| 1 | //! The exponent estimator. | 
| 2 |  | 
|---|
| 3 | /// Finds `k_0` such that `10^(k_0-1) < mant * 2^exp <= 10^(k_0+1)`. | 
|---|
| 4 | /// | 
|---|
| 5 | /// This is used to approximate `k = ceil(log_10 (mant * 2^exp))`; | 
|---|
| 6 | /// the true `k` is either `k_0` or `k_0+1`. | 
|---|
| 7 | #[ doc(hidden)] | 
|---|
| 8 | pub fn estimate_scaling_factor(mant: u64, exp: i16) -> i16 { | 
|---|
| 9 | // 2^(nbits-1) < mant <= 2^nbits if mant > 0 | 
|---|
| 10 | let nbits: i64 = 64 - (mant - 1).leading_zeros() as i64; | 
|---|
| 11 | // 1292913986 = floor(2^32 * log_10 2) | 
|---|
| 12 | // therefore this always underestimates (or is exact), but not much. | 
|---|
| 13 | (((nbits + exp as i64) * 1292913986) >> 32) as i16 | 
|---|
| 14 | } | 
|---|
| 15 |  | 
|---|