1//! Implementation of the Eisel-Lemire algorithm.
2
3use crate::num::dec2flt::common::BiasedFp;
4use crate::num::dec2flt::float::RawFloat;
5use crate::num::dec2flt::table::{
6 LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE,
7};
8
9/// Compute w * 10^q using an extended-precision float representation.
10///
11/// Fast conversion of a the significant digits and decimal exponent
12/// a float to an extended representation with a binary float. This
13/// algorithm will accurately parse the vast majority of cases,
14/// and uses a 128-bit representation (with a fallback 192-bit
15/// representation).
16///
17/// This algorithm scales the exponent by the decimal exponent
18/// using pre-computed powers-of-5, and calculates if the
19/// representation can be unambiguously rounded to the nearest
20/// machine float. Near-halfway cases are not handled here,
21/// and are represented by a negative, biased binary exponent.
22///
23/// The algorithm is described in detail in "Daniel Lemire, Number Parsing
24/// at a Gigabyte per Second" in section 5, "Fast Algorithm", and
25/// section 6, "Exact Numbers And Ties", available online:
26/// <https://arxiv.org/abs/2101.11408.pdf>.
27pub fn compute_float<F: RawFloat>(q: i64, mut w: u64) -> BiasedFp {
28 let fp_zero = BiasedFp::zero_pow2(0);
29 let fp_inf = BiasedFp::zero_pow2(F::INFINITE_POWER);
30 let fp_error = BiasedFp::zero_pow2(-1);
31
32 // Short-circuit if the value can only be a literal 0 or infinity.
33 if w == 0 || q < F::SMALLEST_POWER_OF_TEN as i64 {
34 return fp_zero;
35 } else if q > F::LARGEST_POWER_OF_TEN as i64 {
36 return fp_inf;
37 }
38 // Normalize our significant digits, so the most-significant bit is set.
39 let lz = w.leading_zeros();
40 w <<= lz;
41 let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_EXPLICIT_BITS + 3);
42 if lo == 0xFFFF_FFFF_FFFF_FFFF {
43 // If we have failed to approximate w x 5^-q with our 128-bit value.
44 // Since the addition of 1 could lead to an overflow which could then
45 // round up over the half-way point, this can lead to improper rounding
46 // of a float.
47 //
48 // However, this can only occur if q ∈ [-27, 55]. The upper bound of q
49 // is 55 because 5^55 < 2^128, however, this can only happen if 5^q > 2^64,
50 // since otherwise the product can be represented in 64-bits, producing
51 // an exact result. For negative exponents, rounding-to-even can
52 // only occur if 5^-q < 2^64.
53 //
54 // For detailed explanations of rounding for negative exponents, see
55 // <https://arxiv.org/pdf/2101.11408.pdf#section.9.1>. For detailed
56 // explanations of rounding for positive exponents, see
57 // <https://arxiv.org/pdf/2101.11408.pdf#section.8>.
58 let inside_safe_exponent = (q >= -27) && (q <= 55);
59 if !inside_safe_exponent {
60 return fp_error;
61 }
62 }
63 let upperbit = (hi >> 63) as i32;
64 let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_EXPLICIT_BITS as i32 - 3);
65 let mut power2 = power(q as i32) + upperbit - lz as i32 - F::MINIMUM_EXPONENT;
66 if power2 <= 0 {
67 if -power2 + 1 >= 64 {
68 // Have more than 64 bits below the minimum exponent, must be 0.
69 return fp_zero;
70 }
71 // Have a subnormal value.
72 mantissa >>= -power2 + 1;
73 mantissa += mantissa & 1;
74 mantissa >>= 1;
75 power2 = (mantissa >= (1_u64 << F::MANTISSA_EXPLICIT_BITS)) as i32;
76 return BiasedFp { f: mantissa, e: power2 };
77 }
78 // Need to handle rounding ties. Normally, we need to round up,
79 // but if we fall right in between and we have an even basis, we
80 // need to round down.
81 //
82 // This will only occur if:
83 // 1. The lower 64 bits of the 128-bit representation is 0.
84 // IE, 5^q fits in single 64-bit word.
85 // 2. The least-significant bit prior to truncated mantissa is odd.
86 // 3. All the bits truncated when shifting to mantissa bits + 1 are 0.
87 //
88 // Or, we may fall between two floats: we are exactly halfway.
89 if lo <= 1
90 && q >= F::MIN_EXPONENT_ROUND_TO_EVEN as i64
91 && q <= F::MAX_EXPONENT_ROUND_TO_EVEN as i64
92 && mantissa & 3 == 1
93 && (mantissa << (upperbit + 64 - F::MANTISSA_EXPLICIT_BITS as i32 - 3)) == hi
94 {
95 // Zero the lowest bit, so we don't round up.
96 mantissa &= !1_u64;
97 }
98 // Round-to-even, then shift the significant digits into place.
99 mantissa += mantissa & 1;
100 mantissa >>= 1;
101 if mantissa >= (2_u64 << F::MANTISSA_EXPLICIT_BITS) {
102 // Rounding up overflowed, so the carry bit is set. Set the
103 // mantissa to 1 (only the implicit, hidden bit is set) and
104 // increase the exponent.
105 mantissa = 1_u64 << F::MANTISSA_EXPLICIT_BITS;
106 power2 += 1;
107 }
108 // Zero out the hidden bit.
109 mantissa &= !(1_u64 << F::MANTISSA_EXPLICIT_BITS);
110 if power2 >= F::INFINITE_POWER {
111 // Exponent is above largest normal value, must be infinite.
112 return fp_inf;
113 }
114 BiasedFp { f: mantissa, e: power2 }
115}
116
117/// Calculate a base 2 exponent from a decimal exponent.
118/// This uses a pre-computed integer approximation for
119/// log2(10), where 217706 / 2^16 is accurate for the
120/// entire range of non-finite decimal exponents.
121#[inline]
122fn power(q: i32) -> i32 {
123 (q.wrapping_mul(152_170 + 65536) >> 16) + 63
124}
125
126#[inline]
127fn full_multiplication(a: u64, b: u64) -> (u64, u64) {
128 let r: u128 = (a as u128) * (b as u128);
129 (r as u64, (r >> 64) as u64)
130}
131
132// This will compute or rather approximate w * 5**q and return a pair of 64-bit words
133// approximating the result, with the "high" part corresponding to the most significant
134// bits and the low part corresponding to the least significant bits.
135fn compute_product_approx(q: i64, w: u64, precision: usize) -> (u64, u64) {
136 debug_assert!(q >= SMALLEST_POWER_OF_FIVE as i64);
137 debug_assert!(q <= LARGEST_POWER_OF_FIVE as i64);
138 debug_assert!(precision <= 64);
139
140 let mask = if precision < 64 {
141 0xFFFF_FFFF_FFFF_FFFF_u64 >> precision
142 } else {
143 0xFFFF_FFFF_FFFF_FFFF_u64
144 };
145
146 // 5^q < 2^64, then the multiplication always provides an exact value.
147 // That means whenever we need to round ties to even, we always have
148 // an exact value.
149 let index = (q - SMALLEST_POWER_OF_FIVE as i64) as usize;
150 let (lo5, hi5) = POWER_OF_FIVE_128[index];
151 // Only need one multiplication as long as there is 1 zero but
152 // in the explicit mantissa bits, +1 for the hidden bit, +1 to
153 // determine the rounding direction, +1 for if the computed
154 // product has a leading zero.
155 let (mut first_lo, mut first_hi) = full_multiplication(w, lo5);
156 if first_hi & mask == mask {
157 // Need to do a second multiplication to get better precision
158 // for the lower product. This will always be exact
159 // where q is < 55, since 5^55 < 2^128. If this wraps,
160 // then we need to need to round up the hi product.
161 let (_, second_hi) = full_multiplication(w, hi5);
162 first_lo = first_lo.wrapping_add(second_hi);
163 if second_hi > first_lo {
164 first_hi += 1;
165 }
166 }
167 (first_lo, first_hi)
168}
169