// |
85 | /// ```rust |
86 | /// // deprecated way |
87 | /// # #[allow(deprecated, deprecated_in_future)] |
88 | /// let e = std::f64::EPSILON; |
89 | /// |
90 | /// // intended way |
91 | /// let e = f64::EPSILON; |
92 | /// ``` |
93 | #[stable(feature = "rust1", since = "1.0.0")] |
94 | #[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")] |
95 | #[rustc_diagnostic_item= "f64_legacy_const_epsilon"] |
96 | pub const EPSILON: f64 = f64::EPSILON; |
97 | |
98 | /// Smallest finite `f64` value. |
99 | /// Use [`f64::MIN`] instead. |
100 | /// |
101 | /// # Examples |
102 | /// |
103 | /// ```rust |
104 | /// // deprecated way |
105 | /// # #[allow(deprecated, deprecated_in_future)] |
106 | /// let min = std::f64::MIN; |
107 | /// |
108 | /// // intended way |
109 | /// let min = f64::MIN; |
110 | /// ``` |
111 | #[stable(feature = "rust1", since = "1.0.0")] |
112 | #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")] |
113 | #[rustc_diagnostic_item= "f64_legacy_const_min"] |
114 | pub const MIN: f64 = f64::MIN; |
115 | |
116 | /// Smallest positive normal `f64` value. |
117 | /// Use [`f64::MIN_POSITIVE`] instead. |
118 | /// |
119 | /// # Examples |
120 | /// |
121 | /// ```rust |
122 | /// // deprecated way |
123 | /// # #[allow(deprecated, deprecated_in_future)] |
124 | /// let min = std::f64::MIN_POSITIVE; |
125 | /// |
126 | /// // intended way |
127 | /// let min = f64::MIN_POSITIVE; |
128 | /// ``` |
129 | #[stable(feature = "rust1", since = "1.0.0")] |
130 | #[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")] |
131 | #[rustc_diagnostic_item= "f64_legacy_const_min_positive"] |
132 | pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE; |
133 | |
134 | /// Largest finite `f64` value. |
135 | /// Use [`f64::MAX`] instead. |
136 | /// |
137 | /// # Examples |
138 | /// |
139 | /// ```rust |
140 | /// // deprecated way |
141 | /// # #[allow(deprecated, deprecated_in_future)] |
142 | /// let max = std::f64::MAX; |
143 | /// |
144 | /// // intended way |
145 | /// let max = f64::MAX; |
146 | /// ``` |
147 | #[stable(feature = "rust1", since = "1.0.0")] |
148 | #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")] |
149 | #[rustc_diagnostic_item= "f64_legacy_const_max"] |
150 | pub const MAX: f64 = f64::MAX; |
151 | |
152 | /// One greater than the minimum possible normal power of 2 exponent. |
153 | /// Use [`f64::MIN_EXP`] instead. |
154 | /// |
155 | /// # Examples |
156 | /// |
157 | /// ```rust |
158 | /// // deprecated way |
159 | /// # #[allow(deprecated, deprecated_in_future)] |
160 | /// let min = std::f64::MIN_EXP; |
161 | /// |
162 | /// // intended way |
163 | /// let min = f64::MIN_EXP; |
164 | /// ``` |
165 | #[stable(feature = "rust1", since = "1.0.0")] |
166 | #[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")] |
167 | #[rustc_diagnostic_item= "f64_legacy_const_min_exp"] |
168 | pub const MIN_EXP: i32 = f64::MIN_EXP; |
169 | |
170 | /// Maximum possible power of 2 exponent. |
171 | /// Use [`f64::MAX_EXP`] instead. |
172 | /// |
173 | /// # Examples |
174 | /// |
175 | /// ```rust |
176 | /// // deprecated way |
177 | /// # #[allow(deprecated, deprecated_in_future)] |
178 | /// let max = std::f64::MAX_EXP; |
179 | /// |
180 | /// // intended way |
181 | /// let max = f64::MAX_EXP; |
182 | /// ``` |
183 | #[stable(feature = "rust1", since = "1.0.0")] |
184 | #[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")] |
185 | #[rustc_diagnostic_item= "f64_legacy_const_max_exp"] |
186 | pub const MAX_EXP: i32 = f64::MAX_EXP; |
187 | |
188 | /// Minimum possible normal power of 10 exponent. |
189 | /// Use [`f64::MIN_10_EXP`] instead. |
190 | /// |
191 | /// # Examples |
192 | /// |
193 | /// ```rust |
194 | /// // deprecated way |
195 | /// # #[allow(deprecated, deprecated_in_future)] |
196 | /// let min = std::f64::MIN_10_EXP; |
197 | /// |
198 | /// // intended way |
199 | /// let min = f64::MIN_10_EXP; |
200 | /// ``` |
201 | #[stable(feature = "rust1", since = "1.0.0")] |
202 | #[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")] |
203 | #[rustc_diagnostic_item= "f64_legacy_const_min_10_exp"] |
204 | pub const MIN_10_EXP: i32 = f64::MIN_10_EXP; |
205 | |
206 | /// Maximum possible power of 10 exponent. |
207 | /// Use [`f64::MAX_10_EXP`] instead. |
208 | /// |
209 | /// # Examples |
210 | /// |
211 | /// ```rust |
212 | /// // deprecated way |
213 | /// # #[allow(deprecated, deprecated_in_future)] |
214 | /// let max = std::f64::MAX_10_EXP; |
215 | /// |
216 | /// // intended way |
217 | /// let max = f64::MAX_10_EXP; |
218 | /// ``` |
219 | #[stable(feature = "rust1", since = "1.0.0")] |
220 | #[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")] |
221 | #[rustc_diagnostic_item= "f64_legacy_const_max_10_exp"] |
222 | pub const MAX_10_EXP: i32 = f64::MAX_10_EXP; |
223 | |
224 | /// Not a Number (NaN). |
225 | /// Use [`f64::NAN`] instead. |
226 | /// |
227 | /// # Examples |
228 | /// |
229 | /// ```rust |
230 | /// // deprecated way |
231 | /// # #[allow(deprecated, deprecated_in_future)] |
232 | /// let nan = std::f64::NAN; |
233 | /// |
234 | /// // intended way |
235 | /// let nan = f64::NAN; |
236 | /// ``` |
237 | #[stable(feature = "rust1", since = "1.0.0")] |
238 | #[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")] |
239 | #[rustc_diagnostic_item= "f64_legacy_const_nan"] |
240 | pub const NAN: f64 = f64::NAN; |
241 | |
242 | /// Infinity (∞). |
243 | /// Use [`f64::INFINITY`] instead. |
244 | /// |
245 | /// # Examples |
246 | /// |
247 | /// ```rust |
248 | /// // deprecated way |
249 | /// # #[allow(deprecated, deprecated_in_future)] |
250 | /// let inf = std::f64::INFINITY; |
251 | /// |
252 | /// // intended way |
253 | /// let inf = f64::INFINITY; |
254 | /// ``` |
255 | #[stable(feature = "rust1", since = "1.0.0")] |
256 | #[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")] |
257 | #[rustc_diagnostic_item= "f64_legacy_const_infinity"] |
258 | pub const INFINITY: f64 = f64::INFINITY; |
259 | |
260 | /// Negative infinity (−∞). |
261 | /// Use [`f64::NEG_INFINITY`] instead. |
262 | /// |
263 | /// # Examples |
264 | /// |
265 | /// ```rust |
266 | /// // deprecated way |
267 | /// # #[allow(deprecated, deprecated_in_future)] |
268 | /// let ninf = std::f64::NEG_INFINITY; |
269 | /// |
270 | /// // intended way |
271 | /// let ninf = f64::NEG_INFINITY; |
272 | /// ``` |
273 | #[stable(feature = "rust1", since = "1.0.0")] |
274 | #[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")] |
275 | #[rustc_diagnostic_item= "f64_legacy_const_neg_infinity"] |
276 | pub const NEG_INFINITY: f64 = f64::NEG_INFINITY; |
277 | |
278 | /// Basic mathematical constants. |
279 | #[stable(feature = "rust1", since = "1.0.0")] |
280 | pub mod consts { |
281 | // FIXME: replace with mathematical constants from cmath. |
282 | |
283 | /// Archimedes' constant (π) |
284 | #[stable(feature = "rust1", since = "1.0.0")] |
285 | pub const PI: f64 = 3.14159265358979323846264338327950288_f64; |
286 | |
287 | /// The full circle constant (τ) |
288 | /// |
289 | /// Equal to 2π. |
290 | #[stable(feature = "tau_constant", since = "1.47.0")] |
291 | pub const TAU: f64 = 6.28318530717958647692528676655900577_f64; |
292 | |
293 | /// The golden ratio (φ) |
294 | #[unstable(feature = "more_float_constants", issue = "103883")] |
295 | pub const PHI: f64 = 1.618033988749894848204586834365638118_f64; |
296 | |
297 | /// The Euler-Mascheroni constant (γ) |
298 | #[unstable(feature = "more_float_constants", issue = "103883")] |
299 | pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64; |
300 | |
301 | /// π/2 |
302 | #[stable(feature = "rust1", since = "1.0.0")] |
303 | pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64; |
304 | |
305 | /// π/3 |
306 | #[stable(feature = "rust1", since = "1.0.0")] |
307 | pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64; |
308 | |
309 | /// π/4 |
310 | #[stable(feature = "rust1", since = "1.0.0")] |
311 | pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64; |
312 | |
313 | /// π/6 |
314 | #[stable(feature = "rust1", since = "1.0.0")] |
315 | pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64; |
316 | |
317 | /// π/8 |
318 | #[stable(feature = "rust1", since = "1.0.0")] |
319 | pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64; |
320 | |
321 | /// 1/π |
322 | #[stable(feature = "rust1", since = "1.0.0")] |
323 | pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64; |
324 | |
325 | /// 1/sqrt(π) |
326 | #[unstable(feature = "more_float_constants", issue = "103883")] |
327 | pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64; |
328 | |
329 | /// 1/sqrt(2π) |
330 | #[doc(alias = "FRAC_1_SQRT_TAU")] |
331 | #[unstable(feature = "more_float_constants", issue = "103883")] |
332 | pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64; |
333 | |
334 | /// 2/π |
335 | #[stable(feature = "rust1", since = "1.0.0")] |
336 | pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64; |
337 | |
338 | /// 2/sqrt(π) |
339 | #[stable(feature = "rust1", since = "1.0.0")] |
340 | pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64; |
341 | |
342 | /// sqrt(2) |
343 | #[stable(feature = "rust1", since = "1.0.0")] |
344 | pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64; |
345 | |
346 | /// 1/sqrt(2) |
347 | #[stable(feature = "rust1", since = "1.0.0")] |
348 | pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64; |
349 | |
350 | /// sqrt(3) |
351 | #[unstable(feature = "more_float_constants", issue = "103883")] |
352 | pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64; |
353 | |
354 | /// 1/sqrt(3) |
355 | #[unstable(feature = "more_float_constants", issue = "103883")] |
356 | pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64; |
357 | |
358 | /// Euler's number (e) |
359 | #[stable(feature = "rust1", since = "1.0.0")] |
360 | pub const E: f64 = 2.71828182845904523536028747135266250_f64; |
361 | |
362 | /// log<sub>2</sub>(10) |
363 | #[stable(feature = "extra_log_consts", since = "1.43.0")] |
364 | pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64; |
365 | |
366 | /// log<sub>2</sub>(e) |
367 | #[stable(feature = "rust1", since = "1.0.0")] |
368 | pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64; |
369 | |
370 | /// log<sub>10</sub>(2) |
371 | #[stable(feature = "extra_log_consts", since = "1.43.0")] |
372 | pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64; |
373 | |
374 | /// log<sub>10</sub>(e) |
375 | #[stable(feature = "rust1", since = "1.0.0")] |
376 | pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64; |
377 | |
378 | /// ln(2) |
379 | #[stable(feature = "rust1", since = "1.0.0")] |
380 | pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64; |
381 | |
382 | /// ln(10) |
383 | #[stable(feature = "rust1", since = "1.0.0")] |
384 | pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64; |
385 | } |
386 | |
387 | impl f64 { |
388 | /// The radix or base of the internal representation of `f64`. |
389 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
390 | pub const RADIX: u32 = 2; |
391 | |
392 | /// Number of significant digits in base 2. |
393 | /// |
394 | /// Note that the size of the mantissa in the bitwise representation is one |
395 | /// smaller than this since the leading 1 is not stored explicitly. |
396 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
397 | pub const MANTISSA_DIGITS: u32 = 53; |
398 | /// Approximate number of significant digits in base 10. |
399 | /// |
400 | /// This is the maximum <i>x</i> such that any decimal number with <i>x</i> |
401 | /// significant digits can be converted to `f64` and back without loss. |
402 | /// |
403 | /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>). |
404 | /// |
405 | /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS |
406 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
407 | pub const DIGITS: u32 = 15; |
408 | |
409 | /// [Machine epsilon] value for `f64`. |
410 | /// |
411 | /// This is the difference between `1.0` and the next larger representable number. |
412 | /// |
413 | /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>. |
414 | /// |
415 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
416 | /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS |
417 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
418 | #[rustc_diagnostic_item= "f64_epsilon"] |
419 | pub const EPSILON: f64 = 2.2204460492503131e-16_f64; |
420 | |
421 | /// Smallest finite `f64` value. |
422 | /// |
423 | /// Equal to −[`MAX`]. |
424 | /// |
425 | /// [`MAX`]: f64::MAX |
426 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
427 | pub const MIN: f64 = -1.7976931348623157e+308_f64; |
428 | /// Smallest positive normal `f64` value. |
429 | /// |
430 | /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>. |
431 | /// |
432 | /// [`MIN_EXP`]: f64::MIN_EXP |
433 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
434 | pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64; |
435 | /// Largest finite `f64` value. |
436 | /// |
437 | /// Equal to |
438 | /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>. |
439 | /// |
440 | /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS |
441 | /// [`MAX_EXP`]: f64::MAX_EXP |
442 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
443 | pub const MAX: f64 = 1.7976931348623157e+308_f64; |
444 | |
445 | /// One greater than the minimum possible *normal* power of 2 exponent |
446 | /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition). |
447 | /// |
448 | /// This corresponds to the exact minimum possible *normal* power of 2 exponent |
449 | /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition). |
450 | /// In other words, all normal numbers representable by this type are |
451 | /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>. |
452 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
453 | pub const MIN_EXP: i32 = -1021; |
454 | /// One greater than the maximum possible power of 2 exponent |
455 | /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition). |
456 | /// |
457 | /// This corresponds to the exact maximum possible power of 2 exponent |
458 | /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition). |
459 | /// In other words, all numbers representable by this type are |
460 | /// strictly less than 2<sup><i>MAX_EXP</i></sup>. |
461 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
462 | pub const MAX_EXP: i32 = 1024; |
463 | |
464 | /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
465 | /// |
466 | /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]). |
467 | /// |
468 | /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE |
469 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
470 | pub const MIN_10_EXP: i32 = -307; |
471 | /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal. |
472 | /// |
473 | /// Equal to floor(log<sub>10</sub> [`MAX`]). |
474 | /// |
475 | /// [`MAX`]: f64::MAX |
476 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
477 | pub const MAX_10_EXP: i32 = 308; |
478 | |
479 | /// Not a Number (NaN). |
480 | /// |
481 | /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are |
482 | /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and |
483 | /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern) |
484 | /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more |
485 | /// info. |
486 | /// |
487 | /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions |
488 | /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is |
489 | /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary. |
490 | /// The concrete bit pattern may change across Rust versions and target platforms. |
491 | #[rustc_diagnostic_item= "f64_nan"] |
492 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
493 | #[allow(clippy::eq_op)] |
494 | pub const NAN: f64 = 0.0_f64 / 0.0_f64; |
495 | /// Infinity (∞). |
496 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
497 | pub const INFINITY: f64 = 1.0_f64 / 0.0_f64; |
498 | /// Negative infinity (−∞). |
499 | #[stable(feature = "assoc_int_consts", since = "1.43.0")] |
500 | pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64; |
501 | |
502 | /// Sign bit |
503 | pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000; |
504 | |
505 | /// Exponent mask |
506 | pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000; |
507 | |
508 | /// Mantissa mask |
509 | pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff; |
510 | |
511 | /// Minimum representable positive value (min subnormal) |
512 | const TINY_BITS: u64 = 0x1; |
513 | |
514 | /// Minimum representable negative value (min negative subnormal) |
515 | const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK; |
516 | |
517 | /// Returns `true` if this value is NaN. |
518 | /// |
519 | /// ``` |
520 | /// let nan = f64::NAN; |
521 | /// let f = 7.0_f64; |
522 | /// |
523 | /// assert!(nan.is_nan()); |
524 | /// assert!(!f.is_nan()); |
525 | /// ``` |
526 | #[must_use] |
527 | #[stable(feature = "rust1", since = "1.0.0")] |
528 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
529 | #[inline] |
530 | #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :) |
531 | pub const fn is_nan(self) -> bool { |
532 | self != self |
533 | } |
534 | |
535 | /// Returns `true` if this value is positive infinity or negative infinity, and |
536 | /// `false` otherwise. |
537 | /// |
538 | /// ``` |
539 | /// let f = 7.0f64; |
540 | /// let inf = f64::INFINITY; |
541 | /// let neg_inf = f64::NEG_INFINITY; |
542 | /// let nan = f64::NAN; |
543 | /// |
544 | /// assert!(!f.is_infinite()); |
545 | /// assert!(!nan.is_infinite()); |
546 | /// |
547 | /// assert!(inf.is_infinite()); |
548 | /// assert!(neg_inf.is_infinite()); |
549 | /// ``` |
550 | #[must_use] |
551 | #[stable(feature = "rust1", since = "1.0.0")] |
552 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
553 | #[inline] |
554 | pub const fn is_infinite(self) -> bool { |
555 | // Getting clever with transmutation can result in incorrect answers on some FPUs |
556 | // FIXME: alter the Rust <-> Rust calling convention to prevent this problem. |
557 | // See https://github.com/rust-lang/rust/issues/72327 |
558 | (self == f64::INFINITY) | (self == f64::NEG_INFINITY) |
559 | } |
560 | |
561 | /// Returns `true` if this number is neither infinite nor NaN. |
562 | /// |
563 | /// ``` |
564 | /// let f = 7.0f64; |
565 | /// let inf: f64 = f64::INFINITY; |
566 | /// let neg_inf: f64 = f64::NEG_INFINITY; |
567 | /// let nan: f64 = f64::NAN; |
568 | /// |
569 | /// assert!(f.is_finite()); |
570 | /// |
571 | /// assert!(!nan.is_finite()); |
572 | /// assert!(!inf.is_finite()); |
573 | /// assert!(!neg_inf.is_finite()); |
574 | /// ``` |
575 | #[must_use] |
576 | #[stable(feature = "rust1", since = "1.0.0")] |
577 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
578 | #[inline] |
579 | pub const fn is_finite(self) -> bool { |
580 | // There's no need to handle NaN separately: if self is NaN, |
581 | // the comparison is not true, exactly as desired. |
582 | self.abs() < Self::INFINITY |
583 | } |
584 | |
585 | /// Returns `true` if the number is [subnormal]. |
586 | /// |
587 | /// ``` |
588 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
589 | /// let max = f64::MAX; |
590 | /// let lower_than_min = 1.0e-308_f64; |
591 | /// let zero = 0.0_f64; |
592 | /// |
593 | /// assert!(!min.is_subnormal()); |
594 | /// assert!(!max.is_subnormal()); |
595 | /// |
596 | /// assert!(!zero.is_subnormal()); |
597 | /// assert!(!f64::NAN.is_subnormal()); |
598 | /// assert!(!f64::INFINITY.is_subnormal()); |
599 | /// // Values between `0` and `min` are Subnormal. |
600 | /// assert!(lower_than_min.is_subnormal()); |
601 | /// ``` |
602 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
603 | #[must_use] |
604 | #[stable(feature = "is_subnormal", since = "1.53.0")] |
605 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
606 | #[inline] |
607 | pub const fn is_subnormal(self) -> bool { |
608 | matches!(self.classify(), FpCategory::Subnormal) |
609 | } |
610 | |
611 | /// Returns `true` if the number is neither zero, infinite, |
612 | /// [subnormal], or NaN. |
613 | /// |
614 | /// ``` |
615 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 |
616 | /// let max = f64::MAX; |
617 | /// let lower_than_min = 1.0e-308_f64; |
618 | /// let zero = 0.0f64; |
619 | /// |
620 | /// assert!(min.is_normal()); |
621 | /// assert!(max.is_normal()); |
622 | /// |
623 | /// assert!(!zero.is_normal()); |
624 | /// assert!(!f64::NAN.is_normal()); |
625 | /// assert!(!f64::INFINITY.is_normal()); |
626 | /// // Values between `0` and `min` are Subnormal. |
627 | /// assert!(!lower_than_min.is_normal()); |
628 | /// ``` |
629 | /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number |
630 | #[must_use] |
631 | #[stable(feature = "rust1", since = "1.0.0")] |
632 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
633 | #[inline] |
634 | pub const fn is_normal(self) -> bool { |
635 | matches!(self.classify(), FpCategory::Normal) |
636 | } |
637 | |
638 | /// Returns the floating point category of the number. If only one property |
639 | /// is going to be tested, it is generally faster to use the specific |
640 | /// predicate instead. |
641 | /// |
642 | /// ``` |
643 | /// use std::num::FpCategory; |
644 | /// |
645 | /// let num = 12.4_f64; |
646 | /// let inf = f64::INFINITY; |
647 | /// |
648 | /// assert_eq!(num.classify(), FpCategory::Normal); |
649 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
650 | /// ``` |
651 | #[stable(feature = "rust1", since = "1.0.0")] |
652 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
653 | pub const fn classify(self) -> FpCategory { |
654 | // We used to have complicated logic here that avoids the simple bit-based tests to work |
655 | // around buggy codegen for x87 targets (see |
656 | // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none |
657 | // of our tests is able to find any difference between the complicated and the naive |
658 | // version, so now we are back to the naive version. |
659 | let b = self.to_bits(); |
660 | match (b & Self::MAN_MASK, b & Self::EXP_MASK) { |
661 | (0, Self::EXP_MASK) => FpCategory::Infinite, |
662 | (_, Self::EXP_MASK) => FpCategory::Nan, |
663 | (0, 0) => FpCategory::Zero, |
664 | (_, 0) => FpCategory::Subnormal, |
665 | _ => FpCategory::Normal, |
666 | } |
667 | } |
668 | |
669 | /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with |
670 | /// positive sign bit and positive infinity. |
671 | /// |
672 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
673 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
674 | /// conserved over arithmetic operations, the result of `is_sign_positive` on |
675 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
676 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0` |
677 | /// if you need fully portable behavior (will return `false` for all NaNs). |
678 | /// |
679 | /// ``` |
680 | /// let f = 7.0_f64; |
681 | /// let g = -7.0_f64; |
682 | /// |
683 | /// assert!(f.is_sign_positive()); |
684 | /// assert!(!g.is_sign_positive()); |
685 | /// ``` |
686 | #[must_use] |
687 | #[stable(feature = "rust1", since = "1.0.0")] |
688 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
689 | #[inline] |
690 | pub const fn is_sign_positive(self) -> bool { |
691 | !self.is_sign_negative() |
692 | } |
693 | |
694 | #[must_use] |
695 | #[stable(feature = "rust1", since = "1.0.0")] |
696 | #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")] |
697 | #[inline] |
698 | #[doc(hidden)] |
699 | pub fn is_positive(self) -> bool { |
700 | self.is_sign_positive() |
701 | } |
702 | |
703 | /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with |
704 | /// negative sign bit and negative infinity. |
705 | /// |
706 | /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of |
707 | /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are |
708 | /// conserved over arithmetic operations, the result of `is_sign_negative` on |
709 | /// a NaN might produce an unexpected or non-portable result. See the [specification |
710 | /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0` |
711 | /// if you need fully portable behavior (will return `false` for all NaNs). |
712 | /// |
713 | /// ``` |
714 | /// let f = 7.0_f64; |
715 | /// let g = -7.0_f64; |
716 | /// |
717 | /// assert!(!f.is_sign_negative()); |
718 | /// assert!(g.is_sign_negative()); |
719 | /// ``` |
720 | #[must_use] |
721 | #[stable(feature = "rust1", since = "1.0.0")] |
722 | #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")] |
723 | #[inline] |
724 | pub const fn is_sign_negative(self) -> bool { |
725 | // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus |
726 | // applies to zeros and NaNs as well. |
727 | self.to_bits() & Self::SIGN_MASK != 0 |
728 | } |
729 | |
730 | #[must_use] |
731 | #[stable(feature = "rust1", since = "1.0.0")] |
732 | #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")] |
733 | #[inline] |
734 | #[doc(hidden)] |
735 | pub fn is_negative(self) -> bool { |
736 | self.is_sign_negative() |
737 | } |
738 | |
739 | /// Returns the least number greater than `self`. |
740 | /// |
741 | /// Let `TINY` be the smallest representable positive `f64`. Then, |
742 | /// - if `self.is_nan()`, this returns `self`; |
743 | /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`]; |
744 | /// - if `self` is `-TINY`, this returns -0.0; |
745 | /// - if `self` is -0.0 or +0.0, this returns `TINY`; |
746 | /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`]; |
747 | /// - otherwise the unique least value greater than `self` is returned. |
748 | /// |
749 | /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x` |
750 | /// is finite `x == x.next_up().next_down()` also holds. |
751 | /// |
752 | /// ```rust |
753 | /// // f64::EPSILON is the difference between 1.0 and the next number up. |
754 | /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON); |
755 | /// // But not for most numbers. |
756 | /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON); |
757 | /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0); |
758 | /// ``` |
759 | /// |
760 | /// This operation corresponds to IEEE-754 `nextUp`. |
761 | /// |
762 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
763 | /// [`INFINITY`]: Self::INFINITY |
764 | /// [`MIN`]: Self::MIN |
765 | /// [`MAX`]: Self::MAX |
766 | #[inline] |
767 | #[doc(alias = "nextUp")] |
768 | #[stable(feature = "float_next_up_down", since = "1.86.0")] |
769 | #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")] |
770 | pub const fn next_up(self) -> Self { |
771 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
772 | // denormals to zero. This is in general unsound and unsupported, but here |
773 | // we do our best to still produce the correct result on such targets. |
774 | let bits = self.to_bits(); |
775 | if self.is_nan() || bits == Self::INFINITY.to_bits() { |
776 | return self; |
777 | } |
778 | |
779 | let abs = bits & !Self::SIGN_MASK; |
780 | let next_bits = if abs == 0 { |
781 | Self::TINY_BITS |
782 | } else if bits == abs { |
783 | bits + 1 |
784 | } else { |
785 | bits - 1 |
786 | }; |
787 | Self::from_bits(next_bits) |
788 | } |
789 | |
790 | /// Returns the greatest number less than `self`. |
791 | /// |
792 | /// Let `TINY` be the smallest representable positive `f64`. Then, |
793 | /// - if `self.is_nan()`, this returns `self`; |
794 | /// - if `self` is [`INFINITY`], this returns [`MAX`]; |
795 | /// - if `self` is `TINY`, this returns 0.0; |
796 | /// - if `self` is -0.0 or +0.0, this returns `-TINY`; |
797 | /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`]; |
798 | /// - otherwise the unique greatest value less than `self` is returned. |
799 | /// |
800 | /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x` |
801 | /// is finite `x == x.next_down().next_up()` also holds. |
802 | /// |
803 | /// ```rust |
804 | /// let x = 1.0f64; |
805 | /// // Clamp value into range [0, 1). |
806 | /// let clamped = x.clamp(0.0, 1.0f64.next_down()); |
807 | /// assert!(clamped < 1.0); |
808 | /// assert_eq!(clamped.next_up(), 1.0); |
809 | /// ``` |
810 | /// |
811 | /// This operation corresponds to IEEE-754 `nextDown`. |
812 | /// |
813 | /// [`NEG_INFINITY`]: Self::NEG_INFINITY |
814 | /// [`INFINITY`]: Self::INFINITY |
815 | /// [`MIN`]: Self::MIN |
816 | /// [`MAX`]: Self::MAX |
817 | #[inline] |
818 | #[doc(alias = "nextDown")] |
819 | #[stable(feature = "float_next_up_down", since = "1.86.0")] |
820 | #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")] |
821 | pub const fn next_down(self) -> Self { |
822 | // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing |
823 | // denormals to zero. This is in general unsound and unsupported, but here |
824 | // we do our best to still produce the correct result on such targets. |
825 | let bits = self.to_bits(); |
826 | if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() { |
827 | return self; |
828 | } |
829 | |
830 | let abs = bits & !Self::SIGN_MASK; |
831 | let next_bits = if abs == 0 { |
832 | Self::NEG_TINY_BITS |
833 | } else if bits == abs { |
834 | bits - 1 |
835 | } else { |
836 | bits + 1 |
837 | }; |
838 | Self::from_bits(next_bits) |
839 | } |
840 | |
841 | /// Takes the reciprocal (inverse) of a number, `1/x`. |
842 | /// |
843 | /// ``` |
844 | /// let x = 2.0_f64; |
845 | /// let abs_difference = (x.recip() - (1.0 / x)).abs(); |
846 | /// |
847 | /// assert!(abs_difference < 1e-10); |
848 | /// ``` |
849 | #[must_use= "this returns the result of the operation, without modifying the original"] |
850 | #[stable(feature = "rust1", since = "1.0.0")] |
851 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
852 | #[inline] |
853 | pub const fn recip(self) -> f64 { |
854 | 1.0 / self |
855 | } |
856 | |
857 | /// Converts radians to degrees. |
858 | /// |
859 | /// ``` |
860 | /// let angle = std::f64::consts::PI; |
861 | /// |
862 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
863 | /// |
864 | /// assert!(abs_difference < 1e-10); |
865 | /// ``` |
866 | #[must_use= "this returns the result of the operation, \ |
867 | without modifying the original"] |
868 | #[stable(feature = "rust1", since = "1.0.0")] |
869 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
870 | #[inline] |
871 | pub const fn to_degrees(self) -> f64 { |
872 | // The division here is correctly rounded with respect to the true |
873 | // value of 180/π. (This differs from f32, where a constant must be |
874 | // used to ensure a correctly rounded result.) |
875 | self * (180.0f64 / consts::PI) |
876 | } |
877 | |
878 | /// Converts degrees to radians. |
879 | /// |
880 | /// ``` |
881 | /// let angle = 180.0_f64; |
882 | /// |
883 | /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs(); |
884 | /// |
885 | /// assert!(abs_difference < 1e-10); |
886 | /// ``` |
887 | #[must_use= "this returns the result of the operation, \ |
888 | without modifying the original"] |
889 | #[stable(feature = "rust1", since = "1.0.0")] |
890 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
891 | #[inline] |
892 | pub const fn to_radians(self) -> f64 { |
893 | const RADS_PER_DEG: f64 = consts::PI / 180.0; |
894 | self * RADS_PER_DEG |
895 | } |
896 | |
897 | /// Returns the maximum of the two numbers, ignoring NaN. |
898 | /// |
899 | /// If one of the arguments is NaN, then the other argument is returned. |
900 | /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; |
901 | /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. |
902 | /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal |
903 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
904 | /// |
905 | /// ``` |
906 | /// let x = 1.0_f64; |
907 | /// let y = 2.0_f64; |
908 | /// |
909 | /// assert_eq!(x.max(y), y); |
910 | /// ``` |
911 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
912 | #[stable(feature = "rust1", since = "1.0.0")] |
913 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
914 | #[inline] |
915 | pub const fn max(self, other: f64) -> f64 { |
916 | intrinsics::maxnumf64(self, other) |
917 | } |
918 | |
919 | /// Returns the minimum of the two numbers, ignoring NaN. |
920 | /// |
921 | /// If one of the arguments is NaN, then the other argument is returned. |
922 | /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; |
923 | /// this function handles all NaNs the same way and avoids minNum's problems with associativity. |
924 | /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal |
925 | /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically. |
926 | /// |
927 | /// ``` |
928 | /// let x = 1.0_f64; |
929 | /// let y = 2.0_f64; |
930 | /// |
931 | /// assert_eq!(x.min(y), x); |
932 | /// ``` |
933 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
934 | #[stable(feature = "rust1", since = "1.0.0")] |
935 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
936 | #[inline] |
937 | pub const fn min(self, other: f64) -> f64 { |
938 | intrinsics::minnumf64(self, other) |
939 | } |
940 | |
941 | /// Returns the maximum of the two numbers, propagating NaN. |
942 | /// |
943 | /// This returns NaN when *either* argument is NaN, as opposed to |
944 | /// [`f64::max`] which only returns NaN when *both* arguments are NaN. |
945 | /// |
946 | /// ```ignore-arm-unknown-linux-gnueabihf (see https://github.com/rust-lang/rust/issues/141087) |
947 | /// #![feature(float_minimum_maximum)] |
948 | /// let x = 1.0_f64; |
949 | /// let y = 2.0_f64; |
950 | /// |
951 | /// assert_eq!(x.maximum(y), y); |
952 | /// assert!(x.maximum(f64::NAN).is_nan()); |
953 | /// ``` |
954 | /// |
955 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater |
956 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
957 | /// Note that this follows the semantics specified in IEEE 754-2019. |
958 | /// |
959 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
960 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
961 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
962 | #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
963 | #[inline] |
964 | pub const fn maximum(self, other: f64) -> f64 { |
965 | intrinsics::maximumf64(self, other) |
966 | } |
967 | |
968 | /// Returns the minimum of the two numbers, propagating NaN. |
969 | /// |
970 | /// This returns NaN when *either* argument is NaN, as opposed to |
971 | /// [`f64::min`] which only returns NaN when *both* arguments are NaN. |
972 | /// |
973 | /// ```ignore-arm-unknown-linux-gnueabihf (see https://github.com/rust-lang/rust/issues/141087) |
974 | /// #![feature(float_minimum_maximum)] |
975 | /// let x = 1.0_f64; |
976 | /// let y = 2.0_f64; |
977 | /// |
978 | /// assert_eq!(x.minimum(y), x); |
979 | /// assert!(x.minimum(f64::NAN).is_nan()); |
980 | /// ``` |
981 | /// |
982 | /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser |
983 | /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. |
984 | /// Note that this follows the semantics specified in IEEE 754-2019. |
985 | /// |
986 | /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN |
987 | /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info. |
988 | #[must_use= "this returns the result of the comparison, without modifying either input"] |
989 | #[unstable(feature = "float_minimum_maximum", issue = "91079")] |
990 | #[inline] |
991 | pub const fn minimum(self, other: f64) -> f64 { |
992 | intrinsics::minimumf64(self, other) |
993 | } |
994 | |
995 | /// Calculates the midpoint (average) between `self` and `rhs`. |
996 | /// |
997 | /// This returns NaN when *either* argument is NaN or if a combination of |
998 | /// +inf and -inf is provided as arguments. |
999 | /// |
1000 | /// # Examples |
1001 | /// |
1002 | /// ``` |
1003 | /// assert_eq!(1f64.midpoint(4.0), 2.5); |
1004 | /// assert_eq!((-5.5f64).midpoint(8.0), 1.25); |
1005 | /// ``` |
1006 | #[inline] |
1007 | #[doc(alias = "average")] |
1008 | #[stable(feature = "num_midpoint", since = "1.85.0")] |
1009 | #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")] |
1010 | pub const fn midpoint(self, other: f64) -> f64 { |
1011 | const LO: f64 = f64::MIN_POSITIVE * 2.; |
1012 | const HI: f64 = f64::MAX / 2.; |
1013 | |
1014 | let (a, b) = (self, other); |
1015 | let abs_a = a.abs(); |
1016 | let abs_b = b.abs(); |
1017 | |
1018 | if abs_a <= HI && abs_b <= HI { |
1019 | // Overflow is impossible |
1020 | (a + b) / 2. |
1021 | } else if abs_a < LO { |
1022 | // Not safe to halve `a` (would underflow) |
1023 | a + (b / 2.) |
1024 | } else if abs_b < LO { |
1025 | // Not safe to halve `b` (would underflow) |
1026 | (a / 2.) + b |
1027 | } else { |
1028 | // Safe to halve `a` and `b` |
1029 | (a / 2.) + (b / 2.) |
1030 | } |
1031 | } |
1032 | |
1033 | /// Rounds toward zero and converts to any primitive integer type, |
1034 | /// assuming that the value is finite and fits in that type. |
1035 | /// |
1036 | /// ``` |
1037 | /// let value = 4.6_f64; |
1038 | /// let rounded = unsafe { value.to_int_unchecked::<u16>() }; |
1039 | /// assert_eq!(rounded, 4); |
1040 | /// |
1041 | /// let value = -128.9_f64; |
1042 | /// let rounded = unsafe { value.to_int_unchecked::<i8>() }; |
1043 | /// assert_eq!(rounded, i8::MIN); |
1044 | /// ``` |
1045 | /// |
1046 | /// # Safety |
1047 | /// |
1048 | /// The value must: |
1049 | /// |
1050 | /// * Not be `NaN` |
1051 | /// * Not be infinite |
1052 | /// * Be representable in the return type `Int`, after truncating off its fractional part |
1053 | #[must_use= "this returns the result of the operation, \ |
1054 | without modifying the original"] |
1055 | #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")] |
1056 | #[inline] |
1057 | pub unsafe fn to_int_unchecked<Int>(self) -> Int |
1058 | where |
1059 | Self: FloatToInt<Int>, |
1060 | { |
1061 | // SAFETY: the caller must uphold the safety contract for |
1062 | // `FloatToInt::to_int_unchecked`. |
1063 | unsafe { FloatToInt::<Int>::to_int_unchecked(self) } |
1064 | } |
1065 | |
1066 | /// Raw transmutation to `u64`. |
1067 | /// |
1068 | /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms. |
1069 | /// |
1070 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1071 | /// portability of this operation (there are almost no issues). |
1072 | /// |
1073 | /// Note that this function is distinct from `as` casting, which attempts to |
1074 | /// preserve the *numeric* value, and not the bitwise value. |
1075 | /// |
1076 | /// # Examples |
1077 | /// |
1078 | /// ``` |
1079 | /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! |
1080 | /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000); |
1081 | /// ``` |
1082 | #[must_use= "this returns the result of the operation, \ |
1083 | without modifying the original"] |
1084 | #[stable(feature = "float_bits_conv", since = "1.20.0")] |
1085 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1086 | #[allow(unnecessary_transmutes)] |
1087 | #[inline] |
1088 | pub const fn to_bits(self) -> u64 { |
1089 | // SAFETY: `u64` is a plain old datatype so we can always transmute to it. |
1090 | unsafe { mem::transmute(self) } |
1091 | } |
1092 | |
1093 | /// Raw transmutation from `u64`. |
1094 | /// |
1095 | /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms. |
1096 | /// It turns out this is incredibly portable, for two reasons: |
1097 | /// |
1098 | /// * Floats and Ints have the same endianness on all supported platforms. |
1099 | /// * IEEE 754 very precisely specifies the bit layout of floats. |
1100 | /// |
1101 | /// However there is one caveat: prior to the 2008 version of IEEE 754, how |
1102 | /// to interpret the NaN signaling bit wasn't actually specified. Most platforms |
1103 | /// (notably x86 and ARM) picked the interpretation that was ultimately |
1104 | /// standardized in 2008, but some didn't (notably MIPS). As a result, all |
1105 | /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. |
1106 | /// |
1107 | /// Rather than trying to preserve signaling-ness cross-platform, this |
1108 | /// implementation favors preserving the exact bits. This means that |
1109 | /// any payloads encoded in NaNs will be preserved even if the result of |
1110 | /// this method is sent over the network from an x86 machine to a MIPS one. |
1111 | /// |
1112 | /// If the results of this method are only manipulated by the same |
1113 | /// architecture that produced them, then there is no portability concern. |
1114 | /// |
1115 | /// If the input isn't NaN, then there is no portability concern. |
1116 | /// |
1117 | /// If you don't care about signaling-ness (very likely), then there is no |
1118 | /// portability concern. |
1119 | /// |
1120 | /// Note that this function is distinct from `as` casting, which attempts to |
1121 | /// preserve the *numeric* value, and not the bitwise value. |
1122 | /// |
1123 | /// # Examples |
1124 | /// |
1125 | /// ``` |
1126 | /// let v = f64::from_bits(0x4029000000000000); |
1127 | /// assert_eq!(v, 12.5); |
1128 | /// ``` |
1129 | #[stable(feature = "float_bits_conv", since = "1.20.0")] |
1130 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1131 | #[must_use] |
1132 | #[inline] |
1133 | #[allow(unnecessary_transmutes)] |
1134 | pub const fn from_bits(v: u64) -> Self { |
1135 | // It turns out the safety issues with sNaN were overblown! Hooray! |
1136 | // SAFETY: `u64` is a plain old datatype so we can always transmute from it. |
1137 | unsafe { mem::transmute(v) } |
1138 | } |
1139 | |
1140 | /// Returns the memory representation of this floating point number as a byte array in |
1141 | /// big-endian (network) byte order. |
1142 | /// |
1143 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1144 | /// portability of this operation (there are almost no issues). |
1145 | /// |
1146 | /// # Examples |
1147 | /// |
1148 | /// ``` |
1149 | /// let bytes = 12.5f64.to_be_bytes(); |
1150 | /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]); |
1151 | /// ``` |
1152 | #[must_use= "this returns the result of the operation, \ |
1153 | without modifying the original"] |
1154 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1155 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1156 | #[inline] |
1157 | pub const fn to_be_bytes(self) -> [u8; 8] { |
1158 | self.to_bits().to_be_bytes() |
1159 | } |
1160 | |
1161 | /// Returns the memory representation of this floating point number as a byte array in |
1162 | /// little-endian byte order. |
1163 | /// |
1164 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1165 | /// portability of this operation (there are almost no issues). |
1166 | /// |
1167 | /// # Examples |
1168 | /// |
1169 | /// ``` |
1170 | /// let bytes = 12.5f64.to_le_bytes(); |
1171 | /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]); |
1172 | /// ``` |
1173 | #[must_use= "this returns the result of the operation, \ |
1174 | without modifying the original"] |
1175 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1176 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1177 | #[inline] |
1178 | pub const fn to_le_bytes(self) -> [u8; 8] { |
1179 | self.to_bits().to_le_bytes() |
1180 | } |
1181 | |
1182 | /// Returns the memory representation of this floating point number as a byte array in |
1183 | /// native byte order. |
1184 | /// |
1185 | /// As the target platform's native endianness is used, portable code |
1186 | /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. |
1187 | /// |
1188 | /// [`to_be_bytes`]: f64::to_be_bytes |
1189 | /// [`to_le_bytes`]: f64::to_le_bytes |
1190 | /// |
1191 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1192 | /// portability of this operation (there are almost no issues). |
1193 | /// |
1194 | /// # Examples |
1195 | /// |
1196 | /// ``` |
1197 | /// let bytes = 12.5f64.to_ne_bytes(); |
1198 | /// assert_eq!( |
1199 | /// bytes, |
1200 | /// if cfg!(target_endian = "big") { |
1201 | /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
1202 | /// } else { |
1203 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40] |
1204 | /// } |
1205 | /// ); |
1206 | /// ``` |
1207 | #[must_use= "this returns the result of the operation, \ |
1208 | without modifying the original"] |
1209 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1210 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1211 | #[inline] |
1212 | pub const fn to_ne_bytes(self) -> [u8; 8] { |
1213 | self.to_bits().to_ne_bytes() |
1214 | } |
1215 | |
1216 | /// Creates a floating point value from its representation as a byte array in big endian. |
1217 | /// |
1218 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1219 | /// portability of this operation (there are almost no issues). |
1220 | /// |
1221 | /// # Examples |
1222 | /// |
1223 | /// ``` |
1224 | /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]); |
1225 | /// assert_eq!(value, 12.5); |
1226 | /// ``` |
1227 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1228 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1229 | #[must_use] |
1230 | #[inline] |
1231 | pub const fn from_be_bytes(bytes: [u8; 8]) -> Self { |
1232 | Self::from_bits(u64::from_be_bytes(bytes)) |
1233 | } |
1234 | |
1235 | /// Creates a floating point value from its representation as a byte array in little endian. |
1236 | /// |
1237 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1238 | /// portability of this operation (there are almost no issues). |
1239 | /// |
1240 | /// # Examples |
1241 | /// |
1242 | /// ``` |
1243 | /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]); |
1244 | /// assert_eq!(value, 12.5); |
1245 | /// ``` |
1246 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1247 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1248 | #[must_use] |
1249 | #[inline] |
1250 | pub const fn from_le_bytes(bytes: [u8; 8]) -> Self { |
1251 | Self::from_bits(u64::from_le_bytes(bytes)) |
1252 | } |
1253 | |
1254 | /// Creates a floating point value from its representation as a byte array in native endian. |
1255 | /// |
1256 | /// As the target platform's native endianness is used, portable code |
1257 | /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as |
1258 | /// appropriate instead. |
1259 | /// |
1260 | /// [`from_be_bytes`]: f64::from_be_bytes |
1261 | /// [`from_le_bytes`]: f64::from_le_bytes |
1262 | /// |
1263 | /// See [`from_bits`](Self::from_bits) for some discussion of the |
1264 | /// portability of this operation (there are almost no issues). |
1265 | /// |
1266 | /// # Examples |
1267 | /// |
1268 | /// ``` |
1269 | /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") { |
1270 | /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] |
1271 | /// } else { |
1272 | /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40] |
1273 | /// }); |
1274 | /// assert_eq!(value, 12.5); |
1275 | /// ``` |
1276 | #[stable(feature = "float_to_from_bytes", since = "1.40.0")] |
1277 | #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")] |
1278 | #[must_use] |
1279 | #[inline] |
1280 | pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self { |
1281 | Self::from_bits(u64::from_ne_bytes(bytes)) |
1282 | } |
1283 | |
1284 | /// Returns the ordering between `self` and `other`. |
1285 | /// |
1286 | /// Unlike the standard partial comparison between floating point numbers, |
1287 | /// this comparison always produces an ordering in accordance to |
1288 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
1289 | /// floating point standard. The values are ordered in the following sequence: |
1290 | /// |
1291 | /// - negative quiet NaN |
1292 | /// - negative signaling NaN |
1293 | /// - negative infinity |
1294 | /// - negative numbers |
1295 | /// - negative subnormal numbers |
1296 | /// - negative zero |
1297 | /// - positive zero |
1298 | /// - positive subnormal numbers |
1299 | /// - positive numbers |
1300 | /// - positive infinity |
1301 | /// - positive signaling NaN |
1302 | /// - positive quiet NaN. |
1303 | /// |
1304 | /// The ordering established by this function does not always agree with the |
1305 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example, |
1306 | /// they consider negative and positive zero equal, while `total_cmp` |
1307 | /// doesn't. |
1308 | /// |
1309 | /// The interpretation of the signaling NaN bit follows the definition in |
1310 | /// the IEEE 754 standard, which may not match the interpretation by some of |
1311 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
1312 | /// |
1313 | /// # Example |
1314 | /// |
1315 | /// ``` |
1316 | /// struct GoodBoy { |
1317 | /// name: String, |
1318 | /// weight: f64, |
1319 | /// } |
1320 | /// |
1321 | /// let mut bois = vec![ |
1322 | /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 }, |
1323 | /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 }, |
1324 | /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 }, |
1325 | /// GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY }, |
1326 | /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN }, |
1327 | /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 }, |
1328 | /// ]; |
1329 | /// |
1330 | /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight)); |
1331 | /// |
1332 | /// // `f64::NAN` could be positive or negative, which will affect the sort order. |
1333 | /// if f64::NAN.is_sign_negative() { |
1334 | /// assert!(bois.into_iter().map(|b| b.weight) |
1335 | /// .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter()) |
1336 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1337 | /// } else { |
1338 | /// assert!(bois.into_iter().map(|b| b.weight) |
1339 | /// .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter()) |
1340 | /// .all(|(a, b)| a.to_bits() == b.to_bits())) |
1341 | /// } |
1342 | /// ``` |
1343 | #[stable(feature = "total_cmp", since = "1.62.0")] |
1344 | #[must_use] |
1345 | #[inline] |
1346 | pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering { |
1347 | let mut left = self.to_bits() as i64; |
1348 | let mut right = other.to_bits() as i64; |
1349 | |
1350 | // In case of negatives, flip all the bits except the sign |
1351 | // to achieve a similar layout as two's complement integers |
1352 | // |
1353 | // Why does this work? IEEE 754 floats consist of three fields: |
1354 | // Sign bit, exponent and mantissa. The set of exponent and mantissa |
1355 | // fields as a whole have the property that their bitwise order is |
1356 | // equal to the numeric magnitude where the magnitude is defined. |
1357 | // The magnitude is not normally defined on NaN values, but |
1358 | // IEEE 754 totalOrder defines the NaN values also to follow the |
1359 | // bitwise order. This leads to order explained in the doc comment. |
1360 | // However, the representation of magnitude is the same for negative |
1361 | // and positive numbers – only the sign bit is different. |
1362 | // To easily compare the floats as signed integers, we need to |
1363 | // flip the exponent and mantissa bits in case of negative numbers. |
1364 | // We effectively convert the numbers to "two's complement" form. |
1365 | // |
1366 | // To do the flipping, we construct a mask and XOR against it. |
1367 | // We branchlessly calculate an "all-ones except for the sign bit" |
1368 | // mask from negative-signed values: right shifting sign-extends |
1369 | // the integer, so we "fill" the mask with sign bits, and then |
1370 | // convert to unsigned to push one more zero bit. |
1371 | // On positive values, the mask is all zeros, so it's a no-op. |
1372 | left ^= (((left >> 63) as u64) >> 1) as i64; |
1373 | right ^= (((right >> 63) as u64) >> 1) as i64; |
1374 | |
1375 | left.cmp(&right) |
1376 | } |
1377 | |
1378 | /// Restrict a value to a certain interval unless it is NaN. |
1379 | /// |
1380 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is |
1381 | /// less than `min`. Otherwise this returns `self`. |
1382 | /// |
1383 | /// Note that this function returns NaN if the initial value was NaN as |
1384 | /// well. |
1385 | /// |
1386 | /// # Panics |
1387 | /// |
1388 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
1389 | /// |
1390 | /// # Examples |
1391 | /// |
1392 | /// ``` |
1393 | /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0); |
1394 | /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0); |
1395 | /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0); |
1396 | /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan()); |
1397 | /// ``` |
1398 | #[must_use= "method returns a new number and does not mutate the original value"] |
1399 | #[stable(feature = "clamp", since = "1.50.0")] |
1400 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1401 | #[inline] |
1402 | pub const fn clamp(mut self, min: f64, max: f64) -> f64 { |
1403 | const_assert!( |
1404 | min <= max, |
1405 | "min > max, or either was NaN", |
1406 | "min > max, or either was NaN. min ={min:?} , max ={max:?} ", |
1407 | min: f64, |
1408 | max: f64, |
1409 | ); |
1410 | |
1411 | if self < min { |
1412 | self = min; |
1413 | } |
1414 | if self > max { |
1415 | self = max; |
1416 | } |
1417 | self |
1418 | } |
1419 | |
1420 | /// Computes the absolute value of `self`. |
1421 | /// |
1422 | /// This function always returns the precise result. |
1423 | /// |
1424 | /// # Examples |
1425 | /// |
1426 | /// ``` |
1427 | /// let x = 3.5_f64; |
1428 | /// let y = -3.5_f64; |
1429 | /// |
1430 | /// assert_eq!(x.abs(), x); |
1431 | /// assert_eq!(y.abs(), -y); |
1432 | /// |
1433 | /// assert!(f64::NAN.abs().is_nan()); |
1434 | /// ``` |
1435 | #[must_use= "method returns a new number and does not mutate the original value"] |
1436 | #[stable(feature = "rust1", since = "1.0.0")] |
1437 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1438 | #[inline] |
1439 | pub const fn abs(self) -> f64 { |
1440 | // SAFETY: this is actually a safe intrinsic |
1441 | unsafe { intrinsics::fabsf64(self) } |
1442 | } |
1443 | |
1444 | /// Returns a number that represents the sign of `self`. |
1445 | /// |
1446 | /// - `1.0` if the number is positive, `+0.0` or `INFINITY` |
1447 | /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` |
1448 | /// - NaN if the number is NaN |
1449 | /// |
1450 | /// # Examples |
1451 | /// |
1452 | /// ``` |
1453 | /// let f = 3.5_f64; |
1454 | /// |
1455 | /// assert_eq!(f.signum(), 1.0); |
1456 | /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); |
1457 | /// |
1458 | /// assert!(f64::NAN.signum().is_nan()); |
1459 | /// ``` |
1460 | #[must_use= "method returns a new number and does not mutate the original value"] |
1461 | #[stable(feature = "rust1", since = "1.0.0")] |
1462 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1463 | #[inline] |
1464 | pub const fn signum(self) -> f64 { |
1465 | if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) } |
1466 | } |
1467 | |
1468 | /// Returns a number composed of the magnitude of `self` and the sign of |
1469 | /// `sign`. |
1470 | /// |
1471 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
1472 | /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is |
1473 | /// returned. |
1474 | /// |
1475 | /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note |
1476 | /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust |
1477 | /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the |
1478 | /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable |
1479 | /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more |
1480 | /// info. |
1481 | /// |
1482 | /// # Examples |
1483 | /// |
1484 | /// ``` |
1485 | /// let f = 3.5_f64; |
1486 | /// |
1487 | /// assert_eq!(f.copysign(0.42), 3.5_f64); |
1488 | /// assert_eq!(f.copysign(-0.42), -3.5_f64); |
1489 | /// assert_eq!((-f).copysign(0.42), 3.5_f64); |
1490 | /// assert_eq!((-f).copysign(-0.42), -3.5_f64); |
1491 | /// |
1492 | /// assert!(f64::NAN.copysign(1.0).is_nan()); |
1493 | /// ``` |
1494 | #[must_use= "method returns a new number and does not mutate the original value"] |
1495 | #[stable(feature = "copysign", since = "1.35.0")] |
1496 | #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")] |
1497 | #[inline] |
1498 | pub const fn copysign(self, sign: f64) -> f64 { |
1499 | // SAFETY: this is actually a safe intrinsic |
1500 | unsafe { intrinsics::copysignf64(self, sign) } |
1501 | } |
1502 | |
1503 | /// Float addition that allows optimizations based on algebraic rules. |
1504 | /// |
1505 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1506 | #[must_use= "method returns a new number and does not mutate the original value"] |
1507 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1508 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1509 | #[inline] |
1510 | pub const fn algebraic_add(self, rhs: f64) -> f64 { |
1511 | intrinsics::fadd_algebraic(self, rhs) |
1512 | } |
1513 | |
1514 | /// Float subtraction that allows optimizations based on algebraic rules. |
1515 | /// |
1516 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1517 | #[must_use= "method returns a new number and does not mutate the original value"] |
1518 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1519 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1520 | #[inline] |
1521 | pub const fn algebraic_sub(self, rhs: f64) -> f64 { |
1522 | intrinsics::fsub_algebraic(self, rhs) |
1523 | } |
1524 | |
1525 | /// Float multiplication that allows optimizations based on algebraic rules. |
1526 | /// |
1527 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1528 | #[must_use= "method returns a new number and does not mutate the original value"] |
1529 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1530 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1531 | #[inline] |
1532 | pub const fn algebraic_mul(self, rhs: f64) -> f64 { |
1533 | intrinsics::fmul_algebraic(self, rhs) |
1534 | } |
1535 | |
1536 | /// Float division that allows optimizations based on algebraic rules. |
1537 | /// |
1538 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1539 | #[must_use= "method returns a new number and does not mutate the original value"] |
1540 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1541 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1542 | #[inline] |
1543 | pub const fn algebraic_div(self, rhs: f64) -> f64 { |
1544 | intrinsics::fdiv_algebraic(self, rhs) |
1545 | } |
1546 | |
1547 | /// Float remainder that allows optimizations based on algebraic rules. |
1548 | /// |
1549 | /// See [algebraic operators](primitive@f32#algebraic-operators) for more info. |
1550 | #[must_use= "method returns a new number and does not mutate the original value"] |
1551 | #[unstable(feature = "float_algebraic", issue = "136469")] |
1552 | #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")] |
1553 | #[inline] |
1554 | pub const fn algebraic_rem(self, rhs: f64) -> f64 { |
1555 | intrinsics::frem_algebraic(self, rhs) |
1556 | } |
1557 | } |
1558 | |
1559 | #[unstable(feature = "core_float_math", issue = "137578")] |
1560 | /// Experimental implementations of floating point functions in `core`. |
1561 | /// |
1562 | /// _The standalone functions in this module are for testing only. |
1563 | /// They will be stabilized as inherent methods._ |
1564 | pub mod math { |
1565 | use crate::intrinsics; |
1566 | use crate::num::libm; |
1567 | |
1568 | /// Experimental version of `floor` in `core`. See [`f64::floor`] for details. |
1569 | /// |
1570 | /// # Examples |
1571 | /// |
1572 | /// ``` |
1573 | /// #![feature(core_float_math)] |
1574 | /// |
1575 | /// use core::f64; |
1576 | /// |
1577 | /// let f = 3.7_f64; |
1578 | /// let g = 3.0_f64; |
1579 | /// let h = -3.7_f64; |
1580 | /// |
1581 | /// assert_eq!(f64::math::floor(f), 3.0); |
1582 | /// assert_eq!(f64::math::floor(g), 3.0); |
1583 | /// assert_eq!(f64::math::floor(h), -4.0); |
1584 | /// ``` |
1585 | /// |
1586 | /// _This standalone function is for testing only. |
1587 | /// It will be stabilized as an inherent method._ |
1588 | /// |
1589 | /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor |
1590 | #[inline] |
1591 | #[unstable(feature = "core_float_math", issue = "137578")] |
1592 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1593 | #[must_use= "method returns a new number and does not mutate the original value"] |
1594 | pub const fn floor(x: f64) -> f64 { |
1595 | // SAFETY: intrinsic with no preconditions |
1596 | unsafe { intrinsics::floorf64(x) } |
1597 | } |
1598 | |
1599 | /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details. |
1600 | /// |
1601 | /// # Examples |
1602 | /// |
1603 | /// ``` |
1604 | /// #![feature(core_float_math)] |
1605 | /// |
1606 | /// use core::f64; |
1607 | /// |
1608 | /// let f = 3.01_f64; |
1609 | /// let g = 4.0_f64; |
1610 | /// |
1611 | /// assert_eq!(f64::math::ceil(f), 4.0); |
1612 | /// assert_eq!(f64::math::ceil(g), 4.0); |
1613 | /// ``` |
1614 | /// |
1615 | /// _This standalone function is for testing only. |
1616 | /// It will be stabilized as an inherent method._ |
1617 | /// |
1618 | /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil |
1619 | #[inline] |
1620 | #[doc(alias = "ceiling")] |
1621 | #[unstable(feature = "core_float_math", issue = "137578")] |
1622 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1623 | #[must_use= "method returns a new number and does not mutate the original value"] |
1624 | pub const fn ceil(x: f64) -> f64 { |
1625 | // SAFETY: intrinsic with no preconditions |
1626 | unsafe { intrinsics::ceilf64(x) } |
1627 | } |
1628 | |
1629 | /// Experimental version of `round` in `core`. See [`f64::round`] for details. |
1630 | /// |
1631 | /// # Examples |
1632 | /// |
1633 | /// ``` |
1634 | /// #![feature(core_float_math)] |
1635 | /// |
1636 | /// use core::f64; |
1637 | /// |
1638 | /// let f = 3.3_f64; |
1639 | /// let g = -3.3_f64; |
1640 | /// let h = -3.7_f64; |
1641 | /// let i = 3.5_f64; |
1642 | /// let j = 4.5_f64; |
1643 | /// |
1644 | /// assert_eq!(f64::math::round(f), 3.0); |
1645 | /// assert_eq!(f64::math::round(g), -3.0); |
1646 | /// assert_eq!(f64::math::round(h), -4.0); |
1647 | /// assert_eq!(f64::math::round(i), 4.0); |
1648 | /// assert_eq!(f64::math::round(j), 5.0); |
1649 | /// ``` |
1650 | /// |
1651 | /// _This standalone function is for testing only. |
1652 | /// It will be stabilized as an inherent method._ |
1653 | /// |
1654 | /// [`f64::round`]: ../../../std/primitive.f64.html#method.round |
1655 | #[inline] |
1656 | #[unstable(feature = "core_float_math", issue = "137578")] |
1657 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1658 | #[must_use= "method returns a new number and does not mutate the original value"] |
1659 | pub const fn round(x: f64) -> f64 { |
1660 | // SAFETY: intrinsic with no preconditions |
1661 | unsafe { intrinsics::roundf64(x) } |
1662 | } |
1663 | |
1664 | /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for |
1665 | /// details. |
1666 | /// |
1667 | /// # Examples |
1668 | /// |
1669 | /// ``` |
1670 | /// #![feature(core_float_math)] |
1671 | /// |
1672 | /// use core::f64; |
1673 | /// |
1674 | /// let f = 3.3_f64; |
1675 | /// let g = -3.3_f64; |
1676 | /// let h = 3.5_f64; |
1677 | /// let i = 4.5_f64; |
1678 | /// |
1679 | /// assert_eq!(f64::math::round_ties_even(f), 3.0); |
1680 | /// assert_eq!(f64::math::round_ties_even(g), -3.0); |
1681 | /// assert_eq!(f64::math::round_ties_even(h), 4.0); |
1682 | /// assert_eq!(f64::math::round_ties_even(i), 4.0); |
1683 | /// ``` |
1684 | /// |
1685 | /// _This standalone function is for testing only. |
1686 | /// It will be stabilized as an inherent method._ |
1687 | /// |
1688 | /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even |
1689 | #[inline] |
1690 | #[unstable(feature = "core_float_math", issue = "137578")] |
1691 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1692 | #[must_use= "method returns a new number and does not mutate the original value"] |
1693 | pub const fn round_ties_even(x: f64) -> f64 { |
1694 | intrinsics::round_ties_even_f64(x) |
1695 | } |
1696 | |
1697 | /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details. |
1698 | /// |
1699 | /// # Examples |
1700 | /// |
1701 | /// ``` |
1702 | /// #![feature(core_float_math)] |
1703 | /// |
1704 | /// use core::f64; |
1705 | /// |
1706 | /// let f = 3.7_f64; |
1707 | /// let g = 3.0_f64; |
1708 | /// let h = -3.7_f64; |
1709 | /// |
1710 | /// assert_eq!(f64::math::trunc(f), 3.0); |
1711 | /// assert_eq!(f64::math::trunc(g), 3.0); |
1712 | /// assert_eq!(f64::math::trunc(h), -3.0); |
1713 | /// ``` |
1714 | /// |
1715 | /// _This standalone function is for testing only. |
1716 | /// It will be stabilized as an inherent method._ |
1717 | /// |
1718 | /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc |
1719 | #[inline] |
1720 | #[doc(alias = "truncate")] |
1721 | #[unstable(feature = "core_float_math", issue = "137578")] |
1722 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1723 | #[must_use= "method returns a new number and does not mutate the original value"] |
1724 | pub const fn trunc(x: f64) -> f64 { |
1725 | // SAFETY: intrinsic with no preconditions |
1726 | unsafe { intrinsics::truncf64(x) } |
1727 | } |
1728 | |
1729 | /// Experimental version of `fract` in `core`. See [`f64::fract`] for details. |
1730 | /// |
1731 | /// # Examples |
1732 | /// |
1733 | /// ``` |
1734 | /// #![feature(core_float_math)] |
1735 | /// |
1736 | /// use core::f64; |
1737 | /// |
1738 | /// let x = 3.6_f64; |
1739 | /// let y = -3.6_f64; |
1740 | /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs(); |
1741 | /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs(); |
1742 | /// |
1743 | /// assert!(abs_difference_x < 1e-10); |
1744 | /// assert!(abs_difference_y < 1e-10); |
1745 | /// ``` |
1746 | /// |
1747 | /// _This standalone function is for testing only. |
1748 | /// It will be stabilized as an inherent method._ |
1749 | /// |
1750 | /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract |
1751 | #[inline] |
1752 | #[unstable(feature = "core_float_math", issue = "137578")] |
1753 | #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")] |
1754 | #[must_use= "method returns a new number and does not mutate the original value"] |
1755 | pub const fn fract(x: f64) -> f64 { |
1756 | x - trunc(x) |
1757 | } |
1758 | |
1759 | /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details. |
1760 | /// |
1761 | /// # Examples |
1762 | /// |
1763 | /// ``` |
1764 | /// #![feature(core_float_math)] |
1765 | /// |
1766 | /// # // FIXME(#140515): mingw has an incorrect fma |
1767 | /// # // https://sourceforge.net/p/mingw-w64/bugs/848/ |
1768 | /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] { |
1769 | /// use core::f64; |
1770 | /// |
1771 | /// let m = 10.0_f64; |
1772 | /// let x = 4.0_f64; |
1773 | /// let b = 60.0_f64; |
1774 | /// |
1775 | /// assert_eq!(f64::math::mul_add(m, x, b), 100.0); |
1776 | /// assert_eq!(m * x + b, 100.0); |
1777 | /// |
1778 | /// let one_plus_eps = 1.0_f64 + f64::EPSILON; |
1779 | /// let one_minus_eps = 1.0_f64 - f64::EPSILON; |
1780 | /// let minus_one = -1.0_f64; |
1781 | /// |
1782 | /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. |
1783 | /// assert_eq!( |
1784 | /// f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one), |
1785 | /// -f64::EPSILON * f64::EPSILON |
1786 | /// ); |
1787 | /// // Different rounding with the non-fused multiply and add. |
1788 | /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); |
1789 | /// # } |
1790 | /// ``` |
1791 | /// |
1792 | /// _This standalone function is for testing only. |
1793 | /// It will be stabilized as an inherent method._ |
1794 | /// |
1795 | /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add |
1796 | #[inline] |
1797 | #[doc(alias = "fma", alias = "fusedMultiplyAdd")] |
1798 | #[unstable(feature = "core_float_math", issue = "137578")] |
1799 | #[must_use= "method returns a new number and does not mutate the original value"] |
1800 | pub fn mul_add(x: f64, a: f64, b: f64) -> f64 { |
1801 | // SAFETY: intrinsic with no preconditions |
1802 | unsafe { intrinsics::fmaf64(x, a, b) } |
1803 | } |
1804 | |
1805 | /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details. |
1806 | /// |
1807 | /// # Examples |
1808 | /// |
1809 | /// ``` |
1810 | /// #![feature(core_float_math)] |
1811 | /// |
1812 | /// use core::f64; |
1813 | /// |
1814 | /// let a: f64 = 7.0; |
1815 | /// let b = 4.0; |
1816 | /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0 |
1817 | /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0 |
1818 | /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0 |
1819 | /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0 |
1820 | /// ``` |
1821 | /// |
1822 | /// _This standalone function is for testing only. |
1823 | /// It will be stabilized as an inherent method._ |
1824 | /// |
1825 | /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid |
1826 | #[inline] |
1827 | #[unstable(feature = "core_float_math", issue = "137578")] |
1828 | #[must_use= "method returns a new number and does not mutate the original value"] |
1829 | pub fn div_euclid(x: f64, rhs: f64) -> f64 { |
1830 | let q = trunc(x / rhs); |
1831 | if x % rhs < 0.0 { |
1832 | return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; |
1833 | } |
1834 | q |
1835 | } |
1836 | |
1837 | /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details. |
1838 | /// |
1839 | /// # Examples |
1840 | /// |
1841 | /// ``` |
1842 | /// #![feature(core_float_math)] |
1843 | /// |
1844 | /// use core::f64; |
1845 | /// |
1846 | /// let a: f64 = 7.0; |
1847 | /// let b = 4.0; |
1848 | /// assert_eq!(f64::math::rem_euclid(a, b), 3.0); |
1849 | /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0); |
1850 | /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0); |
1851 | /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0); |
1852 | /// // limitation due to round-off error |
1853 | /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0); |
1854 | /// ``` |
1855 | /// |
1856 | /// _This standalone function is for testing only. |
1857 | /// It will be stabilized as an inherent method._ |
1858 | /// |
1859 | /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid |
1860 | #[inline] |
1861 | #[doc(alias = "modulo", alias = "mod")] |
1862 | #[unstable(feature = "core_float_math", issue = "137578")] |
1863 | #[must_use= "method returns a new number and does not mutate the original value"] |
1864 | pub fn rem_euclid(x: f64, rhs: f64) -> f64 { |
1865 | let r = x % rhs; |
1866 | if r < 0.0 { r + rhs.abs() } else { r } |
1867 | } |
1868 | |
1869 | /// Experimental version of `powi` in `core`. See [`f64::powi`] for details. |
1870 | /// |
1871 | /// # Examples |
1872 | /// |
1873 | /// ``` |
1874 | /// #![feature(core_float_math)] |
1875 | /// |
1876 | /// use core::f64; |
1877 | /// |
1878 | /// let x = 2.0_f64; |
1879 | /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs(); |
1880 | /// assert!(abs_difference <= 1e-6); |
1881 | /// |
1882 | /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0); |
1883 | /// ``` |
1884 | /// |
1885 | /// _This standalone function is for testing only. |
1886 | /// It will be stabilized as an inherent method._ |
1887 | /// |
1888 | /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi |
1889 | #[inline] |
1890 | #[unstable(feature = "core_float_math", issue = "137578")] |
1891 | #[must_use= "method returns a new number and does not mutate the original value"] |
1892 | pub fn powi(x: f64, n: i32) -> f64 { |
1893 | // SAFETY: intrinsic with no preconditions |
1894 | unsafe { intrinsics::powif64(x, n) } |
1895 | } |
1896 | |
1897 | /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details. |
1898 | /// |
1899 | /// # Examples |
1900 | /// |
1901 | /// ``` |
1902 | /// #![feature(core_float_math)] |
1903 | /// |
1904 | /// use core::f64; |
1905 | /// |
1906 | /// let positive = 4.0_f64; |
1907 | /// let negative = -4.0_f64; |
1908 | /// let negative_zero = -0.0_f64; |
1909 | /// |
1910 | /// assert_eq!(f64::math::sqrt(positive), 2.0); |
1911 | /// assert!(f64::math::sqrt(negative).is_nan()); |
1912 | /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero); |
1913 | /// ``` |
1914 | /// |
1915 | /// _This standalone function is for testing only. |
1916 | /// It will be stabilized as an inherent method._ |
1917 | /// |
1918 | /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt |
1919 | #[inline] |
1920 | #[doc(alias = "squareRoot")] |
1921 | #[unstable(feature = "core_float_math", issue = "137578")] |
1922 | #[must_use= "method returns a new number and does not mutate the original value"] |
1923 | pub fn sqrt(x: f64) -> f64 { |
1924 | // SAFETY: intrinsic with no preconditions |
1925 | unsafe { intrinsics::sqrtf64(x) } |
1926 | } |
1927 | |
1928 | /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details. |
1929 | /// |
1930 | /// # Examples |
1931 | /// |
1932 | /// ``` |
1933 | /// #![feature(core_float_math)] |
1934 | /// |
1935 | /// use core::f64; |
1936 | /// |
1937 | /// let x = 3.0_f64; |
1938 | /// let y = -3.0_f64; |
1939 | /// |
1940 | /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs(); |
1941 | /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs(); |
1942 | /// |
1943 | /// assert!(abs_difference_x < 1e-10); |
1944 | /// assert!(abs_difference_y < 1e-10); |
1945 | /// ``` |
1946 | /// |
1947 | /// _This standalone function is for testing only. |
1948 | /// It will be stabilized as an inherent method._ |
1949 | /// |
1950 | /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub |
1951 | #[inline] |
1952 | #[unstable(feature = "core_float_math", issue = "137578")] |
1953 | #[deprecated( |
1954 | since = "1.10.0", |
1955 | note = "you probably meant `(self - other).abs()`: \ |
1956 | this operation is `(self - other).max(0.0)` \ |
1957 | except that `abs_sub` also propagates NaNs (also \ |
1958 | known as `fdim` in C). If you truly need the positive \ |
1959 | difference, consider using that expression or the C function \ |
1960 | `fdim`, depending on how you wish to handle NaN (please consider \ |
1961 | filing an issue describing your use-case too)." |
1962 | )] |
1963 | #[must_use= "method returns a new number and does not mutate the original value"] |
1964 | pub fn abs_sub(x: f64, other: f64) -> f64 { |
1965 | libm::fdim(x, other) |
1966 | } |
1967 | |
1968 | /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details. |
1969 | /// |
1970 | /// # Examples |
1971 | /// |
1972 | /// ``` |
1973 | /// #![feature(core_float_math)] |
1974 | /// |
1975 | /// use core::f64; |
1976 | /// |
1977 | /// let x = 8.0_f64; |
1978 | /// |
1979 | /// // x^(1/3) - 2 == 0 |
1980 | /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs(); |
1981 | /// |
1982 | /// assert!(abs_difference < 1e-10); |
1983 | /// ``` |
1984 | /// |
1985 | /// _This standalone function is for testing only. |
1986 | /// It will be stabilized as an inherent method._ |
1987 | /// |
1988 | /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt |
1989 | #[inline] |
1990 | #[unstable(feature = "core_float_math", issue = "137578")] |
1991 | #[must_use= "method returns a new number and does not mutate the original value"] |
1992 | pub fn cbrt(x: f64) -> f64 { |
1993 | libm::cbrt(x) |
1994 | } |
1995 | } |
1996 |
Definitions
- is_nan
- is_infinite
- is_finite
- is_subnormal
- is_normal
- classify
- is_sign_positive
- is_positive
- is_sign_negative
- is_negative
- next_up
- next_down
- recip
- to_degrees
- to_radians
- max
- min
- maximum
- minimum
- midpoint
- to_int_unchecked
- to_bits
- from_bits
- to_be_bytes
- to_le_bytes
- to_ne_bytes
- from_be_bytes
- from_le_bytes
- from_ne_bytes
- total_cmp
- clamp
- abs
- signum
- copysign
- algebraic_add
- algebraic_sub
- algebraic_mul
- algebraic_div
- algebraic_rem
- floor
- ceil
- round
- round_ties_even
- trunc
- fract
- mul_add
- div_euclid
- rem_euclid
- powi
- sqrt
- abs_sub
Learn Rust with the experts
Find out more