1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */ |
2 | /* |
3 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
4 | */ |
5 | /* |
6 | * ==================================================== |
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 | * |
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
10 | * Permission to use, copy, modify, and distribute this |
11 | * software is freely granted, provided that this notice |
12 | * is preserved. |
13 | * ==================================================== |
14 | */ |
15 | |
16 | /// The square root of `x` (f32). |
17 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
18 | pub fn sqrtf(x: f32) -> f32 { |
19 | // On wasm32 we know that LLVM's intrinsic will compile to an optimized |
20 | // `f32.sqrt` native instruction, so we can leverage this for both code size |
21 | // and speed. |
22 | llvm_intrinsically_optimized! { |
23 | #[cfg(target_arch = "wasm32" )] { |
24 | return if x < 0.0 { |
25 | ::core::f32::NAN |
26 | } else { |
27 | unsafe { ::core::intrinsics::sqrtf32(x) } |
28 | } |
29 | } |
30 | } |
31 | #[cfg (all(target_feature = "sse" , not(feature = "force-soft-floats" )))] |
32 | { |
33 | // Note: This path is unlikely since LLVM will usually have already |
34 | // optimized sqrt calls into hardware instructions if sse is available, |
35 | // but if someone does end up here they'll appreciate the speed increase. |
36 | #[cfg (target_arch = "x86" )] |
37 | use core::arch::x86::*; |
38 | #[cfg (target_arch = "x86_64" )] |
39 | use core::arch::x86_64::*; |
40 | unsafe { |
41 | let m = _mm_set_ss(x); |
42 | let m_sqrt = _mm_sqrt_ss(m); |
43 | _mm_cvtss_f32(m_sqrt) |
44 | } |
45 | } |
46 | #[cfg (any(not(target_feature = "sse" ), feature = "force-soft-floats" ))] |
47 | { |
48 | const TINY: f32 = 1.0e-30; |
49 | |
50 | let mut z: f32; |
51 | let sign: i32 = 0x80000000u32 as i32; |
52 | let mut ix: i32; |
53 | let mut s: i32; |
54 | let mut q: i32; |
55 | let mut m: i32; |
56 | let mut t: i32; |
57 | let mut i: i32; |
58 | let mut r: u32; |
59 | |
60 | ix = x.to_bits() as i32; |
61 | |
62 | /* take care of Inf and NaN */ |
63 | if (ix as u32 & 0x7f800000) == 0x7f800000 { |
64 | return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ |
65 | } |
66 | |
67 | /* take care of zero */ |
68 | if ix <= 0 { |
69 | if (ix & !sign) == 0 { |
70 | return x; /* sqrt(+-0) = +-0 */ |
71 | } |
72 | if ix < 0 { |
73 | return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ |
74 | } |
75 | } |
76 | |
77 | /* normalize x */ |
78 | m = ix >> 23; |
79 | if m == 0 { |
80 | /* subnormal x */ |
81 | i = 0; |
82 | while ix & 0x00800000 == 0 { |
83 | ix <<= 1; |
84 | i = i + 1; |
85 | } |
86 | m -= i - 1; |
87 | } |
88 | m -= 127; /* unbias exponent */ |
89 | ix = (ix & 0x007fffff) | 0x00800000; |
90 | if m & 1 == 1 { |
91 | /* odd m, double x to make it even */ |
92 | ix += ix; |
93 | } |
94 | m >>= 1; /* m = [m/2] */ |
95 | |
96 | /* generate sqrt(x) bit by bit */ |
97 | ix += ix; |
98 | q = 0; |
99 | s = 0; |
100 | r = 0x01000000; /* r = moving bit from right to left */ |
101 | |
102 | while r != 0 { |
103 | t = s + r as i32; |
104 | if t <= ix { |
105 | s = t + r as i32; |
106 | ix -= t; |
107 | q += r as i32; |
108 | } |
109 | ix += ix; |
110 | r >>= 1; |
111 | } |
112 | |
113 | /* use floating add to find out rounding direction */ |
114 | if ix != 0 { |
115 | z = 1.0 - TINY; /* raise inexact flag */ |
116 | if z >= 1.0 { |
117 | z = 1.0 + TINY; |
118 | if z > 1.0 { |
119 | q += 2; |
120 | } else { |
121 | q += q & 1; |
122 | } |
123 | } |
124 | } |
125 | |
126 | ix = (q >> 1) + 0x3f000000; |
127 | ix += m << 23; |
128 | f32::from_bits(ix as u32) |
129 | } |
130 | } |
131 | |
132 | // PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 |
133 | #[cfg (not(target_arch = "powerpc64" ))] |
134 | #[cfg (test)] |
135 | mod tests { |
136 | use core::f32::*; |
137 | |
138 | use super::*; |
139 | |
140 | #[test ] |
141 | fn sanity_check() { |
142 | assert_eq!(sqrtf(100.0), 10.0); |
143 | assert_eq!(sqrtf(4.0), 2.0); |
144 | } |
145 | |
146 | /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt |
147 | #[test ] |
148 | fn spec_tests() { |
149 | // Not Asserted: FE_INVALID exception is raised if argument is negative. |
150 | assert!(sqrtf(-1.0).is_nan()); |
151 | assert!(sqrtf(NAN).is_nan()); |
152 | for f in [0.0, -0.0, INFINITY].iter().copied() { |
153 | assert_eq!(sqrtf(f), f); |
154 | } |
155 | } |
156 | |
157 | #[test ] |
158 | fn conformance_tests() { |
159 | let values = [3.14159265359f32, 10000.0f32, f32::from_bits(0x0000000f), INFINITY]; |
160 | let results = [1071833029u32, 1120403456u32, 456082799u32, 2139095040u32]; |
161 | |
162 | for i in 0..values.len() { |
163 | let bits = f32::to_bits(sqrtf(values[i])); |
164 | assert_eq!(results[i], bits); |
165 | } |
166 | } |
167 | } |
168 | |