| 1 | use super::log1p; |
| 2 | |
| 3 | /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */ |
| 4 | /// Inverse hyperbolic tangent (f64) |
| 5 | /// |
| 6 | /// Calculates the inverse hyperbolic tangent of `x`. |
| 7 | /// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`. |
| 8 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 9 | pub fn atanh(x: f64) -> f64 { |
| 10 | let u = x.to_bits(); |
| 11 | let e = ((u >> 52) as usize) & 0x7ff; |
| 12 | let sign = (u >> 63) != 0; |
| 13 | |
| 14 | /* |x| */ |
| 15 | let mut y = f64::from_bits(u & 0x7fff_ffff_ffff_ffff); |
| 16 | |
| 17 | if e < 0x3ff - 1 { |
| 18 | if e < 0x3ff - 32 { |
| 19 | /* handle underflow */ |
| 20 | if e == 0 { |
| 21 | force_eval!(y as f32); |
| 22 | } |
| 23 | } else { |
| 24 | /* |x| < 0.5, up to 1.7ulp error */ |
| 25 | y = 0.5 * log1p(2.0 * y + 2.0 * y * y / (1.0 - y)); |
| 26 | } |
| 27 | } else { |
| 28 | /* avoid overflow */ |
| 29 | y = 0.5 * log1p(2.0 * (y / (1.0 - y))); |
| 30 | } |
| 31 | |
| 32 | if sign { -y } else { y } |
| 33 | } |
| 34 | |