| 1 | //! Utilities for the slice primitive type. |
| 2 | //! |
| 3 | //! *[See also the slice primitive type](slice).* |
| 4 | //! |
| 5 | //! Most of the structs in this module are iterator types which can only be created |
| 6 | //! using a certain function. For example, `slice.iter()` yields an [`Iter`]. |
| 7 | //! |
| 8 | //! A few functions are provided to create a slice from a value reference |
| 9 | //! or from a raw pointer. |
| 10 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 11 | |
| 12 | use core::borrow::{Borrow, BorrowMut}; |
| 13 | #[cfg (not(no_global_oom_handling))] |
| 14 | use core::cmp::Ordering::{self, Less}; |
| 15 | #[cfg (not(no_global_oom_handling))] |
| 16 | use core::mem::MaybeUninit; |
| 17 | #[cfg (not(no_global_oom_handling))] |
| 18 | use core::ptr; |
| 19 | #[unstable (feature = "array_chunks" , issue = "74985" )] |
| 20 | pub use core::slice::ArrayChunks; |
| 21 | #[unstable (feature = "array_chunks" , issue = "74985" )] |
| 22 | pub use core::slice::ArrayChunksMut; |
| 23 | #[unstable (feature = "array_windows" , issue = "75027" )] |
| 24 | pub use core::slice::ArrayWindows; |
| 25 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 26 | pub use core::slice::EscapeAscii; |
| 27 | #[stable (feature = "get_many_mut" , since = "1.86.0" )] |
| 28 | pub use core::slice::GetDisjointMutError; |
| 29 | #[stable (feature = "slice_get_slice" , since = "1.28.0" )] |
| 30 | pub use core::slice::SliceIndex; |
| 31 | #[cfg (not(no_global_oom_handling))] |
| 32 | use core::slice::sort; |
| 33 | #[stable (feature = "slice_group_by" , since = "1.77.0" )] |
| 34 | pub use core::slice::{ChunkBy, ChunkByMut}; |
| 35 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 36 | pub use core::slice::{Chunks, Windows}; |
| 37 | #[stable (feature = "chunks_exact" , since = "1.31.0" )] |
| 38 | pub use core::slice::{ChunksExact, ChunksExactMut}; |
| 39 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 40 | pub use core::slice::{ChunksMut, Split, SplitMut}; |
| 41 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 42 | pub use core::slice::{Iter, IterMut}; |
| 43 | #[stable (feature = "rchunks" , since = "1.31.0" )] |
| 44 | pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; |
| 45 | #[stable (feature = "slice_rsplit" , since = "1.27.0" )] |
| 46 | pub use core::slice::{RSplit, RSplitMut}; |
| 47 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 48 | pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut}; |
| 49 | #[stable (feature = "split_inclusive" , since = "1.51.0" )] |
| 50 | pub use core::slice::{SplitInclusive, SplitInclusiveMut}; |
| 51 | #[stable (feature = "from_ref" , since = "1.28.0" )] |
| 52 | pub use core::slice::{from_mut, from_ref}; |
| 53 | #[unstable (feature = "slice_from_ptr_range" , issue = "89792" )] |
| 54 | pub use core::slice::{from_mut_ptr_range, from_ptr_range}; |
| 55 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 56 | pub use core::slice::{from_raw_parts, from_raw_parts_mut}; |
| 57 | #[unstable (feature = "slice_range" , issue = "76393" )] |
| 58 | pub use core::slice::{range, try_range}; |
| 59 | |
| 60 | //////////////////////////////////////////////////////////////////////////////// |
| 61 | // Basic slice extension methods |
| 62 | //////////////////////////////////////////////////////////////////////////////// |
| 63 | use crate::alloc::Allocator; |
| 64 | #[cfg (not(no_global_oom_handling))] |
| 65 | use crate::alloc::Global; |
| 66 | #[cfg (not(no_global_oom_handling))] |
| 67 | use crate::borrow::ToOwned; |
| 68 | use crate::boxed::Box; |
| 69 | use crate::vec::Vec; |
| 70 | |
| 71 | impl<T> [T] { |
| 72 | /// Sorts the slice in ascending order, preserving initial order of equal elements. |
| 73 | /// |
| 74 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) |
| 75 | /// worst-case. |
| 76 | /// |
| 77 | /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function |
| 78 | /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| 79 | /// is unspecified. See also the note on panicking below. |
| 80 | /// |
| 81 | /// When applicable, unstable sorting is preferred because it is generally faster than stable |
| 82 | /// sorting and it doesn't allocate auxiliary memory. See |
| 83 | /// [`sort_unstable`](slice::sort_unstable). The exception are partially sorted slices, which |
| 84 | /// may be better served with `slice::sort`. |
| 85 | /// |
| 86 | /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require |
| 87 | /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the |
| 88 | /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with |
| 89 | /// `slice::sort_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a [total |
| 90 | /// order] users can sort slices containing floating-point values. Alternatively, if all values |
| 91 | /// in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] forms a |
| 92 | /// [total order], it's possible to sort the slice with `sort_by(|a, b| |
| 93 | /// a.partial_cmp(b).unwrap())`. |
| 94 | /// |
| 95 | /// # Current implementation |
| 96 | /// |
| 97 | /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which |
| 98 | /// combines the fast average case of quicksort with the fast worst case and partial run |
| 99 | /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs |
| 100 | /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)). |
| 101 | /// |
| 102 | /// The auxiliary memory allocation behavior depends on the input length. Short slices are |
| 103 | /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it |
| 104 | /// clamps at `self.len() / 2`. |
| 105 | /// |
| 106 | /// # Panics |
| 107 | /// |
| 108 | /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if |
| 109 | /// the [`Ord`] implementation itself panics. |
| 110 | /// |
| 111 | /// All safe functions on slices preserve the invariant that even if the function panics, all |
| 112 | /// original elements will remain in the slice and any possible modifications via interior |
| 113 | /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| 114 | /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| 115 | /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| 116 | /// to dispose of all contained elements. |
| 117 | /// |
| 118 | /// # Examples |
| 119 | /// |
| 120 | /// ``` |
| 121 | /// let mut v = [4, -5, 1, -3, 2]; |
| 122 | /// |
| 123 | /// v.sort(); |
| 124 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| 125 | /// ``` |
| 126 | /// |
| 127 | /// [driftsort]: https://github.com/Voultapher/driftsort |
| 128 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 129 | #[cfg (not(no_global_oom_handling))] |
| 130 | #[rustc_allow_incoherent_impl ] |
| 131 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 132 | #[inline ] |
| 133 | pub fn sort(&mut self) |
| 134 | where |
| 135 | T: Ord, |
| 136 | { |
| 137 | stable_sort(self, T::lt); |
| 138 | } |
| 139 | |
| 140 | /// Sorts the slice in ascending order with a comparison function, preserving initial order of |
| 141 | /// equal elements. |
| 142 | /// |
| 143 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) |
| 144 | /// worst-case. |
| 145 | /// |
| 146 | /// If the comparison function `compare` does not implement a [total order], the function may |
| 147 | /// panic; even if the function exits normally, the resulting order of elements in the slice is |
| 148 | /// unspecified. See also the note on panicking below. |
| 149 | /// |
| 150 | /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor |
| 151 | /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and |
| 152 | /// examples see the [`Ord`] documentation. |
| 153 | /// |
| 154 | /// # Current implementation |
| 155 | /// |
| 156 | /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which |
| 157 | /// combines the fast average case of quicksort with the fast worst case and partial run |
| 158 | /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs |
| 159 | /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)). |
| 160 | /// |
| 161 | /// The auxiliary memory allocation behavior depends on the input length. Short slices are |
| 162 | /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it |
| 163 | /// clamps at `self.len() / 2`. |
| 164 | /// |
| 165 | /// # Panics |
| 166 | /// |
| 167 | /// May panic if `compare` does not implement a [total order], or if `compare` itself panics. |
| 168 | /// |
| 169 | /// All safe functions on slices preserve the invariant that even if the function panics, all |
| 170 | /// original elements will remain in the slice and any possible modifications via interior |
| 171 | /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| 172 | /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| 173 | /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| 174 | /// to dispose of all contained elements. |
| 175 | /// |
| 176 | /// # Examples |
| 177 | /// |
| 178 | /// ``` |
| 179 | /// let mut v = [4, -5, 1, -3, 2]; |
| 180 | /// v.sort_by(|a, b| a.cmp(b)); |
| 181 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| 182 | /// |
| 183 | /// // reverse sorting |
| 184 | /// v.sort_by(|a, b| b.cmp(a)); |
| 185 | /// assert_eq!(v, [4, 2, 1, -3, -5]); |
| 186 | /// ``` |
| 187 | /// |
| 188 | /// [driftsort]: https://github.com/Voultapher/driftsort |
| 189 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 190 | #[cfg (not(no_global_oom_handling))] |
| 191 | #[rustc_allow_incoherent_impl ] |
| 192 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 193 | #[inline ] |
| 194 | pub fn sort_by<F>(&mut self, mut compare: F) |
| 195 | where |
| 196 | F: FnMut(&T, &T) -> Ordering, |
| 197 | { |
| 198 | stable_sort(self, |a, b| compare(a, b) == Less); |
| 199 | } |
| 200 | |
| 201 | /// Sorts the slice in ascending order with a key extraction function, preserving initial order |
| 202 | /// of equal elements. |
| 203 | /// |
| 204 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) |
| 205 | /// worst-case, where the key function is *O*(*m*). |
| 206 | /// |
| 207 | /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function |
| 208 | /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| 209 | /// is unspecified. See also the note on panicking below. |
| 210 | /// |
| 211 | /// # Current implementation |
| 212 | /// |
| 213 | /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which |
| 214 | /// combines the fast average case of quicksort with the fast worst case and partial run |
| 215 | /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs |
| 216 | /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)). |
| 217 | /// |
| 218 | /// The auxiliary memory allocation behavior depends on the input length. Short slices are |
| 219 | /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it |
| 220 | /// clamps at `self.len() / 2`. |
| 221 | /// |
| 222 | /// # Panics |
| 223 | /// |
| 224 | /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if |
| 225 | /// the [`Ord`] implementation or the key-function `f` panics. |
| 226 | /// |
| 227 | /// All safe functions on slices preserve the invariant that even if the function panics, all |
| 228 | /// original elements will remain in the slice and any possible modifications via interior |
| 229 | /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| 230 | /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| 231 | /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| 232 | /// to dispose of all contained elements. |
| 233 | /// |
| 234 | /// # Examples |
| 235 | /// |
| 236 | /// ``` |
| 237 | /// let mut v = [4i32, -5, 1, -3, 2]; |
| 238 | /// |
| 239 | /// v.sort_by_key(|k| k.abs()); |
| 240 | /// assert_eq!(v, [1, 2, -3, 4, -5]); |
| 241 | /// ``` |
| 242 | /// |
| 243 | /// [driftsort]: https://github.com/Voultapher/driftsort |
| 244 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 245 | #[cfg (not(no_global_oom_handling))] |
| 246 | #[rustc_allow_incoherent_impl ] |
| 247 | #[stable (feature = "slice_sort_by_key" , since = "1.7.0" )] |
| 248 | #[inline ] |
| 249 | pub fn sort_by_key<K, F>(&mut self, mut f: F) |
| 250 | where |
| 251 | F: FnMut(&T) -> K, |
| 252 | K: Ord, |
| 253 | { |
| 254 | stable_sort(self, |a, b| f(a).lt(&f(b))); |
| 255 | } |
| 256 | |
| 257 | /// Sorts the slice in ascending order with a key extraction function, preserving initial order |
| 258 | /// of equal elements. |
| 259 | /// |
| 260 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* |
| 261 | /// log(*n*)) worst-case, where the key function is *O*(*m*). |
| 262 | /// |
| 263 | /// During sorting, the key function is called at most once per element, by using temporary |
| 264 | /// storage to remember the results of key evaluation. The order of calls to the key function is |
| 265 | /// unspecified and may change in future versions of the standard library. |
| 266 | /// |
| 267 | /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function |
| 268 | /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| 269 | /// is unspecified. See also the note on panicking below. |
| 270 | /// |
| 271 | /// For simple key functions (e.g., functions that are property accesses or basic operations), |
| 272 | /// [`sort_by_key`](slice::sort_by_key) is likely to be faster. |
| 273 | /// |
| 274 | /// # Current implementation |
| 275 | /// |
| 276 | /// The current implementation is based on [instruction-parallel-network sort][ipnsort] by Lukas |
| 277 | /// Bergdoll, which combines the fast average case of randomized quicksort with the fast worst |
| 278 | /// case of heapsort, while achieving linear time on fully sorted and reversed inputs. And |
| 279 | /// *O*(*k* \* log(*n*)) where *k* is the number of distinct elements in the input. It leverages |
| 280 | /// superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently |
| 281 | /// perform the operation. |
| 282 | /// |
| 283 | /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the |
| 284 | /// length of the slice. |
| 285 | /// |
| 286 | /// # Panics |
| 287 | /// |
| 288 | /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if |
| 289 | /// the [`Ord`] implementation panics. |
| 290 | /// |
| 291 | /// All safe functions on slices preserve the invariant that even if the function panics, all |
| 292 | /// original elements will remain in the slice and any possible modifications via interior |
| 293 | /// mutability are observed in the input. This ensures that recovery code (for instance inside |
| 294 | /// of a `Drop` or following a `catch_unwind`) will still have access to all the original |
| 295 | /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able |
| 296 | /// to dispose of all contained elements. |
| 297 | /// |
| 298 | /// # Examples |
| 299 | /// |
| 300 | /// ``` |
| 301 | /// let mut v = [4i32, -5, 1, -3, 2, 10]; |
| 302 | /// |
| 303 | /// // Strings are sorted by lexicographical order. |
| 304 | /// v.sort_by_cached_key(|k| k.to_string()); |
| 305 | /// assert_eq!(v, [-3, -5, 1, 10, 2, 4]); |
| 306 | /// ``` |
| 307 | /// |
| 308 | /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| 309 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 310 | #[cfg (not(no_global_oom_handling))] |
| 311 | #[rustc_allow_incoherent_impl ] |
| 312 | #[stable (feature = "slice_sort_by_cached_key" , since = "1.34.0" )] |
| 313 | #[inline ] |
| 314 | pub fn sort_by_cached_key<K, F>(&mut self, f: F) |
| 315 | where |
| 316 | F: FnMut(&T) -> K, |
| 317 | K: Ord, |
| 318 | { |
| 319 | // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. |
| 320 | macro_rules! sort_by_key { |
| 321 | ($t:ty, $slice:ident, $f:ident) => {{ |
| 322 | let mut indices: Vec<_> = |
| 323 | $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); |
| 324 | // The elements of `indices` are unique, as they are indexed, so any sort will be |
| 325 | // stable with respect to the original slice. We use `sort_unstable` here because |
| 326 | // it requires no memory allocation. |
| 327 | indices.sort_unstable(); |
| 328 | for i in 0..$slice.len() { |
| 329 | let mut index = indices[i].1; |
| 330 | while (index as usize) < i { |
| 331 | index = indices[index as usize].1; |
| 332 | } |
| 333 | indices[i].1 = index; |
| 334 | $slice.swap(i, index as usize); |
| 335 | } |
| 336 | }}; |
| 337 | } |
| 338 | |
| 339 | let len = self.len(); |
| 340 | if len < 2 { |
| 341 | return; |
| 342 | } |
| 343 | |
| 344 | // Avoids binary-size usage in cases where the alignment doesn't work out to make this |
| 345 | // beneficial or on 32-bit platforms. |
| 346 | let is_using_u32_as_idx_type_helpful = |
| 347 | const { size_of::<(K, u32)>() < size_of::<(K, usize)>() }; |
| 348 | |
| 349 | // It's possible to instantiate this for u8 and u16 but, doing so is very wasteful in terms |
| 350 | // of compile-times and binary-size, the peak saved heap memory for u16 is (u8 + u16) -> 4 |
| 351 | // bytes * u16::MAX vs (u8 + u32) -> 8 bytes * u16::MAX, the saved heap memory is at peak |
| 352 | // ~262KB. |
| 353 | if is_using_u32_as_idx_type_helpful && len <= (u32::MAX as usize) { |
| 354 | return sort_by_key!(u32, self, f); |
| 355 | } |
| 356 | |
| 357 | sort_by_key!(usize, self, f) |
| 358 | } |
| 359 | |
| 360 | /// Copies `self` into a new `Vec`. |
| 361 | /// |
| 362 | /// # Examples |
| 363 | /// |
| 364 | /// ``` |
| 365 | /// let s = [10, 40, 30]; |
| 366 | /// let x = s.to_vec(); |
| 367 | /// // Here, `s` and `x` can be modified independently. |
| 368 | /// ``` |
| 369 | #[cfg (not(no_global_oom_handling))] |
| 370 | #[rustc_allow_incoherent_impl ] |
| 371 | #[rustc_conversion_suggestion ] |
| 372 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 373 | #[inline ] |
| 374 | pub fn to_vec(&self) -> Vec<T> |
| 375 | where |
| 376 | T: Clone, |
| 377 | { |
| 378 | self.to_vec_in(Global) |
| 379 | } |
| 380 | |
| 381 | /// Copies `self` into a new `Vec` with an allocator. |
| 382 | /// |
| 383 | /// # Examples |
| 384 | /// |
| 385 | /// ``` |
| 386 | /// #![feature(allocator_api)] |
| 387 | /// |
| 388 | /// use std::alloc::System; |
| 389 | /// |
| 390 | /// let s = [10, 40, 30]; |
| 391 | /// let x = s.to_vec_in(System); |
| 392 | /// // Here, `s` and `x` can be modified independently. |
| 393 | /// ``` |
| 394 | #[cfg (not(no_global_oom_handling))] |
| 395 | #[rustc_allow_incoherent_impl ] |
| 396 | #[inline ] |
| 397 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 398 | pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A> |
| 399 | where |
| 400 | T: Clone, |
| 401 | { |
| 402 | return T::to_vec(self, alloc); |
| 403 | |
| 404 | trait ConvertVec { |
| 405 | fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> |
| 406 | where |
| 407 | Self: Sized; |
| 408 | } |
| 409 | |
| 410 | impl<T: Clone> ConvertVec for T { |
| 411 | #[inline ] |
| 412 | default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { |
| 413 | struct DropGuard<'a, T, A: Allocator> { |
| 414 | vec: &'a mut Vec<T, A>, |
| 415 | num_init: usize, |
| 416 | } |
| 417 | impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { |
| 418 | #[inline ] |
| 419 | fn drop(&mut self) { |
| 420 | // SAFETY: |
| 421 | // items were marked initialized in the loop below |
| 422 | unsafe { |
| 423 | self.vec.set_len(self.num_init); |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | let mut vec = Vec::with_capacity_in(s.len(), alloc); |
| 428 | let mut guard = DropGuard { vec: &mut vec, num_init: 0 }; |
| 429 | let slots = guard.vec.spare_capacity_mut(); |
| 430 | // .take(slots.len()) is necessary for LLVM to remove bounds checks |
| 431 | // and has better codegen than zip. |
| 432 | for (i, b) in s.iter().enumerate().take(slots.len()) { |
| 433 | guard.num_init = i; |
| 434 | slots[i].write(b.clone()); |
| 435 | } |
| 436 | core::mem::forget(guard); |
| 437 | // SAFETY: |
| 438 | // the vec was allocated and initialized above to at least this length. |
| 439 | unsafe { |
| 440 | vec.set_len(s.len()); |
| 441 | } |
| 442 | vec |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | impl<T: Copy> ConvertVec for T { |
| 447 | #[inline ] |
| 448 | fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> { |
| 449 | let mut v = Vec::with_capacity_in(s.len(), alloc); |
| 450 | // SAFETY: |
| 451 | // allocated above with the capacity of `s`, and initialize to `s.len()` in |
| 452 | // ptr::copy_to_non_overlapping below. |
| 453 | unsafe { |
| 454 | s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len()); |
| 455 | v.set_len(s.len()); |
| 456 | } |
| 457 | v |
| 458 | } |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | /// Converts `self` into a vector without clones or allocation. |
| 463 | /// |
| 464 | /// The resulting vector can be converted back into a box via |
| 465 | /// `Vec<T>`'s `into_boxed_slice` method. |
| 466 | /// |
| 467 | /// # Examples |
| 468 | /// |
| 469 | /// ``` |
| 470 | /// let s: Box<[i32]> = Box::new([10, 40, 30]); |
| 471 | /// let x = s.into_vec(); |
| 472 | /// // `s` cannot be used anymore because it has been converted into `x`. |
| 473 | /// |
| 474 | /// assert_eq!(x, vec![10, 40, 30]); |
| 475 | /// ``` |
| 476 | #[rustc_allow_incoherent_impl ] |
| 477 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 478 | #[inline ] |
| 479 | #[rustc_diagnostic_item = "slice_into_vec" ] |
| 480 | pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> { |
| 481 | unsafe { |
| 482 | let len = self.len(); |
| 483 | let (b, alloc) = Box::into_raw_with_allocator(self); |
| 484 | Vec::from_raw_parts_in(b as *mut T, len, len, alloc) |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | /// Creates a vector by copying a slice `n` times. |
| 489 | /// |
| 490 | /// # Panics |
| 491 | /// |
| 492 | /// This function will panic if the capacity would overflow. |
| 493 | /// |
| 494 | /// # Examples |
| 495 | /// |
| 496 | /// ``` |
| 497 | /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); |
| 498 | /// ``` |
| 499 | /// |
| 500 | /// A panic upon overflow: |
| 501 | /// |
| 502 | /// ```should_panic |
| 503 | /// // this will panic at runtime |
| 504 | /// b"0123456789abcdef" .repeat(usize::MAX); |
| 505 | /// ``` |
| 506 | #[rustc_allow_incoherent_impl ] |
| 507 | #[cfg (not(no_global_oom_handling))] |
| 508 | #[stable (feature = "repeat_generic_slice" , since = "1.40.0" )] |
| 509 | pub fn repeat(&self, n: usize) -> Vec<T> |
| 510 | where |
| 511 | T: Copy, |
| 512 | { |
| 513 | if n == 0 { |
| 514 | return Vec::new(); |
| 515 | } |
| 516 | |
| 517 | // If `n` is larger than zero, it can be split as |
| 518 | // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. |
| 519 | // `2^expn` is the number represented by the leftmost '1' bit of `n`, |
| 520 | // and `rem` is the remaining part of `n`. |
| 521 | |
| 522 | // Using `Vec` to access `set_len()`. |
| 523 | let capacity = self.len().checked_mul(n).expect("capacity overflow" ); |
| 524 | let mut buf = Vec::with_capacity(capacity); |
| 525 | |
| 526 | // `2^expn` repetition is done by doubling `buf` `expn`-times. |
| 527 | buf.extend(self); |
| 528 | { |
| 529 | let mut m = n >> 1; |
| 530 | // If `m > 0`, there are remaining bits up to the leftmost '1'. |
| 531 | while m > 0 { |
| 532 | // `buf.extend(buf)`: |
| 533 | unsafe { |
| 534 | ptr::copy_nonoverlapping::<T>( |
| 535 | buf.as_ptr(), |
| 536 | (buf.as_mut_ptr()).add(buf.len()), |
| 537 | buf.len(), |
| 538 | ); |
| 539 | // `buf` has capacity of `self.len() * n`. |
| 540 | let buf_len = buf.len(); |
| 541 | buf.set_len(buf_len * 2); |
| 542 | } |
| 543 | |
| 544 | m >>= 1; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | // `rem` (`= n - 2^expn`) repetition is done by copying |
| 549 | // first `rem` repetitions from `buf` itself. |
| 550 | let rem_len = capacity - buf.len(); // `self.len() * rem` |
| 551 | if rem_len > 0 { |
| 552 | // `buf.extend(buf[0 .. rem_len])`: |
| 553 | unsafe { |
| 554 | // This is non-overlapping since `2^expn > rem`. |
| 555 | ptr::copy_nonoverlapping::<T>( |
| 556 | buf.as_ptr(), |
| 557 | (buf.as_mut_ptr()).add(buf.len()), |
| 558 | rem_len, |
| 559 | ); |
| 560 | // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). |
| 561 | buf.set_len(capacity); |
| 562 | } |
| 563 | } |
| 564 | buf |
| 565 | } |
| 566 | |
| 567 | /// Flattens a slice of `T` into a single value `Self::Output`. |
| 568 | /// |
| 569 | /// # Examples |
| 570 | /// |
| 571 | /// ``` |
| 572 | /// assert_eq!(["hello" , "world" ].concat(), "helloworld" ); |
| 573 | /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); |
| 574 | /// ``` |
| 575 | #[rustc_allow_incoherent_impl ] |
| 576 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 577 | pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output |
| 578 | where |
| 579 | Self: Concat<Item>, |
| 580 | { |
| 581 | Concat::concat(self) |
| 582 | } |
| 583 | |
| 584 | /// Flattens a slice of `T` into a single value `Self::Output`, placing a |
| 585 | /// given separator between each. |
| 586 | /// |
| 587 | /// # Examples |
| 588 | /// |
| 589 | /// ``` |
| 590 | /// assert_eq!(["hello" , "world" ].join(" " ), "hello world" ); |
| 591 | /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); |
| 592 | /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]); |
| 593 | /// ``` |
| 594 | #[rustc_allow_incoherent_impl ] |
| 595 | #[stable (feature = "rename_connect_to_join" , since = "1.3.0" )] |
| 596 | pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output |
| 597 | where |
| 598 | Self: Join<Separator>, |
| 599 | { |
| 600 | Join::join(self, sep) |
| 601 | } |
| 602 | |
| 603 | /// Flattens a slice of `T` into a single value `Self::Output`, placing a |
| 604 | /// given separator between each. |
| 605 | /// |
| 606 | /// # Examples |
| 607 | /// |
| 608 | /// ``` |
| 609 | /// # #![allow (deprecated)] |
| 610 | /// assert_eq!(["hello" , "world" ].connect(" " ), "hello world" ); |
| 611 | /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]); |
| 612 | /// ``` |
| 613 | #[rustc_allow_incoherent_impl ] |
| 614 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 615 | #[deprecated (since = "1.3.0" , note = "renamed to join" , suggestion = "join" )] |
| 616 | pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output |
| 617 | where |
| 618 | Self: Join<Separator>, |
| 619 | { |
| 620 | Join::join(self, sep) |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | impl [u8] { |
| 625 | /// Returns a vector containing a copy of this slice where each byte |
| 626 | /// is mapped to its ASCII upper case equivalent. |
| 627 | /// |
| 628 | /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
| 629 | /// but non-ASCII letters are unchanged. |
| 630 | /// |
| 631 | /// To uppercase the value in-place, use [`make_ascii_uppercase`]. |
| 632 | /// |
| 633 | /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase |
| 634 | #[cfg (not(no_global_oom_handling))] |
| 635 | #[rustc_allow_incoherent_impl ] |
| 636 | #[must_use = "this returns the uppercase bytes as a new Vec, \ |
| 637 | without modifying the original" ] |
| 638 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
| 639 | #[inline ] |
| 640 | pub fn to_ascii_uppercase(&self) -> Vec<u8> { |
| 641 | let mut me = self.to_vec(); |
| 642 | me.make_ascii_uppercase(); |
| 643 | me |
| 644 | } |
| 645 | |
| 646 | /// Returns a vector containing a copy of this slice where each byte |
| 647 | /// is mapped to its ASCII lower case equivalent. |
| 648 | /// |
| 649 | /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
| 650 | /// but non-ASCII letters are unchanged. |
| 651 | /// |
| 652 | /// To lowercase the value in-place, use [`make_ascii_lowercase`]. |
| 653 | /// |
| 654 | /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase |
| 655 | #[cfg (not(no_global_oom_handling))] |
| 656 | #[rustc_allow_incoherent_impl ] |
| 657 | #[must_use = "this returns the lowercase bytes as a new Vec, \ |
| 658 | without modifying the original" ] |
| 659 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
| 660 | #[inline ] |
| 661 | pub fn to_ascii_lowercase(&self) -> Vec<u8> { |
| 662 | let mut me = self.to_vec(); |
| 663 | me.make_ascii_lowercase(); |
| 664 | me |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | //////////////////////////////////////////////////////////////////////////////// |
| 669 | // Extension traits for slices over specific kinds of data |
| 670 | //////////////////////////////////////////////////////////////////////////////// |
| 671 | |
| 672 | /// Helper trait for [`[T]::concat`](slice::concat). |
| 673 | /// |
| 674 | /// Note: the `Item` type parameter is not used in this trait, |
| 675 | /// but it allows impls to be more generic. |
| 676 | /// Without it, we get this error: |
| 677 | /// |
| 678 | /// ```error |
| 679 | /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica |
| 680 | /// --> library/alloc/src/slice.rs:608:6 |
| 681 | /// | |
| 682 | /// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] { |
| 683 | /// | ^ unconstrained type parameter |
| 684 | /// ``` |
| 685 | /// |
| 686 | /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls, |
| 687 | /// such that multiple `T` types would apply: |
| 688 | /// |
| 689 | /// ``` |
| 690 | /// # #[allow (dead_code)] |
| 691 | /// pub struct Foo(Vec<u32>, Vec<String>); |
| 692 | /// |
| 693 | /// impl std::borrow::Borrow<[u32]> for Foo { |
| 694 | /// fn borrow(&self) -> &[u32] { &self.0 } |
| 695 | /// } |
| 696 | /// |
| 697 | /// impl std::borrow::Borrow<[String]> for Foo { |
| 698 | /// fn borrow(&self) -> &[String] { &self.1 } |
| 699 | /// } |
| 700 | /// ``` |
| 701 | #[unstable (feature = "slice_concat_trait" , issue = "27747" )] |
| 702 | pub trait Concat<Item: ?Sized> { |
| 703 | #[unstable (feature = "slice_concat_trait" , issue = "27747" )] |
| 704 | /// The resulting type after concatenation |
| 705 | type Output; |
| 706 | |
| 707 | /// Implementation of [`[T]::concat`](slice::concat) |
| 708 | #[unstable (feature = "slice_concat_trait" , issue = "27747" )] |
| 709 | fn concat(slice: &Self) -> Self::Output; |
| 710 | } |
| 711 | |
| 712 | /// Helper trait for [`[T]::join`](slice::join) |
| 713 | #[unstable (feature = "slice_concat_trait" , issue = "27747" )] |
| 714 | pub trait Join<Separator> { |
| 715 | #[unstable (feature = "slice_concat_trait" , issue = "27747" )] |
| 716 | /// The resulting type after concatenation |
| 717 | type Output; |
| 718 | |
| 719 | /// Implementation of [`[T]::join`](slice::join) |
| 720 | #[unstable (feature = "slice_concat_trait" , issue = "27747" )] |
| 721 | fn join(slice: &Self, sep: Separator) -> Self::Output; |
| 722 | } |
| 723 | |
| 724 | #[cfg (not(no_global_oom_handling))] |
| 725 | #[unstable (feature = "slice_concat_ext" , issue = "27747" )] |
| 726 | impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] { |
| 727 | type Output = Vec<T>; |
| 728 | |
| 729 | fn concat(slice: &Self) -> Vec<T> { |
| 730 | let size: usize = slice.iter().map(|slice: &V| slice.borrow().len()).sum(); |
| 731 | let mut result: Vec = Vec::with_capacity(size); |
| 732 | for v: &V in slice { |
| 733 | result.extend_from_slice(v.borrow()) |
| 734 | } |
| 735 | result |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | #[cfg (not(no_global_oom_handling))] |
| 740 | #[unstable (feature = "slice_concat_ext" , issue = "27747" )] |
| 741 | impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] { |
| 742 | type Output = Vec<T>; |
| 743 | |
| 744 | fn join(slice: &Self, sep: &T) -> Vec<T> { |
| 745 | let mut iter: Iter<'_, V> = slice.iter(); |
| 746 | let first: &V = match iter.next() { |
| 747 | Some(first: &V) => first, |
| 748 | None => return vec![], |
| 749 | }; |
| 750 | let size: usize = slice.iter().map(|v: &V| v.borrow().len()).sum::<usize>() + slice.len() - 1; |
| 751 | let mut result: Vec = Vec::with_capacity(size); |
| 752 | result.extend_from_slice(first.borrow()); |
| 753 | |
| 754 | for v: &V in iter { |
| 755 | result.push(sep.clone()); |
| 756 | result.extend_from_slice(v.borrow()) |
| 757 | } |
| 758 | result |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | #[cfg (not(no_global_oom_handling))] |
| 763 | #[unstable (feature = "slice_concat_ext" , issue = "27747" )] |
| 764 | impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] { |
| 765 | type Output = Vec<T>; |
| 766 | |
| 767 | fn join(slice: &Self, sep: &[T]) -> Vec<T> { |
| 768 | let mut iter: Iter<'_, V> = slice.iter(); |
| 769 | let first: &V = match iter.next() { |
| 770 | Some(first: &V) => first, |
| 771 | None => return vec![], |
| 772 | }; |
| 773 | let size: usize = |
| 774 | slice.iter().map(|v: &V| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1); |
| 775 | let mut result: Vec = Vec::with_capacity(size); |
| 776 | result.extend_from_slice(first.borrow()); |
| 777 | |
| 778 | for v: &V in iter { |
| 779 | result.extend_from_slice(sep); |
| 780 | result.extend_from_slice(v.borrow()) |
| 781 | } |
| 782 | result |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | //////////////////////////////////////////////////////////////////////////////// |
| 787 | // Standard trait implementations for slices |
| 788 | //////////////////////////////////////////////////////////////////////////////// |
| 789 | |
| 790 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 791 | impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> { |
| 792 | fn borrow(&self) -> &[T] { |
| 793 | &self[..] |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 798 | impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> { |
| 799 | fn borrow_mut(&mut self) -> &mut [T] { |
| 800 | &mut self[..] |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | // Specializable trait for implementing ToOwned::clone_into. This is |
| 805 | // public in the crate and has the Allocator parameter so that |
| 806 | // vec::clone_from use it too. |
| 807 | #[cfg (not(no_global_oom_handling))] |
| 808 | pub(crate) trait SpecCloneIntoVec<T, A: Allocator> { |
| 809 | fn clone_into(&self, target: &mut Vec<T, A>); |
| 810 | } |
| 811 | |
| 812 | #[cfg (not(no_global_oom_handling))] |
| 813 | impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] { |
| 814 | default fn clone_into(&self, target: &mut Vec<T, A>) { |
| 815 | // drop anything in target that will not be overwritten |
| 816 | target.truncate(self.len()); |
| 817 | |
| 818 | // target.len <= self.len due to the truncate above, so the |
| 819 | // slices here are always in-bounds. |
| 820 | let (init: &[T], tail: &[T]) = self.split_at(mid:target.len()); |
| 821 | |
| 822 | // reuse the contained values' allocations/resources. |
| 823 | target.clone_from_slice(src:init); |
| 824 | target.extend_from_slice(tail); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | #[cfg (not(no_global_oom_handling))] |
| 829 | impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] { |
| 830 | fn clone_into(&self, target: &mut Vec<T, A>) { |
| 831 | target.clear(); |
| 832 | target.extend_from_slice(self); |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | #[cfg (not(no_global_oom_handling))] |
| 837 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 838 | impl<T: Clone> ToOwned for [T] { |
| 839 | type Owned = Vec<T>; |
| 840 | |
| 841 | fn to_owned(&self) -> Vec<T> { |
| 842 | self.to_vec() |
| 843 | } |
| 844 | |
| 845 | fn clone_into(&self, target: &mut Vec<T>) { |
| 846 | SpecCloneIntoVec::clone_into(self, target); |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | //////////////////////////////////////////////////////////////////////////////// |
| 851 | // Sorting |
| 852 | //////////////////////////////////////////////////////////////////////////////// |
| 853 | |
| 854 | #[inline ] |
| 855 | #[cfg (not(no_global_oom_handling))] |
| 856 | fn stable_sort<T, F>(v: &mut [T], mut is_less: F) |
| 857 | where |
| 858 | F: FnMut(&T, &T) -> bool, |
| 859 | { |
| 860 | sort::stable::sort::<T, F, Vec<T>>(v, &mut is_less); |
| 861 | } |
| 862 | |
| 863 | #[cfg (not(no_global_oom_handling))] |
| 864 | #[unstable (issue = "none" , feature = "std_internals" )] |
| 865 | impl<T> sort::stable::BufGuard<T> for Vec<T> { |
| 866 | fn with_capacity(capacity: usize) -> Self { |
| 867 | Vec::with_capacity(capacity) |
| 868 | } |
| 869 | |
| 870 | fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] { |
| 871 | self.spare_capacity_mut() |
| 872 | } |
| 873 | } |
| 874 | |