1 | //! Fast, SIMD-accelerated CRC32 (IEEE) checksum computation. |
2 | //! |
3 | //! ## Usage |
4 | //! |
5 | //! ### Simple usage |
6 | //! |
7 | //! For simple use-cases, you can call the [`hash()`] convenience function to |
8 | //! directly compute the CRC32 checksum for a given byte slice: |
9 | //! |
10 | //! ```rust |
11 | //! let checksum = crc32fast::hash(b"foo bar baz" ); |
12 | //! ``` |
13 | //! |
14 | //! ### Advanced usage |
15 | //! |
16 | //! For use-cases that require more flexibility or performance, for example when |
17 | //! processing large amounts of data, you can create and manipulate a [`Hasher`]: |
18 | //! |
19 | //! ```rust |
20 | //! use crc32fast::Hasher; |
21 | //! |
22 | //! let mut hasher = Hasher::new(); |
23 | //! hasher.update(b"foo bar baz" ); |
24 | //! let checksum = hasher.finalize(); |
25 | //! ``` |
26 | //! |
27 | //! ## Performance |
28 | //! |
29 | //! This crate contains multiple CRC32 implementations: |
30 | //! |
31 | //! - A fast baseline implementation which processes up to 16 bytes per iteration |
32 | //! - An optimized implementation for modern `x86` using `sse` and `pclmulqdq` instructions |
33 | //! |
34 | //! Calling the [`Hasher::new`] constructor at runtime will perform a feature detection to select the most |
35 | //! optimal implementation for the current CPU feature set. |
36 | |
37 | #![cfg_attr (not(feature = "std" ), no_std)] |
38 | |
39 | #[deny (missing_docs)] |
40 | #[cfg (test)] |
41 | #[macro_use ] |
42 | extern crate quickcheck; |
43 | |
44 | #[macro_use ] |
45 | extern crate cfg_if; |
46 | |
47 | #[cfg (feature = "std" )] |
48 | use std as core; |
49 | |
50 | use core::fmt; |
51 | use core::hash; |
52 | |
53 | mod baseline; |
54 | mod combine; |
55 | mod specialized; |
56 | mod table; |
57 | |
58 | /// Computes the CRC32 hash of a byte slice. |
59 | /// |
60 | /// Check out [`Hasher`] for more advanced use-cases. |
61 | pub fn hash(buf: &[u8]) -> u32 { |
62 | let mut h: Hasher = Hasher::new(); |
63 | h.update(buf); |
64 | h.finalize() |
65 | } |
66 | |
67 | #[derive (Clone)] |
68 | enum State { |
69 | Baseline(baseline::State), |
70 | Specialized(specialized::State), |
71 | } |
72 | |
73 | #[derive (Clone)] |
74 | /// Represents an in-progress CRC32 computation. |
75 | pub struct Hasher { |
76 | amount: u64, |
77 | state: State, |
78 | } |
79 | |
80 | const DEFAULT_INIT_STATE: u32 = 0; |
81 | |
82 | impl Hasher { |
83 | /// Create a new `Hasher`. |
84 | /// |
85 | /// This will perform a CPU feature detection at runtime to select the most |
86 | /// optimal implementation for the current processor architecture. |
87 | pub fn new() -> Self { |
88 | Self::new_with_initial(DEFAULT_INIT_STATE) |
89 | } |
90 | |
91 | /// Create a new `Hasher` with an initial CRC32 state. |
92 | /// |
93 | /// This works just like `Hasher::new`, except that it allows for an initial |
94 | /// CRC32 state to be passed in. |
95 | pub fn new_with_initial(init: u32) -> Self { |
96 | Self::new_with_initial_len(init, 0) |
97 | } |
98 | |
99 | /// Create a new `Hasher` with an initial CRC32 state. |
100 | /// |
101 | /// As `new_with_initial`, but also accepts a length (in bytes). The |
102 | /// resulting object can then be used with `combine` to compute `crc(a || |
103 | /// b)` from `crc(a)`, `crc(b)`, and `len(b)`. |
104 | pub fn new_with_initial_len(init: u32, amount: u64) -> Self { |
105 | Self::internal_new_specialized(init, amount) |
106 | .unwrap_or_else(|| Self::internal_new_baseline(init, amount)) |
107 | } |
108 | |
109 | #[doc (hidden)] |
110 | // Internal-only API. Don't use. |
111 | pub fn internal_new_baseline(init: u32, amount: u64) -> Self { |
112 | Hasher { |
113 | amount, |
114 | state: State::Baseline(baseline::State::new(init)), |
115 | } |
116 | } |
117 | |
118 | #[doc (hidden)] |
119 | // Internal-only API. Don't use. |
120 | pub fn internal_new_specialized(init: u32, amount: u64) -> Option<Self> { |
121 | { |
122 | if let Some(state) = specialized::State::new(init) { |
123 | return Some(Hasher { |
124 | amount, |
125 | state: State::Specialized(state), |
126 | }); |
127 | } |
128 | } |
129 | None |
130 | } |
131 | |
132 | /// Process the given byte slice and update the hash state. |
133 | pub fn update(&mut self, buf: &[u8]) { |
134 | self.amount += buf.len() as u64; |
135 | match self.state { |
136 | State::Baseline(ref mut state) => state.update(buf), |
137 | State::Specialized(ref mut state) => state.update(buf), |
138 | } |
139 | } |
140 | |
141 | /// Finalize the hash state and return the computed CRC32 value. |
142 | pub fn finalize(self) -> u32 { |
143 | match self.state { |
144 | State::Baseline(state) => state.finalize(), |
145 | State::Specialized(state) => state.finalize(), |
146 | } |
147 | } |
148 | |
149 | /// Reset the hash state. |
150 | pub fn reset(&mut self) { |
151 | self.amount = 0; |
152 | match self.state { |
153 | State::Baseline(ref mut state) => state.reset(), |
154 | State::Specialized(ref mut state) => state.reset(), |
155 | } |
156 | } |
157 | |
158 | /// Combine the hash state with the hash state for the subsequent block of bytes. |
159 | pub fn combine(&mut self, other: &Self) { |
160 | self.amount += other.amount; |
161 | let other_crc = other.clone().finalize(); |
162 | match self.state { |
163 | State::Baseline(ref mut state) => state.combine(other_crc, other.amount), |
164 | State::Specialized(ref mut state) => state.combine(other_crc, other.amount), |
165 | } |
166 | } |
167 | } |
168 | |
169 | impl fmt::Debug for Hasher { |
170 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
171 | f.debug_struct(name:"crc32fast::Hasher" ).finish() |
172 | } |
173 | } |
174 | |
175 | impl Default for Hasher { |
176 | fn default() -> Self { |
177 | Self::new() |
178 | } |
179 | } |
180 | |
181 | impl hash::Hasher for Hasher { |
182 | fn write(&mut self, bytes: &[u8]) { |
183 | self.update(buf:bytes) |
184 | } |
185 | |
186 | fn finish(&self) -> u64 { |
187 | u64::from(self.clone().finalize()) |
188 | } |
189 | } |
190 | |
191 | #[cfg (test)] |
192 | mod test { |
193 | use super::Hasher; |
194 | |
195 | quickcheck! { |
196 | fn combine(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool { |
197 | let mut hash_a = Hasher::new(); |
198 | hash_a.update(&bytes_1); |
199 | hash_a.update(&bytes_2); |
200 | let mut hash_b = Hasher::new(); |
201 | hash_b.update(&bytes_2); |
202 | let mut hash_c = Hasher::new(); |
203 | hash_c.update(&bytes_1); |
204 | hash_c.combine(&hash_b); |
205 | |
206 | hash_a.finalize() == hash_c.finalize() |
207 | } |
208 | |
209 | fn combine_from_len(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool { |
210 | let mut hash_a = Hasher::new(); |
211 | hash_a.update(&bytes_1); |
212 | let a = hash_a.finalize(); |
213 | |
214 | let mut hash_b = Hasher::new(); |
215 | hash_b.update(&bytes_2); |
216 | let b = hash_b.finalize(); |
217 | |
218 | let mut hash_ab = Hasher::new(); |
219 | hash_ab.update(&bytes_1); |
220 | hash_ab.update(&bytes_2); |
221 | let ab = hash_ab.finalize(); |
222 | |
223 | let mut reconstructed = Hasher::new_with_initial_len(a, bytes_1.len() as u64); |
224 | let hash_b_reconstructed = Hasher::new_with_initial_len(b, bytes_2.len() as u64); |
225 | |
226 | reconstructed.combine(&hash_b_reconstructed); |
227 | |
228 | reconstructed.finalize() == ab |
229 | } |
230 | } |
231 | } |
232 | |