| 1 | //! Utilities for Rust numbers. |
| 2 | |
| 3 | #![doc (hidden)] |
| 4 | |
| 5 | #[cfg (all(not(feature = "std" ), feature = "compact" ))] |
| 6 | use crate::libm::{powd, powf}; |
| 7 | #[cfg (not(feature = "compact" ))] |
| 8 | use crate::table::{SMALL_F32_POW10, SMALL_F64_POW10, SMALL_INT_POW10, SMALL_INT_POW5}; |
| 9 | #[cfg (not(feature = "compact" ))] |
| 10 | use core::hint; |
| 11 | use core::ops; |
| 12 | |
| 13 | /// Generic floating-point type, to be used in generic code for parsing. |
| 14 | /// |
| 15 | /// Although the trait is part of the public API, the trait provides methods |
| 16 | /// and constants that are effectively non-public: they may be removed |
| 17 | /// at any time without any breaking changes. |
| 18 | pub trait Float: |
| 19 | Sized |
| 20 | + Copy |
| 21 | + PartialEq |
| 22 | + PartialOrd |
| 23 | + Send |
| 24 | + Sync |
| 25 | + ops::Add<Output = Self> |
| 26 | + ops::AddAssign |
| 27 | + ops::Div<Output = Self> |
| 28 | + ops::DivAssign |
| 29 | + ops::Mul<Output = Self> |
| 30 | + ops::MulAssign |
| 31 | + ops::Rem<Output = Self> |
| 32 | + ops::RemAssign |
| 33 | + ops::Sub<Output = Self> |
| 34 | + ops::SubAssign |
| 35 | + ops::Neg<Output = Self> |
| 36 | { |
| 37 | /// Maximum number of digits that can contribute in the mantissa. |
| 38 | /// |
| 39 | /// We can exactly represent a float in radix `b` from radix 2 if |
| 40 | /// `b` is divisible by 2. This function calculates the exact number of |
| 41 | /// digits required to exactly represent that float. |
| 42 | /// |
| 43 | /// According to the "Handbook of Floating Point Arithmetic", |
| 44 | /// for IEEE754, with emin being the min exponent, p2 being the |
| 45 | /// precision, and b being the radix, the number of digits follows as: |
| 46 | /// |
| 47 | /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋` |
| 48 | /// |
| 49 | /// For f32, this follows as: |
| 50 | /// emin = -126 |
| 51 | /// p2 = 24 |
| 52 | /// |
| 53 | /// For f64, this follows as: |
| 54 | /// emin = -1022 |
| 55 | /// p2 = 53 |
| 56 | /// |
| 57 | /// In Python: |
| 58 | /// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))` |
| 59 | /// |
| 60 | /// This was used to calculate the maximum number of digits for [2, 36]. |
| 61 | const MAX_DIGITS: usize; |
| 62 | |
| 63 | // MASKS |
| 64 | |
| 65 | /// Bitmask for the sign bit. |
| 66 | const SIGN_MASK: u64; |
| 67 | /// Bitmask for the exponent, including the hidden bit. |
| 68 | const EXPONENT_MASK: u64; |
| 69 | /// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction. |
| 70 | const HIDDEN_BIT_MASK: u64; |
| 71 | /// Bitmask for the mantissa (fraction), excluding the hidden bit. |
| 72 | const MANTISSA_MASK: u64; |
| 73 | |
| 74 | // PROPERTIES |
| 75 | |
| 76 | /// Size of the significand (mantissa) without hidden bit. |
| 77 | const MANTISSA_SIZE: i32; |
| 78 | /// Bias of the exponet |
| 79 | const EXPONENT_BIAS: i32; |
| 80 | /// Exponent portion of a denormal float. |
| 81 | const DENORMAL_EXPONENT: i32; |
| 82 | /// Maximum exponent value in float. |
| 83 | const MAX_EXPONENT: i32; |
| 84 | |
| 85 | // ROUNDING |
| 86 | |
| 87 | /// Mask to determine if a full-carry occurred (1 in bit above hidden bit). |
| 88 | const CARRY_MASK: u64; |
| 89 | |
| 90 | /// Bias for marking an invalid extended float. |
| 91 | // Value is `i16::MIN`, using hard-coded constants for older Rustc versions. |
| 92 | const INVALID_FP: i32 = -0x8000; |
| 93 | |
| 94 | // Maximum mantissa for the fast-path (`1 << 53` for f64). |
| 95 | const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE; |
| 96 | |
| 97 | // Largest exponent value `(1 << EXP_BITS) - 1`. |
| 98 | const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS; |
| 99 | |
| 100 | // Round-to-even only happens for negative values of q |
| 101 | // when q ≥ −4 in the 64-bit case and when q ≥ −17 in |
| 102 | // the 32-bitcase. |
| 103 | // |
| 104 | // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we |
| 105 | // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have |
| 106 | // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10. |
| 107 | // |
| 108 | // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64 |
| 109 | // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case) |
| 110 | // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64 |
| 111 | // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11 |
| 112 | // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase). |
| 113 | // |
| 114 | // Thus we have that we only need to round ties to even when |
| 115 | // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10] |
| 116 | // (in the 32-bit case). In both cases,the power of five(5^|q|) |
| 117 | // fits in a 64-bit word. |
| 118 | const MIN_EXPONENT_ROUND_TO_EVEN: i32; |
| 119 | const MAX_EXPONENT_ROUND_TO_EVEN: i32; |
| 120 | |
| 121 | /// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`. |
| 122 | const MINIMUM_EXPONENT: i32; |
| 123 | |
| 124 | /// Smallest decimal exponent for a non-zero value. |
| 125 | const SMALLEST_POWER_OF_TEN: i32; |
| 126 | |
| 127 | /// Largest decimal exponent for a non-infinite value. |
| 128 | const LARGEST_POWER_OF_TEN: i32; |
| 129 | |
| 130 | /// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_SIZE+1)/log2(10)⌋` |
| 131 | const MIN_EXPONENT_FAST_PATH: i32; |
| 132 | |
| 133 | /// Maximum exponent that for a fast path case, or `⌊(MANTISSA_SIZE+1)/log2(5)⌋` |
| 134 | const MAX_EXPONENT_FAST_PATH: i32; |
| 135 | |
| 136 | /// Maximum exponent that can be represented for a disguised-fast path case. |
| 137 | /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_SIZE+1)/log2(10)⌋` |
| 138 | const MAX_EXPONENT_DISGUISED_FAST_PATH: i32; |
| 139 | |
| 140 | /// Convert 64-bit integer to float. |
| 141 | fn from_u64(u: u64) -> Self; |
| 142 | |
| 143 | // Re-exported methods from std. |
| 144 | fn from_bits(u: u64) -> Self; |
| 145 | fn to_bits(self) -> u64; |
| 146 | |
| 147 | /// Get a small power-of-radix for fast-path multiplication. |
| 148 | /// |
| 149 | /// # Safety |
| 150 | /// |
| 151 | /// Safe as long as the exponent is smaller than the table size. |
| 152 | unsafe fn pow_fast_path(exponent: usize) -> Self; |
| 153 | |
| 154 | /// Get a small, integral power-of-radix for fast-path multiplication. |
| 155 | /// |
| 156 | /// # Safety |
| 157 | /// |
| 158 | /// Safe as long as the exponent is smaller than the table size. |
| 159 | #[inline (always)] |
| 160 | unsafe fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 { |
| 161 | // SAFETY: safe as long as the exponent is smaller than the radix table. |
| 162 | #[cfg (not(feature = "compact" ))] |
| 163 | return match radix { |
| 164 | 5 => unsafe { *SMALL_INT_POW5.get_unchecked(exponent) }, |
| 165 | 10 => unsafe { *SMALL_INT_POW10.get_unchecked(exponent) }, |
| 166 | _ => unsafe { hint::unreachable_unchecked() }, |
| 167 | }; |
| 168 | |
| 169 | #[cfg (feature = "compact" )] |
| 170 | return (radix as u64).pow(exponent as u32); |
| 171 | } |
| 172 | |
| 173 | /// Returns true if the float is a denormal. |
| 174 | #[inline ] |
| 175 | fn is_denormal(self) -> bool { |
| 176 | self.to_bits() & Self::EXPONENT_MASK == 0 |
| 177 | } |
| 178 | |
| 179 | /// Get exponent component from the float. |
| 180 | #[inline ] |
| 181 | fn exponent(self) -> i32 { |
| 182 | if self.is_denormal() { |
| 183 | return Self::DENORMAL_EXPONENT; |
| 184 | } |
| 185 | |
| 186 | let bits = self.to_bits(); |
| 187 | let biased_e: i32 = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE) as i32; |
| 188 | biased_e - Self::EXPONENT_BIAS |
| 189 | } |
| 190 | |
| 191 | /// Get mantissa (significand) component from float. |
| 192 | #[inline ] |
| 193 | fn mantissa(self) -> u64 { |
| 194 | let bits = self.to_bits(); |
| 195 | let s = bits & Self::MANTISSA_MASK; |
| 196 | if !self.is_denormal() { |
| 197 | s + Self::HIDDEN_BIT_MASK |
| 198 | } else { |
| 199 | s |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | impl Float for f32 { |
| 205 | const MAX_DIGITS: usize = 114; |
| 206 | const SIGN_MASK: u64 = 0x80000000; |
| 207 | const EXPONENT_MASK: u64 = 0x7F800000; |
| 208 | const HIDDEN_BIT_MASK: u64 = 0x00800000; |
| 209 | const MANTISSA_MASK: u64 = 0x007FFFFF; |
| 210 | const MANTISSA_SIZE: i32 = 23; |
| 211 | const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE; |
| 212 | const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; |
| 213 | const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS; |
| 214 | const CARRY_MASK: u64 = 0x1000000; |
| 215 | const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17; |
| 216 | const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10; |
| 217 | const MINIMUM_EXPONENT: i32 = -127; |
| 218 | const SMALLEST_POWER_OF_TEN: i32 = -65; |
| 219 | const LARGEST_POWER_OF_TEN: i32 = 38; |
| 220 | const MIN_EXPONENT_FAST_PATH: i32 = -10; |
| 221 | const MAX_EXPONENT_FAST_PATH: i32 = 10; |
| 222 | const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 17; |
| 223 | |
| 224 | #[inline (always)] |
| 225 | unsafe fn pow_fast_path(exponent: usize) -> Self { |
| 226 | // SAFETY: safe as long as the exponent is smaller than the radix table. |
| 227 | #[cfg (not(feature = "compact" ))] |
| 228 | return unsafe { *SMALL_F32_POW10.get_unchecked(exponent) }; |
| 229 | |
| 230 | #[cfg (feature = "compact" )] |
| 231 | return powf(10.0f32, exponent as f32); |
| 232 | } |
| 233 | |
| 234 | #[inline ] |
| 235 | fn from_u64(u: u64) -> f32 { |
| 236 | u as _ |
| 237 | } |
| 238 | |
| 239 | #[inline ] |
| 240 | fn from_bits(u: u64) -> f32 { |
| 241 | // Constant is `u32::MAX` for older Rustc versions. |
| 242 | debug_assert!(u <= 0xffff_ffff); |
| 243 | f32::from_bits(u as u32) |
| 244 | } |
| 245 | |
| 246 | #[inline ] |
| 247 | fn to_bits(self) -> u64 { |
| 248 | f32::to_bits(self) as u64 |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | impl Float for f64 { |
| 253 | const MAX_DIGITS: usize = 769; |
| 254 | const SIGN_MASK: u64 = 0x8000000000000000; |
| 255 | const EXPONENT_MASK: u64 = 0x7FF0000000000000; |
| 256 | const HIDDEN_BIT_MASK: u64 = 0x0010000000000000; |
| 257 | const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF; |
| 258 | const MANTISSA_SIZE: i32 = 52; |
| 259 | const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE; |
| 260 | const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; |
| 261 | const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS; |
| 262 | const CARRY_MASK: u64 = 0x20000000000000; |
| 263 | const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4; |
| 264 | const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23; |
| 265 | const MINIMUM_EXPONENT: i32 = -1023; |
| 266 | const SMALLEST_POWER_OF_TEN: i32 = -342; |
| 267 | const LARGEST_POWER_OF_TEN: i32 = 308; |
| 268 | const MIN_EXPONENT_FAST_PATH: i32 = -22; |
| 269 | const MAX_EXPONENT_FAST_PATH: i32 = 22; |
| 270 | const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 37; |
| 271 | |
| 272 | #[inline (always)] |
| 273 | unsafe fn pow_fast_path(exponent: usize) -> Self { |
| 274 | // SAFETY: safe as long as the exponent is smaller than the radix table. |
| 275 | #[cfg (not(feature = "compact" ))] |
| 276 | return unsafe { *SMALL_F64_POW10.get_unchecked(exponent) }; |
| 277 | |
| 278 | #[cfg (feature = "compact" )] |
| 279 | return powd(10.0f64, exponent as f64); |
| 280 | } |
| 281 | |
| 282 | #[inline ] |
| 283 | fn from_u64(u: u64) -> f64 { |
| 284 | u as _ |
| 285 | } |
| 286 | |
| 287 | #[inline ] |
| 288 | fn from_bits(u: u64) -> f64 { |
| 289 | f64::from_bits(u) |
| 290 | } |
| 291 | |
| 292 | #[inline ] |
| 293 | fn to_bits(self) -> u64 { |
| 294 | f64::to_bits(self) |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | #[inline (always)] |
| 299 | #[cfg (all(feature = "std" , feature = "compact" ))] |
| 300 | pub fn powf(x: f32, y: f32) -> f32 { |
| 301 | x.powf(y) |
| 302 | } |
| 303 | |
| 304 | #[inline (always)] |
| 305 | #[cfg (all(feature = "std" , feature = "compact" ))] |
| 306 | pub fn powd(x: f64, y: f64) -> f64 { |
| 307 | x.powf(y) |
| 308 | } |
| 309 | |