1/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrt.c */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 *
12 * Optimized by Bruce D. Evans.
13 */
14/* cbrt(x)
15 * Return cube root of x
16 */
17
18use core::f64;
19
20const B1: u32 = 715094163; /* B1 = (1023-1023/3-0.03306235651)*2**20 */
21const B2: u32 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
22
23/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
24const P0: f64 = 1.87595182427177009643; /* 0x3ffe03e6, 0x0f61e692 */
25const P1: f64 = -1.88497979543377169875; /* 0xbffe28e0, 0x92f02420 */
26const P2: f64 = 1.621429720105354466140; /* 0x3ff9f160, 0x4a49d6c2 */
27const P3: f64 = -0.758397934778766047437; /* 0xbfe844cb, 0xbee751d9 */
28const P4: f64 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
29
30// Cube root (f64)
31///
32/// Computes the cube root of the argument.
33#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
34pub fn cbrt(x: f64) -> f64 {
35 let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
36
37 let mut ui: u64 = x.to_bits();
38 let mut r: f64;
39 let s: f64;
40 let mut t: f64;
41 let w: f64;
42 let mut hx: u32 = (ui >> 32) as u32 & 0x7fffffff;
43
44 if hx >= 0x7ff00000 {
45 /* cbrt(NaN,INF) is itself */
46 return x + x;
47 }
48
49 /*
50 * Rough cbrt to 5 bits:
51 * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
52 * where e is integral and >= 0, m is real and in [0, 1), and "/" and
53 * "%" are integer division and modulus with rounding towards minus
54 * infinity. The RHS is always >= the LHS and has a maximum relative
55 * error of about 1 in 16. Adding a bias of -0.03306235651 to the
56 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
57 * floating point representation, for finite positive normal values,
58 * ordinary integer divison of the value in bits magically gives
59 * almost exactly the RHS of the above provided we first subtract the
60 * exponent bias (1023 for doubles) and later add it back. We do the
61 * subtraction virtually to keep e >= 0 so that ordinary integer
62 * division rounds towards minus infinity; this is also efficient.
63 */
64 if hx < 0x00100000 {
65 /* zero or subnormal? */
66 ui = (x * x1p54).to_bits();
67 hx = (ui >> 32) as u32 & 0x7fffffff;
68 if hx == 0 {
69 return x; /* cbrt(0) is itself */
70 }
71 hx = hx / 3 + B2;
72 } else {
73 hx = hx / 3 + B1;
74 }
75 ui &= 1 << 63;
76 ui |= (hx as u64) << 32;
77 t = f64::from_bits(ui);
78
79 /*
80 * New cbrt to 23 bits:
81 * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
82 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
83 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
84 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
85 * gives us bounds for r = t**3/x.
86 *
87 * Try to optimize for parallel evaluation as in __tanf.c.
88 */
89 r = (t * t) * (t / x);
90 t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
91
92 /*
93 * Round t away from zero to 23 bits (sloppily except for ensuring that
94 * the result is larger in magnitude than cbrt(x) but not much more than
95 * 2 23-bit ulps larger). With rounding towards zero, the error bound
96 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
97 * in the rounded t, the infinite-precision error in the Newton
98 * approximation barely affects third digit in the final error
99 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
100 * before the final error is larger than 0.667 ulps.
101 */
102 ui = t.to_bits();
103 ui = (ui + 0x80000000) & 0xffffffffc0000000;
104 t = f64::from_bits(ui);
105
106 /* one step Newton iteration to 53 bits with error < 0.667 ulps */
107 s = t * t; /* t*t is exact */
108 r = x / s; /* error <= 0.5 ulps; |r| < |t| */
109 w = t + t; /* t+t is exact */
110 r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
111 t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */
112 t
113}
114