| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */ |
| 2 | /* |
| 3 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| 4 | * Debugged and optimized by Bruce D. Evans. |
| 5 | */ |
| 6 | /* |
| 7 | * ==================================================== |
| 8 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 9 | * |
| 10 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 11 | * Permission to use, copy, modify, and distribute this |
| 12 | * software is freely granted, provided that this notice |
| 13 | * is preserved. |
| 14 | * ==================================================== |
| 15 | */ |
| 16 | /* cbrtf(x) |
| 17 | * Return cube root of x |
| 18 | */ |
| 19 | |
| 20 | use core::f32; |
| 21 | |
| 22 | const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ |
| 23 | const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */ |
| 24 | |
| 25 | /// Cube root (f32) |
| 26 | /// |
| 27 | /// Computes the cube root of the argument. |
| 28 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 29 | pub fn cbrtf(x: f32) -> f32 { |
| 30 | let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24 |
| 31 | |
| 32 | let mut r: f64; |
| 33 | let mut t: f64; |
| 34 | let mut ui: u32 = x.to_bits(); |
| 35 | let mut hx: u32 = ui & 0x7fffffff; |
| 36 | |
| 37 | if hx >= 0x7f800000 { |
| 38 | /* cbrt(NaN,INF) is itself */ |
| 39 | return x + x; |
| 40 | } |
| 41 | |
| 42 | /* rough cbrt to 5 bits */ |
| 43 | if hx < 0x00800000 { |
| 44 | /* zero or subnormal? */ |
| 45 | if hx == 0 { |
| 46 | return x; /* cbrt(+-0) is itself */ |
| 47 | } |
| 48 | ui = (x * x1p24).to_bits(); |
| 49 | hx = ui & 0x7fffffff; |
| 50 | hx = hx / 3 + B2; |
| 51 | } else { |
| 52 | hx = hx / 3 + B1; |
| 53 | } |
| 54 | ui &= 0x80000000; |
| 55 | ui |= hx; |
| 56 | |
| 57 | /* |
| 58 | * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In |
| 59 | * double precision so that its terms can be arranged for efficiency |
| 60 | * without causing overflow or underflow. |
| 61 | */ |
| 62 | t = f32::from_bits(ui) as f64; |
| 63 | r = t * t * t; |
| 64 | t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r); |
| 65 | |
| 66 | /* |
| 67 | * Second step Newton iteration to 47 bits. In double precision for |
| 68 | * efficiency and accuracy. |
| 69 | */ |
| 70 | r = t * t * t; |
| 71 | t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r); |
| 72 | |
| 73 | /* rounding to 24 bits is perfect in round-to-nearest mode */ |
| 74 | t as f32 |
| 75 | } |
| 76 | |