1//! Vectorized Carry-less Multiplication (VCLMUL)
2//!
3//! The reference is [Intel 64 and IA-32 Architectures Software Developer's
4//! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref] (p. 4-241).
5//!
6//! [intel64_ref]: http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
7
8use crate::core_arch::x86::__m256i;
9use crate::core_arch::x86::__m512i;
10
11#[cfg(test)]
12use stdarch_test::assert_instr;
13
14#[allow(improper_ctypes)]
15extern "C" {
16 #[link_name = "llvm.x86.pclmulqdq.256"]
17 fn pclmulqdq_256(a: __m256i, round_key: __m256i, imm8: u8) -> __m256i;
18 #[link_name = "llvm.x86.pclmulqdq.512"]
19 fn pclmulqdq_512(a: __m512i, round_key: __m512i, imm8: u8) -> __m512i;
20}
21
22// for some odd reason on x86_64 we generate the correct long name instructions
23// but on i686 we generate the short name + imm8
24// so we need to special-case on that...
25
26/// Performs a carry-less multiplication of two 64-bit polynomials over the
27/// finite field GF(2) - in each of the 4 128-bit lanes.
28///
29/// The immediate byte is used for determining which halves of each lane `a` and `b`
30/// should be used. Immediate bits other than 0 and 4 are ignored.
31/// All lanes share immediate byte.
32///
33/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_clmulepi64_epi128)
34#[inline]
35#[target_feature(enable = "vpclmulqdq,avx512f")]
36#[unstable(feature = "stdarch_x86_avx512", issue = "111137")]
37// technically according to Intel's documentation we don't need avx512f here, however LLVM gets confused otherwise
38#[cfg_attr(test, assert_instr(vpclmul, IMM8 = 0))]
39#[rustc_legacy_const_generics(2)]
40pub unsafe fn _mm512_clmulepi64_epi128<const IMM8: i32>(a: __m512i, b: __m512i) -> __m512i {
41 static_assert_uimm_bits!(IMM8, 8);
42 pclmulqdq_512(a, round_key:b, IMM8 as u8)
43}
44
45/// Performs a carry-less multiplication of two 64-bit polynomials over the
46/// finite field GF(2) - in each of the 2 128-bit lanes.
47///
48/// The immediate byte is used for determining which halves of each lane `a` and `b`
49/// should be used. Immediate bits other than 0 and 4 are ignored.
50/// All lanes share immediate byte.
51///
52/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_clmulepi64_epi128)
53#[inline]
54#[target_feature(enable = "vpclmulqdq")]
55#[unstable(feature = "stdarch_x86_avx512", issue = "111137")]
56#[cfg_attr(test, assert_instr(vpclmul, IMM8 = 0))]
57#[rustc_legacy_const_generics(2)]
58pub unsafe fn _mm256_clmulepi64_epi128<const IMM8: i32>(a: __m256i, b: __m256i) -> __m256i {
59 static_assert_uimm_bits!(IMM8, 8);
60 pclmulqdq_256(a, round_key:b, IMM8 as u8)
61}
62
63#[cfg(test)]
64mod tests {
65 // The constants in the tests below are just bit patterns. They should not
66 // be interpreted as integers; signedness does not make sense for them, but
67 // __mXXXi happens to be defined in terms of signed integers.
68 #![allow(overflowing_literals)]
69
70 use stdarch_test::simd_test;
71
72 use crate::core_arch::x86::*;
73
74 macro_rules! verify_kat_pclmul {
75 ($broadcast:ident, $clmul:ident, $assert:ident) => {
76 // Constants taken from https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf
77 let a = _mm_set_epi64x(0x7b5b546573745665, 0x63746f725d53475d);
78 let a = $broadcast(a);
79 let b = _mm_set_epi64x(0x4869285368617929, 0x5b477565726f6e5d);
80 let b = $broadcast(b);
81 let r00 = _mm_set_epi64x(0x1d4d84c85c3440c0, 0x929633d5d36f0451);
82 let r00 = $broadcast(r00);
83 let r01 = _mm_set_epi64x(0x1bd17c8d556ab5a1, 0x7fa540ac2a281315);
84 let r01 = $broadcast(r01);
85 let r10 = _mm_set_epi64x(0x1a2bf6db3a30862f, 0xbabf262df4b7d5c9);
86 let r10 = $broadcast(r10);
87 let r11 = _mm_set_epi64x(0x1d1e1f2c592e7c45, 0xd66ee03e410fd4ed);
88 let r11 = $broadcast(r11);
89
90 $assert($clmul::<0x00>(a, b), r00);
91 $assert($clmul::<0x10>(a, b), r01);
92 $assert($clmul::<0x01>(a, b), r10);
93 $assert($clmul::<0x11>(a, b), r11);
94
95 let a0 = _mm_set_epi64x(0x0000000000000000, 0x8000000000000000);
96 let a0 = $broadcast(a0);
97 let r = _mm_set_epi64x(0x4000000000000000, 0x0000000000000000);
98 let r = $broadcast(r);
99 $assert($clmul::<0x00>(a0, a0), r);
100 }
101 }
102
103 macro_rules! unroll {
104 ($target:ident[4] = $op:ident::<4>($source:ident);) => {
105 $target[3] = $op::<3>($source);
106 $target[2] = $op::<2>($source);
107 unroll! {$target[2] = $op::<2>($source);}
108 };
109 ($target:ident[2] = $op:ident::<2>($source:ident);) => {
110 $target[1] = $op::<1>($source);
111 $target[0] = $op::<0>($source);
112 };
113 (assert_eq_m128i($op:ident::<4>($vec_res:ident),$lin_res:ident[4]);) => {
114 assert_eq_m128i($op::<3>($vec_res), $lin_res[3]);
115 assert_eq_m128i($op::<2>($vec_res), $lin_res[2]);
116 unroll! {assert_eq_m128i($op::<2>($vec_res),$lin_res[2]);}
117 };
118 (assert_eq_m128i($op:ident::<2>($vec_res:ident),$lin_res:ident[2]);) => {
119 assert_eq_m128i($op::<1>($vec_res), $lin_res[1]);
120 assert_eq_m128i($op::<0>($vec_res), $lin_res[0]);
121 };
122 }
123
124 // this function tests one of the possible 4 instances
125 // with different inputs across lanes
126 #[target_feature(enable = "vpclmulqdq,avx512f")]
127 unsafe fn verify_512_helper(
128 linear: unsafe fn(__m128i, __m128i) -> __m128i,
129 vectorized: unsafe fn(__m512i, __m512i) -> __m512i,
130 ) {
131 let a = _mm512_set_epi64(
132 0xDCB4DB3657BF0B7D,
133 0x18DB0601068EDD9F,
134 0xB76B908233200DC5,
135 0xE478235FA8E22D5E,
136 0xAB05CFFA2621154C,
137 0x1171B47A186174C9,
138 0x8C6B6C0E7595CEC9,
139 0xBE3E7D4934E961BD,
140 );
141 let b = _mm512_set_epi64(
142 0x672F6F105A94CEA7,
143 0x8298B8FFCA5F829C,
144 0xA3927047B3FB61D8,
145 0x978093862CDE7187,
146 0xB1927AB22F31D0EC,
147 0xA9A5DA619BE4D7AF,
148 0xCA2590F56884FDC6,
149 0x19BE9F660038BDB5,
150 );
151
152 let mut a_decomp = [_mm_setzero_si128(); 4];
153 unroll! {a_decomp[4] = _mm512_extracti32x4_epi32::<4>(a);}
154 let mut b_decomp = [_mm_setzero_si128(); 4];
155 unroll! {b_decomp[4] = _mm512_extracti32x4_epi32::<4>(b);}
156
157 let r = vectorized(a, b);
158 let mut e_decomp = [_mm_setzero_si128(); 4];
159 for i in 0..4 {
160 e_decomp[i] = linear(a_decomp[i], b_decomp[i]);
161 }
162 unroll! {assert_eq_m128i(_mm512_extracti32x4_epi32::<4>(r),e_decomp[4]);}
163 }
164
165 // this function tests one of the possible 4 instances
166 // with different inputs across lanes for the VL version
167 #[target_feature(enable = "vpclmulqdq,avx512vl")]
168 unsafe fn verify_256_helper(
169 linear: unsafe fn(__m128i, __m128i) -> __m128i,
170 vectorized: unsafe fn(__m256i, __m256i) -> __m256i,
171 ) {
172 let a = _mm512_set_epi64(
173 0xDCB4DB3657BF0B7D,
174 0x18DB0601068EDD9F,
175 0xB76B908233200DC5,
176 0xE478235FA8E22D5E,
177 0xAB05CFFA2621154C,
178 0x1171B47A186174C9,
179 0x8C6B6C0E7595CEC9,
180 0xBE3E7D4934E961BD,
181 );
182 let b = _mm512_set_epi64(
183 0x672F6F105A94CEA7,
184 0x8298B8FFCA5F829C,
185 0xA3927047B3FB61D8,
186 0x978093862CDE7187,
187 0xB1927AB22F31D0EC,
188 0xA9A5DA619BE4D7AF,
189 0xCA2590F56884FDC6,
190 0x19BE9F660038BDB5,
191 );
192
193 let mut a_decomp = [_mm_setzero_si128(); 2];
194 unroll! {a_decomp[2] = _mm512_extracti32x4_epi32::<2>(a);}
195 let mut b_decomp = [_mm_setzero_si128(); 2];
196 unroll! {b_decomp[2] = _mm512_extracti32x4_epi32::<2>(b);}
197
198 let r = vectorized(
199 _mm512_extracti64x4_epi64::<0>(a),
200 _mm512_extracti64x4_epi64::<0>(b),
201 );
202 let mut e_decomp = [_mm_setzero_si128(); 2];
203 for i in 0..2 {
204 e_decomp[i] = linear(a_decomp[i], b_decomp[i]);
205 }
206 unroll! {assert_eq_m128i(_mm256_extracti128_si256::<2>(r),e_decomp[2]);}
207 }
208
209 #[simd_test(enable = "vpclmulqdq,avx512f")]
210 unsafe fn test_mm512_clmulepi64_epi128() {
211 verify_kat_pclmul!(
212 _mm512_broadcast_i32x4,
213 _mm512_clmulepi64_epi128,
214 assert_eq_m512i
215 );
216
217 verify_512_helper(
218 |a, b| _mm_clmulepi64_si128::<0x00>(a, b),
219 |a, b| _mm512_clmulepi64_epi128::<0x00>(a, b),
220 );
221 verify_512_helper(
222 |a, b| _mm_clmulepi64_si128::<0x01>(a, b),
223 |a, b| _mm512_clmulepi64_epi128::<0x01>(a, b),
224 );
225 verify_512_helper(
226 |a, b| _mm_clmulepi64_si128::<0x10>(a, b),
227 |a, b| _mm512_clmulepi64_epi128::<0x10>(a, b),
228 );
229 verify_512_helper(
230 |a, b| _mm_clmulepi64_si128::<0x11>(a, b),
231 |a, b| _mm512_clmulepi64_epi128::<0x11>(a, b),
232 );
233 }
234
235 #[simd_test(enable = "vpclmulqdq,avx512vl")]
236 unsafe fn test_mm256_clmulepi64_epi128() {
237 verify_kat_pclmul!(
238 _mm256_broadcastsi128_si256,
239 _mm256_clmulepi64_epi128,
240 assert_eq_m256i
241 );
242
243 verify_256_helper(
244 |a, b| _mm_clmulepi64_si128::<0x00>(a, b),
245 |a, b| _mm256_clmulepi64_epi128::<0x00>(a, b),
246 );
247 verify_256_helper(
248 |a, b| _mm_clmulepi64_si128::<0x01>(a, b),
249 |a, b| _mm256_clmulepi64_epi128::<0x01>(a, b),
250 );
251 verify_256_helper(
252 |a, b| _mm_clmulepi64_si128::<0x10>(a, b),
253 |a, b| _mm256_clmulepi64_epi128::<0x10>(a, b),
254 );
255 verify_256_helper(
256 |a, b| _mm_clmulepi64_si128::<0x11>(a, b),
257 |a, b| _mm256_clmulepi64_epi128::<0x11>(a, b),
258 );
259 }
260}
261