| 1 | use core::ops::{Add, Mul, Sub}; |
| 2 | use core::{i128, i16, i32, i64, i8, isize}; |
| 3 | use core::{u128, u16, u32, u64, u8, usize}; |
| 4 | |
| 5 | macro_rules! overflowing_impl { |
| 6 | ($trait_name:ident, $method:ident, $t:ty) => { |
| 7 | impl $trait_name for $t { |
| 8 | #[inline] |
| 9 | fn $method(&self, v: &Self) -> (Self, bool) { |
| 10 | <$t>::$method(*self, *v) |
| 11 | } |
| 12 | } |
| 13 | }; |
| 14 | } |
| 15 | |
| 16 | /// Performs addition with a flag for overflow. |
| 17 | pub trait OverflowingAdd: Sized + Add<Self, Output = Self> { |
| 18 | /// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur. |
| 19 | /// If an overflow would have occurred then the wrapped value is returned. |
| 20 | fn overflowing_add(&self, v: &Self) -> (Self, bool); |
| 21 | } |
| 22 | |
| 23 | overflowing_impl!(OverflowingAdd, overflowing_add, u8); |
| 24 | overflowing_impl!(OverflowingAdd, overflowing_add, u16); |
| 25 | overflowing_impl!(OverflowingAdd, overflowing_add, u32); |
| 26 | overflowing_impl!(OverflowingAdd, overflowing_add, u64); |
| 27 | overflowing_impl!(OverflowingAdd, overflowing_add, usize); |
| 28 | overflowing_impl!(OverflowingAdd, overflowing_add, u128); |
| 29 | |
| 30 | overflowing_impl!(OverflowingAdd, overflowing_add, i8); |
| 31 | overflowing_impl!(OverflowingAdd, overflowing_add, i16); |
| 32 | overflowing_impl!(OverflowingAdd, overflowing_add, i32); |
| 33 | overflowing_impl!(OverflowingAdd, overflowing_add, i64); |
| 34 | overflowing_impl!(OverflowingAdd, overflowing_add, isize); |
| 35 | overflowing_impl!(OverflowingAdd, overflowing_add, i128); |
| 36 | |
| 37 | /// Performs substraction with a flag for overflow. |
| 38 | pub trait OverflowingSub: Sized + Sub<Self, Output = Self> { |
| 39 | /// Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur. |
| 40 | /// If an overflow would have occurred then the wrapped value is returned. |
| 41 | fn overflowing_sub(&self, v: &Self) -> (Self, bool); |
| 42 | } |
| 43 | |
| 44 | overflowing_impl!(OverflowingSub, overflowing_sub, u8); |
| 45 | overflowing_impl!(OverflowingSub, overflowing_sub, u16); |
| 46 | overflowing_impl!(OverflowingSub, overflowing_sub, u32); |
| 47 | overflowing_impl!(OverflowingSub, overflowing_sub, u64); |
| 48 | overflowing_impl!(OverflowingSub, overflowing_sub, usize); |
| 49 | overflowing_impl!(OverflowingSub, overflowing_sub, u128); |
| 50 | |
| 51 | overflowing_impl!(OverflowingSub, overflowing_sub, i8); |
| 52 | overflowing_impl!(OverflowingSub, overflowing_sub, i16); |
| 53 | overflowing_impl!(OverflowingSub, overflowing_sub, i32); |
| 54 | overflowing_impl!(OverflowingSub, overflowing_sub, i64); |
| 55 | overflowing_impl!(OverflowingSub, overflowing_sub, isize); |
| 56 | overflowing_impl!(OverflowingSub, overflowing_sub, i128); |
| 57 | |
| 58 | /// Performs multiplication with a flag for overflow. |
| 59 | pub trait OverflowingMul: Sized + Mul<Self, Output = Self> { |
| 60 | /// Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur. |
| 61 | /// If an overflow would have occurred then the wrapped value is returned. |
| 62 | fn overflowing_mul(&self, v: &Self) -> (Self, bool); |
| 63 | } |
| 64 | |
| 65 | overflowing_impl!(OverflowingMul, overflowing_mul, u8); |
| 66 | overflowing_impl!(OverflowingMul, overflowing_mul, u16); |
| 67 | overflowing_impl!(OverflowingMul, overflowing_mul, u32); |
| 68 | overflowing_impl!(OverflowingMul, overflowing_mul, u64); |
| 69 | overflowing_impl!(OverflowingMul, overflowing_mul, usize); |
| 70 | overflowing_impl!(OverflowingMul, overflowing_mul, u128); |
| 71 | |
| 72 | overflowing_impl!(OverflowingMul, overflowing_mul, i8); |
| 73 | overflowing_impl!(OverflowingMul, overflowing_mul, i16); |
| 74 | overflowing_impl!(OverflowingMul, overflowing_mul, i32); |
| 75 | overflowing_impl!(OverflowingMul, overflowing_mul, i64); |
| 76 | overflowing_impl!(OverflowingMul, overflowing_mul, isize); |
| 77 | overflowing_impl!(OverflowingMul, overflowing_mul, i128); |
| 78 | |
| 79 | #[test ] |
| 80 | fn test_overflowing_traits() { |
| 81 | fn overflowing_add<T: OverflowingAdd>(a: T, b: T) -> (T, bool) { |
| 82 | a.overflowing_add(&b) |
| 83 | } |
| 84 | fn overflowing_sub<T: OverflowingSub>(a: T, b: T) -> (T, bool) { |
| 85 | a.overflowing_sub(&b) |
| 86 | } |
| 87 | fn overflowing_mul<T: OverflowingMul>(a: T, b: T) -> (T, bool) { |
| 88 | a.overflowing_mul(&b) |
| 89 | } |
| 90 | assert_eq!(overflowing_add(5i16, 2), (7, false)); |
| 91 | assert_eq!(overflowing_add(i16::MAX, 1), (i16::MIN, true)); |
| 92 | assert_eq!(overflowing_sub(5i16, 2), (3, false)); |
| 93 | assert_eq!(overflowing_sub(i16::MIN, 1), (i16::MAX, true)); |
| 94 | assert_eq!(overflowing_mul(5i16, 2), (10, false)); |
| 95 | assert_eq!(overflowing_mul(1_000_000_000i32, 10), (1410065408, true)); |
| 96 | } |
| 97 | |