1 | //! The `Box<T>` type for heap allocation. |
2 | //! |
3 | //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of |
4 | //! heap allocation in Rust. Boxes provide ownership for this allocation, and |
5 | //! drop their contents when they go out of scope. Boxes also ensure that they |
6 | //! never allocate more than `isize::MAX` bytes. |
7 | //! |
8 | //! # Examples |
9 | //! |
10 | //! Move a value from the stack to the heap by creating a [`Box`]: |
11 | //! |
12 | //! ``` |
13 | //! let val: u8 = 5; |
14 | //! let boxed: Box<u8> = Box::new(val); |
15 | //! ``` |
16 | //! |
17 | //! Move a value from a [`Box`] back to the stack by [dereferencing]: |
18 | //! |
19 | //! ``` |
20 | //! let boxed: Box<u8> = Box::new(5); |
21 | //! let val: u8 = *boxed; |
22 | //! ``` |
23 | //! |
24 | //! Creating a recursive data structure: |
25 | //! |
26 | //! ``` |
27 | //! # #[allow (dead_code)] |
28 | //! #[derive(Debug)] |
29 | //! enum List<T> { |
30 | //! Cons(T, Box<List<T>>), |
31 | //! Nil, |
32 | //! } |
33 | //! |
34 | //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); |
35 | //! println!("{list:?}" ); |
36 | //! ``` |
37 | //! |
38 | //! This will print `Cons(1, Cons(2, Nil))`. |
39 | //! |
40 | //! Recursive structures must be boxed, because if the definition of `Cons` |
41 | //! looked like this: |
42 | //! |
43 | //! ```compile_fail,E0072 |
44 | //! # enum List<T> { |
45 | //! Cons(T, List<T>), |
46 | //! # } |
47 | //! ``` |
48 | //! |
49 | //! It wouldn't work. This is because the size of a `List` depends on how many |
50 | //! elements are in the list, and so we don't know how much memory to allocate |
51 | //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how |
52 | //! big `Cons` needs to be. |
53 | //! |
54 | //! # Memory layout |
55 | //! |
56 | //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for its allocation. It is |
57 | //! valid to convert both ways between a [`Box`] and a raw pointer allocated with the [`Global`] |
58 | //! allocator, given that the [`Layout`] used with the allocator is correct for the type and the raw |
59 | //! pointer points to a valid value of the right type. More precisely, a `value: *mut T` that has |
60 | //! been allocated with the [`Global`] allocator with `Layout::for_value(&*value)` may be converted |
61 | //! into a box using [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut T` |
62 | //! obtained from [`Box::<T>::into_raw`] may be deallocated using the [`Global`] allocator with |
63 | //! [`Layout::for_value(&*value)`]. |
64 | //! |
65 | //! For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned. The |
66 | //! recommended way to build a Box to a ZST if `Box::new` cannot be used is to use |
67 | //! [`ptr::NonNull::dangling`]. |
68 | //! |
69 | //! On top of these basic layout requirements, a `Box<T>` must point to a valid value of `T`. |
70 | //! |
71 | //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented |
72 | //! as a single pointer and is also ABI-compatible with C pointers |
73 | //! (i.e. the C type `T*`). This means that if you have extern "C" |
74 | //! Rust functions that will be called from C, you can define those |
75 | //! Rust functions using `Box<T>` types, and use `T*` as corresponding |
76 | //! type on the C side. As an example, consider this C header which |
77 | //! declares functions that create and destroy some kind of `Foo` |
78 | //! value: |
79 | //! |
80 | //! ```c |
81 | //! /* C header */ |
82 | //! |
83 | //! /* Returns ownership to the caller */ |
84 | //! struct Foo* foo_new(void); |
85 | //! |
86 | //! /* Takes ownership from the caller; no-op when invoked with null */ |
87 | //! void foo_delete(struct Foo*); |
88 | //! ``` |
89 | //! |
90 | //! These two functions might be implemented in Rust as follows. Here, the |
91 | //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures |
92 | //! the ownership constraints. Note also that the nullable argument to |
93 | //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` |
94 | //! cannot be null. |
95 | //! |
96 | //! ``` |
97 | //! #[repr(C)] |
98 | //! pub struct Foo; |
99 | //! |
100 | //! #[unsafe(no_mangle)] |
101 | //! pub extern "C" fn foo_new() -> Box<Foo> { |
102 | //! Box::new(Foo) |
103 | //! } |
104 | //! |
105 | //! #[unsafe(no_mangle)] |
106 | //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} |
107 | //! ``` |
108 | //! |
109 | //! Even though `Box<T>` has the same representation and C ABI as a C pointer, |
110 | //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` |
111 | //! and expect things to work. `Box<T>` values will always be fully aligned, |
112 | //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to |
113 | //! free the value with the global allocator. In general, the best practice |
114 | //! is to only use `Box<T>` for pointers that originated from the global |
115 | //! allocator. |
116 | //! |
117 | //! **Important.** At least at present, you should avoid using |
118 | //! `Box<T>` types for functions that are defined in C but invoked |
119 | //! from Rust. In those cases, you should directly mirror the C types |
120 | //! as closely as possible. Using types like `Box<T>` where the C |
121 | //! definition is just using `T*` can lead to undefined behavior, as |
122 | //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. |
123 | //! |
124 | //! # Considerations for unsafe code |
125 | //! |
126 | //! **Warning: This section is not normative and is subject to change, possibly |
127 | //! being relaxed in the future! It is a simplified summary of the rules |
128 | //! currently implemented in the compiler.** |
129 | //! |
130 | //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` |
131 | //! asserts uniqueness over its content. Using raw pointers derived from a box |
132 | //! after that box has been mutated through, moved or borrowed as `&mut T` |
133 | //! is not allowed. For more guidance on working with box from unsafe code, see |
134 | //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. |
135 | //! |
136 | //! # Editions |
137 | //! |
138 | //! A special case exists for the implementation of `IntoIterator` for arrays on the Rust 2021 |
139 | //! edition, as documented [here][array]. Unfortunately, it was later found that a similar |
140 | //! workaround should be added for boxed slices, and this was applied in the 2024 edition. |
141 | //! |
142 | //! Specifically, `IntoIterator` is implemented for `Box<[T]>` on all editions, but specific calls |
143 | //! to `into_iter()` for boxed slices will defer to the slice implementation on editions before |
144 | //! 2024: |
145 | //! |
146 | //! ```rust,edition2021 |
147 | //! // Rust 2015, 2018, and 2021: |
148 | //! |
149 | //! # #![allow(boxed_slice_into_iter)] // override our `deny(warnings)` |
150 | //! let boxed_slice: Box<[i32]> = vec![0; 3].into_boxed_slice(); |
151 | //! |
152 | //! // This creates a slice iterator, producing references to each value. |
153 | //! for item in boxed_slice.into_iter().enumerate() { |
154 | //! let (i, x): (usize, &i32) = item; |
155 | //! println!("boxed_slice[{i}] = {x}" ); |
156 | //! } |
157 | //! |
158 | //! // The `boxed_slice_into_iter` lint suggests this change for future compatibility: |
159 | //! for item in boxed_slice.iter().enumerate() { |
160 | //! let (i, x): (usize, &i32) = item; |
161 | //! println!("boxed_slice[{i}] = {x}" ); |
162 | //! } |
163 | //! |
164 | //! // You can explicitly iterate a boxed slice by value using `IntoIterator::into_iter` |
165 | //! for item in IntoIterator::into_iter(boxed_slice).enumerate() { |
166 | //! let (i, x): (usize, i32) = item; |
167 | //! println!("boxed_slice[{i}] = {x}" ); |
168 | //! } |
169 | //! ``` |
170 | //! |
171 | //! Similar to the array implementation, this may be modified in the future to remove this override, |
172 | //! and it's best to avoid relying on this edition-dependent behavior if you wish to preserve |
173 | //! compatibility with future versions of the compiler. |
174 | //! |
175 | //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 |
176 | //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 |
177 | //! [dereferencing]: core::ops::Deref |
178 | //! [`Box::<T>::from_raw(value)`]: Box::from_raw |
179 | //! [`Global`]: crate::alloc::Global |
180 | //! [`Layout`]: crate::alloc::Layout |
181 | //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value |
182 | //! [valid]: ptr#safety |
183 | |
184 | #![stable (feature = "rust1" , since = "1.0.0" )] |
185 | |
186 | use core::borrow::{Borrow, BorrowMut}; |
187 | #[cfg (not(no_global_oom_handling))] |
188 | use core::clone::CloneToUninit; |
189 | use core::cmp::Ordering; |
190 | use core::error::{self, Error}; |
191 | use core::fmt; |
192 | use core::future::Future; |
193 | use core::hash::{Hash, Hasher}; |
194 | use core::marker::{PointerLike, Tuple, Unsize}; |
195 | use core::mem::{self, SizedTypeProperties}; |
196 | use core::ops::{ |
197 | AsyncFn, AsyncFnMut, AsyncFnOnce, CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut, |
198 | DerefPure, DispatchFromDyn, LegacyReceiver, |
199 | }; |
200 | use core::pin::{Pin, PinCoerceUnsized}; |
201 | use core::ptr::{self, NonNull, Unique}; |
202 | use core::task::{Context, Poll}; |
203 | |
204 | #[cfg (not(no_global_oom_handling))] |
205 | use crate::alloc::handle_alloc_error; |
206 | use crate::alloc::{AllocError, Allocator, Global, Layout}; |
207 | use crate::raw_vec::RawVec; |
208 | #[cfg (not(no_global_oom_handling))] |
209 | use crate::str::from_boxed_utf8_unchecked; |
210 | |
211 | /// Conversion related impls for `Box<_>` (`From`, `downcast`, etc) |
212 | mod convert; |
213 | /// Iterator related impls for `Box<_>`. |
214 | mod iter; |
215 | /// [`ThinBox`] implementation. |
216 | mod thin; |
217 | |
218 | #[unstable (feature = "thin_box" , issue = "92791" )] |
219 | pub use thin::ThinBox; |
220 | |
221 | /// A pointer type that uniquely owns a heap allocation of type `T`. |
222 | /// |
223 | /// See the [module-level documentation](../../std/boxed/index.html) for more. |
224 | #[lang = "owned_box" ] |
225 | #[fundamental ] |
226 | #[stable (feature = "rust1" , since = "1.0.0" )] |
227 | #[rustc_insignificant_dtor ] |
228 | #[doc (search_unbox)] |
229 | // The declaration of the `Box` struct must be kept in sync with the |
230 | // compiler or ICEs will happen. |
231 | pub struct Box< |
232 | T: ?Sized, |
233 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
234 | >(Unique<T>, A); |
235 | |
236 | /// Constructs a `Box<T>` by calling the `exchange_malloc` lang item and moving the argument into |
237 | /// the newly allocated memory. This is an intrinsic to avoid unnecessary copies. |
238 | /// |
239 | /// This is the surface syntax for `box <expr>` expressions. |
240 | #[rustc_intrinsic ] |
241 | #[unstable (feature = "liballoc_internals" , issue = "none" )] |
242 | pub fn box_new<T>(x: T) -> Box<T>; |
243 | |
244 | impl<T> Box<T> { |
245 | /// Allocates memory on the heap and then places `x` into it. |
246 | /// |
247 | /// This doesn't actually allocate if `T` is zero-sized. |
248 | /// |
249 | /// # Examples |
250 | /// |
251 | /// ``` |
252 | /// let five = Box::new(5); |
253 | /// ``` |
254 | #[cfg (not(no_global_oom_handling))] |
255 | #[inline (always)] |
256 | #[stable (feature = "rust1" , since = "1.0.0" )] |
257 | #[must_use ] |
258 | #[rustc_diagnostic_item = "box_new" ] |
259 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
260 | pub fn new(x: T) -> Self { |
261 | return box_new(x); |
262 | } |
263 | |
264 | /// Constructs a new box with uninitialized contents. |
265 | /// |
266 | /// # Examples |
267 | /// |
268 | /// ``` |
269 | /// let mut five = Box::<u32>::new_uninit(); |
270 | /// // Deferred initialization: |
271 | /// five.write(5); |
272 | /// let five = unsafe { five.assume_init() }; |
273 | /// |
274 | /// assert_eq!(*five, 5) |
275 | /// ``` |
276 | #[cfg (not(no_global_oom_handling))] |
277 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
278 | #[must_use ] |
279 | #[inline ] |
280 | pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { |
281 | Self::new_uninit_in(Global) |
282 | } |
283 | |
284 | /// Constructs a new `Box` with uninitialized contents, with the memory |
285 | /// being filled with `0` bytes. |
286 | /// |
287 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
288 | /// of this method. |
289 | /// |
290 | /// # Examples |
291 | /// |
292 | /// ``` |
293 | /// #![feature(new_zeroed_alloc)] |
294 | /// |
295 | /// let zero = Box::<u32>::new_zeroed(); |
296 | /// let zero = unsafe { zero.assume_init() }; |
297 | /// |
298 | /// assert_eq!(*zero, 0) |
299 | /// ``` |
300 | /// |
301 | /// [zeroed]: mem::MaybeUninit::zeroed |
302 | #[cfg (not(no_global_oom_handling))] |
303 | #[inline ] |
304 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
305 | #[must_use ] |
306 | pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { |
307 | Self::new_zeroed_in(Global) |
308 | } |
309 | |
310 | /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
311 | /// `x` will be pinned in memory and unable to be moved. |
312 | /// |
313 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` |
314 | /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using |
315 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to |
316 | /// construct a (pinned) `Box` in a different way than with [`Box::new`]. |
317 | #[cfg (not(no_global_oom_handling))] |
318 | #[stable (feature = "pin" , since = "1.33.0" )] |
319 | #[must_use ] |
320 | #[inline (always)] |
321 | pub fn pin(x: T) -> Pin<Box<T>> { |
322 | Box::new(x).into() |
323 | } |
324 | |
325 | /// Allocates memory on the heap then places `x` into it, |
326 | /// returning an error if the allocation fails |
327 | /// |
328 | /// This doesn't actually allocate if `T` is zero-sized. |
329 | /// |
330 | /// # Examples |
331 | /// |
332 | /// ``` |
333 | /// #![feature(allocator_api)] |
334 | /// |
335 | /// let five = Box::try_new(5)?; |
336 | /// # Ok::<(), std::alloc::AllocError>(()) |
337 | /// ``` |
338 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
339 | #[inline ] |
340 | pub fn try_new(x: T) -> Result<Self, AllocError> { |
341 | Self::try_new_in(x, Global) |
342 | } |
343 | |
344 | /// Constructs a new box with uninitialized contents on the heap, |
345 | /// returning an error if the allocation fails |
346 | /// |
347 | /// # Examples |
348 | /// |
349 | /// ``` |
350 | /// #![feature(allocator_api)] |
351 | /// |
352 | /// let mut five = Box::<u32>::try_new_uninit()?; |
353 | /// // Deferred initialization: |
354 | /// five.write(5); |
355 | /// let five = unsafe { five.assume_init() }; |
356 | /// |
357 | /// assert_eq!(*five, 5); |
358 | /// # Ok::<(), std::alloc::AllocError>(()) |
359 | /// ``` |
360 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
361 | // #[unstable(feature = "new_uninit", issue = "63291")] |
362 | #[inline ] |
363 | pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
364 | Box::try_new_uninit_in(Global) |
365 | } |
366 | |
367 | /// Constructs a new `Box` with uninitialized contents, with the memory |
368 | /// being filled with `0` bytes on the heap |
369 | /// |
370 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
371 | /// of this method. |
372 | /// |
373 | /// # Examples |
374 | /// |
375 | /// ``` |
376 | /// #![feature(allocator_api)] |
377 | /// |
378 | /// let zero = Box::<u32>::try_new_zeroed()?; |
379 | /// let zero = unsafe { zero.assume_init() }; |
380 | /// |
381 | /// assert_eq!(*zero, 0); |
382 | /// # Ok::<(), std::alloc::AllocError>(()) |
383 | /// ``` |
384 | /// |
385 | /// [zeroed]: mem::MaybeUninit::zeroed |
386 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
387 | // #[unstable(feature = "new_uninit", issue = "63291")] |
388 | #[inline ] |
389 | pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
390 | Box::try_new_zeroed_in(Global) |
391 | } |
392 | } |
393 | |
394 | impl<T, A: Allocator> Box<T, A> { |
395 | /// Allocates memory in the given allocator then places `x` into it. |
396 | /// |
397 | /// This doesn't actually allocate if `T` is zero-sized. |
398 | /// |
399 | /// # Examples |
400 | /// |
401 | /// ``` |
402 | /// #![feature(allocator_api)] |
403 | /// |
404 | /// use std::alloc::System; |
405 | /// |
406 | /// let five = Box::new_in(5, System); |
407 | /// ``` |
408 | #[cfg (not(no_global_oom_handling))] |
409 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
410 | #[must_use ] |
411 | #[inline ] |
412 | pub fn new_in(x: T, alloc: A) -> Self |
413 | where |
414 | A: Allocator, |
415 | { |
416 | let mut boxed = Self::new_uninit_in(alloc); |
417 | boxed.write(x); |
418 | unsafe { boxed.assume_init() } |
419 | } |
420 | |
421 | /// Allocates memory in the given allocator then places `x` into it, |
422 | /// returning an error if the allocation fails |
423 | /// |
424 | /// This doesn't actually allocate if `T` is zero-sized. |
425 | /// |
426 | /// # Examples |
427 | /// |
428 | /// ``` |
429 | /// #![feature(allocator_api)] |
430 | /// |
431 | /// use std::alloc::System; |
432 | /// |
433 | /// let five = Box::try_new_in(5, System)?; |
434 | /// # Ok::<(), std::alloc::AllocError>(()) |
435 | /// ``` |
436 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
437 | #[inline ] |
438 | pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> |
439 | where |
440 | A: Allocator, |
441 | { |
442 | let mut boxed = Self::try_new_uninit_in(alloc)?; |
443 | boxed.write(x); |
444 | unsafe { Ok(boxed.assume_init()) } |
445 | } |
446 | |
447 | /// Constructs a new box with uninitialized contents in the provided allocator. |
448 | /// |
449 | /// # Examples |
450 | /// |
451 | /// ``` |
452 | /// #![feature(allocator_api)] |
453 | /// |
454 | /// use std::alloc::System; |
455 | /// |
456 | /// let mut five = Box::<u32, _>::new_uninit_in(System); |
457 | /// // Deferred initialization: |
458 | /// five.write(5); |
459 | /// let five = unsafe { five.assume_init() }; |
460 | /// |
461 | /// assert_eq!(*five, 5) |
462 | /// ``` |
463 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
464 | #[cfg (not(no_global_oom_handling))] |
465 | #[must_use ] |
466 | // #[unstable(feature = "new_uninit", issue = "63291")] |
467 | pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
468 | where |
469 | A: Allocator, |
470 | { |
471 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
472 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
473 | // That would make code size bigger. |
474 | match Box::try_new_uninit_in(alloc) { |
475 | Ok(m) => m, |
476 | Err(_) => handle_alloc_error(layout), |
477 | } |
478 | } |
479 | |
480 | /// Constructs a new box with uninitialized contents in the provided allocator, |
481 | /// returning an error if the allocation fails |
482 | /// |
483 | /// # Examples |
484 | /// |
485 | /// ``` |
486 | /// #![feature(allocator_api)] |
487 | /// |
488 | /// use std::alloc::System; |
489 | /// |
490 | /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; |
491 | /// // Deferred initialization: |
492 | /// five.write(5); |
493 | /// let five = unsafe { five.assume_init() }; |
494 | /// |
495 | /// assert_eq!(*five, 5); |
496 | /// # Ok::<(), std::alloc::AllocError>(()) |
497 | /// ``` |
498 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
499 | // #[unstable(feature = "new_uninit", issue = "63291")] |
500 | pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
501 | where |
502 | A: Allocator, |
503 | { |
504 | let ptr = if T::IS_ZST { |
505 | NonNull::dangling() |
506 | } else { |
507 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
508 | alloc.allocate(layout)?.cast() |
509 | }; |
510 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
511 | } |
512 | |
513 | /// Constructs a new `Box` with uninitialized contents, with the memory |
514 | /// being filled with `0` bytes in the provided allocator. |
515 | /// |
516 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
517 | /// of this method. |
518 | /// |
519 | /// # Examples |
520 | /// |
521 | /// ``` |
522 | /// #![feature(allocator_api)] |
523 | /// |
524 | /// use std::alloc::System; |
525 | /// |
526 | /// let zero = Box::<u32, _>::new_zeroed_in(System); |
527 | /// let zero = unsafe { zero.assume_init() }; |
528 | /// |
529 | /// assert_eq!(*zero, 0) |
530 | /// ``` |
531 | /// |
532 | /// [zeroed]: mem::MaybeUninit::zeroed |
533 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
534 | #[cfg (not(no_global_oom_handling))] |
535 | // #[unstable(feature = "new_uninit", issue = "63291")] |
536 | #[must_use ] |
537 | pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
538 | where |
539 | A: Allocator, |
540 | { |
541 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
542 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
543 | // That would make code size bigger. |
544 | match Box::try_new_zeroed_in(alloc) { |
545 | Ok(m) => m, |
546 | Err(_) => handle_alloc_error(layout), |
547 | } |
548 | } |
549 | |
550 | /// Constructs a new `Box` with uninitialized contents, with the memory |
551 | /// being filled with `0` bytes in the provided allocator, |
552 | /// returning an error if the allocation fails, |
553 | /// |
554 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
555 | /// of this method. |
556 | /// |
557 | /// # Examples |
558 | /// |
559 | /// ``` |
560 | /// #![feature(allocator_api)] |
561 | /// |
562 | /// use std::alloc::System; |
563 | /// |
564 | /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; |
565 | /// let zero = unsafe { zero.assume_init() }; |
566 | /// |
567 | /// assert_eq!(*zero, 0); |
568 | /// # Ok::<(), std::alloc::AllocError>(()) |
569 | /// ``` |
570 | /// |
571 | /// [zeroed]: mem::MaybeUninit::zeroed |
572 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
573 | // #[unstable(feature = "new_uninit", issue = "63291")] |
574 | pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
575 | where |
576 | A: Allocator, |
577 | { |
578 | let ptr = if T::IS_ZST { |
579 | NonNull::dangling() |
580 | } else { |
581 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
582 | alloc.allocate_zeroed(layout)?.cast() |
583 | }; |
584 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
585 | } |
586 | |
587 | /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then |
588 | /// `x` will be pinned in memory and unable to be moved. |
589 | /// |
590 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` |
591 | /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using |
592 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to |
593 | /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. |
594 | #[cfg (not(no_global_oom_handling))] |
595 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
596 | #[must_use ] |
597 | #[inline (always)] |
598 | pub fn pin_in(x: T, alloc: A) -> Pin<Self> |
599 | where |
600 | A: 'static + Allocator, |
601 | { |
602 | Self::into_pin(Self::new_in(x, alloc)) |
603 | } |
604 | |
605 | /// Converts a `Box<T>` into a `Box<[T]>` |
606 | /// |
607 | /// This conversion does not allocate on the heap and happens in place. |
608 | #[unstable (feature = "box_into_boxed_slice" , issue = "71582" )] |
609 | pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { |
610 | let (raw, alloc) = Box::into_raw_with_allocator(boxed); |
611 | unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } |
612 | } |
613 | |
614 | /// Consumes the `Box`, returning the wrapped value. |
615 | /// |
616 | /// # Examples |
617 | /// |
618 | /// ``` |
619 | /// #![feature(box_into_inner)] |
620 | /// |
621 | /// let c = Box::new(5); |
622 | /// |
623 | /// assert_eq!(Box::into_inner(c), 5); |
624 | /// ``` |
625 | #[unstable (feature = "box_into_inner" , issue = "80437" )] |
626 | #[inline ] |
627 | pub fn into_inner(boxed: Self) -> T { |
628 | *boxed |
629 | } |
630 | } |
631 | |
632 | impl<T> Box<[T]> { |
633 | /// Constructs a new boxed slice with uninitialized contents. |
634 | /// |
635 | /// # Examples |
636 | /// |
637 | /// ``` |
638 | /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
639 | /// // Deferred initialization: |
640 | /// values[0].write(1); |
641 | /// values[1].write(2); |
642 | /// values[2].write(3); |
643 | /// let values = unsafe {values.assume_init() }; |
644 | /// |
645 | /// assert_eq!(*values, [1, 2, 3]) |
646 | /// ``` |
647 | #[cfg (not(no_global_oom_handling))] |
648 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
649 | #[must_use ] |
650 | pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
651 | unsafe { RawVec::with_capacity(len).into_box(len) } |
652 | } |
653 | |
654 | /// Constructs a new boxed slice with uninitialized contents, with the memory |
655 | /// being filled with `0` bytes. |
656 | /// |
657 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
658 | /// of this method. |
659 | /// |
660 | /// # Examples |
661 | /// |
662 | /// ``` |
663 | /// #![feature(new_zeroed_alloc)] |
664 | /// |
665 | /// let values = Box::<[u32]>::new_zeroed_slice(3); |
666 | /// let values = unsafe { values.assume_init() }; |
667 | /// |
668 | /// assert_eq!(*values, [0, 0, 0]) |
669 | /// ``` |
670 | /// |
671 | /// [zeroed]: mem::MaybeUninit::zeroed |
672 | #[cfg (not(no_global_oom_handling))] |
673 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
674 | #[must_use ] |
675 | pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
676 | unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } |
677 | } |
678 | |
679 | /// Constructs a new boxed slice with uninitialized contents. Returns an error if |
680 | /// the allocation fails. |
681 | /// |
682 | /// # Examples |
683 | /// |
684 | /// ``` |
685 | /// #![feature(allocator_api)] |
686 | /// |
687 | /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; |
688 | /// // Deferred initialization: |
689 | /// values[0].write(1); |
690 | /// values[1].write(2); |
691 | /// values[2].write(3); |
692 | /// let values = unsafe { values.assume_init() }; |
693 | /// |
694 | /// assert_eq!(*values, [1, 2, 3]); |
695 | /// # Ok::<(), std::alloc::AllocError>(()) |
696 | /// ``` |
697 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
698 | #[inline ] |
699 | pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
700 | let ptr = if T::IS_ZST || len == 0 { |
701 | NonNull::dangling() |
702 | } else { |
703 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
704 | Ok(l) => l, |
705 | Err(_) => return Err(AllocError), |
706 | }; |
707 | Global.allocate(layout)?.cast() |
708 | }; |
709 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } |
710 | } |
711 | |
712 | /// Constructs a new boxed slice with uninitialized contents, with the memory |
713 | /// being filled with `0` bytes. Returns an error if the allocation fails. |
714 | /// |
715 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
716 | /// of this method. |
717 | /// |
718 | /// # Examples |
719 | /// |
720 | /// ``` |
721 | /// #![feature(allocator_api)] |
722 | /// |
723 | /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; |
724 | /// let values = unsafe { values.assume_init() }; |
725 | /// |
726 | /// assert_eq!(*values, [0, 0, 0]); |
727 | /// # Ok::<(), std::alloc::AllocError>(()) |
728 | /// ``` |
729 | /// |
730 | /// [zeroed]: mem::MaybeUninit::zeroed |
731 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
732 | #[inline ] |
733 | pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
734 | let ptr = if T::IS_ZST || len == 0 { |
735 | NonNull::dangling() |
736 | } else { |
737 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
738 | Ok(l) => l, |
739 | Err(_) => return Err(AllocError), |
740 | }; |
741 | Global.allocate_zeroed(layout)?.cast() |
742 | }; |
743 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } |
744 | } |
745 | |
746 | /// Converts the boxed slice into a boxed array. |
747 | /// |
748 | /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type. |
749 | /// |
750 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
751 | #[unstable (feature = "slice_as_array" , issue = "133508" )] |
752 | #[inline ] |
753 | #[must_use ] |
754 | pub fn into_array<const N: usize>(self) -> Option<Box<[T; N]>> { |
755 | if self.len() == N { |
756 | let ptr = Self::into_raw(self) as *mut [T; N]; |
757 | |
758 | // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length. |
759 | let me = unsafe { Box::from_raw(ptr) }; |
760 | Some(me) |
761 | } else { |
762 | None |
763 | } |
764 | } |
765 | } |
766 | |
767 | impl<T, A: Allocator> Box<[T], A> { |
768 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. |
769 | /// |
770 | /// # Examples |
771 | /// |
772 | /// ``` |
773 | /// #![feature(allocator_api)] |
774 | /// |
775 | /// use std::alloc::System; |
776 | /// |
777 | /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); |
778 | /// // Deferred initialization: |
779 | /// values[0].write(1); |
780 | /// values[1].write(2); |
781 | /// values[2].write(3); |
782 | /// let values = unsafe { values.assume_init() }; |
783 | /// |
784 | /// assert_eq!(*values, [1, 2, 3]) |
785 | /// ``` |
786 | #[cfg (not(no_global_oom_handling))] |
787 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
788 | // #[unstable(feature = "new_uninit", issue = "63291")] |
789 | #[must_use ] |
790 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
791 | unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } |
792 | } |
793 | |
794 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, |
795 | /// with the memory being filled with `0` bytes. |
796 | /// |
797 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
798 | /// of this method. |
799 | /// |
800 | /// # Examples |
801 | /// |
802 | /// ``` |
803 | /// #![feature(allocator_api)] |
804 | /// |
805 | /// use std::alloc::System; |
806 | /// |
807 | /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); |
808 | /// let values = unsafe { values.assume_init() }; |
809 | /// |
810 | /// assert_eq!(*values, [0, 0, 0]) |
811 | /// ``` |
812 | /// |
813 | /// [zeroed]: mem::MaybeUninit::zeroed |
814 | #[cfg (not(no_global_oom_handling))] |
815 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
816 | // #[unstable(feature = "new_uninit", issue = "63291")] |
817 | #[must_use ] |
818 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
819 | unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } |
820 | } |
821 | |
822 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if |
823 | /// the allocation fails. |
824 | /// |
825 | /// # Examples |
826 | /// |
827 | /// ``` |
828 | /// #![feature(allocator_api)] |
829 | /// |
830 | /// use std::alloc::System; |
831 | /// |
832 | /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?; |
833 | /// // Deferred initialization: |
834 | /// values[0].write(1); |
835 | /// values[1].write(2); |
836 | /// values[2].write(3); |
837 | /// let values = unsafe { values.assume_init() }; |
838 | /// |
839 | /// assert_eq!(*values, [1, 2, 3]); |
840 | /// # Ok::<(), std::alloc::AllocError>(()) |
841 | /// ``` |
842 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
843 | #[inline ] |
844 | pub fn try_new_uninit_slice_in( |
845 | len: usize, |
846 | alloc: A, |
847 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> { |
848 | let ptr = if T::IS_ZST || len == 0 { |
849 | NonNull::dangling() |
850 | } else { |
851 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
852 | Ok(l) => l, |
853 | Err(_) => return Err(AllocError), |
854 | }; |
855 | alloc.allocate(layout)?.cast() |
856 | }; |
857 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) } |
858 | } |
859 | |
860 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory |
861 | /// being filled with `0` bytes. Returns an error if the allocation fails. |
862 | /// |
863 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
864 | /// of this method. |
865 | /// |
866 | /// # Examples |
867 | /// |
868 | /// ``` |
869 | /// #![feature(allocator_api)] |
870 | /// |
871 | /// use std::alloc::System; |
872 | /// |
873 | /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?; |
874 | /// let values = unsafe { values.assume_init() }; |
875 | /// |
876 | /// assert_eq!(*values, [0, 0, 0]); |
877 | /// # Ok::<(), std::alloc::AllocError>(()) |
878 | /// ``` |
879 | /// |
880 | /// [zeroed]: mem::MaybeUninit::zeroed |
881 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
882 | #[inline ] |
883 | pub fn try_new_zeroed_slice_in( |
884 | len: usize, |
885 | alloc: A, |
886 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> { |
887 | let ptr = if T::IS_ZST || len == 0 { |
888 | NonNull::dangling() |
889 | } else { |
890 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
891 | Ok(l) => l, |
892 | Err(_) => return Err(AllocError), |
893 | }; |
894 | alloc.allocate_zeroed(layout)?.cast() |
895 | }; |
896 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) } |
897 | } |
898 | } |
899 | |
900 | impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { |
901 | /// Converts to `Box<T, A>`. |
902 | /// |
903 | /// # Safety |
904 | /// |
905 | /// As with [`MaybeUninit::assume_init`], |
906 | /// it is up to the caller to guarantee that the value |
907 | /// really is in an initialized state. |
908 | /// Calling this when the content is not yet fully initialized |
909 | /// causes immediate undefined behavior. |
910 | /// |
911 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
912 | /// |
913 | /// # Examples |
914 | /// |
915 | /// ``` |
916 | /// let mut five = Box::<u32>::new_uninit(); |
917 | /// // Deferred initialization: |
918 | /// five.write(5); |
919 | /// let five: Box<u32> = unsafe { five.assume_init() }; |
920 | /// |
921 | /// assert_eq!(*five, 5) |
922 | /// ``` |
923 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
924 | #[inline ] |
925 | pub unsafe fn assume_init(self) -> Box<T, A> { |
926 | let (raw, alloc) = Box::into_raw_with_allocator(self); |
927 | unsafe { Box::from_raw_in(raw as *mut T, alloc) } |
928 | } |
929 | |
930 | /// Writes the value and converts to `Box<T, A>`. |
931 | /// |
932 | /// This method converts the box similarly to [`Box::assume_init`] but |
933 | /// writes `value` into it before conversion thus guaranteeing safety. |
934 | /// In some scenarios use of this method may improve performance because |
935 | /// the compiler may be able to optimize copying from stack. |
936 | /// |
937 | /// # Examples |
938 | /// |
939 | /// ``` |
940 | /// let big_box = Box::<[usize; 1024]>::new_uninit(); |
941 | /// |
942 | /// let mut array = [0; 1024]; |
943 | /// for (i, place) in array.iter_mut().enumerate() { |
944 | /// *place = i; |
945 | /// } |
946 | /// |
947 | /// // The optimizer may be able to elide this copy, so previous code writes |
948 | /// // to heap directly. |
949 | /// let big_box = Box::write(big_box, array); |
950 | /// |
951 | /// for (i, x) in big_box.iter().enumerate() { |
952 | /// assert_eq!(*x, i); |
953 | /// } |
954 | /// ``` |
955 | #[stable (feature = "box_uninit_write" , since = "1.87.0" )] |
956 | #[inline ] |
957 | pub fn write(mut boxed: Self, value: T) -> Box<T, A> { |
958 | unsafe { |
959 | (*boxed).write(value); |
960 | boxed.assume_init() |
961 | } |
962 | } |
963 | } |
964 | |
965 | impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { |
966 | /// Converts to `Box<[T], A>`. |
967 | /// |
968 | /// # Safety |
969 | /// |
970 | /// As with [`MaybeUninit::assume_init`], |
971 | /// it is up to the caller to guarantee that the values |
972 | /// really are in an initialized state. |
973 | /// Calling this when the content is not yet fully initialized |
974 | /// causes immediate undefined behavior. |
975 | /// |
976 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
977 | /// |
978 | /// # Examples |
979 | /// |
980 | /// ``` |
981 | /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
982 | /// // Deferred initialization: |
983 | /// values[0].write(1); |
984 | /// values[1].write(2); |
985 | /// values[2].write(3); |
986 | /// let values = unsafe { values.assume_init() }; |
987 | /// |
988 | /// assert_eq!(*values, [1, 2, 3]) |
989 | /// ``` |
990 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
991 | #[inline ] |
992 | pub unsafe fn assume_init(self) -> Box<[T], A> { |
993 | let (raw, alloc) = Box::into_raw_with_allocator(self); |
994 | unsafe { Box::from_raw_in(raw as *mut [T], alloc) } |
995 | } |
996 | } |
997 | |
998 | impl<T: ?Sized> Box<T> { |
999 | /// Constructs a box from a raw pointer. |
1000 | /// |
1001 | /// After calling this function, the raw pointer is owned by the |
1002 | /// resulting `Box`. Specifically, the `Box` destructor will call |
1003 | /// the destructor of `T` and free the allocated memory. For this |
1004 | /// to be safe, the memory must have been allocated in accordance |
1005 | /// with the [memory layout] used by `Box` . |
1006 | /// |
1007 | /// # Safety |
1008 | /// |
1009 | /// This function is unsafe because improper use may lead to |
1010 | /// memory problems. For example, a double-free may occur if the |
1011 | /// function is called twice on the same raw pointer. |
1012 | /// |
1013 | /// The raw pointer must point to a block of memory allocated by the global allocator. |
1014 | /// |
1015 | /// The safety conditions are described in the [memory layout] section. |
1016 | /// |
1017 | /// # Examples |
1018 | /// |
1019 | /// Recreate a `Box` which was previously converted to a raw pointer |
1020 | /// using [`Box::into_raw`]: |
1021 | /// ``` |
1022 | /// let x = Box::new(5); |
1023 | /// let ptr = Box::into_raw(x); |
1024 | /// let x = unsafe { Box::from_raw(ptr) }; |
1025 | /// ``` |
1026 | /// Manually create a `Box` from scratch by using the global allocator: |
1027 | /// ``` |
1028 | /// use std::alloc::{alloc, Layout}; |
1029 | /// |
1030 | /// unsafe { |
1031 | /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; |
1032 | /// // In general .write is required to avoid attempting to destruct |
1033 | /// // the (uninitialized) previous contents of `ptr`, though for this |
1034 | /// // simple example `*ptr = 5` would have worked as well. |
1035 | /// ptr.write(5); |
1036 | /// let x = Box::from_raw(ptr); |
1037 | /// } |
1038 | /// ``` |
1039 | /// |
1040 | /// [memory layout]: self#memory-layout |
1041 | #[stable (feature = "box_raw" , since = "1.4.0" )] |
1042 | #[inline ] |
1043 | #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`" ] |
1044 | pub unsafe fn from_raw(raw: *mut T) -> Self { |
1045 | unsafe { Self::from_raw_in(raw, Global) } |
1046 | } |
1047 | |
1048 | /// Constructs a box from a `NonNull` pointer. |
1049 | /// |
1050 | /// After calling this function, the `NonNull` pointer is owned by |
1051 | /// the resulting `Box`. Specifically, the `Box` destructor will call |
1052 | /// the destructor of `T` and free the allocated memory. For this |
1053 | /// to be safe, the memory must have been allocated in accordance |
1054 | /// with the [memory layout] used by `Box` . |
1055 | /// |
1056 | /// # Safety |
1057 | /// |
1058 | /// This function is unsafe because improper use may lead to |
1059 | /// memory problems. For example, a double-free may occur if the |
1060 | /// function is called twice on the same `NonNull` pointer. |
1061 | /// |
1062 | /// The non-null pointer must point to a block of memory allocated by the global allocator. |
1063 | /// |
1064 | /// The safety conditions are described in the [memory layout] section. |
1065 | /// |
1066 | /// # Examples |
1067 | /// |
1068 | /// Recreate a `Box` which was previously converted to a `NonNull` |
1069 | /// pointer using [`Box::into_non_null`]: |
1070 | /// ``` |
1071 | /// #![feature(box_vec_non_null)] |
1072 | /// |
1073 | /// let x = Box::new(5); |
1074 | /// let non_null = Box::into_non_null(x); |
1075 | /// let x = unsafe { Box::from_non_null(non_null) }; |
1076 | /// ``` |
1077 | /// Manually create a `Box` from scratch by using the global allocator: |
1078 | /// ``` |
1079 | /// #![feature(box_vec_non_null)] |
1080 | /// |
1081 | /// use std::alloc::{alloc, Layout}; |
1082 | /// use std::ptr::NonNull; |
1083 | /// |
1084 | /// unsafe { |
1085 | /// let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>()) |
1086 | /// .expect("allocation failed" ); |
1087 | /// // In general .write is required to avoid attempting to destruct |
1088 | /// // the (uninitialized) previous contents of `non_null`. |
1089 | /// non_null.write(5); |
1090 | /// let x = Box::from_non_null(non_null); |
1091 | /// } |
1092 | /// ``` |
1093 | /// |
1094 | /// [memory layout]: self#memory-layout |
1095 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
1096 | #[inline ] |
1097 | #[must_use = "call `drop(Box::from_non_null(ptr))` if you intend to drop the `Box`" ] |
1098 | pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self { |
1099 | unsafe { Self::from_raw(ptr.as_ptr()) } |
1100 | } |
1101 | } |
1102 | |
1103 | impl<T: ?Sized, A: Allocator> Box<T, A> { |
1104 | /// Constructs a box from a raw pointer in the given allocator. |
1105 | /// |
1106 | /// After calling this function, the raw pointer is owned by the |
1107 | /// resulting `Box`. Specifically, the `Box` destructor will call |
1108 | /// the destructor of `T` and free the allocated memory. For this |
1109 | /// to be safe, the memory must have been allocated in accordance |
1110 | /// with the [memory layout] used by `Box` . |
1111 | /// |
1112 | /// # Safety |
1113 | /// |
1114 | /// This function is unsafe because improper use may lead to |
1115 | /// memory problems. For example, a double-free may occur if the |
1116 | /// function is called twice on the same raw pointer. |
1117 | /// |
1118 | /// The raw pointer must point to a block of memory allocated by `alloc`. |
1119 | /// |
1120 | /// # Examples |
1121 | /// |
1122 | /// Recreate a `Box` which was previously converted to a raw pointer |
1123 | /// using [`Box::into_raw_with_allocator`]: |
1124 | /// ``` |
1125 | /// #![feature(allocator_api)] |
1126 | /// |
1127 | /// use std::alloc::System; |
1128 | /// |
1129 | /// let x = Box::new_in(5, System); |
1130 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
1131 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
1132 | /// ``` |
1133 | /// Manually create a `Box` from scratch by using the system allocator: |
1134 | /// ``` |
1135 | /// #![feature(allocator_api, slice_ptr_get)] |
1136 | /// |
1137 | /// use std::alloc::{Allocator, Layout, System}; |
1138 | /// |
1139 | /// unsafe { |
1140 | /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; |
1141 | /// // In general .write is required to avoid attempting to destruct |
1142 | /// // the (uninitialized) previous contents of `ptr`, though for this |
1143 | /// // simple example `*ptr = 5` would have worked as well. |
1144 | /// ptr.write(5); |
1145 | /// let x = Box::from_raw_in(ptr, System); |
1146 | /// } |
1147 | /// # Ok::<(), std::alloc::AllocError>(()) |
1148 | /// ``` |
1149 | /// |
1150 | /// [memory layout]: self#memory-layout |
1151 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1152 | #[inline ] |
1153 | pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { |
1154 | Box(unsafe { Unique::new_unchecked(raw) }, alloc) |
1155 | } |
1156 | |
1157 | /// Constructs a box from a `NonNull` pointer in the given allocator. |
1158 | /// |
1159 | /// After calling this function, the `NonNull` pointer is owned by |
1160 | /// the resulting `Box`. Specifically, the `Box` destructor will call |
1161 | /// the destructor of `T` and free the allocated memory. For this |
1162 | /// to be safe, the memory must have been allocated in accordance |
1163 | /// with the [memory layout] used by `Box` . |
1164 | /// |
1165 | /// # Safety |
1166 | /// |
1167 | /// This function is unsafe because improper use may lead to |
1168 | /// memory problems. For example, a double-free may occur if the |
1169 | /// function is called twice on the same raw pointer. |
1170 | /// |
1171 | /// The non-null pointer must point to a block of memory allocated by `alloc`. |
1172 | /// |
1173 | /// # Examples |
1174 | /// |
1175 | /// Recreate a `Box` which was previously converted to a `NonNull` pointer |
1176 | /// using [`Box::into_non_null_with_allocator`]: |
1177 | /// ``` |
1178 | /// #![feature(allocator_api, box_vec_non_null)] |
1179 | /// |
1180 | /// use std::alloc::System; |
1181 | /// |
1182 | /// let x = Box::new_in(5, System); |
1183 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
1184 | /// let x = unsafe { Box::from_non_null_in(non_null, alloc) }; |
1185 | /// ``` |
1186 | /// Manually create a `Box` from scratch by using the system allocator: |
1187 | /// ``` |
1188 | /// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)] |
1189 | /// |
1190 | /// use std::alloc::{Allocator, Layout, System}; |
1191 | /// |
1192 | /// unsafe { |
1193 | /// let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>(); |
1194 | /// // In general .write is required to avoid attempting to destruct |
1195 | /// // the (uninitialized) previous contents of `non_null`. |
1196 | /// non_null.write(5); |
1197 | /// let x = Box::from_non_null_in(non_null, System); |
1198 | /// } |
1199 | /// # Ok::<(), std::alloc::AllocError>(()) |
1200 | /// ``` |
1201 | /// |
1202 | /// [memory layout]: self#memory-layout |
1203 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1204 | // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] |
1205 | #[inline ] |
1206 | pub unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self { |
1207 | // SAFETY: guaranteed by the caller. |
1208 | unsafe { Box::from_raw_in(raw.as_ptr(), alloc) } |
1209 | } |
1210 | |
1211 | /// Consumes the `Box`, returning a wrapped raw pointer. |
1212 | /// |
1213 | /// The pointer will be properly aligned and non-null. |
1214 | /// |
1215 | /// After calling this function, the caller is responsible for the |
1216 | /// memory previously managed by the `Box`. In particular, the |
1217 | /// caller should properly destroy `T` and release the memory, taking |
1218 | /// into account the [memory layout] used by `Box`. The easiest way to |
1219 | /// do this is to convert the raw pointer back into a `Box` with the |
1220 | /// [`Box::from_raw`] function, allowing the `Box` destructor to perform |
1221 | /// the cleanup. |
1222 | /// |
1223 | /// Note: this is an associated function, which means that you have |
1224 | /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This |
1225 | /// is so that there is no conflict with a method on the inner type. |
1226 | /// |
1227 | /// # Examples |
1228 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] |
1229 | /// for automatic cleanup: |
1230 | /// ``` |
1231 | /// let x = Box::new(String::from("Hello" )); |
1232 | /// let ptr = Box::into_raw(x); |
1233 | /// let x = unsafe { Box::from_raw(ptr) }; |
1234 | /// ``` |
1235 | /// Manual cleanup by explicitly running the destructor and deallocating |
1236 | /// the memory: |
1237 | /// ``` |
1238 | /// use std::alloc::{dealloc, Layout}; |
1239 | /// use std::ptr; |
1240 | /// |
1241 | /// let x = Box::new(String::from("Hello" )); |
1242 | /// let ptr = Box::into_raw(x); |
1243 | /// unsafe { |
1244 | /// ptr::drop_in_place(ptr); |
1245 | /// dealloc(ptr as *mut u8, Layout::new::<String>()); |
1246 | /// } |
1247 | /// ``` |
1248 | /// Note: This is equivalent to the following: |
1249 | /// ``` |
1250 | /// let x = Box::new(String::from("Hello" )); |
1251 | /// let ptr = Box::into_raw(x); |
1252 | /// unsafe { |
1253 | /// drop(Box::from_raw(ptr)); |
1254 | /// } |
1255 | /// ``` |
1256 | /// |
1257 | /// [memory layout]: self#memory-layout |
1258 | #[must_use = "losing the pointer will leak memory" ] |
1259 | #[stable (feature = "box_raw" , since = "1.4.0" )] |
1260 | #[inline ] |
1261 | pub fn into_raw(b: Self) -> *mut T { |
1262 | // Make sure Miri realizes that we transition from a noalias pointer to a raw pointer here. |
1263 | unsafe { &raw mut *&mut *Self::into_raw_with_allocator(b).0 } |
1264 | } |
1265 | |
1266 | /// Consumes the `Box`, returning a wrapped `NonNull` pointer. |
1267 | /// |
1268 | /// The pointer will be properly aligned. |
1269 | /// |
1270 | /// After calling this function, the caller is responsible for the |
1271 | /// memory previously managed by the `Box`. In particular, the |
1272 | /// caller should properly destroy `T` and release the memory, taking |
1273 | /// into account the [memory layout] used by `Box`. The easiest way to |
1274 | /// do this is to convert the `NonNull` pointer back into a `Box` with the |
1275 | /// [`Box::from_non_null`] function, allowing the `Box` destructor to |
1276 | /// perform the cleanup. |
1277 | /// |
1278 | /// Note: this is an associated function, which means that you have |
1279 | /// to call it as `Box::into_non_null(b)` instead of `b.into_non_null()`. |
1280 | /// This is so that there is no conflict with a method on the inner type. |
1281 | /// |
1282 | /// # Examples |
1283 | /// Converting the `NonNull` pointer back into a `Box` with [`Box::from_non_null`] |
1284 | /// for automatic cleanup: |
1285 | /// ``` |
1286 | /// #![feature(box_vec_non_null)] |
1287 | /// |
1288 | /// let x = Box::new(String::from("Hello" )); |
1289 | /// let non_null = Box::into_non_null(x); |
1290 | /// let x = unsafe { Box::from_non_null(non_null) }; |
1291 | /// ``` |
1292 | /// Manual cleanup by explicitly running the destructor and deallocating |
1293 | /// the memory: |
1294 | /// ``` |
1295 | /// #![feature(box_vec_non_null)] |
1296 | /// |
1297 | /// use std::alloc::{dealloc, Layout}; |
1298 | /// |
1299 | /// let x = Box::new(String::from("Hello" )); |
1300 | /// let non_null = Box::into_non_null(x); |
1301 | /// unsafe { |
1302 | /// non_null.drop_in_place(); |
1303 | /// dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>()); |
1304 | /// } |
1305 | /// ``` |
1306 | /// Note: This is equivalent to the following: |
1307 | /// ``` |
1308 | /// #![feature(box_vec_non_null)] |
1309 | /// |
1310 | /// let x = Box::new(String::from("Hello" )); |
1311 | /// let non_null = Box::into_non_null(x); |
1312 | /// unsafe { |
1313 | /// drop(Box::from_non_null(non_null)); |
1314 | /// } |
1315 | /// ``` |
1316 | /// |
1317 | /// [memory layout]: self#memory-layout |
1318 | #[must_use = "losing the pointer will leak memory" ] |
1319 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
1320 | #[inline ] |
1321 | pub fn into_non_null(b: Self) -> NonNull<T> { |
1322 | // SAFETY: `Box` is guaranteed to be non-null. |
1323 | unsafe { NonNull::new_unchecked(Self::into_raw(b)) } |
1324 | } |
1325 | |
1326 | /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. |
1327 | /// |
1328 | /// The pointer will be properly aligned and non-null. |
1329 | /// |
1330 | /// After calling this function, the caller is responsible for the |
1331 | /// memory previously managed by the `Box`. In particular, the |
1332 | /// caller should properly destroy `T` and release the memory, taking |
1333 | /// into account the [memory layout] used by `Box`. The easiest way to |
1334 | /// do this is to convert the raw pointer back into a `Box` with the |
1335 | /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform |
1336 | /// the cleanup. |
1337 | /// |
1338 | /// Note: this is an associated function, which means that you have |
1339 | /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This |
1340 | /// is so that there is no conflict with a method on the inner type. |
1341 | /// |
1342 | /// # Examples |
1343 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] |
1344 | /// for automatic cleanup: |
1345 | /// ``` |
1346 | /// #![feature(allocator_api)] |
1347 | /// |
1348 | /// use std::alloc::System; |
1349 | /// |
1350 | /// let x = Box::new_in(String::from("Hello" ), System); |
1351 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
1352 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
1353 | /// ``` |
1354 | /// Manual cleanup by explicitly running the destructor and deallocating |
1355 | /// the memory: |
1356 | /// ``` |
1357 | /// #![feature(allocator_api)] |
1358 | /// |
1359 | /// use std::alloc::{Allocator, Layout, System}; |
1360 | /// use std::ptr::{self, NonNull}; |
1361 | /// |
1362 | /// let x = Box::new_in(String::from("Hello" ), System); |
1363 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
1364 | /// unsafe { |
1365 | /// ptr::drop_in_place(ptr); |
1366 | /// let non_null = NonNull::new_unchecked(ptr); |
1367 | /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); |
1368 | /// } |
1369 | /// ``` |
1370 | /// |
1371 | /// [memory layout]: self#memory-layout |
1372 | #[must_use = "losing the pointer will leak memory" ] |
1373 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1374 | #[inline ] |
1375 | pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { |
1376 | let mut b = mem::ManuallyDrop::new(b); |
1377 | // We carefully get the raw pointer out in a way that Miri's aliasing model understands what |
1378 | // is happening: using the primitive "deref" of `Box`. In case `A` is *not* `Global`, we |
1379 | // want *no* aliasing requirements here! |
1380 | // In case `A` *is* `Global`, this does not quite have the right behavior; `into_raw` |
1381 | // works around that. |
1382 | let ptr = &raw mut **b; |
1383 | let alloc = unsafe { ptr::read(&b.1) }; |
1384 | (ptr, alloc) |
1385 | } |
1386 | |
1387 | /// Consumes the `Box`, returning a wrapped `NonNull` pointer and the allocator. |
1388 | /// |
1389 | /// The pointer will be properly aligned. |
1390 | /// |
1391 | /// After calling this function, the caller is responsible for the |
1392 | /// memory previously managed by the `Box`. In particular, the |
1393 | /// caller should properly destroy `T` and release the memory, taking |
1394 | /// into account the [memory layout] used by `Box`. The easiest way to |
1395 | /// do this is to convert the `NonNull` pointer back into a `Box` with the |
1396 | /// [`Box::from_non_null_in`] function, allowing the `Box` destructor to |
1397 | /// perform the cleanup. |
1398 | /// |
1399 | /// Note: this is an associated function, which means that you have |
1400 | /// to call it as `Box::into_non_null_with_allocator(b)` instead of |
1401 | /// `b.into_non_null_with_allocator()`. This is so that there is no |
1402 | /// conflict with a method on the inner type. |
1403 | /// |
1404 | /// # Examples |
1405 | /// Converting the `NonNull` pointer back into a `Box` with |
1406 | /// [`Box::from_non_null_in`] for automatic cleanup: |
1407 | /// ``` |
1408 | /// #![feature(allocator_api, box_vec_non_null)] |
1409 | /// |
1410 | /// use std::alloc::System; |
1411 | /// |
1412 | /// let x = Box::new_in(String::from("Hello" ), System); |
1413 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
1414 | /// let x = unsafe { Box::from_non_null_in(non_null, alloc) }; |
1415 | /// ``` |
1416 | /// Manual cleanup by explicitly running the destructor and deallocating |
1417 | /// the memory: |
1418 | /// ``` |
1419 | /// #![feature(allocator_api, box_vec_non_null)] |
1420 | /// |
1421 | /// use std::alloc::{Allocator, Layout, System}; |
1422 | /// |
1423 | /// let x = Box::new_in(String::from("Hello" ), System); |
1424 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
1425 | /// unsafe { |
1426 | /// non_null.drop_in_place(); |
1427 | /// alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>()); |
1428 | /// } |
1429 | /// ``` |
1430 | /// |
1431 | /// [memory layout]: self#memory-layout |
1432 | #[must_use = "losing the pointer will leak memory" ] |
1433 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1434 | // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] |
1435 | #[inline ] |
1436 | pub fn into_non_null_with_allocator(b: Self) -> (NonNull<T>, A) { |
1437 | let (ptr, alloc) = Box::into_raw_with_allocator(b); |
1438 | // SAFETY: `Box` is guaranteed to be non-null. |
1439 | unsafe { (NonNull::new_unchecked(ptr), alloc) } |
1440 | } |
1441 | |
1442 | #[unstable ( |
1443 | feature = "ptr_internals" , |
1444 | issue = "none" , |
1445 | reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" |
1446 | )] |
1447 | #[inline ] |
1448 | #[doc (hidden)] |
1449 | pub fn into_unique(b: Self) -> (Unique<T>, A) { |
1450 | let (ptr, alloc) = Box::into_raw_with_allocator(b); |
1451 | unsafe { (Unique::from(&mut *ptr), alloc) } |
1452 | } |
1453 | |
1454 | /// Returns a raw mutable pointer to the `Box`'s contents. |
1455 | /// |
1456 | /// The caller must ensure that the `Box` outlives the pointer this |
1457 | /// function returns, or else it will end up dangling. |
1458 | /// |
1459 | /// This method guarantees that for the purpose of the aliasing model, this method |
1460 | /// does not materialize a reference to the underlying memory, and thus the returned pointer |
1461 | /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`]. |
1462 | /// Note that calling other methods that materialize references to the memory |
1463 | /// may still invalidate this pointer. |
1464 | /// See the example below for how this guarantee can be used. |
1465 | /// |
1466 | /// # Examples |
1467 | /// |
1468 | /// Due to the aliasing guarantee, the following code is legal: |
1469 | /// |
1470 | /// ```rust |
1471 | /// #![feature(box_as_ptr)] |
1472 | /// |
1473 | /// unsafe { |
1474 | /// let mut b = Box::new(0); |
1475 | /// let ptr1 = Box::as_mut_ptr(&mut b); |
1476 | /// ptr1.write(1); |
1477 | /// let ptr2 = Box::as_mut_ptr(&mut b); |
1478 | /// ptr2.write(2); |
1479 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`: |
1480 | /// ptr1.write(3); |
1481 | /// } |
1482 | /// ``` |
1483 | /// |
1484 | /// [`as_mut_ptr`]: Self::as_mut_ptr |
1485 | /// [`as_ptr`]: Self::as_ptr |
1486 | #[unstable (feature = "box_as_ptr" , issue = "129090" )] |
1487 | #[rustc_never_returns_null_ptr ] |
1488 | #[rustc_as_ptr] |
1489 | #[inline ] |
1490 | pub fn as_mut_ptr(b: &mut Self) -> *mut T { |
1491 | // This is a primitive deref, not going through `DerefMut`, and therefore not materializing |
1492 | // any references. |
1493 | &raw mut **b |
1494 | } |
1495 | |
1496 | /// Returns a raw pointer to the `Box`'s contents. |
1497 | /// |
1498 | /// The caller must ensure that the `Box` outlives the pointer this |
1499 | /// function returns, or else it will end up dangling. |
1500 | /// |
1501 | /// The caller must also ensure that the memory the pointer (non-transitively) points to |
1502 | /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer |
1503 | /// derived from it. If you need to mutate the contents of the `Box`, use [`as_mut_ptr`]. |
1504 | /// |
1505 | /// This method guarantees that for the purpose of the aliasing model, this method |
1506 | /// does not materialize a reference to the underlying memory, and thus the returned pointer |
1507 | /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`]. |
1508 | /// Note that calling other methods that materialize mutable references to the memory, |
1509 | /// as well as writing to this memory, may still invalidate this pointer. |
1510 | /// See the example below for how this guarantee can be used. |
1511 | /// |
1512 | /// # Examples |
1513 | /// |
1514 | /// Due to the aliasing guarantee, the following code is legal: |
1515 | /// |
1516 | /// ```rust |
1517 | /// #![feature(box_as_ptr)] |
1518 | /// |
1519 | /// unsafe { |
1520 | /// let mut v = Box::new(0); |
1521 | /// let ptr1 = Box::as_ptr(&v); |
1522 | /// let ptr2 = Box::as_mut_ptr(&mut v); |
1523 | /// let _val = ptr2.read(); |
1524 | /// // No write to this memory has happened yet, so `ptr1` is still valid. |
1525 | /// let _val = ptr1.read(); |
1526 | /// // However, once we do a write... |
1527 | /// ptr2.write(1); |
1528 | /// // ... `ptr1` is no longer valid. |
1529 | /// // This would be UB: let _val = ptr1.read(); |
1530 | /// } |
1531 | /// ``` |
1532 | /// |
1533 | /// [`as_mut_ptr`]: Self::as_mut_ptr |
1534 | /// [`as_ptr`]: Self::as_ptr |
1535 | #[unstable (feature = "box_as_ptr" , issue = "129090" )] |
1536 | #[rustc_never_returns_null_ptr ] |
1537 | #[rustc_as_ptr] |
1538 | #[inline ] |
1539 | pub fn as_ptr(b: &Self) -> *const T { |
1540 | // This is a primitive deref, not going through `DerefMut`, and therefore not materializing |
1541 | // any references. |
1542 | &raw const **b |
1543 | } |
1544 | |
1545 | /// Returns a reference to the underlying allocator. |
1546 | /// |
1547 | /// Note: this is an associated function, which means that you have |
1548 | /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This |
1549 | /// is so that there is no conflict with a method on the inner type. |
1550 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1551 | #[inline ] |
1552 | pub fn allocator(b: &Self) -> &A { |
1553 | &b.1 |
1554 | } |
1555 | |
1556 | /// Consumes and leaks the `Box`, returning a mutable reference, |
1557 | /// `&'a mut T`. |
1558 | /// |
1559 | /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type |
1560 | /// has only static references, or none at all, then this may be chosen to be |
1561 | /// `'static`. |
1562 | /// |
1563 | /// This function is mainly useful for data that lives for the remainder of |
1564 | /// the program's life. Dropping the returned reference will cause a memory |
1565 | /// leak. If this is not acceptable, the reference should first be wrapped |
1566 | /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can |
1567 | /// then be dropped which will properly destroy `T` and release the |
1568 | /// allocated memory. |
1569 | /// |
1570 | /// Note: this is an associated function, which means that you have |
1571 | /// to call it as `Box::leak(b)` instead of `b.leak()`. This |
1572 | /// is so that there is no conflict with a method on the inner type. |
1573 | /// |
1574 | /// # Examples |
1575 | /// |
1576 | /// Simple usage: |
1577 | /// |
1578 | /// ``` |
1579 | /// let x = Box::new(41); |
1580 | /// let static_ref: &'static mut usize = Box::leak(x); |
1581 | /// *static_ref += 1; |
1582 | /// assert_eq!(*static_ref, 42); |
1583 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
1584 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
1585 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
1586 | /// ``` |
1587 | /// |
1588 | /// Unsized data: |
1589 | /// |
1590 | /// ``` |
1591 | /// let x = vec![1, 2, 3].into_boxed_slice(); |
1592 | /// let static_ref = Box::leak(x); |
1593 | /// static_ref[0] = 4; |
1594 | /// assert_eq!(*static_ref, [4, 2, 3]); |
1595 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
1596 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
1597 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
1598 | /// ``` |
1599 | #[stable (feature = "box_leak" , since = "1.26.0" )] |
1600 | #[inline ] |
1601 | pub fn leak<'a>(b: Self) -> &'a mut T |
1602 | where |
1603 | A: 'a, |
1604 | { |
1605 | unsafe { &mut *Box::into_raw(b) } |
1606 | } |
1607 | |
1608 | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
1609 | /// `*boxed` will be pinned in memory and unable to be moved. |
1610 | /// |
1611 | /// This conversion does not allocate on the heap and happens in place. |
1612 | /// |
1613 | /// This is also available via [`From`]. |
1614 | /// |
1615 | /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> |
1616 | /// can also be written more concisely using <code>[Box::pin]\(x)</code>. |
1617 | /// This `into_pin` method is useful if you already have a `Box<T>`, or you are |
1618 | /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. |
1619 | /// |
1620 | /// # Notes |
1621 | /// |
1622 | /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, |
1623 | /// as it'll introduce an ambiguity when calling `Pin::from`. |
1624 | /// A demonstration of such a poor impl is shown below. |
1625 | /// |
1626 | /// ```compile_fail |
1627 | /// # use std::pin::Pin; |
1628 | /// struct Foo; // A type defined in this crate. |
1629 | /// impl From<Box<()>> for Pin<Foo> { |
1630 | /// fn from(_: Box<()>) -> Pin<Foo> { |
1631 | /// Pin::new(Foo) |
1632 | /// } |
1633 | /// } |
1634 | /// |
1635 | /// let foo = Box::new(()); |
1636 | /// let bar = Pin::from(foo); |
1637 | /// ``` |
1638 | #[stable (feature = "box_into_pin" , since = "1.63.0" )] |
1639 | pub fn into_pin(boxed: Self) -> Pin<Self> |
1640 | where |
1641 | A: 'static, |
1642 | { |
1643 | // It's not possible to move or replace the insides of a `Pin<Box<T>>` |
1644 | // when `T: !Unpin`, so it's safe to pin it directly without any |
1645 | // additional requirements. |
1646 | unsafe { Pin::new_unchecked(boxed) } |
1647 | } |
1648 | } |
1649 | |
1650 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1651 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Box<T, A> { |
1652 | #[inline ] |
1653 | fn drop(&mut self) { |
1654 | // the T in the Box is dropped by the compiler before the destructor is run |
1655 | |
1656 | let ptr: Unique = self.0; |
1657 | |
1658 | unsafe { |
1659 | let layout: Layout = Layout::for_value_raw(ptr.as_ptr()); |
1660 | if layout.size() != 0 { |
1661 | self.1.deallocate(ptr:From::from(ptr.cast()), layout); |
1662 | } |
1663 | } |
1664 | } |
1665 | } |
1666 | |
1667 | #[cfg (not(no_global_oom_handling))] |
1668 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1669 | impl<T: Default> Default for Box<T> { |
1670 | /// Creates a `Box<T>`, with the `Default` value for T. |
1671 | #[inline ] |
1672 | fn default() -> Self { |
1673 | let mut x: Box<mem::MaybeUninit<T>> = Box::new_uninit(); |
1674 | unsafe { |
1675 | // SAFETY: `x` is valid for writing and has the same layout as `T`. |
1676 | // If `T::default()` panics, dropping `x` will just deallocate the Box as `MaybeUninit<T>` |
1677 | // does not have a destructor. |
1678 | // |
1679 | // We use `ptr::write` as `MaybeUninit::write` creates |
1680 | // extra stack copies of `T` in debug mode. |
1681 | // |
1682 | // See https://github.com/rust-lang/rust/issues/136043 for more context. |
1683 | ptr::write(&raw mut *x as *mut T, T::default()); |
1684 | // SAFETY: `x` was just initialized above. |
1685 | x.assume_init() |
1686 | } |
1687 | } |
1688 | } |
1689 | |
1690 | #[cfg (not(no_global_oom_handling))] |
1691 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1692 | impl<T> Default for Box<[T]> { |
1693 | #[inline ] |
1694 | fn default() -> Self { |
1695 | let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); |
1696 | Box(ptr, Global) |
1697 | } |
1698 | } |
1699 | |
1700 | #[cfg (not(no_global_oom_handling))] |
1701 | #[stable (feature = "default_box_extra" , since = "1.17.0" )] |
1702 | impl Default for Box<str> { |
1703 | #[inline ] |
1704 | fn default() -> Self { |
1705 | // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. |
1706 | let ptr: Unique<str> = unsafe { |
1707 | let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); |
1708 | Unique::new_unchecked(bytes.as_ptr() as *mut str) |
1709 | }; |
1710 | Box(ptr, Global) |
1711 | } |
1712 | } |
1713 | |
1714 | #[cfg (not(no_global_oom_handling))] |
1715 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1716 | impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { |
1717 | /// Returns a new box with a `clone()` of this box's contents. |
1718 | /// |
1719 | /// # Examples |
1720 | /// |
1721 | /// ``` |
1722 | /// let x = Box::new(5); |
1723 | /// let y = x.clone(); |
1724 | /// |
1725 | /// // The value is the same |
1726 | /// assert_eq!(x, y); |
1727 | /// |
1728 | /// // But they are unique objects |
1729 | /// assert_ne!(&*x as *const i32, &*y as *const i32); |
1730 | /// ``` |
1731 | #[inline ] |
1732 | fn clone(&self) -> Self { |
1733 | // Pre-allocate memory to allow writing the cloned value directly. |
1734 | let mut boxed = Self::new_uninit_in(self.1.clone()); |
1735 | unsafe { |
1736 | (**self).clone_to_uninit(boxed.as_mut_ptr().cast()); |
1737 | boxed.assume_init() |
1738 | } |
1739 | } |
1740 | |
1741 | /// Copies `source`'s contents into `self` without creating a new allocation. |
1742 | /// |
1743 | /// # Examples |
1744 | /// |
1745 | /// ``` |
1746 | /// let x = Box::new(5); |
1747 | /// let mut y = Box::new(10); |
1748 | /// let yp: *const i32 = &*y; |
1749 | /// |
1750 | /// y.clone_from(&x); |
1751 | /// |
1752 | /// // The value is the same |
1753 | /// assert_eq!(x, y); |
1754 | /// |
1755 | /// // And no allocation occurred |
1756 | /// assert_eq!(yp, &*y); |
1757 | /// ``` |
1758 | #[inline ] |
1759 | fn clone_from(&mut self, source: &Self) { |
1760 | (**self).clone_from(&(**source)); |
1761 | } |
1762 | } |
1763 | |
1764 | #[cfg (not(no_global_oom_handling))] |
1765 | #[stable (feature = "box_slice_clone" , since = "1.3.0" )] |
1766 | impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { |
1767 | fn clone(&self) -> Self { |
1768 | let alloc = Box::allocator(self).clone(); |
1769 | self.to_vec_in(alloc).into_boxed_slice() |
1770 | } |
1771 | |
1772 | /// Copies `source`'s contents into `self` without creating a new allocation, |
1773 | /// so long as the two are of the same length. |
1774 | /// |
1775 | /// # Examples |
1776 | /// |
1777 | /// ``` |
1778 | /// let x = Box::new([5, 6, 7]); |
1779 | /// let mut y = Box::new([8, 9, 10]); |
1780 | /// let yp: *const [i32] = &*y; |
1781 | /// |
1782 | /// y.clone_from(&x); |
1783 | /// |
1784 | /// // The value is the same |
1785 | /// assert_eq!(x, y); |
1786 | /// |
1787 | /// // And no allocation occurred |
1788 | /// assert_eq!(yp, &*y); |
1789 | /// ``` |
1790 | fn clone_from(&mut self, source: &Self) { |
1791 | if self.len() == source.len() { |
1792 | self.clone_from_slice(&source); |
1793 | } else { |
1794 | *self = source.clone(); |
1795 | } |
1796 | } |
1797 | } |
1798 | |
1799 | #[cfg (not(no_global_oom_handling))] |
1800 | #[stable (feature = "box_slice_clone" , since = "1.3.0" )] |
1801 | impl Clone for Box<str> { |
1802 | fn clone(&self) -> Self { |
1803 | // this makes a copy of the data |
1804 | let buf: Box<[u8]> = self.as_bytes().into(); |
1805 | unsafe { from_boxed_utf8_unchecked(buf) } |
1806 | } |
1807 | } |
1808 | |
1809 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1810 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { |
1811 | #[inline ] |
1812 | fn eq(&self, other: &Self) -> bool { |
1813 | PartialEq::eq(&**self, &**other) |
1814 | } |
1815 | #[inline ] |
1816 | fn ne(&self, other: &Self) -> bool { |
1817 | PartialEq::ne(&**self, &**other) |
1818 | } |
1819 | } |
1820 | |
1821 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1822 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { |
1823 | #[inline ] |
1824 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
1825 | PartialOrd::partial_cmp(&**self, &**other) |
1826 | } |
1827 | #[inline ] |
1828 | fn lt(&self, other: &Self) -> bool { |
1829 | PartialOrd::lt(&**self, &**other) |
1830 | } |
1831 | #[inline ] |
1832 | fn le(&self, other: &Self) -> bool { |
1833 | PartialOrd::le(&**self, &**other) |
1834 | } |
1835 | #[inline ] |
1836 | fn ge(&self, other: &Self) -> bool { |
1837 | PartialOrd::ge(&**self, &**other) |
1838 | } |
1839 | #[inline ] |
1840 | fn gt(&self, other: &Self) -> bool { |
1841 | PartialOrd::gt(&**self, &**other) |
1842 | } |
1843 | } |
1844 | |
1845 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1846 | impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { |
1847 | #[inline ] |
1848 | fn cmp(&self, other: &Self) -> Ordering { |
1849 | Ord::cmp(&**self, &**other) |
1850 | } |
1851 | } |
1852 | |
1853 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1854 | impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} |
1855 | |
1856 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1857 | impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { |
1858 | fn hash<H: Hasher>(&self, state: &mut H) { |
1859 | (**self).hash(state); |
1860 | } |
1861 | } |
1862 | |
1863 | #[stable (feature = "indirect_hasher_impl" , since = "1.22.0" )] |
1864 | impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { |
1865 | fn finish(&self) -> u64 { |
1866 | (**self).finish() |
1867 | } |
1868 | fn write(&mut self, bytes: &[u8]) { |
1869 | (**self).write(bytes) |
1870 | } |
1871 | fn write_u8(&mut self, i: u8) { |
1872 | (**self).write_u8(i) |
1873 | } |
1874 | fn write_u16(&mut self, i: u16) { |
1875 | (**self).write_u16(i) |
1876 | } |
1877 | fn write_u32(&mut self, i: u32) { |
1878 | (**self).write_u32(i) |
1879 | } |
1880 | fn write_u64(&mut self, i: u64) { |
1881 | (**self).write_u64(i) |
1882 | } |
1883 | fn write_u128(&mut self, i: u128) { |
1884 | (**self).write_u128(i) |
1885 | } |
1886 | fn write_usize(&mut self, i: usize) { |
1887 | (**self).write_usize(i) |
1888 | } |
1889 | fn write_i8(&mut self, i: i8) { |
1890 | (**self).write_i8(i) |
1891 | } |
1892 | fn write_i16(&mut self, i: i16) { |
1893 | (**self).write_i16(i) |
1894 | } |
1895 | fn write_i32(&mut self, i: i32) { |
1896 | (**self).write_i32(i) |
1897 | } |
1898 | fn write_i64(&mut self, i: i64) { |
1899 | (**self).write_i64(i) |
1900 | } |
1901 | fn write_i128(&mut self, i: i128) { |
1902 | (**self).write_i128(i) |
1903 | } |
1904 | fn write_isize(&mut self, i: isize) { |
1905 | (**self).write_isize(i) |
1906 | } |
1907 | fn write_length_prefix(&mut self, len: usize) { |
1908 | (**self).write_length_prefix(len) |
1909 | } |
1910 | fn write_str(&mut self, s: &str) { |
1911 | (**self).write_str(s) |
1912 | } |
1913 | } |
1914 | |
1915 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1916 | impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { |
1917 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1918 | fmt::Display::fmt(&**self, f) |
1919 | } |
1920 | } |
1921 | |
1922 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1923 | impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { |
1924 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1925 | fmt::Debug::fmt(&**self, f) |
1926 | } |
1927 | } |
1928 | |
1929 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1930 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { |
1931 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1932 | // It's not possible to extract the inner Uniq directly from the Box, |
1933 | // instead we cast it to a *const which aliases the Unique |
1934 | let ptr: *const T = &**self; |
1935 | fmt::Pointer::fmt(&ptr, f) |
1936 | } |
1937 | } |
1938 | |
1939 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1940 | impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { |
1941 | type Target = T; |
1942 | |
1943 | fn deref(&self) -> &T { |
1944 | &**self |
1945 | } |
1946 | } |
1947 | |
1948 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1949 | impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { |
1950 | fn deref_mut(&mut self) -> &mut T { |
1951 | &mut **self |
1952 | } |
1953 | } |
1954 | |
1955 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
1956 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for Box<T, A> {} |
1957 | |
1958 | #[unstable (feature = "legacy_receiver_trait" , issue = "none" )] |
1959 | impl<T: ?Sized, A: Allocator> LegacyReceiver for Box<T, A> {} |
1960 | |
1961 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
1962 | impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { |
1963 | type Output = <F as FnOnce<Args>>::Output; |
1964 | |
1965 | extern "rust-call" fn call_once(self, args: Args) -> Self::Output { |
1966 | <F as FnOnce<Args>>::call_once(*self, args) |
1967 | } |
1968 | } |
1969 | |
1970 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
1971 | impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { |
1972 | extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { |
1973 | <F as FnMut<Args>>::call_mut(self, args) |
1974 | } |
1975 | } |
1976 | |
1977 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
1978 | impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { |
1979 | extern "rust-call" fn call(&self, args: Args) -> Self::Output { |
1980 | <F as Fn<Args>>::call(self, args) |
1981 | } |
1982 | } |
1983 | |
1984 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
1985 | impl<Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator> AsyncFnOnce<Args> for Box<F, A> { |
1986 | type Output = F::Output; |
1987 | type CallOnceFuture = F::CallOnceFuture; |
1988 | |
1989 | extern "rust-call" fn async_call_once(self, args: Args) -> Self::CallOnceFuture { |
1990 | F::async_call_once(*self, args) |
1991 | } |
1992 | } |
1993 | |
1994 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
1995 | impl<Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator> AsyncFnMut<Args> for Box<F, A> { |
1996 | type CallRefFuture<'a> |
1997 | = F::CallRefFuture<'a> |
1998 | where |
1999 | Self: 'a; |
2000 | |
2001 | extern "rust-call" fn async_call_mut(&mut self, args: Args) -> Self::CallRefFuture<'_> { |
2002 | F::async_call_mut(self, args) |
2003 | } |
2004 | } |
2005 | |
2006 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
2007 | impl<Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator> AsyncFn<Args> for Box<F, A> { |
2008 | extern "rust-call" fn async_call(&self, args: Args) -> Self::CallRefFuture<'_> { |
2009 | F::async_call(self, args) |
2010 | } |
2011 | } |
2012 | |
2013 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
2014 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} |
2015 | |
2016 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
2017 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Box<T, A> {} |
2018 | |
2019 | // It is quite crucial that we only allow the `Global` allocator here. |
2020 | // Handling arbitrary custom allocators (which can affect the `Box` layout heavily!) |
2021 | // would need a lot of codegen and interpreter adjustments. |
2022 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
2023 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} |
2024 | |
2025 | #[stable (feature = "box_borrow" , since = "1.1.0" )] |
2026 | impl<T: ?Sized, A: Allocator> Borrow<T> for Box<T, A> { |
2027 | fn borrow(&self) -> &T { |
2028 | &**self |
2029 | } |
2030 | } |
2031 | |
2032 | #[stable (feature = "box_borrow" , since = "1.1.0" )] |
2033 | impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A> { |
2034 | fn borrow_mut(&mut self) -> &mut T { |
2035 | &mut **self |
2036 | } |
2037 | } |
2038 | |
2039 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
2040 | impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { |
2041 | fn as_ref(&self) -> &T { |
2042 | &**self |
2043 | } |
2044 | } |
2045 | |
2046 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
2047 | impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { |
2048 | fn as_mut(&mut self) -> &mut T { |
2049 | &mut **self |
2050 | } |
2051 | } |
2052 | |
2053 | /* Nota bene |
2054 | * |
2055 | * We could have chosen not to add this impl, and instead have written a |
2056 | * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, |
2057 | * because Box<T> implements Unpin even when T does not, as a result of |
2058 | * this impl. |
2059 | * |
2060 | * We chose this API instead of the alternative for a few reasons: |
2061 | * - Logically, it is helpful to understand pinning in regard to the |
2062 | * memory region being pointed to. For this reason none of the |
2063 | * standard library pointer types support projecting through a pin |
2064 | * (Box<T> is the only pointer type in std for which this would be |
2065 | * safe.) |
2066 | * - It is in practice very useful to have Box<T> be unconditionally |
2067 | * Unpin because of trait objects, for which the structural auto |
2068 | * trait functionality does not apply (e.g., Box<dyn Foo> would |
2069 | * otherwise not be Unpin). |
2070 | * |
2071 | * Another type with the same semantics as Box but only a conditional |
2072 | * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and |
2073 | * could have a method to project a Pin<T> from it. |
2074 | */ |
2075 | #[stable (feature = "pin" , since = "1.33.0" )] |
2076 | impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> {} |
2077 | |
2078 | #[unstable (feature = "coroutine_trait" , issue = "43122" )] |
2079 | impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A> { |
2080 | type Yield = G::Yield; |
2081 | type Return = G::Return; |
2082 | |
2083 | fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { |
2084 | G::resume(self:Pin::new(&mut *self), arg) |
2085 | } |
2086 | } |
2087 | |
2088 | #[unstable (feature = "coroutine_trait" , issue = "43122" )] |
2089 | impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>> |
2090 | where |
2091 | A: 'static, |
2092 | { |
2093 | type Yield = G::Yield; |
2094 | type Return = G::Return; |
2095 | |
2096 | fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { |
2097 | G::resume((*self).as_mut(), arg) |
2098 | } |
2099 | } |
2100 | |
2101 | #[stable (feature = "futures_api" , since = "1.36.0" )] |
2102 | impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> { |
2103 | type Output = F::Output; |
2104 | |
2105 | fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
2106 | F::poll(self:Pin::new(&mut *self), cx) |
2107 | } |
2108 | } |
2109 | |
2110 | #[stable (feature = "box_error" , since = "1.8.0" )] |
2111 | impl<E: Error> Error for Box<E> { |
2112 | #[allow (deprecated, deprecated_in_future)] |
2113 | fn description(&self) -> &str { |
2114 | Error::description(&**self) |
2115 | } |
2116 | |
2117 | #[allow (deprecated)] |
2118 | fn cause(&self) -> Option<&dyn Error> { |
2119 | Error::cause(&**self) |
2120 | } |
2121 | |
2122 | fn source(&self) -> Option<&(dyn Error + 'static)> { |
2123 | Error::source(&**self) |
2124 | } |
2125 | |
2126 | fn provide<'b>(&'b self, request: &mut error::Request<'b>) { |
2127 | Error::provide(&**self, request); |
2128 | } |
2129 | } |
2130 | |
2131 | #[unstable (feature = "pointer_like_trait" , issue = "none" )] |
2132 | impl<T> PointerLike for Box<T> {} |
2133 | |