| 1 | use super::log1pf; |
| 2 | |
| 3 | /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */ |
| 4 | /// Inverse hyperbolic tangent (f32) |
| 5 | /// |
| 6 | /// Calculates the inverse hyperbolic tangent of `x`. |
| 7 | /// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`. |
| 8 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 9 | pub fn atanhf(mut x: f32) -> f32 { |
| 10 | let mut u = x.to_bits(); |
| 11 | let sign = (u >> 31) != 0; |
| 12 | |
| 13 | /* |x| */ |
| 14 | u &= 0x7fffffff; |
| 15 | x = f32::from_bits(u); |
| 16 | |
| 17 | if u < 0x3f800000 - (1 << 23) { |
| 18 | if u < 0x3f800000 - (32 << 23) { |
| 19 | /* handle underflow */ |
| 20 | if u < (1 << 23) { |
| 21 | force_eval!((x * x) as f32); |
| 22 | } |
| 23 | } else { |
| 24 | /* |x| < 0.5, up to 1.7ulp error */ |
| 25 | x = 0.5 * log1pf(2.0 * x + 2.0 * x * x / (1.0 - x)); |
| 26 | } |
| 27 | } else { |
| 28 | /* avoid overflow */ |
| 29 | x = 0.5 * log1pf(2.0 * (x / (1.0 - x))); |
| 30 | } |
| 31 | |
| 32 | if sign { -x } else { x } |
| 33 | } |
| 34 | |