| 1 | //! A lightweight Datalog engine in Rust |
|---|---|
| 2 | //! |
| 3 | //! The intended design is that one has static `Relation` types that are sets |
| 4 | //! of tuples, and `Variable` types that represent monotonically increasing |
| 5 | //! sets of tuples. |
| 6 | //! |
| 7 | //! The types are mostly wrappers around `Vec<Tuple>` indicating sorted-ness, |
| 8 | //! and the intent is that this code can be dropped in the middle of an otherwise |
| 9 | //! normal Rust program, run to completion, and then the results extracted as |
| 10 | //! vectors again. |
| 11 | |
| 12 | #![forbid(missing_docs)] |
| 13 | |
| 14 | use std::cell::RefCell; |
| 15 | use std::cmp::Ordering; |
| 16 | use std::iter::FromIterator; |
| 17 | use std::rc::Rc; |
| 18 | |
| 19 | mod join; |
| 20 | mod map; |
| 21 | mod test; |
| 22 | mod treefrog; |
| 23 | pub use crate::join::JoinInput; |
| 24 | pub use crate::treefrog::{ |
| 25 | extend_anti::ExtendAnti, |
| 26 | extend_with::ExtendWith, |
| 27 | filter_anti::FilterAnti, |
| 28 | filter_with::FilterWith, |
| 29 | filters::{PrefixFilter, ValueFilter}, |
| 30 | Leaper, Leapers, RelationLeaper, |
| 31 | }; |
| 32 | |
| 33 | /// A static, ordered list of key-value pairs. |
| 34 | /// |
| 35 | /// A relation represents a fixed set of key-value pairs. In many places in a |
| 36 | /// Datalog computation we want to be sure that certain relations are not able |
| 37 | /// to vary (for example, in antijoins). |
| 38 | #[derive(Clone)] |
| 39 | pub struct Relation<Tuple: Ord> { |
| 40 | /// Sorted list of distinct tuples. |
| 41 | pub elements: Vec<Tuple>, |
| 42 | } |
| 43 | |
| 44 | impl<Tuple: Ord> Relation<Tuple> { |
| 45 | /// Merges two relations into their union. |
| 46 | pub fn merge(self, other: Self) -> Self { |
| 47 | let Relation { |
| 48 | elements: mut elements1, |
| 49 | } = self; |
| 50 | let Relation { |
| 51 | elements: mut elements2, |
| 52 | } = other; |
| 53 | |
| 54 | // If one of the element lists is zero-length, we don't need to do any work |
| 55 | if elements1.is_empty() { |
| 56 | return Relation { |
| 57 | elements: elements2, |
| 58 | }; |
| 59 | } |
| 60 | |
| 61 | if elements2.is_empty() { |
| 62 | return Relation { |
| 63 | elements: elements1, |
| 64 | }; |
| 65 | } |
| 66 | |
| 67 | // Make sure that elements1 starts with the lower element |
| 68 | // Will not panic since both collections must have at least 1 element at this point |
| 69 | if elements1[0] > elements2[0] { |
| 70 | std::mem::swap(&mut elements1, &mut elements2); |
| 71 | } |
| 72 | |
| 73 | // Fast path for when all the new elements are after the exiting ones |
| 74 | if elements1[elements1.len() - 1] < elements2[0] { |
| 75 | elements1.extend(elements2.into_iter()); |
| 76 | // println!("fast path"); |
| 77 | return Relation { |
| 78 | elements: elements1, |
| 79 | }; |
| 80 | } |
| 81 | |
| 82 | let mut elements = Vec::with_capacity(elements1.len() + elements2.len()); |
| 83 | let mut elements1 = elements1.drain(..); |
| 84 | let mut elements2 = elements2.drain(..).peekable(); |
| 85 | |
| 86 | elements.push(elements1.next().unwrap()); |
| 87 | if elements.first() == elements2.peek() { |
| 88 | elements2.next(); |
| 89 | } |
| 90 | |
| 91 | for elem in elements1 { |
| 92 | while elements2.peek().map(|x| x.cmp(&elem)) == Some(Ordering::Less) { |
| 93 | elements.push(elements2.next().unwrap()); |
| 94 | } |
| 95 | if elements2.peek().map(|x| x.cmp(&elem)) == Some(Ordering::Equal) { |
| 96 | elements2.next(); |
| 97 | } |
| 98 | elements.push(elem); |
| 99 | } |
| 100 | |
| 101 | // Finish draining second list |
| 102 | elements.extend(elements2); |
| 103 | |
| 104 | Relation { elements } |
| 105 | } |
| 106 | |
| 107 | /// Creates a `Relation` from the elements of the `iterator`. |
| 108 | /// |
| 109 | /// Same as the `from_iter` method from `std::iter::FromIterator` trait. |
| 110 | pub fn from_iter<I>(iterator: I) -> Self |
| 111 | where |
| 112 | I: IntoIterator<Item = Tuple>, |
| 113 | { |
| 114 | iterator.into_iter().collect() |
| 115 | } |
| 116 | |
| 117 | /// Creates a `Relation` using the `leapjoin` logic; |
| 118 | /// see [`Variable::from_leapjoin`] |
| 119 | pub fn from_leapjoin<'leap, SourceTuple: Ord, Val: Ord + 'leap>( |
| 120 | source: &Relation<SourceTuple>, |
| 121 | leapers: impl Leapers<'leap, SourceTuple, Val>, |
| 122 | logic: impl FnMut(&SourceTuple, &Val) -> Tuple, |
| 123 | ) -> Self { |
| 124 | treefrog::leapjoin(&source.elements, leapers, logic) |
| 125 | } |
| 126 | |
| 127 | /// Creates a `Relation` by joining the values from `input1` and |
| 128 | /// `input2` and then applying `logic`. Like |
| 129 | /// [`Variable::from_join`] except for use where the inputs are |
| 130 | /// not varying across iterations. |
| 131 | pub fn from_join<Key: Ord, Val1: Ord, Val2: Ord>( |
| 132 | input1: &Relation<(Key, Val1)>, |
| 133 | input2: &Relation<(Key, Val2)>, |
| 134 | logic: impl FnMut(&Key, &Val1, &Val2) -> Tuple, |
| 135 | ) -> Self { |
| 136 | join::join_into_relation(input1, input2, logic) |
| 137 | } |
| 138 | |
| 139 | /// Creates a `Relation` by removing all values from `input1` that |
| 140 | /// share a key with `input2`, and then transforming the resulting |
| 141 | /// tuples with the `logic` closure. Like |
| 142 | /// [`Variable::from_antijoin`] except for use where the inputs |
| 143 | /// are not varying across iterations. |
| 144 | pub fn from_antijoin<Key: Ord, Val1: Ord>( |
| 145 | input1: &Relation<(Key, Val1)>, |
| 146 | input2: &Relation<Key>, |
| 147 | logic: impl FnMut(&Key, &Val1) -> Tuple, |
| 148 | ) -> Self { |
| 149 | join::antijoin(input1, input2, logic) |
| 150 | } |
| 151 | |
| 152 | /// Construct a new relation by mapping another one. Equivalent to |
| 153 | /// creating an iterator but perhaps more convenient. Analogous to |
| 154 | /// `Variable::from_map`. |
| 155 | pub fn from_map<T2: Ord>(input: &Relation<T2>, logic: impl FnMut(&T2) -> Tuple) -> Self { |
| 156 | input.iter().map(logic).collect() |
| 157 | } |
| 158 | |
| 159 | /// Creates a `Relation` from a vector of tuples. |
| 160 | pub fn from_vec(mut elements: Vec<Tuple>) -> Self { |
| 161 | elements.sort(); |
| 162 | elements.dedup(); |
| 163 | Relation { elements } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | impl<Tuple: Ord> From<Vec<Tuple>> for Relation<Tuple> { |
| 168 | fn from(iterator: Vec<Tuple>) -> Self { |
| 169 | Self::from_vec(elements:iterator) |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | impl<Tuple: Ord> FromIterator<Tuple> for Relation<Tuple> { |
| 174 | fn from_iter<I>(iterator: I) -> Self |
| 175 | where |
| 176 | I: IntoIterator<Item = Tuple>, |
| 177 | { |
| 178 | Relation::from_vec(elements:iterator.into_iter().collect()) |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | impl<'tuple, Tuple: 'tuple + Copy + Ord> FromIterator<&'tuple Tuple> for Relation<Tuple> { |
| 183 | fn from_iter<I>(iterator: I) -> Self |
| 184 | where |
| 185 | I: IntoIterator<Item = &'tuple Tuple>, |
| 186 | { |
| 187 | Relation::from_vec(elements:iterator.into_iter().cloned().collect()) |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | impl<Tuple: Ord> std::ops::Deref for Relation<Tuple> { |
| 192 | type Target = [Tuple]; |
| 193 | fn deref(&self) -> &Self::Target { |
| 194 | &self.elements[..] |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | /// An iterative context for recursive evaluation. |
| 199 | /// |
| 200 | /// An `Iteration` tracks monotonic variables, and monitors their progress. |
| 201 | /// It can inform the user if they have ceased changing, at which point the |
| 202 | /// computation should be done. |
| 203 | pub struct Iteration { |
| 204 | variables: Vec<Box<dyn VariableTrait>>, |
| 205 | } |
| 206 | |
| 207 | impl Iteration { |
| 208 | /// Create a new iterative context. |
| 209 | pub fn new() -> Self { |
| 210 | Iteration { |
| 211 | variables: Vec::new(), |
| 212 | } |
| 213 | } |
| 214 | /// Reports whether any of the monitored variables have changed since |
| 215 | /// the most recent call. |
| 216 | pub fn changed(&mut self) -> bool { |
| 217 | let mut result = false; |
| 218 | for variable in self.variables.iter_mut() { |
| 219 | if variable.changed() { |
| 220 | result = true; |
| 221 | } |
| 222 | } |
| 223 | result |
| 224 | } |
| 225 | /// Creates a new named variable associated with the iterative context. |
| 226 | pub fn variable<Tuple: Ord + 'static>(&mut self, name: &str) -> Variable<Tuple> { |
| 227 | let variable = Variable::new(name); |
| 228 | self.variables.push(Box::new(variable.clone())); |
| 229 | variable |
| 230 | } |
| 231 | /// Creates a new named variable associated with the iterative context. |
| 232 | /// |
| 233 | /// This variable will not be maintained distinctly, and may advertise tuples as |
| 234 | /// recent multiple times (perhaps unboundedly many times). |
| 235 | pub fn variable_indistinct<Tuple: Ord + 'static>(&mut self, name: &str) -> Variable<Tuple> { |
| 236 | let mut variable = Variable::new(name); |
| 237 | variable.distinct = false; |
| 238 | self.variables.push(Box::new(variable.clone())); |
| 239 | variable |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | /// A type that can report on whether it has changed. |
| 244 | trait VariableTrait { |
| 245 | /// Reports whether the variable has changed since it was last asked. |
| 246 | fn changed(&mut self) -> bool; |
| 247 | } |
| 248 | |
| 249 | /// An monotonically increasing set of `Tuple`s. |
| 250 | /// |
| 251 | /// There are three stages in the lifecycle of a tuple: |
| 252 | /// |
| 253 | /// 1. A tuple is added to `self.to_add`, but is not yet visible externally. |
| 254 | /// 2. Newly added tuples are then promoted to `self.recent` for one iteration. |
| 255 | /// 3. After one iteration, recent tuples are moved to `self.tuples` for posterity. |
| 256 | /// |
| 257 | /// Each time `self.changed()` is called, the `recent` relation is folded into `tuples`, |
| 258 | /// and the `to_add` relations are merged, potentially deduplicated against `tuples`, and |
| 259 | /// then made `recent`. This way, across calls to `changed()` all added tuples are in |
| 260 | /// `recent` at least once and eventually all are in `tuples`. |
| 261 | /// |
| 262 | /// A `Variable` may optionally be instructed not to de-duplicate its tuples, for reasons |
| 263 | /// of performance. Such a variable cannot be relied on to terminate iterative computation, |
| 264 | /// and it is important that any cycle of derivations have at least one de-duplicating |
| 265 | /// variable on it. |
| 266 | pub struct Variable<Tuple: Ord> { |
| 267 | /// Should the variable be maintained distinctly. |
| 268 | distinct: bool, |
| 269 | /// A useful name for the variable. |
| 270 | name: String, |
| 271 | /// A list of relations whose union are the accepted tuples. |
| 272 | pub stable: Rc<RefCell<Vec<Relation<Tuple>>>>, |
| 273 | /// A list of recent tuples, still to be processed. |
| 274 | pub recent: Rc<RefCell<Relation<Tuple>>>, |
| 275 | /// A list of future tuples, to be introduced. |
| 276 | to_add: Rc<RefCell<Vec<Relation<Tuple>>>>, |
| 277 | } |
| 278 | |
| 279 | // Operator implementations. |
| 280 | impl<Tuple: Ord> Variable<Tuple> { |
| 281 | /// Adds tuples that result from joining `input1` and `input2` -- |
| 282 | /// each of the inputs must be a set of (Key, Value) tuples. Both |
| 283 | /// `input1` and `input2` must have the same type of key (`K`) but |
| 284 | /// they can have distinct value types (`V1` and `V2` |
| 285 | /// respectively). The `logic` closure will be invoked for each |
| 286 | /// key that appears in both inputs; it is also given the two |
| 287 | /// values, and from those it should construct the resulting |
| 288 | /// value. |
| 289 | /// |
| 290 | /// Note that `input1` must be a variable, but `input2` can be a |
| 291 | /// relation or a variable. Therefore, you cannot join two |
| 292 | /// relations with this method. This is not because the result |
| 293 | /// would be wrong, but because it would be inefficient: the |
| 294 | /// result from such a join cannot vary across iterations (as |
| 295 | /// relations are fixed), so you should prefer to invoke `insert` |
| 296 | /// on a relation created by `Relation::from_join` instead. |
| 297 | /// |
| 298 | /// # Examples |
| 299 | /// |
| 300 | /// This example starts a collection with the pairs (x, x+1) and (x+1, x) for x in 0 .. 10. |
| 301 | /// It then adds pairs (y, z) for which (x, y) and (x, z) are present. Because the initial |
| 302 | /// pairs are symmetric, this should result in all pairs (x, y) for x and y in 0 .. 11. |
| 303 | /// |
| 304 | /// ``` |
| 305 | /// use datafrog::{Iteration, Relation}; |
| 306 | /// |
| 307 | /// let mut iteration = Iteration::new(); |
| 308 | /// let variable = iteration.variable::<(usize, usize)>("source"); |
| 309 | /// variable.extend((0 .. 10).map(|x| (x, x + 1))); |
| 310 | /// variable.extend((0 .. 10).map(|x| (x + 1, x))); |
| 311 | /// |
| 312 | /// while iteration.changed() { |
| 313 | /// variable.from_join(&variable, &variable, |&key, &val1, &val2| (val1, val2)); |
| 314 | /// } |
| 315 | /// |
| 316 | /// let result = variable.complete(); |
| 317 | /// assert_eq!(result.len(), 121); |
| 318 | /// ``` |
| 319 | pub fn from_join<'me, K: Ord, V1: Ord, V2: Ord>( |
| 320 | &self, |
| 321 | input1: &'me Variable<(K, V1)>, |
| 322 | input2: impl JoinInput<'me, (K, V2)>, |
| 323 | logic: impl FnMut(&K, &V1, &V2) -> Tuple, |
| 324 | ) { |
| 325 | join::join_into(input1, input2, self, logic) |
| 326 | } |
| 327 | |
| 328 | /// Adds tuples from `input1` whose key is not present in `input2`. |
| 329 | /// |
| 330 | /// Note that `input1` must be a variable: if you have a relation |
| 331 | /// instead, you can use `Relation::from_antijoin` and then |
| 332 | /// `Variable::insert`. Note that the result will not vary during |
| 333 | /// the iteration. |
| 334 | /// |
| 335 | /// # Examples |
| 336 | /// |
| 337 | /// This example starts a collection with the pairs (x, x+1) for x in 0 .. 10. It then |
| 338 | /// adds any pairs (x+1,x) for which x is not a multiple of three. That excludes four |
| 339 | /// pairs (for 0, 3, 6, and 9) which should leave us with 16 total pairs. |
| 340 | /// |
| 341 | /// ``` |
| 342 | /// use datafrog::{Iteration, Relation}; |
| 343 | /// |
| 344 | /// let mut iteration = Iteration::new(); |
| 345 | /// let variable = iteration.variable::<(usize, usize)>("source"); |
| 346 | /// variable.extend((0 .. 10).map(|x| (x, x + 1))); |
| 347 | /// |
| 348 | /// let relation: Relation<_> = (0 .. 10).filter(|x| x % 3 == 0).collect(); |
| 349 | /// |
| 350 | /// while iteration.changed() { |
| 351 | /// variable.from_antijoin(&variable, &relation, |&key, &val| (val, key)); |
| 352 | /// } |
| 353 | /// |
| 354 | /// let result = variable.complete(); |
| 355 | /// assert_eq!(result.len(), 16); |
| 356 | /// ``` |
| 357 | pub fn from_antijoin<K: Ord, V: Ord>( |
| 358 | &self, |
| 359 | input1: &Variable<(K, V)>, |
| 360 | input2: &Relation<K>, |
| 361 | logic: impl FnMut(&K, &V) -> Tuple, |
| 362 | ) { |
| 363 | self.insert(join::antijoin(input1, input2, logic)) |
| 364 | } |
| 365 | |
| 366 | /// Adds tuples that result from mapping `input`. |
| 367 | /// |
| 368 | /// # Examples |
| 369 | /// |
| 370 | /// This example starts a collection with the pairs (x, x) for x in 0 .. 10. It then |
| 371 | /// repeatedly adds any pairs (x, z) for (x, y) in the collection, where z is the Collatz |
| 372 | /// step for y: it is y/2 if y is even, and 3*y + 1 if y is odd. This produces all of the |
| 373 | /// pairs (x, y) where x visits y as part of its Collatz journey. |
| 374 | /// |
| 375 | /// ``` |
| 376 | /// use datafrog::{Iteration, Relation}; |
| 377 | /// |
| 378 | /// let mut iteration = Iteration::new(); |
| 379 | /// let variable = iteration.variable::<(usize, usize)>("source"); |
| 380 | /// variable.extend((0 .. 10).map(|x| (x, x))); |
| 381 | /// |
| 382 | /// while iteration.changed() { |
| 383 | /// variable.from_map(&variable, |&(key, val)| |
| 384 | /// if val % 2 == 0 { |
| 385 | /// (key, val/2) |
| 386 | /// } |
| 387 | /// else { |
| 388 | /// (key, 3*val + 1) |
| 389 | /// }); |
| 390 | /// } |
| 391 | /// |
| 392 | /// let result = variable.complete(); |
| 393 | /// assert_eq!(result.len(), 74); |
| 394 | /// ``` |
| 395 | pub fn from_map<T2: Ord>(&self, input: &Variable<T2>, logic: impl FnMut(&T2) -> Tuple) { |
| 396 | map::map_into(input, self, logic) |
| 397 | } |
| 398 | |
| 399 | /// Adds tuples that result from combining `source` with the |
| 400 | /// relations given in `leapers`. This operation is very flexible |
| 401 | /// and can be used to do a combination of joins and anti-joins. |
| 402 | /// The main limitation is that the things being combined must |
| 403 | /// consist of one dynamic variable (`source`) and then several |
| 404 | /// fixed relations (`leapers`). |
| 405 | /// |
| 406 | /// The idea is as follows: |
| 407 | /// |
| 408 | /// - You will be inserting new tuples that result from joining (and anti-joining) |
| 409 | /// some dynamic variable `source` of source tuples (`SourceTuple`) |
| 410 | /// with some set of values (of type `Val`). |
| 411 | /// - You provide these values by combining `source` with a set of leapers |
| 412 | /// `leapers`, each of which is derived from a fixed relation. The `leapers` |
| 413 | /// should be either a single leaper (of suitable type) or else a tuple of leapers. |
| 414 | /// You can create a leaper in one of two ways: |
| 415 | /// - Extension: In this case, you have a relation of type `(K, Val)` for some |
| 416 | /// type `K`. You provide a closure that maps from `SourceTuple` to the key |
| 417 | /// `K`. If you use `relation.extend_with`, then any `Val` values the |
| 418 | /// relation provides will be added to the set of values; if you use |
| 419 | /// `extend_anti`, then the `Val` values will be removed. |
| 420 | /// - Filtering: In this case, you have a relation of type `K` for some |
| 421 | /// type `K` and you provide a closure that maps from `SourceTuple` to |
| 422 | /// the key `K`. Filters don't provide values but they remove source |
| 423 | /// tuples. |
| 424 | /// - Finally, you get a callback `logic` that accepts each `(SourceTuple, Val)` |
| 425 | /// that was successfully joined (and not filtered) and which maps to the |
| 426 | /// type of this variable. |
| 427 | pub fn from_leapjoin<'leap, SourceTuple: Ord, Val: Ord + 'leap>( |
| 428 | &self, |
| 429 | source: &Variable<SourceTuple>, |
| 430 | leapers: impl Leapers<'leap, SourceTuple, Val>, |
| 431 | logic: impl FnMut(&SourceTuple, &Val) -> Tuple, |
| 432 | ) { |
| 433 | self.insert(treefrog::leapjoin(&source.recent.borrow(), leapers, logic)); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | impl<Tuple: Ord> Clone for Variable<Tuple> { |
| 438 | fn clone(&self) -> Self { |
| 439 | Variable { |
| 440 | distinct: self.distinct, |
| 441 | name: self.name.clone(), |
| 442 | stable: self.stable.clone(), |
| 443 | recent: self.recent.clone(), |
| 444 | to_add: self.to_add.clone(), |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | impl<Tuple: Ord> Variable<Tuple> { |
| 450 | fn new(name: &str) -> Self { |
| 451 | Variable { |
| 452 | distinct: true, |
| 453 | name: name.to_string(), |
| 454 | stable: Rc::new(RefCell::new(Vec::new())), |
| 455 | recent: Rc::new(RefCell::new(Vec::new().into())), |
| 456 | to_add: Rc::new(RefCell::new(Vec::new())), |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | /// Inserts a relation into the variable. |
| 461 | /// |
| 462 | /// This is most commonly used to load initial values into a variable. |
| 463 | /// it is not obvious that it should be commonly used otherwise, but |
| 464 | /// it should not be harmful. |
| 465 | pub fn insert(&self, relation: Relation<Tuple>) { |
| 466 | if !relation.is_empty() { |
| 467 | self.to_add.borrow_mut().push(relation); |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | /// Extend the variable with values from the iterator. |
| 472 | /// |
| 473 | /// This is most commonly used to load initial values into a variable. |
| 474 | /// it is not obvious that it should be commonly used otherwise, but |
| 475 | /// it should not be harmful. |
| 476 | pub fn extend<T>(&self, iterator: impl IntoIterator<Item = T>) |
| 477 | where |
| 478 | Relation<Tuple>: FromIterator<T>, |
| 479 | { |
| 480 | self.insert(iterator.into_iter().collect()); |
| 481 | } |
| 482 | |
| 483 | /// Consumes the variable and returns a relation. |
| 484 | /// |
| 485 | /// This method removes the ability for the variable to develop, and |
| 486 | /// flattens all internal tuples down to one relation. The method |
| 487 | /// asserts that iteration has completed, in that `self.recent` and |
| 488 | /// `self.to_add` should both be empty. |
| 489 | pub fn complete(self) -> Relation<Tuple> { |
| 490 | assert!(self.recent.borrow().is_empty()); |
| 491 | assert!(self.to_add.borrow().is_empty()); |
| 492 | let mut result: Relation<Tuple> = Vec::new().into(); |
| 493 | while let Some(batch) = self.stable.borrow_mut().pop() { |
| 494 | result = result.merge(batch); |
| 495 | } |
| 496 | result |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | impl<Tuple: Ord> VariableTrait for Variable<Tuple> { |
| 501 | fn changed(&mut self) -> bool { |
| 502 | // 1. Merge self.recent into self.stable. |
| 503 | if !self.recent.borrow().is_empty() { |
| 504 | let mut recent = |
| 505 | ::std::mem::replace(&mut (*self.recent.borrow_mut()), Vec::new().into()); |
| 506 | while self |
| 507 | .stable |
| 508 | .borrow() |
| 509 | .last() |
| 510 | .map(|x| x.len() <= 2 * recent.len()) |
| 511 | == Some(true) |
| 512 | { |
| 513 | let last = self.stable.borrow_mut().pop().unwrap(); |
| 514 | recent = recent.merge(last); |
| 515 | } |
| 516 | self.stable.borrow_mut().push(recent); |
| 517 | } |
| 518 | |
| 519 | // 2. Move self.to_add into self.recent. |
| 520 | let to_add = self.to_add.borrow_mut().pop(); |
| 521 | if let Some(mut to_add) = to_add { |
| 522 | while let Some(to_add_more) = self.to_add.borrow_mut().pop() { |
| 523 | to_add = to_add.merge(to_add_more); |
| 524 | } |
| 525 | // 2b. Restrict `to_add` to tuples not in `self.stable`. |
| 526 | if self.distinct { |
| 527 | for batch in self.stable.borrow().iter() { |
| 528 | let mut slice = &batch[..]; |
| 529 | // Only gallop if the slice is relatively large. |
| 530 | if slice.len() > 4 * to_add.elements.len() { |
| 531 | to_add.elements.retain(|x| { |
| 532 | slice = join::gallop(slice, |y| y < x); |
| 533 | slice.is_empty() || &slice[0] != x |
| 534 | }); |
| 535 | } else { |
| 536 | to_add.elements.retain(|x| { |
| 537 | while !slice.is_empty() && &slice[0] < x { |
| 538 | slice = &slice[1..]; |
| 539 | } |
| 540 | slice.is_empty() || &slice[0] != x |
| 541 | }); |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | *self.recent.borrow_mut() = to_add; |
| 546 | } |
| 547 | |
| 548 | // let mut total = 0; |
| 549 | // for tuple in self.stable.borrow().iter() { |
| 550 | // total += tuple.len(); |
| 551 | // } |
| 552 | |
| 553 | // println!("Variable\t{}\t{}\t{}", self.name, total, self.recent.borrow().len()); |
| 554 | |
| 555 | !self.recent.borrow().is_empty() |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | // impl<Tuple: Ord> Drop for Variable<Tuple> { |
| 560 | // fn drop(&mut self) { |
| 561 | // let mut total = 0; |
| 562 | // for batch in self.stable.borrow().iter() { |
| 563 | // total += batch.len(); |
| 564 | // } |
| 565 | // println!("FINAL: {:?}\t{:?}", self.name, total); |
| 566 | // } |
| 567 | // } |
| 568 |
Definitions
Learn Rust with the experts
Find out more
