| 1 | // Copyright 2017 The Rust Project Developers. See the COPYRIGHT |
| 2 | // file at the top-level directory of this distribution and at |
| 3 | // http://rust-lang.org/COPYRIGHT. |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | // option. This file may not be copied, modified, or distributed |
| 9 | // except according to those terms. |
| 10 | |
| 11 | //! A version of the Naive datalog analysis using Datafrog. |
| 12 | |
| 13 | use datafrog::{Iteration, Relation, RelationLeaper}; |
| 14 | use std::time::Instant; |
| 15 | |
| 16 | use crate::facts::FactTypes; |
| 17 | use crate::output::{Context, Output}; |
| 18 | |
| 19 | pub(super) fn compute<T: FactTypes>( |
| 20 | ctx: &Context<'_, T>, |
| 21 | result: &mut Output<T>, |
| 22 | ) -> ( |
| 23 | Relation<(T::Loan, T::Point)>, |
| 24 | Relation<(T::Origin, T::Origin, T::Point)>, |
| 25 | ) { |
| 26 | let timer = Instant::now(); |
| 27 | |
| 28 | let (errors, subset_errors) = { |
| 29 | // Static inputs |
| 30 | let origin_live_on_entry_rel = &ctx.origin_live_on_entry; |
| 31 | let cfg_edge = &ctx.cfg_edge; |
| 32 | let loan_killed_at = &ctx.loan_killed_at; |
| 33 | let known_placeholder_subset = &ctx.known_placeholder_subset; |
| 34 | let placeholder_origin = &ctx.placeholder_origin; |
| 35 | |
| 36 | // Create a new iteration context, ... |
| 37 | let mut iteration = Iteration::new(); |
| 38 | |
| 39 | // .. some variables, .. |
| 40 | let subset = iteration.variable::<(T::Origin, T::Origin, T::Point)>("subset" ); |
| 41 | let origin_contains_loan_on_entry = |
| 42 | iteration.variable::<(T::Origin, T::Loan, T::Point)>("origin_contains_loan_on_entry" ); |
| 43 | let loan_live_at = iteration.variable::<((T::Loan, T::Point), ())>("loan_live_at" ); |
| 44 | |
| 45 | // `loan_invalidated_at` facts, stored ready for joins |
| 46 | let loan_invalidated_at = Relation::from_iter( |
| 47 | ctx.loan_invalidated_at |
| 48 | .iter() |
| 49 | .map(|&(loan, point)| ((loan, point), ())), |
| 50 | ); |
| 51 | |
| 52 | // different indices for `subset`. |
| 53 | let subset_o1p = iteration.variable_indistinct("subset_o1p" ); |
| 54 | let subset_o2p = iteration.variable_indistinct("subset_o2p" ); |
| 55 | |
| 56 | // different index for `origin_contains_loan_on_entry`. |
| 57 | let origin_contains_loan_on_entry_op = |
| 58 | iteration.variable_indistinct("origin_contains_loan_on_entry_op" ); |
| 59 | |
| 60 | // Unfortunately, we need `origin_live_on_entry` in both variable and relation forms: |
| 61 | // We need: |
| 62 | // - `origin_live_on_entry` as a Relation for the leapjoins in rules 3 & 6 |
| 63 | // - `origin_live_on_entry` as a Variable for the join in rule 7 |
| 64 | // |
| 65 | // The leapjoins use `origin_live_on_entry` as `(Origin, Point)` tuples, while the join uses |
| 66 | // it as a `((O, P), ())` tuple to filter the `((Origin, Point), Loan)` tuples from |
| 67 | // `origin_contains_loan_on_entry_op`. |
| 68 | // |
| 69 | // The regular join in rule 7 could be turned into a `filter_with` leaper but that would |
| 70 | // result in a leapjoin with no `extend_*` leapers: a leapjoin that is not well-formed. |
| 71 | // Doing the filtering via an `extend_with` leaper would be extremely inefficient. |
| 72 | // |
| 73 | // Until there's an API in datafrog to handle this use-case better, we do a slightly less |
| 74 | // inefficient thing of copying the whole static input into a Variable to use a regular |
| 75 | // join, even though the liveness information can be quite heavy (around 1M tuples |
| 76 | // on `clap`). |
| 77 | // This is the Naive variant so this is not a big problem, but needs an |
| 78 | // explanation. |
| 79 | let origin_live_on_entry_var = |
| 80 | iteration.variable::<((T::Origin, T::Point), ())>("origin_live_on_entry" ); |
| 81 | origin_live_on_entry_var.extend( |
| 82 | origin_live_on_entry_rel |
| 83 | .iter() |
| 84 | .map(|&(origin, point)| ((origin, point), ())), |
| 85 | ); |
| 86 | |
| 87 | // output relations: illegal accesses errors, and illegal subset relations errors |
| 88 | let errors = iteration.variable("errors" ); |
| 89 | let subset_errors = iteration.variable::<(T::Origin, T::Origin, T::Point)>("subset_errors" ); |
| 90 | |
| 91 | // load initial facts: |
| 92 | |
| 93 | // Rule 1: the initial subsets are the non-transitive `subset_base` static input. |
| 94 | // |
| 95 | // subset(Origin1, Origin2, Point) :- |
| 96 | // subset_base(Origin1, Origin2, Point). |
| 97 | subset.extend(ctx.subset_base.iter()); |
| 98 | |
| 99 | // Rule 4: the issuing origins are the ones initially containing loans. |
| 100 | // |
| 101 | // origin_contains_loan_on_entry(Origin, Loan, Point) :- |
| 102 | // loan_issued_at(Origin, Loan, Point). |
| 103 | origin_contains_loan_on_entry.extend(ctx.loan_issued_at.iter()); |
| 104 | |
| 105 | // .. and then start iterating rules! |
| 106 | while iteration.changed() { |
| 107 | // Cleanup step: remove symmetries |
| 108 | // - remove origins which are `subset`s of themselves |
| 109 | // |
| 110 | // FIXME: investigate whether is there a better way to do that without complicating |
| 111 | // the rules too much, because it would also require temporary variables and |
| 112 | // impact performance. Until then, the big reduction in tuples improves performance |
| 113 | // a lot, even if we're potentially adding a small number of tuples |
| 114 | // per round just to remove them in the next round. |
| 115 | subset |
| 116 | .recent |
| 117 | .borrow_mut() |
| 118 | .elements |
| 119 | .retain(|&(origin1, origin2, _)| origin1 != origin2); |
| 120 | |
| 121 | // Remap fields to re-index by keys, to prepare the data needed by the rules below. |
| 122 | subset_o1p.from_map(&subset, |&(origin1, origin2, point)| { |
| 123 | ((origin1, point), origin2) |
| 124 | }); |
| 125 | subset_o2p.from_map(&subset, |&(origin1, origin2, point)| { |
| 126 | ((origin2, point), origin1) |
| 127 | }); |
| 128 | |
| 129 | origin_contains_loan_on_entry_op |
| 130 | .from_map(&origin_contains_loan_on_entry, |&(origin, loan, point)| { |
| 131 | ((origin, point), loan) |
| 132 | }); |
| 133 | |
| 134 | // Rule 1: done above, as part of the static input facts setup. |
| 135 | |
| 136 | // Rule 2: compute the subset transitive closure, at a given point. |
| 137 | // |
| 138 | // subset(Origin1, Origin3, Point) :- |
| 139 | // subset(Origin1, Origin2, Point), |
| 140 | // subset(Origin2, Origin3, Point). |
| 141 | subset.from_join( |
| 142 | &subset_o2p, |
| 143 | &subset_o1p, |
| 144 | |&(_origin2, point), &origin1, &origin3| (origin1, origin3, point), |
| 145 | ); |
| 146 | |
| 147 | // Rule 3: propagate subsets along the CFG, according to liveness. |
| 148 | // |
| 149 | // subset(Origin1, Origin2, Point2) :- |
| 150 | // subset(Origin1, Origin2, Point1), |
| 151 | // cfg_edge(Point1, Point2), |
| 152 | // origin_live_on_entry(Origin1, Point2), |
| 153 | // origin_live_on_entry(Origin2, Point2). |
| 154 | subset.from_leapjoin( |
| 155 | &subset, |
| 156 | ( |
| 157 | cfg_edge.extend_with(|&(_origin1, _origin2, point1)| point1), |
| 158 | origin_live_on_entry_rel.extend_with(|&(origin1, _origin2, _point1)| origin1), |
| 159 | origin_live_on_entry_rel.extend_with(|&(_origin1, origin2, _point1)| origin2), |
| 160 | ), |
| 161 | |&(origin1, origin2, _point1), &point2| (origin1, origin2, point2), |
| 162 | ); |
| 163 | |
| 164 | // Rule 4: done above as part of the static input facts setup. |
| 165 | |
| 166 | // Rule 5: propagate loans within origins, at a given point, according to subsets. |
| 167 | // |
| 168 | // origin_contains_loan_on_entry(Origin2, Loan, Point) :- |
| 169 | // origin_contains_loan_on_entry(Origin1, Loan, Point), |
| 170 | // subset(Origin1, Origin2, Point). |
| 171 | origin_contains_loan_on_entry.from_join( |
| 172 | &origin_contains_loan_on_entry_op, |
| 173 | &subset_o1p, |
| 174 | |&(_origin1, point), &loan, &origin2| (origin2, loan, point), |
| 175 | ); |
| 176 | |
| 177 | // Rule 6: propagate loans along the CFG, according to liveness. |
| 178 | // |
| 179 | // origin_contains_loan_on_entry(Origin, Loan, Point2) :- |
| 180 | // origin_contains_loan_on_entry(Origin, Loan, Point1), |
| 181 | // !loan_killed_at(Loan, Point1), |
| 182 | // cfg_edge(Point1, Point2), |
| 183 | // origin_live_on_entry(Origin, Point2). |
| 184 | origin_contains_loan_on_entry.from_leapjoin( |
| 185 | &origin_contains_loan_on_entry, |
| 186 | ( |
| 187 | loan_killed_at.filter_anti(|&(_origin, loan, point1)| (loan, point1)), |
| 188 | cfg_edge.extend_with(|&(_origin, _loan, point1)| point1), |
| 189 | origin_live_on_entry_rel.extend_with(|&(origin, _loan, _point1)| origin), |
| 190 | ), |
| 191 | |&(origin, loan, _point1), &point2| (origin, loan, point2), |
| 192 | ); |
| 193 | |
| 194 | // Rule 7: compute whether a loan is live at a given point, i.e. whether it is |
| 195 | // contained in a live origin at this point. |
| 196 | // |
| 197 | // loan_live_at(Loan, Point) :- |
| 198 | // origin_contains_loan_on_entry(Origin, Loan, Point), |
| 199 | // origin_live_on_entry(Origin, Point). |
| 200 | loan_live_at.from_join( |
| 201 | &origin_contains_loan_on_entry_op, |
| 202 | &origin_live_on_entry_var, |
| 203 | |&(_origin, point), &loan, _| ((loan, point), ()), |
| 204 | ); |
| 205 | |
| 206 | // Rule 8: compute illegal access errors, i.e. an invalidation of a live loan. |
| 207 | // |
| 208 | // Here again, this join acts as a pure filter and could be a more efficient leapjoin. |
| 209 | // However, similarly to the `origin_live_on_entry` example described above, the |
| 210 | // leapjoin with a single `filter_with` leaper would currently not be well-formed. |
| 211 | // We don't explictly need to materialize `loan_live_at` either, and that doesn't |
| 212 | // change the well-formedness situation, so we still materialize it (since that also |
| 213 | // helps in testing). |
| 214 | // |
| 215 | // errors(Loan, Point) :- |
| 216 | // loan_invalidated_at(Loan, Point), |
| 217 | // loan_live_at(Loan, Point). |
| 218 | errors.from_join( |
| 219 | &loan_live_at, |
| 220 | &loan_invalidated_at, |
| 221 | |&(loan, point), _, _| (loan, point), |
| 222 | ); |
| 223 | |
| 224 | // Rule 9: compute illegal subset relations errors, i.e. the undeclared subsets |
| 225 | // between two placeholder origins. |
| 226 | // Here as well, WF-ness prevents this join from being a filter-only leapjoin. It |
| 227 | // doesn't matter much, as `placeholder_origin` is single-value relation. |
| 228 | // |
| 229 | // subset_error(Origin1, Origin2, Point) :- |
| 230 | // subset(Origin1, Origin2, Point), |
| 231 | // placeholder_origin(Origin1), |
| 232 | // placeholder_origin(Origin2), |
| 233 | // !known_placeholder_subset(Origin1, Origin2). |
| 234 | subset_errors.from_leapjoin( |
| 235 | &subset, |
| 236 | ( |
| 237 | placeholder_origin.extend_with(|&(origin1, _origin2, _point)| origin1), |
| 238 | placeholder_origin.extend_with(|&(_origin1, origin2, _point)| origin2), |
| 239 | known_placeholder_subset |
| 240 | .filter_anti(|&(origin1, origin2, _point)| (origin1, origin2)), |
| 241 | // remove symmetries: |
| 242 | datafrog::ValueFilter::from(|&(origin1, origin2, _point), _| { |
| 243 | origin1 != origin2 |
| 244 | }), |
| 245 | ), |
| 246 | |&(origin1, origin2, point), _| (origin1, origin2, point), |
| 247 | ); |
| 248 | } |
| 249 | |
| 250 | // Handle verbose output data |
| 251 | if result.dump_enabled { |
| 252 | let subset = subset.complete(); |
| 253 | assert!( |
| 254 | subset |
| 255 | .iter() |
| 256 | .filter(|&(origin1, origin2, _)| origin1 == origin2) |
| 257 | .count() |
| 258 | == 0, |
| 259 | "unwanted subset symmetries" |
| 260 | ); |
| 261 | for &(origin1, origin2, location) in subset.iter() { |
| 262 | result |
| 263 | .subset |
| 264 | .entry(location) |
| 265 | .or_default() |
| 266 | .entry(origin1) |
| 267 | .or_default() |
| 268 | .insert(origin2); |
| 269 | } |
| 270 | |
| 271 | let origin_contains_loan_on_entry = origin_contains_loan_on_entry.complete(); |
| 272 | for &(origin, loan, location) in origin_contains_loan_on_entry.iter() { |
| 273 | result |
| 274 | .origin_contains_loan_at |
| 275 | .entry(location) |
| 276 | .or_default() |
| 277 | .entry(origin) |
| 278 | .or_default() |
| 279 | .insert(loan); |
| 280 | } |
| 281 | |
| 282 | let loan_live_at = loan_live_at.complete(); |
| 283 | for &((loan, location), _) in loan_live_at.iter() { |
| 284 | result.loan_live_at.entry(location).or_default().push(loan); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | (errors.complete(), subset_errors.complete()) |
| 289 | }; |
| 290 | |
| 291 | info!( |
| 292 | "analysis done: {} `errors` tuples, {} `subset_errors` tuples, {:?}" , |
| 293 | errors.len(), |
| 294 | subset_errors.len(), |
| 295 | timer.elapsed() |
| 296 | ); |
| 297 | |
| 298 | (errors, subset_errors) |
| 299 | } |
| 300 | |