| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */ |
| 2 | /* |
| 3 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| 4 | */ |
| 5 | /* |
| 6 | * ==================================================== |
| 7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 8 | * |
| 9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 10 | * Permission to use, copy, modify, and distribute this |
| 11 | * software is freely granted, provided that this notice |
| 12 | * is preserved. |
| 13 | * ==================================================== |
| 14 | */ |
| 15 | |
| 16 | const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */ |
| 17 | const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */ |
| 18 | const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */ |
| 19 | const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */ |
| 20 | /* |
| 21 | * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]: |
| 22 | * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04 |
| 23 | * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c): |
| 24 | */ |
| 25 | const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */ |
| 26 | const Q2: f32 = 1.5807170421e-3; /* 0xcf3010.0p-33 */ |
| 27 | |
| 28 | /// Exponential, base *e*, of x-1 (f32) |
| 29 | /// |
| 30 | /// Calculates the exponential of `x` and subtract 1, that is, *e* raised |
| 31 | /// to the power `x` minus 1 (where *e* is the base of the natural |
| 32 | /// system of logarithms, approximately 2.71828). |
| 33 | /// The result is accurate even for small values of `x`, |
| 34 | /// where using `exp(x)-1` would lose many significant digits. |
| 35 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 36 | pub fn expm1f(mut x: f32) -> f32 { |
| 37 | let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127 |
| 38 | |
| 39 | let mut hx = x.to_bits(); |
| 40 | let sign = (hx >> 31) != 0; |
| 41 | hx &= 0x7fffffff; |
| 42 | |
| 43 | /* filter out huge and non-finite argument */ |
| 44 | if hx >= 0x4195b844 { |
| 45 | /* if |x|>=27*ln2 */ |
| 46 | if hx > 0x7f800000 { |
| 47 | /* NaN */ |
| 48 | return x; |
| 49 | } |
| 50 | if sign { |
| 51 | return -1.; |
| 52 | } |
| 53 | if x > O_THRESHOLD { |
| 54 | x *= x1p127; |
| 55 | return x; |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | let k: i32; |
| 60 | let hi: f32; |
| 61 | let lo: f32; |
| 62 | let mut c = 0f32; |
| 63 | /* argument reduction */ |
| 64 | if hx > 0x3eb17218 { |
| 65 | /* if |x| > 0.5 ln2 */ |
| 66 | if hx < 0x3F851592 { |
| 67 | /* and |x| < 1.5 ln2 */ |
| 68 | if !sign { |
| 69 | hi = x - LN2_HI; |
| 70 | lo = LN2_LO; |
| 71 | k = 1; |
| 72 | } else { |
| 73 | hi = x + LN2_HI; |
| 74 | lo = -LN2_LO; |
| 75 | k = -1; |
| 76 | } |
| 77 | } else { |
| 78 | k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32; |
| 79 | let t = k as f32; |
| 80 | hi = x - t * LN2_HI; /* t*ln2_hi is exact here */ |
| 81 | lo = t * LN2_LO; |
| 82 | } |
| 83 | x = hi - lo; |
| 84 | c = (hi - x) - lo; |
| 85 | } else if hx < 0x33000000 { |
| 86 | /* when |x|<2**-25, return x */ |
| 87 | if hx < 0x00800000 { |
| 88 | force_eval!(x * x); |
| 89 | } |
| 90 | return x; |
| 91 | } else { |
| 92 | k = 0; |
| 93 | } |
| 94 | |
| 95 | /* x is now in primary range */ |
| 96 | let hfx = 0.5 * x; |
| 97 | let hxs = x * hfx; |
| 98 | let r1 = 1. + hxs * (Q1 + hxs * Q2); |
| 99 | let t = 3. - r1 * hfx; |
| 100 | let mut e = hxs * ((r1 - t) / (6. - x * t)); |
| 101 | if k == 0 { |
| 102 | /* c is 0 */ |
| 103 | return x - (x * e - hxs); |
| 104 | } |
| 105 | e = x * (e - c) - c; |
| 106 | e -= hxs; |
| 107 | /* exp(x) ~ 2^k (x_reduced - e + 1) */ |
| 108 | if k == -1 { |
| 109 | return 0.5 * (x - e) - 0.5; |
| 110 | } |
| 111 | if k == 1 { |
| 112 | if x < -0.25 { |
| 113 | return -2. * (e - (x + 0.5)); |
| 114 | } |
| 115 | return 1. + 2. * (x - e); |
| 116 | } |
| 117 | let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */ |
| 118 | if (k < 0) || (k > 56) { |
| 119 | /* suffice to return exp(x)-1 */ |
| 120 | let mut y = x - e + 1.; |
| 121 | if k == 128 { |
| 122 | y = y * 2. * x1p127; |
| 123 | } else { |
| 124 | y = y * twopk; |
| 125 | } |
| 126 | return y - 1.; |
| 127 | } |
| 128 | let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */ |
| 129 | if k < 23 { (x - e + (1. - uf)) * twopk } else { (x - (e + uf) + 1.) * twopk } |
| 130 | } |
| 131 | |