| 1 | use core::ops::{Div, Rem}; |
| 2 | |
| 3 | pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> { |
| 4 | /// Calculates Euclidean division, the matching method for `rem_euclid`. |
| 5 | /// |
| 6 | /// This computes the integer `n` such that |
| 7 | /// `self = n * v + self.rem_euclid(v)`. |
| 8 | /// In other words, the result is `self / v` rounded to the integer `n` |
| 9 | /// such that `self >= n * v`. |
| 10 | /// |
| 11 | /// # Examples |
| 12 | /// |
| 13 | /// ``` |
| 14 | /// use num_traits::Euclid; |
| 15 | /// |
| 16 | /// let a: i32 = 7; |
| 17 | /// let b: i32 = 4; |
| 18 | /// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1 |
| 19 | /// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2 |
| 20 | /// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1 |
| 21 | /// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2 |
| 22 | /// ``` |
| 23 | fn div_euclid(&self, v: &Self) -> Self; |
| 24 | |
| 25 | /// Calculates the least nonnegative remainder of `self (mod v)`. |
| 26 | /// |
| 27 | /// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in |
| 28 | /// most cases. However, due to a floating point round-off error it can |
| 29 | /// result in `r == v.abs()`, violating the mathematical definition, if |
| 30 | /// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`. |
| 31 | /// This result is not an element of the function's codomain, but it is the |
| 32 | /// closest floating point number in the real numbers and thus fulfills the |
| 33 | /// property `self == self.div_euclid(v) * v + self.rem_euclid(v)` |
| 34 | /// approximatively. |
| 35 | /// |
| 36 | /// # Examples |
| 37 | /// |
| 38 | /// ``` |
| 39 | /// use num_traits::Euclid; |
| 40 | /// |
| 41 | /// let a: i32 = 7; |
| 42 | /// let b: i32 = 4; |
| 43 | /// assert_eq!(Euclid::rem_euclid(&a, &b), 3); |
| 44 | /// assert_eq!(Euclid::rem_euclid(&-a, &b), 1); |
| 45 | /// assert_eq!(Euclid::rem_euclid(&a, &-b), 3); |
| 46 | /// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1); |
| 47 | /// ``` |
| 48 | fn rem_euclid(&self, v: &Self) -> Self; |
| 49 | |
| 50 | /// Returns both the quotient and remainder from Euclidean division. |
| 51 | /// |
| 52 | /// By default, it internally calls both `Euclid::div_euclid` and `Euclid::rem_euclid`, |
| 53 | /// but it can be overridden in order to implement some optimization. |
| 54 | /// |
| 55 | /// # Examples |
| 56 | /// |
| 57 | /// ``` |
| 58 | /// # use num_traits::Euclid; |
| 59 | /// let x = 5u8; |
| 60 | /// let y = 3u8; |
| 61 | /// |
| 62 | /// let div = Euclid::div_euclid(&x, &y); |
| 63 | /// let rem = Euclid::rem_euclid(&x, &y); |
| 64 | /// |
| 65 | /// assert_eq!((div, rem), Euclid::div_rem_euclid(&x, &y)); |
| 66 | /// ``` |
| 67 | fn div_rem_euclid(&self, v: &Self) -> (Self, Self) { |
| 68 | (self.div_euclid(v), self.rem_euclid(v)) |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | macro_rules! euclid_forward_impl { |
| 73 | ($($t:ty)*) => {$( |
| 74 | impl Euclid for $t { |
| 75 | #[inline] |
| 76 | fn div_euclid(&self, v: &$t) -> Self { |
| 77 | <$t>::div_euclid(*self, *v) |
| 78 | } |
| 79 | |
| 80 | #[inline] |
| 81 | fn rem_euclid(&self, v: &$t) -> Self { |
| 82 | <$t>::rem_euclid(*self, *v) |
| 83 | } |
| 84 | } |
| 85 | )*} |
| 86 | } |
| 87 | |
| 88 | euclid_forward_impl!(isize i8 i16 i32 i64 i128); |
| 89 | euclid_forward_impl!(usize u8 u16 u32 u64 u128); |
| 90 | |
| 91 | #[cfg (feature = "std" )] |
| 92 | euclid_forward_impl!(f32 f64); |
| 93 | |
| 94 | #[cfg (not(feature = "std" ))] |
| 95 | impl Euclid for f32 { |
| 96 | #[inline ] |
| 97 | fn div_euclid(&self, v: &f32) -> f32 { |
| 98 | let q = <f32 as crate::float::FloatCore>::trunc(self / v); |
| 99 | if self % v < 0.0 { |
| 100 | return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; |
| 101 | } |
| 102 | q |
| 103 | } |
| 104 | |
| 105 | #[inline ] |
| 106 | fn rem_euclid(&self, v: &f32) -> f32 { |
| 107 | let r = self % v; |
| 108 | if r < 0.0 { |
| 109 | r + <f32 as crate::float::FloatCore>::abs(*v) |
| 110 | } else { |
| 111 | r |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | #[cfg (not(feature = "std" ))] |
| 117 | impl Euclid for f64 { |
| 118 | #[inline ] |
| 119 | fn div_euclid(&self, v: &f64) -> f64 { |
| 120 | let q = <f64 as crate::float::FloatCore>::trunc(self / v); |
| 121 | if self % v < 0.0 { |
| 122 | return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; |
| 123 | } |
| 124 | q |
| 125 | } |
| 126 | |
| 127 | #[inline ] |
| 128 | fn rem_euclid(&self, v: &f64) -> f64 { |
| 129 | let r = self % v; |
| 130 | if r < 0.0 { |
| 131 | r + <f64 as crate::float::FloatCore>::abs(*v) |
| 132 | } else { |
| 133 | r |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | pub trait CheckedEuclid: Euclid { |
| 139 | /// Performs euclid division that returns `None` instead of panicking on division by zero |
| 140 | /// and instead of wrapping around on underflow and overflow. |
| 141 | fn checked_div_euclid(&self, v: &Self) -> Option<Self>; |
| 142 | |
| 143 | /// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and |
| 144 | /// division by zero. If any of that happens, `None` is returned. |
| 145 | fn checked_rem_euclid(&self, v: &Self) -> Option<Self>; |
| 146 | |
| 147 | /// Returns both the quotient and remainder from checked Euclidean division. |
| 148 | /// |
| 149 | /// By default, it internally calls both `CheckedEuclid::checked_div_euclid` and `CheckedEuclid::checked_rem_euclid`, |
| 150 | /// but it can be overridden in order to implement some optimization. |
| 151 | /// # Examples |
| 152 | /// |
| 153 | /// ``` |
| 154 | /// # use num_traits::CheckedEuclid; |
| 155 | /// let x = 5u8; |
| 156 | /// let y = 3u8; |
| 157 | /// |
| 158 | /// let div = CheckedEuclid::checked_div_euclid(&x, &y); |
| 159 | /// let rem = CheckedEuclid::checked_rem_euclid(&x, &y); |
| 160 | /// |
| 161 | /// assert_eq!(Some((div.unwrap(), rem.unwrap())), CheckedEuclid::checked_div_rem_euclid(&x, &y)); |
| 162 | /// ``` |
| 163 | fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)> { |
| 164 | Some((self.checked_div_euclid(v)?, self.checked_rem_euclid(v)?)) |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | macro_rules! checked_euclid_forward_impl { |
| 169 | ($($t:ty)*) => {$( |
| 170 | impl CheckedEuclid for $t { |
| 171 | #[inline] |
| 172 | fn checked_div_euclid(&self, v: &$t) -> Option<Self> { |
| 173 | <$t>::checked_div_euclid(*self, *v) |
| 174 | } |
| 175 | |
| 176 | #[inline] |
| 177 | fn checked_rem_euclid(&self, v: &$t) -> Option<Self> { |
| 178 | <$t>::checked_rem_euclid(*self, *v) |
| 179 | } |
| 180 | } |
| 181 | )*} |
| 182 | } |
| 183 | |
| 184 | checked_euclid_forward_impl!(isize i8 i16 i32 i64 i128); |
| 185 | checked_euclid_forward_impl!(usize u8 u16 u32 u64 u128); |
| 186 | |
| 187 | #[cfg (test)] |
| 188 | mod tests { |
| 189 | use super::*; |
| 190 | |
| 191 | #[test ] |
| 192 | fn euclid_unsigned() { |
| 193 | macro_rules! test_euclid { |
| 194 | ($($t:ident)+) => { |
| 195 | $( |
| 196 | { |
| 197 | let x: $t = 10; |
| 198 | let y: $t = 3; |
| 199 | let div = Euclid::div_euclid(&x, &y); |
| 200 | let rem = Euclid::rem_euclid(&x, &y); |
| 201 | assert_eq!(div, 3); |
| 202 | assert_eq!(rem, 1); |
| 203 | assert_eq!((div, rem), Euclid::div_rem_euclid(&x, &y)); |
| 204 | } |
| 205 | )+ |
| 206 | }; |
| 207 | } |
| 208 | |
| 209 | test_euclid!(usize u8 u16 u32 u64); |
| 210 | } |
| 211 | |
| 212 | #[test ] |
| 213 | fn euclid_signed() { |
| 214 | macro_rules! test_euclid { |
| 215 | ($($t:ident)+) => { |
| 216 | $( |
| 217 | { |
| 218 | let x: $t = 10; |
| 219 | let y: $t = -3; |
| 220 | assert_eq!(Euclid::div_euclid(&x, &y), -3); |
| 221 | assert_eq!(Euclid::div_euclid(&-x, &y), 4); |
| 222 | assert_eq!(Euclid::rem_euclid(&x, &y), 1); |
| 223 | assert_eq!(Euclid::rem_euclid(&-x, &y), 2); |
| 224 | assert_eq!((Euclid::div_euclid(&x, &y), Euclid::rem_euclid(&x, &y)), Euclid::div_rem_euclid(&x, &y)); |
| 225 | let x: $t = $t::min_value() + 1; |
| 226 | let y: $t = -1; |
| 227 | assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value()); |
| 228 | } |
| 229 | )+ |
| 230 | }; |
| 231 | } |
| 232 | |
| 233 | test_euclid!(isize i8 i16 i32 i64 i128); |
| 234 | } |
| 235 | |
| 236 | #[test ] |
| 237 | fn euclid_float() { |
| 238 | macro_rules! test_euclid { |
| 239 | ($($t:ident)+) => { |
| 240 | $( |
| 241 | { |
| 242 | let x: $t = 12.1; |
| 243 | let y: $t = 3.2; |
| 244 | assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x |
| 245 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| 246 | assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x |
| 247 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| 248 | assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x |
| 249 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| 250 | assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x |
| 251 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| 252 | assert_eq!((Euclid::div_euclid(&x, &y), Euclid::rem_euclid(&x, &y)), Euclid::div_rem_euclid(&x, &y)); |
| 253 | } |
| 254 | )+ |
| 255 | }; |
| 256 | } |
| 257 | |
| 258 | test_euclid!(f32 f64); |
| 259 | } |
| 260 | |
| 261 | #[test ] |
| 262 | fn euclid_checked() { |
| 263 | macro_rules! test_euclid_checked { |
| 264 | ($($t:ident)+) => { |
| 265 | $( |
| 266 | { |
| 267 | assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None); |
| 268 | assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None); |
| 269 | assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None); |
| 270 | assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None); |
| 271 | } |
| 272 | )+ |
| 273 | }; |
| 274 | } |
| 275 | |
| 276 | test_euclid_checked!(isize i8 i16 i32 i64 i128); |
| 277 | } |
| 278 | } |
| 279 | |