| 1 | //! Converting decimal strings into IEEE 754 binary floating point numbers. |
| 2 | //! |
| 3 | //! # Problem statement |
| 4 | //! |
| 5 | //! We are given a decimal string such as `12.34e56`. This string consists of integral (`12`), |
| 6 | //! fractional (`34`), and exponent (`56`) parts. All parts are optional and interpreted as a |
| 7 | //! default value (1 or 0) when missing. |
| 8 | //! |
| 9 | //! We seek the IEEE 754 floating point number that is closest to the exact value of the decimal |
| 10 | //! string. It is well-known that many decimal strings do not have terminating representations in |
| 11 | //! base two, so we round to 0.5 units in the last place (in other words, as well as possible). |
| 12 | //! Ties, decimal values exactly half-way between two consecutive floats, are resolved with the |
| 13 | //! half-to-even strategy, also known as banker's rounding. |
| 14 | //! |
| 15 | //! Needless to say, this is quite hard, both in terms of implementation complexity and in terms |
| 16 | //! of CPU cycles taken. |
| 17 | //! |
| 18 | //! # Implementation |
| 19 | //! |
| 20 | //! First, we ignore signs. Or rather, we remove it at the very beginning of the conversion |
| 21 | //! process and re-apply it at the very end. This is correct in all edge cases since IEEE |
| 22 | //! floats are symmetric around zero, negating one simply flips the first bit. |
| 23 | //! |
| 24 | //! Then we remove the decimal point by adjusting the exponent: Conceptually, `12.34e56` turns |
| 25 | //! into `1234e54`, which we describe with a positive integer `f = 1234` and an integer `e = 54`. |
| 26 | //! The `(f, e)` representation is used by almost all code past the parsing stage. |
| 27 | //! |
| 28 | //! We then try a long chain of progressively more general and expensive special cases using |
| 29 | //! machine-sized integers and small, fixed-sized floating point numbers (first `f32`/`f64`, then |
| 30 | //! a type with 64 bit significand). The extended-precision algorithm |
| 31 | //! uses the Eisel-Lemire algorithm, which uses a 128-bit (or 192-bit) |
| 32 | //! representation that can accurately and quickly compute the vast majority |
| 33 | //! of floats. When all these fail, we bite the bullet and resort to using |
| 34 | //! a large-decimal representation, shifting the digits into range, calculating |
| 35 | //! the upper significant bits and exactly round to the nearest representation. |
| 36 | //! |
| 37 | //! Another aspect that needs attention is the ``RawFloat`` trait by which almost all functions |
| 38 | //! are parametrized. One might think that it's enough to parse to `f64` and cast the result to |
| 39 | //! `f32`. Unfortunately this is not the world we live in, and this has nothing to do with using |
| 40 | //! base two or half-to-even rounding. |
| 41 | //! |
| 42 | //! Consider for example two types `d2` and `d4` representing a decimal type with two decimal |
| 43 | //! digits and four decimal digits each and take "0.01499" as input. Let's use half-up rounding. |
| 44 | //! Going directly to two decimal digits gives `0.01`, but if we round to four digits first, |
| 45 | //! we get `0.0150`, which is then rounded up to `0.02`. The same principle applies to other |
| 46 | //! operations as well, if you want 0.5 ULP accuracy you need to do *everything* in full precision |
| 47 | //! and round *exactly once, at the end*, by considering all truncated bits at once. |
| 48 | //! |
| 49 | //! Primarily, this module and its children implement the algorithms described in: |
| 50 | //! "Number Parsing at a Gigabyte per Second", available online: |
| 51 | //! <https://arxiv.org/abs/2101.11408>. |
| 52 | //! |
| 53 | //! # Other |
| 54 | //! |
| 55 | //! The conversion should *never* panic. There are assertions and explicit panics in the code, |
| 56 | //! but they should never be triggered and only serve as internal sanity checks. Any panics should |
| 57 | //! be considered a bug. |
| 58 | //! |
| 59 | //! There are unit tests but they are woefully inadequate at ensuring correctness, they only cover |
| 60 | //! a small percentage of possible errors. Far more extensive tests are located in the directory |
| 61 | //! `src/tools/test-float-parse` as a Rust program. |
| 62 | //! |
| 63 | //! A note on integer overflow: Many parts of this file perform arithmetic with the decimal |
| 64 | //! exponent `e`. Primarily, we shift the decimal point around: Before the first decimal digit, |
| 65 | //! after the last decimal digit, and so on. This could overflow if done carelessly. We rely on |
| 66 | //! the parsing submodule to only hand out sufficiently small exponents, where "sufficient" means |
| 67 | //! "such that the exponent +/- the number of decimal digits fits into a 64 bit integer". |
| 68 | //! Larger exponents are accepted, but we don't do arithmetic with them, they are immediately |
| 69 | //! turned into {positive,negative} {zero,infinity}. |
| 70 | //! |
| 71 | //! # Notation |
| 72 | //! |
| 73 | //! This module uses the same notation as the Lemire paper: |
| 74 | //! |
| 75 | //! - `m`: binary mantissa; always nonnegative |
| 76 | //! - `p`: binary exponent; a signed integer |
| 77 | //! - `w`: decimal significand; always nonnegative |
| 78 | //! - `q`: decimal exponent; a signed integer |
| 79 | //! |
| 80 | //! This gives `m * 2^p` for the binary floating-point number, with `w * 10^q` as the decimal |
| 81 | //! equivalent. |
| 82 | |
| 83 | #![doc (hidden)] |
| 84 | #![unstable ( |
| 85 | feature = "dec2flt" , |
| 86 | reason = "internal routines only exposed for testing" , |
| 87 | issue = "none" |
| 88 | )] |
| 89 | |
| 90 | use self::common::BiasedFp; |
| 91 | use self::float::RawFloat; |
| 92 | use self::lemire::compute_float; |
| 93 | use self::parse::{parse_inf_nan, parse_number}; |
| 94 | use self::slow::parse_long_mantissa; |
| 95 | use crate::error::Error; |
| 96 | use crate::fmt; |
| 97 | use crate::str::FromStr; |
| 98 | |
| 99 | mod common; |
| 100 | pub mod decimal; |
| 101 | pub mod decimal_seq; |
| 102 | mod fpu; |
| 103 | mod slow; |
| 104 | mod table; |
| 105 | // float is used in flt2dec, and all are used in unit tests. |
| 106 | pub mod float; |
| 107 | pub mod lemire; |
| 108 | pub mod parse; |
| 109 | |
| 110 | macro_rules! from_str_float_impl { |
| 111 | ($t:ty) => { |
| 112 | #[stable(feature = "rust1" , since = "1.0.0" )] |
| 113 | impl FromStr for $t { |
| 114 | type Err = ParseFloatError; |
| 115 | |
| 116 | /// Converts a string in base 10 to a float. |
| 117 | /// Accepts an optional decimal exponent. |
| 118 | /// |
| 119 | /// This function accepts strings such as |
| 120 | /// |
| 121 | /// * '3.14' |
| 122 | /// * '-3.14' |
| 123 | /// * '2.5E10', or equivalently, '2.5e10' |
| 124 | /// * '2.5E-10' |
| 125 | /// * '5.' |
| 126 | /// * '.5', or, equivalently, '0.5' |
| 127 | /// * 'inf', '-inf', '+infinity', 'NaN' |
| 128 | /// |
| 129 | /// Note that alphabetical characters are not case-sensitive. |
| 130 | /// |
| 131 | /// Leading and trailing whitespace represent an error. |
| 132 | /// |
| 133 | /// # Grammar |
| 134 | /// |
| 135 | /// All strings that adhere to the following [EBNF] grammar when |
| 136 | /// lowercased will result in an [`Ok`] being returned: |
| 137 | /// |
| 138 | /// ```txt |
| 139 | /// Float ::= Sign? ( 'inf' | 'infinity' | 'nan' | Number ) |
| 140 | /// Number ::= ( Digit+ | |
| 141 | /// Digit+ '.' Digit* | |
| 142 | /// Digit* '.' Digit+ ) Exp? |
| 143 | /// Exp ::= 'e' Sign? Digit+ |
| 144 | /// Sign ::= [+-] |
| 145 | /// Digit ::= [0-9] |
| 146 | /// ``` |
| 147 | /// |
| 148 | /// [EBNF]: https://www.w3.org/TR/REC-xml/#sec-notation |
| 149 | /// |
| 150 | /// # Arguments |
| 151 | /// |
| 152 | /// * src - A string |
| 153 | /// |
| 154 | /// # Return value |
| 155 | /// |
| 156 | /// `Err(ParseFloatError)` if the string did not represent a valid |
| 157 | /// number. Otherwise, `Ok(n)` where `n` is the closest |
| 158 | /// representable floating-point number to the number represented |
| 159 | /// by `src` (following the same rules for rounding as for the |
| 160 | /// results of primitive operations). |
| 161 | // We add the `#[inline(never)]` attribute, since its content will |
| 162 | // be filled with that of `dec2flt`, which has #[inline(always)]. |
| 163 | // Since `dec2flt` is generic, a normal inline attribute on this function |
| 164 | // with `dec2flt` having no attributes results in heavily repeated |
| 165 | // generation of `dec2flt`, despite the fact only a maximum of 2 |
| 166 | // possible instances can ever exist. Adding #[inline(never)] avoids this. |
| 167 | #[inline(never)] |
| 168 | fn from_str(src: &str) -> Result<Self, ParseFloatError> { |
| 169 | dec2flt(src) |
| 170 | } |
| 171 | } |
| 172 | }; |
| 173 | } |
| 174 | |
| 175 | #[cfg (target_has_reliable_f16)] |
| 176 | from_str_float_impl!(f16); |
| 177 | from_str_float_impl!(f32); |
| 178 | from_str_float_impl!(f64); |
| 179 | |
| 180 | // FIXME(f16_f128): A fallback is used when the backend+target does not support f16 well, in order |
| 181 | // to avoid ICEs. |
| 182 | |
| 183 | #[cfg (not(target_has_reliable_f16))] |
| 184 | impl FromStr for f16 { |
| 185 | type Err = ParseFloatError; |
| 186 | |
| 187 | #[inline ] |
| 188 | fn from_str(_src: &str) -> Result<Self, ParseFloatError> { |
| 189 | unimplemented!("requires target_has_reliable_f16" ) |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | /// An error which can be returned when parsing a float. |
| 194 | /// |
| 195 | /// This error is used as the error type for the [`FromStr`] implementation |
| 196 | /// for [`f32`] and [`f64`]. |
| 197 | /// |
| 198 | /// # Example |
| 199 | /// |
| 200 | /// ``` |
| 201 | /// use std::str::FromStr; |
| 202 | /// |
| 203 | /// if let Err(e) = f64::from_str("a.12" ) { |
| 204 | /// println!("Failed conversion to f64: {e}" ); |
| 205 | /// } |
| 206 | /// ``` |
| 207 | #[derive (Debug, Clone, PartialEq, Eq)] |
| 208 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 209 | pub struct ParseFloatError { |
| 210 | kind: FloatErrorKind, |
| 211 | } |
| 212 | |
| 213 | #[derive (Debug, Clone, PartialEq, Eq)] |
| 214 | enum FloatErrorKind { |
| 215 | Empty, |
| 216 | Invalid, |
| 217 | } |
| 218 | |
| 219 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 220 | impl Error for ParseFloatError { |
| 221 | #[allow (deprecated)] |
| 222 | fn description(&self) -> &str { |
| 223 | match self.kind { |
| 224 | FloatErrorKind::Empty => "cannot parse float from empty string" , |
| 225 | FloatErrorKind::Invalid => "invalid float literal" , |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 231 | impl fmt::Display for ParseFloatError { |
| 232 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 233 | #[allow (deprecated)] |
| 234 | self.description().fmt(f) |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | #[inline ] |
| 239 | pub(super) fn pfe_empty() -> ParseFloatError { |
| 240 | ParseFloatError { kind: FloatErrorKind::Empty } |
| 241 | } |
| 242 | |
| 243 | // Used in unit tests, keep public. |
| 244 | // This is much better than making FloatErrorKind and ParseFloatError::kind public. |
| 245 | #[inline ] |
| 246 | pub fn pfe_invalid() -> ParseFloatError { |
| 247 | ParseFloatError { kind: FloatErrorKind::Invalid } |
| 248 | } |
| 249 | |
| 250 | /// Converts a `BiasedFp` to the closest machine float type. |
| 251 | fn biased_fp_to_float<F: RawFloat>(x: BiasedFp) -> F { |
| 252 | let mut word: u64 = x.m; |
| 253 | word |= (x.p_biased as u64) << F::SIG_BITS; |
| 254 | F::from_u64_bits(word) |
| 255 | } |
| 256 | |
| 257 | /// Converts a decimal string into a floating point number. |
| 258 | #[inline (always)] // Will be inlined into a function with `#[inline(never)]`, see above |
| 259 | pub fn dec2flt<F: RawFloat>(s: &str) -> Result<F, ParseFloatError> { |
| 260 | let mut s = s.as_bytes(); |
| 261 | let c = if let Some(&c) = s.first() { |
| 262 | c |
| 263 | } else { |
| 264 | return Err(pfe_empty()); |
| 265 | }; |
| 266 | let negative = c == b'-' ; |
| 267 | if c == b'-' || c == b'+' { |
| 268 | s = &s[1..]; |
| 269 | } |
| 270 | if s.is_empty() { |
| 271 | return Err(pfe_invalid()); |
| 272 | } |
| 273 | |
| 274 | let mut num = match parse_number(s) { |
| 275 | Some(r) => r, |
| 276 | None if let Some(value) = parse_inf_nan(s, negative) => return Ok(value), |
| 277 | None => return Err(pfe_invalid()), |
| 278 | }; |
| 279 | num.negative = negative; |
| 280 | if !cfg!(feature = "optimize_for_size" ) { |
| 281 | if let Some(value) = num.try_fast_path::<F>() { |
| 282 | return Ok(value); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | // If significant digits were truncated, then we can have rounding error |
| 287 | // only if `mantissa + 1` produces a different result. We also avoid |
| 288 | // redundantly using the Eisel-Lemire algorithm if it was unable to |
| 289 | // correctly round on the first pass. |
| 290 | let mut fp = compute_float::<F>(num.exponent, num.mantissa); |
| 291 | if num.many_digits |
| 292 | && fp.p_biased >= 0 |
| 293 | && fp != compute_float::<F>(num.exponent, num.mantissa + 1) |
| 294 | { |
| 295 | fp.p_biased = -1; |
| 296 | } |
| 297 | // Unable to correctly round the float using the Eisel-Lemire algorithm. |
| 298 | // Fallback to a slower, but always correct algorithm. |
| 299 | if fp.p_biased < 0 { |
| 300 | fp = parse_long_mantissa::<F>(s); |
| 301 | } |
| 302 | |
| 303 | let mut float = biased_fp_to_float::<F>(fp); |
| 304 | if num.negative { |
| 305 | float = -float; |
| 306 | } |
| 307 | Ok(float) |
| 308 | } |
| 309 | |