1 | /* SPDX-License-Identifier: MIT */ |
2 | /* origin: musl src/math/rint.c */ |
3 | |
4 | use crate::support::{Float, FpResult, Round}; |
5 | |
6 | /// IEEE 754-2019 `roundToIntegralExact`, which respects rounding mode and raises inexact if |
7 | /// applicable. |
8 | #[inline ] |
9 | pub fn rint_round<F: Float>(x: F, _round: Round) -> FpResult<F> { |
10 | let toint = F::ONE / F::EPSILON; |
11 | let e = x.ex(); |
12 | let positive = x.is_sign_positive(); |
13 | |
14 | // On i386 `force_eval!` must be used to force rounding via storage to memory. Otherwise, |
15 | // the excess precission from x87 would cause an incorrect final result. |
16 | let force = |x| { |
17 | if cfg!(x86_no_sse) && (F::BITS == 32 || F::BITS == 64) { |
18 | force_eval!(x) |
19 | } else { |
20 | x |
21 | } |
22 | }; |
23 | |
24 | let res = if e >= F::EXP_BIAS + F::SIG_BITS { |
25 | // No fractional part; exact result can be returned. |
26 | x |
27 | } else { |
28 | // Apply a net-zero adjustment that nudges `y` in the direction of the rounding mode. For |
29 | // Rust this is always nearest, but ideally it would take `round` into account. |
30 | let y = if positive { |
31 | force(force(x) + toint) - toint |
32 | } else { |
33 | force(force(x) - toint) + toint |
34 | }; |
35 | |
36 | if y == F::ZERO { |
37 | // A zero result takes the sign of the input. |
38 | if positive { F::ZERO } else { F::NEG_ZERO } |
39 | } else { |
40 | y |
41 | } |
42 | }; |
43 | |
44 | FpResult::ok(res) |
45 | } |
46 | |
47 | #[cfg (test)] |
48 | mod tests { |
49 | use super::*; |
50 | use crate::support::{Hexf, Status}; |
51 | |
52 | fn spec_test<F: Float>(cases: &[(F, F, Status)]) { |
53 | let roundtrip = [ |
54 | F::ZERO, |
55 | F::ONE, |
56 | F::NEG_ONE, |
57 | F::NEG_ZERO, |
58 | F::INFINITY, |
59 | F::NEG_INFINITY, |
60 | ]; |
61 | |
62 | for x in roundtrip { |
63 | let FpResult { val, status } = rint_round(x, Round::Nearest); |
64 | assert_biteq!(val, x, "rint_round({})" , Hexf(x)); |
65 | assert_eq!(status, Status::OK, "{}" , Hexf(x)); |
66 | } |
67 | |
68 | for &(x, res, res_stat) in cases { |
69 | let FpResult { val, status } = rint_round(x, Round::Nearest); |
70 | assert_biteq!(val, res, "rint_round({})" , Hexf(x)); |
71 | assert_eq!(status, res_stat, "{}" , Hexf(x)); |
72 | } |
73 | } |
74 | |
75 | #[test ] |
76 | #[cfg (f16_enabled)] |
77 | fn spec_tests_f16() { |
78 | let cases = []; |
79 | spec_test::<f16>(&cases); |
80 | } |
81 | |
82 | #[test ] |
83 | fn spec_tests_f32() { |
84 | let cases = [ |
85 | (0.1, 0.0, Status::OK), |
86 | (-0.1, -0.0, Status::OK), |
87 | (0.5, 0.0, Status::OK), |
88 | (-0.5, -0.0, Status::OK), |
89 | (0.9, 1.0, Status::OK), |
90 | (-0.9, -1.0, Status::OK), |
91 | (1.1, 1.0, Status::OK), |
92 | (-1.1, -1.0, Status::OK), |
93 | (1.5, 2.0, Status::OK), |
94 | (-1.5, -2.0, Status::OK), |
95 | (1.9, 2.0, Status::OK), |
96 | (-1.9, -2.0, Status::OK), |
97 | (2.8, 3.0, Status::OK), |
98 | (-2.8, -3.0, Status::OK), |
99 | ]; |
100 | spec_test::<f32>(&cases); |
101 | } |
102 | |
103 | #[test ] |
104 | fn spec_tests_f64() { |
105 | let cases = [ |
106 | (0.1, 0.0, Status::OK), |
107 | (-0.1, -0.0, Status::OK), |
108 | (0.5, 0.0, Status::OK), |
109 | (-0.5, -0.0, Status::OK), |
110 | (0.9, 1.0, Status::OK), |
111 | (-0.9, -1.0, Status::OK), |
112 | (1.1, 1.0, Status::OK), |
113 | (-1.1, -1.0, Status::OK), |
114 | (1.5, 2.0, Status::OK), |
115 | (-1.5, -2.0, Status::OK), |
116 | (1.9, 2.0, Status::OK), |
117 | (-1.9, -2.0, Status::OK), |
118 | (2.8, 3.0, Status::OK), |
119 | (-2.8, -3.0, Status::OK), |
120 | ]; |
121 | spec_test::<f64>(&cases); |
122 | } |
123 | |
124 | #[test ] |
125 | #[cfg (f128_enabled)] |
126 | fn spec_tests_f128() { |
127 | let cases = []; |
128 | spec_test::<f128>(&cases); |
129 | } |
130 | } |
131 | |