| 1 | use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr}; |
| 2 | |
| 3 | use crate::bounds::Bounded; |
| 4 | use crate::ops::checked::*; |
| 5 | use crate::ops::saturating::Saturating; |
| 6 | use crate::{Num, NumCast}; |
| 7 | |
| 8 | /// Generic trait for primitive integers. |
| 9 | /// |
| 10 | /// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`, |
| 11 | /// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with |
| 12 | /// bitwise operators and non-wrapping arithmetic. |
| 13 | /// |
| 14 | /// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all |
| 15 | /// types implementing this trait behave like primitive types that are passed by value by default |
| 16 | /// and behave like builtin integers. Furthermore, the types are expected to expose the integer |
| 17 | /// value in binary representation and support bitwise operators. The standard bitwise operations |
| 18 | /// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends |
| 19 | /// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`), |
| 20 | /// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g., |
| 21 | /// `PrimInt::to_be()`). |
| 22 | /// |
| 23 | /// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried |
| 24 | /// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at |
| 25 | /// compile-time. |
| 26 | /// |
| 27 | /// While a default implementation for all builtin primitive integers is provided, the trait is in |
| 28 | /// no way restricted to these. Other integer types that fulfil the requirements are free to |
| 29 | /// implement the trait was well. |
| 30 | /// |
| 31 | /// This trait and many of the method names originate in the unstable `core::num::Int` trait from |
| 32 | /// the rust standard library. The original trait was never stabilized and thus removed from the |
| 33 | /// standard library. |
| 34 | pub trait PrimInt: |
| 35 | Sized |
| 36 | + Copy |
| 37 | + Num |
| 38 | + NumCast |
| 39 | + Bounded |
| 40 | + PartialOrd |
| 41 | + Ord |
| 42 | + Eq |
| 43 | + Not<Output = Self> |
| 44 | + BitAnd<Output = Self> |
| 45 | + BitOr<Output = Self> |
| 46 | + BitXor<Output = Self> |
| 47 | + Shl<usize, Output = Self> |
| 48 | + Shr<usize, Output = Self> |
| 49 | + CheckedAdd<Output = Self> |
| 50 | + CheckedSub<Output = Self> |
| 51 | + CheckedMul<Output = Self> |
| 52 | + CheckedDiv<Output = Self> |
| 53 | + Saturating |
| 54 | { |
| 55 | /// Returns the number of ones in the binary representation of `self`. |
| 56 | /// |
| 57 | /// # Examples |
| 58 | /// |
| 59 | /// ``` |
| 60 | /// use num_traits::PrimInt; |
| 61 | /// |
| 62 | /// let n = 0b01001100u8; |
| 63 | /// |
| 64 | /// assert_eq!(n.count_ones(), 3); |
| 65 | /// ``` |
| 66 | fn count_ones(self) -> u32; |
| 67 | |
| 68 | /// Returns the number of zeros in the binary representation of `self`. |
| 69 | /// |
| 70 | /// # Examples |
| 71 | /// |
| 72 | /// ``` |
| 73 | /// use num_traits::PrimInt; |
| 74 | /// |
| 75 | /// let n = 0b01001100u8; |
| 76 | /// |
| 77 | /// assert_eq!(n.count_zeros(), 5); |
| 78 | /// ``` |
| 79 | fn count_zeros(self) -> u32; |
| 80 | |
| 81 | /// Returns the number of leading ones in the binary representation |
| 82 | /// of `self`. |
| 83 | /// |
| 84 | /// # Examples |
| 85 | /// |
| 86 | /// ``` |
| 87 | /// use num_traits::PrimInt; |
| 88 | /// |
| 89 | /// let n = 0xF00Du16; |
| 90 | /// |
| 91 | /// assert_eq!(n.leading_ones(), 4); |
| 92 | /// ``` |
| 93 | fn leading_ones(self) -> u32 { |
| 94 | (!self).leading_zeros() |
| 95 | } |
| 96 | |
| 97 | /// Returns the number of leading zeros in the binary representation |
| 98 | /// of `self`. |
| 99 | /// |
| 100 | /// # Examples |
| 101 | /// |
| 102 | /// ``` |
| 103 | /// use num_traits::PrimInt; |
| 104 | /// |
| 105 | /// let n = 0b0101000u16; |
| 106 | /// |
| 107 | /// assert_eq!(n.leading_zeros(), 10); |
| 108 | /// ``` |
| 109 | fn leading_zeros(self) -> u32; |
| 110 | |
| 111 | /// Returns the number of trailing ones in the binary representation |
| 112 | /// of `self`. |
| 113 | /// |
| 114 | /// # Examples |
| 115 | /// |
| 116 | /// ``` |
| 117 | /// use num_traits::PrimInt; |
| 118 | /// |
| 119 | /// let n = 0xBEEFu16; |
| 120 | /// |
| 121 | /// assert_eq!(n.trailing_ones(), 4); |
| 122 | /// ``` |
| 123 | fn trailing_ones(self) -> u32 { |
| 124 | (!self).trailing_zeros() |
| 125 | } |
| 126 | |
| 127 | /// Returns the number of trailing zeros in the binary representation |
| 128 | /// of `self`. |
| 129 | /// |
| 130 | /// # Examples |
| 131 | /// |
| 132 | /// ``` |
| 133 | /// use num_traits::PrimInt; |
| 134 | /// |
| 135 | /// let n = 0b0101000u16; |
| 136 | /// |
| 137 | /// assert_eq!(n.trailing_zeros(), 3); |
| 138 | /// ``` |
| 139 | fn trailing_zeros(self) -> u32; |
| 140 | |
| 141 | /// Shifts the bits to the left by a specified amount, `n`, wrapping |
| 142 | /// the truncated bits to the end of the resulting integer. |
| 143 | /// |
| 144 | /// # Examples |
| 145 | /// |
| 146 | /// ``` |
| 147 | /// use num_traits::PrimInt; |
| 148 | /// |
| 149 | /// let n = 0x0123456789ABCDEFu64; |
| 150 | /// let m = 0x3456789ABCDEF012u64; |
| 151 | /// |
| 152 | /// assert_eq!(n.rotate_left(12), m); |
| 153 | /// ``` |
| 154 | fn rotate_left(self, n: u32) -> Self; |
| 155 | |
| 156 | /// Shifts the bits to the right by a specified amount, `n`, wrapping |
| 157 | /// the truncated bits to the beginning of the resulting integer. |
| 158 | /// |
| 159 | /// # Examples |
| 160 | /// |
| 161 | /// ``` |
| 162 | /// use num_traits::PrimInt; |
| 163 | /// |
| 164 | /// let n = 0x0123456789ABCDEFu64; |
| 165 | /// let m = 0xDEF0123456789ABCu64; |
| 166 | /// |
| 167 | /// assert_eq!(n.rotate_right(12), m); |
| 168 | /// ``` |
| 169 | fn rotate_right(self, n: u32) -> Self; |
| 170 | |
| 171 | /// Shifts the bits to the left by a specified amount, `n`, filling |
| 172 | /// zeros in the least significant bits. |
| 173 | /// |
| 174 | /// This is bitwise equivalent to signed `Shl`. |
| 175 | /// |
| 176 | /// # Examples |
| 177 | /// |
| 178 | /// ``` |
| 179 | /// use num_traits::PrimInt; |
| 180 | /// |
| 181 | /// let n = 0x0123456789ABCDEFu64; |
| 182 | /// let m = 0x3456789ABCDEF000u64; |
| 183 | /// |
| 184 | /// assert_eq!(n.signed_shl(12), m); |
| 185 | /// ``` |
| 186 | fn signed_shl(self, n: u32) -> Self; |
| 187 | |
| 188 | /// Shifts the bits to the right by a specified amount, `n`, copying |
| 189 | /// the "sign bit" in the most significant bits even for unsigned types. |
| 190 | /// |
| 191 | /// This is bitwise equivalent to signed `Shr`. |
| 192 | /// |
| 193 | /// # Examples |
| 194 | /// |
| 195 | /// ``` |
| 196 | /// use num_traits::PrimInt; |
| 197 | /// |
| 198 | /// let n = 0xFEDCBA9876543210u64; |
| 199 | /// let m = 0xFFFFEDCBA9876543u64; |
| 200 | /// |
| 201 | /// assert_eq!(n.signed_shr(12), m); |
| 202 | /// ``` |
| 203 | fn signed_shr(self, n: u32) -> Self; |
| 204 | |
| 205 | /// Shifts the bits to the left by a specified amount, `n`, filling |
| 206 | /// zeros in the least significant bits. |
| 207 | /// |
| 208 | /// This is bitwise equivalent to unsigned `Shl`. |
| 209 | /// |
| 210 | /// # Examples |
| 211 | /// |
| 212 | /// ``` |
| 213 | /// use num_traits::PrimInt; |
| 214 | /// |
| 215 | /// let n = 0x0123456789ABCDEFi64; |
| 216 | /// let m = 0x3456789ABCDEF000i64; |
| 217 | /// |
| 218 | /// assert_eq!(n.unsigned_shl(12), m); |
| 219 | /// ``` |
| 220 | fn unsigned_shl(self, n: u32) -> Self; |
| 221 | |
| 222 | /// Shifts the bits to the right by a specified amount, `n`, filling |
| 223 | /// zeros in the most significant bits. |
| 224 | /// |
| 225 | /// This is bitwise equivalent to unsigned `Shr`. |
| 226 | /// |
| 227 | /// # Examples |
| 228 | /// |
| 229 | /// ``` |
| 230 | /// use num_traits::PrimInt; |
| 231 | /// |
| 232 | /// let n = -8i8; // 0b11111000 |
| 233 | /// let m = 62i8; // 0b00111110 |
| 234 | /// |
| 235 | /// assert_eq!(n.unsigned_shr(2), m); |
| 236 | /// ``` |
| 237 | fn unsigned_shr(self, n: u32) -> Self; |
| 238 | |
| 239 | /// Reverses the byte order of the integer. |
| 240 | /// |
| 241 | /// # Examples |
| 242 | /// |
| 243 | /// ``` |
| 244 | /// use num_traits::PrimInt; |
| 245 | /// |
| 246 | /// let n = 0x0123456789ABCDEFu64; |
| 247 | /// let m = 0xEFCDAB8967452301u64; |
| 248 | /// |
| 249 | /// assert_eq!(n.swap_bytes(), m); |
| 250 | /// ``` |
| 251 | fn swap_bytes(self) -> Self; |
| 252 | |
| 253 | /// Reverses the order of bits in the integer. |
| 254 | /// |
| 255 | /// The least significant bit becomes the most significant bit, second least-significant bit |
| 256 | /// becomes second most-significant bit, etc. |
| 257 | /// |
| 258 | /// # Examples |
| 259 | /// |
| 260 | /// ``` |
| 261 | /// use num_traits::PrimInt; |
| 262 | /// |
| 263 | /// let n = 0x12345678u32; |
| 264 | /// let m = 0x1e6a2c48u32; |
| 265 | /// |
| 266 | /// assert_eq!(n.reverse_bits(), m); |
| 267 | /// assert_eq!(0u32.reverse_bits(), 0); |
| 268 | /// ``` |
| 269 | fn reverse_bits(self) -> Self { |
| 270 | reverse_bits_fallback(self) |
| 271 | } |
| 272 | |
| 273 | /// Convert an integer from big endian to the target's endianness. |
| 274 | /// |
| 275 | /// On big endian this is a no-op. On little endian the bytes are swapped. |
| 276 | /// |
| 277 | /// # Examples |
| 278 | /// |
| 279 | /// ``` |
| 280 | /// use num_traits::PrimInt; |
| 281 | /// |
| 282 | /// let n = 0x0123456789ABCDEFu64; |
| 283 | /// |
| 284 | /// if cfg!(target_endian = "big" ) { |
| 285 | /// assert_eq!(u64::from_be(n), n) |
| 286 | /// } else { |
| 287 | /// assert_eq!(u64::from_be(n), n.swap_bytes()) |
| 288 | /// } |
| 289 | /// ``` |
| 290 | fn from_be(x: Self) -> Self; |
| 291 | |
| 292 | /// Convert an integer from little endian to the target's endianness. |
| 293 | /// |
| 294 | /// On little endian this is a no-op. On big endian the bytes are swapped. |
| 295 | /// |
| 296 | /// # Examples |
| 297 | /// |
| 298 | /// ``` |
| 299 | /// use num_traits::PrimInt; |
| 300 | /// |
| 301 | /// let n = 0x0123456789ABCDEFu64; |
| 302 | /// |
| 303 | /// if cfg!(target_endian = "little" ) { |
| 304 | /// assert_eq!(u64::from_le(n), n) |
| 305 | /// } else { |
| 306 | /// assert_eq!(u64::from_le(n), n.swap_bytes()) |
| 307 | /// } |
| 308 | /// ``` |
| 309 | fn from_le(x: Self) -> Self; |
| 310 | |
| 311 | /// Convert `self` to big endian from the target's endianness. |
| 312 | /// |
| 313 | /// On big endian this is a no-op. On little endian the bytes are swapped. |
| 314 | /// |
| 315 | /// # Examples |
| 316 | /// |
| 317 | /// ``` |
| 318 | /// use num_traits::PrimInt; |
| 319 | /// |
| 320 | /// let n = 0x0123456789ABCDEFu64; |
| 321 | /// |
| 322 | /// if cfg!(target_endian = "big" ) { |
| 323 | /// assert_eq!(n.to_be(), n) |
| 324 | /// } else { |
| 325 | /// assert_eq!(n.to_be(), n.swap_bytes()) |
| 326 | /// } |
| 327 | /// ``` |
| 328 | fn to_be(self) -> Self; |
| 329 | |
| 330 | /// Convert `self` to little endian from the target's endianness. |
| 331 | /// |
| 332 | /// On little endian this is a no-op. On big endian the bytes are swapped. |
| 333 | /// |
| 334 | /// # Examples |
| 335 | /// |
| 336 | /// ``` |
| 337 | /// use num_traits::PrimInt; |
| 338 | /// |
| 339 | /// let n = 0x0123456789ABCDEFu64; |
| 340 | /// |
| 341 | /// if cfg!(target_endian = "little" ) { |
| 342 | /// assert_eq!(n.to_le(), n) |
| 343 | /// } else { |
| 344 | /// assert_eq!(n.to_le(), n.swap_bytes()) |
| 345 | /// } |
| 346 | /// ``` |
| 347 | fn to_le(self) -> Self; |
| 348 | |
| 349 | /// Raises self to the power of `exp`, using exponentiation by squaring. |
| 350 | /// |
| 351 | /// # Examples |
| 352 | /// |
| 353 | /// ``` |
| 354 | /// use num_traits::PrimInt; |
| 355 | /// |
| 356 | /// assert_eq!(2i32.pow(4), 16); |
| 357 | /// ``` |
| 358 | fn pow(self, exp: u32) -> Self; |
| 359 | } |
| 360 | |
| 361 | fn one_per_byte<P: PrimInt>() -> P { |
| 362 | // i8, u8: return 0x01 |
| 363 | // i16, u16: return 0x0101 = (0x01 << 8) | 0x01 |
| 364 | // i32, u32: return 0x01010101 = (0x0101 << 16) | 0x0101 |
| 365 | // ... |
| 366 | let mut ret: P = P::one(); |
| 367 | let mut shift: usize = 8; |
| 368 | let mut b: u32 = ret.count_zeros() >> 3; |
| 369 | while b != 0 { |
| 370 | ret = (ret << shift) | ret; |
| 371 | shift <<= 1; |
| 372 | b >>= 1; |
| 373 | } |
| 374 | ret |
| 375 | } |
| 376 | |
| 377 | fn reverse_bits_fallback<P: PrimInt>(i: P) -> P { |
| 378 | let rep_01: P = one_per_byte(); |
| 379 | let rep_03: P = (rep_01 << 1) | rep_01; |
| 380 | let rep_05: P = (rep_01 << 2) | rep_01; |
| 381 | let rep_0f: P = (rep_03 << 2) | rep_03; |
| 382 | let rep_33: P = (rep_03 << 4) | rep_03; |
| 383 | let rep_55: P = (rep_05 << 4) | rep_05; |
| 384 | |
| 385 | // code above only used to determine rep_0f, rep_33, rep_55; |
| 386 | // optimizer should be able to do it in compile time |
| 387 | let mut ret: P = i.swap_bytes(); |
| 388 | ret = ((ret & rep_0f) << 4) | ((ret >> 4) & rep_0f); |
| 389 | ret = ((ret & rep_33) << 2) | ((ret >> 2) & rep_33); |
| 390 | ret = ((ret & rep_55) << 1) | ((ret >> 1) & rep_55); |
| 391 | ret |
| 392 | } |
| 393 | |
| 394 | macro_rules! prim_int_impl { |
| 395 | ($T:ty, $S:ty, $U:ty) => { |
| 396 | impl PrimInt for $T { |
| 397 | #[inline] |
| 398 | fn count_ones(self) -> u32 { |
| 399 | <$T>::count_ones(self) |
| 400 | } |
| 401 | |
| 402 | #[inline] |
| 403 | fn count_zeros(self) -> u32 { |
| 404 | <$T>::count_zeros(self) |
| 405 | } |
| 406 | |
| 407 | #[inline] |
| 408 | fn leading_ones(self) -> u32 { |
| 409 | <$T>::leading_ones(self) |
| 410 | } |
| 411 | |
| 412 | #[inline] |
| 413 | fn leading_zeros(self) -> u32 { |
| 414 | <$T>::leading_zeros(self) |
| 415 | } |
| 416 | |
| 417 | #[inline] |
| 418 | fn trailing_ones(self) -> u32 { |
| 419 | <$T>::trailing_ones(self) |
| 420 | } |
| 421 | |
| 422 | #[inline] |
| 423 | fn trailing_zeros(self) -> u32 { |
| 424 | <$T>::trailing_zeros(self) |
| 425 | } |
| 426 | |
| 427 | #[inline] |
| 428 | fn rotate_left(self, n: u32) -> Self { |
| 429 | <$T>::rotate_left(self, n) |
| 430 | } |
| 431 | |
| 432 | #[inline] |
| 433 | fn rotate_right(self, n: u32) -> Self { |
| 434 | <$T>::rotate_right(self, n) |
| 435 | } |
| 436 | |
| 437 | #[inline] |
| 438 | fn signed_shl(self, n: u32) -> Self { |
| 439 | ((self as $S) << n) as $T |
| 440 | } |
| 441 | |
| 442 | #[inline] |
| 443 | fn signed_shr(self, n: u32) -> Self { |
| 444 | ((self as $S) >> n) as $T |
| 445 | } |
| 446 | |
| 447 | #[inline] |
| 448 | fn unsigned_shl(self, n: u32) -> Self { |
| 449 | ((self as $U) << n) as $T |
| 450 | } |
| 451 | |
| 452 | #[inline] |
| 453 | fn unsigned_shr(self, n: u32) -> Self { |
| 454 | ((self as $U) >> n) as $T |
| 455 | } |
| 456 | |
| 457 | #[inline] |
| 458 | fn swap_bytes(self) -> Self { |
| 459 | <$T>::swap_bytes(self) |
| 460 | } |
| 461 | |
| 462 | #[inline] |
| 463 | fn reverse_bits(self) -> Self { |
| 464 | <$T>::reverse_bits(self) |
| 465 | } |
| 466 | |
| 467 | #[inline] |
| 468 | fn from_be(x: Self) -> Self { |
| 469 | <$T>::from_be(x) |
| 470 | } |
| 471 | |
| 472 | #[inline] |
| 473 | fn from_le(x: Self) -> Self { |
| 474 | <$T>::from_le(x) |
| 475 | } |
| 476 | |
| 477 | #[inline] |
| 478 | fn to_be(self) -> Self { |
| 479 | <$T>::to_be(self) |
| 480 | } |
| 481 | |
| 482 | #[inline] |
| 483 | fn to_le(self) -> Self { |
| 484 | <$T>::to_le(self) |
| 485 | } |
| 486 | |
| 487 | #[inline] |
| 488 | fn pow(self, exp: u32) -> Self { |
| 489 | <$T>::pow(self, exp) |
| 490 | } |
| 491 | } |
| 492 | }; |
| 493 | } |
| 494 | |
| 495 | // prim_int_impl!(type, signed, unsigned); |
| 496 | prim_int_impl!(u8, i8, u8); |
| 497 | prim_int_impl!(u16, i16, u16); |
| 498 | prim_int_impl!(u32, i32, u32); |
| 499 | prim_int_impl!(u64, i64, u64); |
| 500 | prim_int_impl!(u128, i128, u128); |
| 501 | prim_int_impl!(usize, isize, usize); |
| 502 | prim_int_impl!(i8, i8, u8); |
| 503 | prim_int_impl!(i16, i16, u16); |
| 504 | prim_int_impl!(i32, i32, u32); |
| 505 | prim_int_impl!(i64, i64, u64); |
| 506 | prim_int_impl!(i128, i128, u128); |
| 507 | prim_int_impl!(isize, isize, usize); |
| 508 | |
| 509 | #[cfg (test)] |
| 510 | mod tests { |
| 511 | use crate::int::PrimInt; |
| 512 | |
| 513 | #[test ] |
| 514 | pub fn reverse_bits() { |
| 515 | use core::{i16, i32, i64, i8}; |
| 516 | |
| 517 | assert_eq!( |
| 518 | PrimInt::reverse_bits(0x0123_4567_89ab_cdefu64), |
| 519 | 0xf7b3_d591_e6a2_c480 |
| 520 | ); |
| 521 | |
| 522 | assert_eq!(PrimInt::reverse_bits(0i8), 0); |
| 523 | assert_eq!(PrimInt::reverse_bits(-1i8), -1); |
| 524 | assert_eq!(PrimInt::reverse_bits(1i8), i8::MIN); |
| 525 | assert_eq!(PrimInt::reverse_bits(i8::MIN), 1); |
| 526 | assert_eq!(PrimInt::reverse_bits(-2i8), i8::MAX); |
| 527 | assert_eq!(PrimInt::reverse_bits(i8::MAX), -2); |
| 528 | |
| 529 | assert_eq!(PrimInt::reverse_bits(0i16), 0); |
| 530 | assert_eq!(PrimInt::reverse_bits(-1i16), -1); |
| 531 | assert_eq!(PrimInt::reverse_bits(1i16), i16::MIN); |
| 532 | assert_eq!(PrimInt::reverse_bits(i16::MIN), 1); |
| 533 | assert_eq!(PrimInt::reverse_bits(-2i16), i16::MAX); |
| 534 | assert_eq!(PrimInt::reverse_bits(i16::MAX), -2); |
| 535 | |
| 536 | assert_eq!(PrimInt::reverse_bits(0i32), 0); |
| 537 | assert_eq!(PrimInt::reverse_bits(-1i32), -1); |
| 538 | assert_eq!(PrimInt::reverse_bits(1i32), i32::MIN); |
| 539 | assert_eq!(PrimInt::reverse_bits(i32::MIN), 1); |
| 540 | assert_eq!(PrimInt::reverse_bits(-2i32), i32::MAX); |
| 541 | assert_eq!(PrimInt::reverse_bits(i32::MAX), -2); |
| 542 | |
| 543 | assert_eq!(PrimInt::reverse_bits(0i64), 0); |
| 544 | assert_eq!(PrimInt::reverse_bits(-1i64), -1); |
| 545 | assert_eq!(PrimInt::reverse_bits(1i64), i64::MIN); |
| 546 | assert_eq!(PrimInt::reverse_bits(i64::MIN), 1); |
| 547 | assert_eq!(PrimInt::reverse_bits(-2i64), i64::MAX); |
| 548 | assert_eq!(PrimInt::reverse_bits(i64::MAX), -2); |
| 549 | } |
| 550 | |
| 551 | #[test ] |
| 552 | pub fn reverse_bits_i128() { |
| 553 | use core::i128; |
| 554 | |
| 555 | assert_eq!(PrimInt::reverse_bits(0i128), 0); |
| 556 | assert_eq!(PrimInt::reverse_bits(-1i128), -1); |
| 557 | assert_eq!(PrimInt::reverse_bits(1i128), i128::MIN); |
| 558 | assert_eq!(PrimInt::reverse_bits(i128::MIN), 1); |
| 559 | assert_eq!(PrimInt::reverse_bits(-2i128), i128::MAX); |
| 560 | assert_eq!(PrimInt::reverse_bits(i128::MAX), -2); |
| 561 | } |
| 562 | } |
| 563 | |