| 1 | //! Defines rounding schemes for floating-point numbers. |
| 2 | |
| 3 | #![doc (hidden)] |
| 4 | |
| 5 | use crate::extended_float::ExtendedFloat; |
| 6 | use crate::mask::{lower_n_halfway, lower_n_mask}; |
| 7 | use crate::num::Float; |
| 8 | |
| 9 | // ROUNDING |
| 10 | // -------- |
| 11 | |
| 12 | /// Round an extended-precision float to the nearest machine float. |
| 13 | /// |
| 14 | /// Shifts the significant digits into place, adjusts the exponent, |
| 15 | /// so it can be easily converted to a native float. |
| 16 | #[cfg_attr (not(feature = "compact" ), inline)] |
| 17 | pub fn round<F, Cb>(fp: &mut ExtendedFloat, cb: Cb) |
| 18 | where |
| 19 | F: Float, |
| 20 | Cb: Fn(&mut ExtendedFloat, i32), |
| 21 | { |
| 22 | let fp_inf = ExtendedFloat { |
| 23 | mant: 0, |
| 24 | exp: F::INFINITE_POWER, |
| 25 | }; |
| 26 | |
| 27 | // Calculate our shift in significant digits. |
| 28 | let mantissa_shift = 64 - F::MANTISSA_SIZE - 1; |
| 29 | |
| 30 | // Check for a denormal float, if after the shift the exponent is negative. |
| 31 | if -fp.exp >= mantissa_shift { |
| 32 | // Have a denormal float that isn't a literal 0. |
| 33 | // The extra 1 is to adjust for the denormal float, which is |
| 34 | // `1 - F::EXPONENT_BIAS`. This works as before, because our |
| 35 | // old logic rounded to `F::DENORMAL_EXPONENT` (now 1), and then |
| 36 | // checked if `exp == F::DENORMAL_EXPONENT` and no hidden mask |
| 37 | // bit was set. Here, we handle that here, rather than later. |
| 38 | // |
| 39 | // This might round-down to 0, but shift will be at **max** 65, |
| 40 | // for halfway cases rounding towards 0. |
| 41 | let shift = -fp.exp + 1; |
| 42 | debug_assert!(shift <= 65); |
| 43 | cb(fp, shift.min(64)); |
| 44 | // Check for round-up: if rounding-nearest carried us to the hidden bit. |
| 45 | fp.exp = (fp.mant >= F::HIDDEN_BIT_MASK) as i32; |
| 46 | return; |
| 47 | } |
| 48 | |
| 49 | // The float is normal, round to the hidden bit. |
| 50 | cb(fp, mantissa_shift); |
| 51 | |
| 52 | // Check if we carried, and if so, shift the bit to the hidden bit. |
| 53 | let carry_mask = F::CARRY_MASK; |
| 54 | if fp.mant & carry_mask == carry_mask { |
| 55 | fp.mant >>= 1; |
| 56 | fp.exp += 1; |
| 57 | } |
| 58 | |
| 59 | // Handle if we carried and check for overflow again. |
| 60 | if fp.exp >= F::INFINITE_POWER { |
| 61 | // Exponent is above largest normal value, must be infinite. |
| 62 | *fp = fp_inf; |
| 63 | return; |
| 64 | } |
| 65 | |
| 66 | // Remove the hidden bit. |
| 67 | fp.mant &= F::MANTISSA_MASK; |
| 68 | } |
| 69 | |
| 70 | /// Shift right N-bytes and round towards a direction. |
| 71 | /// |
| 72 | /// Callback should take the following parameters: |
| 73 | /// 1. is_odd |
| 74 | /// 1. is_halfway |
| 75 | /// 1. is_above |
| 76 | #[cfg_attr (not(feature = "compact" ), inline)] |
| 77 | pub fn round_nearest_tie_even<Cb>(fp: &mut ExtendedFloat, shift: i32, cb: Cb) |
| 78 | where |
| 79 | // is_odd, is_halfway, is_above |
| 80 | Cb: Fn(bool, bool, bool) -> bool, |
| 81 | { |
| 82 | // Ensure we've already handled denormal values that underflow. |
| 83 | debug_assert!(shift <= 64); |
| 84 | |
| 85 | // Extract the truncated bits using mask. |
| 86 | // Calculate if the value of the truncated bits are either above |
| 87 | // the mid-way point, or equal to it. |
| 88 | // |
| 89 | // For example, for 4 truncated bytes, the mask would be 0b1111 |
| 90 | // and the midway point would be 0b1000. |
| 91 | let mask = lower_n_mask(shift as u64); |
| 92 | let halfway = lower_n_halfway(shift as u64); |
| 93 | let truncated_bits = fp.mant & mask; |
| 94 | let is_above = truncated_bits > halfway; |
| 95 | let is_halfway = truncated_bits == halfway; |
| 96 | |
| 97 | // Bit shift so the leading bit is in the hidden bit. |
| 98 | // This optimixes pretty well: |
| 99 | // ```text |
| 100 | // mov ecx, esi |
| 101 | // shr rdi, cl |
| 102 | // xor eax, eax |
| 103 | // cmp esi, 64 |
| 104 | // cmovne rax, rdi |
| 105 | // ret |
| 106 | // ``` |
| 107 | fp.mant = match shift == 64 { |
| 108 | true => 0, |
| 109 | false => fp.mant >> shift, |
| 110 | }; |
| 111 | fp.exp += shift; |
| 112 | |
| 113 | // Extract the last bit after shifting (and determine if it is odd). |
| 114 | let is_odd = fp.mant & 1 == 1; |
| 115 | |
| 116 | // Calculate if we need to roundup. |
| 117 | // We need to roundup if we are above halfway, or if we are odd |
| 118 | // and at half-way (need to tie-to-even). Avoid the branch here. |
| 119 | fp.mant += cb(is_odd, is_halfway, is_above) as u64; |
| 120 | } |
| 121 | |
| 122 | /// Round our significant digits into place, truncating them. |
| 123 | #[cfg_attr (not(feature = "compact" ), inline)] |
| 124 | pub fn round_down(fp: &mut ExtendedFloat, shift: i32) { |
| 125 | // Might have a shift greater than 64 if we have an error. |
| 126 | fp.mant = match shift == 64 { |
| 127 | true => 0, |
| 128 | false => fp.mant >> shift, |
| 129 | }; |
| 130 | fp.exp += shift; |
| 131 | } |
| 132 | |