| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | /* sqrt(x) |
| 13 | * Return correctly rounded sqrt. |
| 14 | * ------------------------------------------ |
| 15 | * | Use the hardware sqrt if you have one | |
| 16 | * ------------------------------------------ |
| 17 | * Method: |
| 18 | * Bit by bit method using integer arithmetic. (Slow, but portable) |
| 19 | * 1. Normalization |
| 20 | * Scale x to y in [1,4) with even powers of 2: |
| 21 | * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
| 22 | * sqrt(x) = 2^k * sqrt(y) |
| 23 | * 2. Bit by bit computation |
| 24 | * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
| 25 | * i 0 |
| 26 | * i+1 2 |
| 27 | * s = 2*q , and y = 2 * ( y - q ). (1) |
| 28 | * i i i i |
| 29 | * |
| 30 | * To compute q from q , one checks whether |
| 31 | * i+1 i |
| 32 | * |
| 33 | * -(i+1) 2 |
| 34 | * (q + 2 ) <= y. (2) |
| 35 | * i |
| 36 | * -(i+1) |
| 37 | * If (2) is false, then q = q ; otherwise q = q + 2 . |
| 38 | * i+1 i i+1 i |
| 39 | * |
| 40 | * With some algebraic manipulation, it is not difficult to see |
| 41 | * that (2) is equivalent to |
| 42 | * -(i+1) |
| 43 | * s + 2 <= y (3) |
| 44 | * i i |
| 45 | * |
| 46 | * The advantage of (3) is that s and y can be computed by |
| 47 | * i i |
| 48 | * the following recurrence formula: |
| 49 | * if (3) is false |
| 50 | * |
| 51 | * s = s , y = y ; (4) |
| 52 | * i+1 i i+1 i |
| 53 | * |
| 54 | * otherwise, |
| 55 | * -i -(i+1) |
| 56 | * s = s + 2 , y = y - s - 2 (5) |
| 57 | * i+1 i i+1 i i |
| 58 | * |
| 59 | * One may easily use induction to prove (4) and (5). |
| 60 | * Note. Since the left hand side of (3) contain only i+2 bits, |
| 61 | * it does not necessary to do a full (53-bit) comparison |
| 62 | * in (3). |
| 63 | * 3. Final rounding |
| 64 | * After generating the 53 bits result, we compute one more bit. |
| 65 | * Together with the remainder, we can decide whether the |
| 66 | * result is exact, bigger than 1/2ulp, or less than 1/2ulp |
| 67 | * (it will never equal to 1/2ulp). |
| 68 | * The rounding mode can be detected by checking whether |
| 69 | * huge + tiny is equal to huge, and whether huge - tiny is |
| 70 | * equal to huge for some floating point number "huge" and "tiny". |
| 71 | * |
| 72 | * Special cases: |
| 73 | * sqrt(+-0) = +-0 ... exact |
| 74 | * sqrt(inf) = inf |
| 75 | * sqrt(-ve) = NaN ... with invalid signal |
| 76 | * sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
| 77 | */ |
| 78 | |
| 79 | use core::f64; |
| 80 | |
| 81 | /// The square root of `x` (f64). |
| 82 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 83 | pub fn sqrt(x: f64) -> f64 { |
| 84 | // On wasm32 we know that LLVM's intrinsic will compile to an optimized |
| 85 | // `f64.sqrt` native instruction, so we can leverage this for both code size |
| 86 | // and speed. |
| 87 | llvm_intrinsically_optimized! { |
| 88 | #[cfg(target_arch = "wasm32" )] { |
| 89 | return if x < 0.0 { |
| 90 | f64::NAN |
| 91 | } else { |
| 92 | unsafe { ::core::intrinsics::sqrtf64(x) } |
| 93 | } |
| 94 | } |
| 95 | } |
| 96 | #[cfg (all(target_feature = "sse2" , not(feature = "force-soft-floats" )))] |
| 97 | { |
| 98 | // Note: This path is unlikely since LLVM will usually have already |
| 99 | // optimized sqrt calls into hardware instructions if sse2 is available, |
| 100 | // but if someone does end up here they'll appreciate the speed increase. |
| 101 | #[cfg (target_arch = "x86" )] |
| 102 | use core::arch::x86::*; |
| 103 | #[cfg (target_arch = "x86_64" )] |
| 104 | use core::arch::x86_64::*; |
| 105 | unsafe { |
| 106 | let m = _mm_set_sd(x); |
| 107 | let m_sqrt = _mm_sqrt_pd(m); |
| 108 | _mm_cvtsd_f64(m_sqrt) |
| 109 | } |
| 110 | } |
| 111 | #[cfg (any(not(target_feature = "sse2" ), feature = "force-soft-floats" ))] |
| 112 | { |
| 113 | use core::num::Wrapping; |
| 114 | |
| 115 | const TINY: f64 = 1.0e-300; |
| 116 | |
| 117 | let mut z: f64; |
| 118 | let sign: Wrapping<u32> = Wrapping(0x80000000); |
| 119 | let mut ix0: i32; |
| 120 | let mut s0: i32; |
| 121 | let mut q: i32; |
| 122 | let mut m: i32; |
| 123 | let mut t: i32; |
| 124 | let mut i: i32; |
| 125 | let mut r: Wrapping<u32>; |
| 126 | let mut t1: Wrapping<u32>; |
| 127 | let mut s1: Wrapping<u32>; |
| 128 | let mut ix1: Wrapping<u32>; |
| 129 | let mut q1: Wrapping<u32>; |
| 130 | |
| 131 | ix0 = (x.to_bits() >> 32) as i32; |
| 132 | ix1 = Wrapping(x.to_bits() as u32); |
| 133 | |
| 134 | /* take care of Inf and NaN */ |
| 135 | if (ix0 & 0x7ff00000) == 0x7ff00000 { |
| 136 | return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ |
| 137 | } |
| 138 | /* take care of zero */ |
| 139 | if ix0 <= 0 { |
| 140 | if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 { |
| 141 | return x; /* sqrt(+-0) = +-0 */ |
| 142 | } |
| 143 | if ix0 < 0 { |
| 144 | return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ |
| 145 | } |
| 146 | } |
| 147 | /* normalize x */ |
| 148 | m = ix0 >> 20; |
| 149 | if m == 0 { |
| 150 | /* subnormal x */ |
| 151 | while ix0 == 0 { |
| 152 | m -= 21; |
| 153 | ix0 |= (ix1 >> 11).0 as i32; |
| 154 | ix1 <<= 21; |
| 155 | } |
| 156 | i = 0; |
| 157 | while (ix0 & 0x00100000) == 0 { |
| 158 | i += 1; |
| 159 | ix0 <<= 1; |
| 160 | } |
| 161 | m -= i - 1; |
| 162 | ix0 |= (ix1 >> (32 - i) as usize).0 as i32; |
| 163 | ix1 = ix1 << i as usize; |
| 164 | } |
| 165 | m -= 1023; /* unbias exponent */ |
| 166 | ix0 = (ix0 & 0x000fffff) | 0x00100000; |
| 167 | if (m & 1) == 1 { |
| 168 | /* odd m, double x to make it even */ |
| 169 | ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; |
| 170 | ix1 += ix1; |
| 171 | } |
| 172 | m >>= 1; /* m = [m/2] */ |
| 173 | |
| 174 | /* generate sqrt(x) bit by bit */ |
| 175 | ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; |
| 176 | ix1 += ix1; |
| 177 | q = 0; /* [q,q1] = sqrt(x) */ |
| 178 | q1 = Wrapping(0); |
| 179 | s0 = 0; |
| 180 | s1 = Wrapping(0); |
| 181 | r = Wrapping(0x00200000); /* r = moving bit from right to left */ |
| 182 | |
| 183 | while r != Wrapping(0) { |
| 184 | t = s0 + r.0 as i32; |
| 185 | if t <= ix0 { |
| 186 | s0 = t + r.0 as i32; |
| 187 | ix0 -= t; |
| 188 | q += r.0 as i32; |
| 189 | } |
| 190 | ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; |
| 191 | ix1 += ix1; |
| 192 | r >>= 1; |
| 193 | } |
| 194 | |
| 195 | r = sign; |
| 196 | while r != Wrapping(0) { |
| 197 | t1 = s1 + r; |
| 198 | t = s0; |
| 199 | if t < ix0 || (t == ix0 && t1 <= ix1) { |
| 200 | s1 = t1 + r; |
| 201 | if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) { |
| 202 | s0 += 1; |
| 203 | } |
| 204 | ix0 -= t; |
| 205 | if ix1 < t1 { |
| 206 | ix0 -= 1; |
| 207 | } |
| 208 | ix1 -= t1; |
| 209 | q1 += r; |
| 210 | } |
| 211 | ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; |
| 212 | ix1 += ix1; |
| 213 | r >>= 1; |
| 214 | } |
| 215 | |
| 216 | /* use floating add to find out rounding direction */ |
| 217 | if (ix0 as u32 | ix1.0) != 0 { |
| 218 | z = 1.0 - TINY; /* raise inexact flag */ |
| 219 | if z >= 1.0 { |
| 220 | z = 1.0 + TINY; |
| 221 | if q1.0 == 0xffffffff { |
| 222 | q1 = Wrapping(0); |
| 223 | q += 1; |
| 224 | } else if z > 1.0 { |
| 225 | if q1.0 == 0xfffffffe { |
| 226 | q += 1; |
| 227 | } |
| 228 | q1 += Wrapping(2); |
| 229 | } else { |
| 230 | q1 += q1 & Wrapping(1); |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | ix0 = (q >> 1) + 0x3fe00000; |
| 235 | ix1 = q1 >> 1; |
| 236 | if (q & 1) == 1 { |
| 237 | ix1 |= sign; |
| 238 | } |
| 239 | ix0 += m << 20; |
| 240 | f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64) |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | #[cfg (test)] |
| 245 | mod tests { |
| 246 | use core::f64::*; |
| 247 | |
| 248 | use super::*; |
| 249 | |
| 250 | #[test ] |
| 251 | fn sanity_check() { |
| 252 | assert_eq!(sqrt(100.0), 10.0); |
| 253 | assert_eq!(sqrt(4.0), 2.0); |
| 254 | } |
| 255 | |
| 256 | /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt |
| 257 | #[test ] |
| 258 | fn spec_tests() { |
| 259 | // Not Asserted: FE_INVALID exception is raised if argument is negative. |
| 260 | assert!(sqrt(-1.0).is_nan()); |
| 261 | assert!(sqrt(NAN).is_nan()); |
| 262 | for f in [0.0, -0.0, INFINITY].iter().copied() { |
| 263 | assert_eq!(sqrt(f), f); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | #[test ] |
| 268 | fn conformance_tests() { |
| 269 | let values = [3.14159265359, 10000.0, f64::from_bits(0x0000000f), INFINITY]; |
| 270 | let results = [ |
| 271 | 4610661241675116657u64, |
| 272 | 4636737291354636288u64, |
| 273 | 2197470602079456986u64, |
| 274 | 9218868437227405312u64, |
| 275 | ]; |
| 276 | |
| 277 | for i in 0..values.len() { |
| 278 | let bits = f64::to_bits(sqrt(values[i])); |
| 279 | assert_eq!(results[i], bits); |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | |