| 1 | //! The `Box<T>` type for heap allocation. |
| 2 | //! |
| 3 | //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of |
| 4 | //! heap allocation in Rust. Boxes provide ownership for this allocation, and |
| 5 | //! drop their contents when they go out of scope. Boxes also ensure that they |
| 6 | //! never allocate more than `isize::MAX` bytes. |
| 7 | //! |
| 8 | //! # Examples |
| 9 | //! |
| 10 | //! Move a value from the stack to the heap by creating a [`Box`]: |
| 11 | //! |
| 12 | //! ``` |
| 13 | //! let val: u8 = 5; |
| 14 | //! let boxed: Box<u8> = Box::new(val); |
| 15 | //! ``` |
| 16 | //! |
| 17 | //! Move a value from a [`Box`] back to the stack by [dereferencing]: |
| 18 | //! |
| 19 | //! ``` |
| 20 | //! let boxed: Box<u8> = Box::new(5); |
| 21 | //! let val: u8 = *boxed; |
| 22 | //! ``` |
| 23 | //! |
| 24 | //! Creating a recursive data structure: |
| 25 | //! |
| 26 | //! ``` |
| 27 | //! # #[allow (dead_code)] |
| 28 | //! #[derive(Debug)] |
| 29 | //! enum List<T> { |
| 30 | //! Cons(T, Box<List<T>>), |
| 31 | //! Nil, |
| 32 | //! } |
| 33 | //! |
| 34 | //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); |
| 35 | //! println!("{list:?}" ); |
| 36 | //! ``` |
| 37 | //! |
| 38 | //! This will print `Cons(1, Cons(2, Nil))`. |
| 39 | //! |
| 40 | //! Recursive structures must be boxed, because if the definition of `Cons` |
| 41 | //! looked like this: |
| 42 | //! |
| 43 | //! ```compile_fail,E0072 |
| 44 | //! # enum List<T> { |
| 45 | //! Cons(T, List<T>), |
| 46 | //! # } |
| 47 | //! ``` |
| 48 | //! |
| 49 | //! It wouldn't work. This is because the size of a `List` depends on how many |
| 50 | //! elements are in the list, and so we don't know how much memory to allocate |
| 51 | //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how |
| 52 | //! big `Cons` needs to be. |
| 53 | //! |
| 54 | //! # Memory layout |
| 55 | //! |
| 56 | //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for its allocation. It is |
| 57 | //! valid to convert both ways between a [`Box`] and a raw pointer allocated with the [`Global`] |
| 58 | //! allocator, given that the [`Layout`] used with the allocator is correct for the type and the raw |
| 59 | //! pointer points to a valid value of the right type. More precisely, a `value: *mut T` that has |
| 60 | //! been allocated with the [`Global`] allocator with `Layout::for_value(&*value)` may be converted |
| 61 | //! into a box using [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut T` |
| 62 | //! obtained from [`Box::<T>::into_raw`] may be deallocated using the [`Global`] allocator with |
| 63 | //! [`Layout::for_value(&*value)`]. |
| 64 | //! |
| 65 | //! For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned. The |
| 66 | //! recommended way to build a Box to a ZST if `Box::new` cannot be used is to use |
| 67 | //! [`ptr::NonNull::dangling`]. |
| 68 | //! |
| 69 | //! On top of these basic layout requirements, a `Box<T>` must point to a valid value of `T`. |
| 70 | //! |
| 71 | //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented |
| 72 | //! as a single pointer and is also ABI-compatible with C pointers |
| 73 | //! (i.e. the C type `T*`). This means that if you have extern "C" |
| 74 | //! Rust functions that will be called from C, you can define those |
| 75 | //! Rust functions using `Box<T>` types, and use `T*` as corresponding |
| 76 | //! type on the C side. As an example, consider this C header which |
| 77 | //! declares functions that create and destroy some kind of `Foo` |
| 78 | //! value: |
| 79 | //! |
| 80 | //! ```c |
| 81 | //! /* C header */ |
| 82 | //! |
| 83 | //! /* Returns ownership to the caller */ |
| 84 | //! struct Foo* foo_new(void); |
| 85 | //! |
| 86 | //! /* Takes ownership from the caller; no-op when invoked with null */ |
| 87 | //! void foo_delete(struct Foo*); |
| 88 | //! ``` |
| 89 | //! |
| 90 | //! These two functions might be implemented in Rust as follows. Here, the |
| 91 | //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures |
| 92 | //! the ownership constraints. Note also that the nullable argument to |
| 93 | //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` |
| 94 | //! cannot be null. |
| 95 | //! |
| 96 | //! ``` |
| 97 | //! #[repr(C)] |
| 98 | //! pub struct Foo; |
| 99 | //! |
| 100 | //! #[unsafe(no_mangle)] |
| 101 | //! pub extern "C" fn foo_new() -> Box<Foo> { |
| 102 | //! Box::new(Foo) |
| 103 | //! } |
| 104 | //! |
| 105 | //! #[unsafe(no_mangle)] |
| 106 | //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} |
| 107 | //! ``` |
| 108 | //! |
| 109 | //! Even though `Box<T>` has the same representation and C ABI as a C pointer, |
| 110 | //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` |
| 111 | //! and expect things to work. `Box<T>` values will always be fully aligned, |
| 112 | //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to |
| 113 | //! free the value with the global allocator. In general, the best practice |
| 114 | //! is to only use `Box<T>` for pointers that originated from the global |
| 115 | //! allocator. |
| 116 | //! |
| 117 | //! **Important.** At least at present, you should avoid using |
| 118 | //! `Box<T>` types for functions that are defined in C but invoked |
| 119 | //! from Rust. In those cases, you should directly mirror the C types |
| 120 | //! as closely as possible. Using types like `Box<T>` where the C |
| 121 | //! definition is just using `T*` can lead to undefined behavior, as |
| 122 | //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. |
| 123 | //! |
| 124 | //! # Considerations for unsafe code |
| 125 | //! |
| 126 | //! **Warning: This section is not normative and is subject to change, possibly |
| 127 | //! being relaxed in the future! It is a simplified summary of the rules |
| 128 | //! currently implemented in the compiler.** |
| 129 | //! |
| 130 | //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` |
| 131 | //! asserts uniqueness over its content. Using raw pointers derived from a box |
| 132 | //! after that box has been mutated through, moved or borrowed as `&mut T` |
| 133 | //! is not allowed. For more guidance on working with box from unsafe code, see |
| 134 | //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. |
| 135 | //! |
| 136 | //! # Editions |
| 137 | //! |
| 138 | //! A special case exists for the implementation of `IntoIterator` for arrays on the Rust 2021 |
| 139 | //! edition, as documented [here][array]. Unfortunately, it was later found that a similar |
| 140 | //! workaround should be added for boxed slices, and this was applied in the 2024 edition. |
| 141 | //! |
| 142 | //! Specifically, `IntoIterator` is implemented for `Box<[T]>` on all editions, but specific calls |
| 143 | //! to `into_iter()` for boxed slices will defer to the slice implementation on editions before |
| 144 | //! 2024: |
| 145 | //! |
| 146 | //! ```rust,edition2021 |
| 147 | //! // Rust 2015, 2018, and 2021: |
| 148 | //! |
| 149 | //! # #![allow(boxed_slice_into_iter)] // override our `deny(warnings)` |
| 150 | //! let boxed_slice: Box<[i32]> = vec![0; 3].into_boxed_slice(); |
| 151 | //! |
| 152 | //! // This creates a slice iterator, producing references to each value. |
| 153 | //! for item in boxed_slice.into_iter().enumerate() { |
| 154 | //! let (i, x): (usize, &i32) = item; |
| 155 | //! println!("boxed_slice[{i}] = {x}" ); |
| 156 | //! } |
| 157 | //! |
| 158 | //! // The `boxed_slice_into_iter` lint suggests this change for future compatibility: |
| 159 | //! for item in boxed_slice.iter().enumerate() { |
| 160 | //! let (i, x): (usize, &i32) = item; |
| 161 | //! println!("boxed_slice[{i}] = {x}" ); |
| 162 | //! } |
| 163 | //! |
| 164 | //! // You can explicitly iterate a boxed slice by value using `IntoIterator::into_iter` |
| 165 | //! for item in IntoIterator::into_iter(boxed_slice).enumerate() { |
| 166 | //! let (i, x): (usize, i32) = item; |
| 167 | //! println!("boxed_slice[{i}] = {x}" ); |
| 168 | //! } |
| 169 | //! ``` |
| 170 | //! |
| 171 | //! Similar to the array implementation, this may be modified in the future to remove this override, |
| 172 | //! and it's best to avoid relying on this edition-dependent behavior if you wish to preserve |
| 173 | //! compatibility with future versions of the compiler. |
| 174 | //! |
| 175 | //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 |
| 176 | //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 |
| 177 | //! [dereferencing]: core::ops::Deref |
| 178 | //! [`Box::<T>::from_raw(value)`]: Box::from_raw |
| 179 | //! [`Global`]: crate::alloc::Global |
| 180 | //! [`Layout`]: crate::alloc::Layout |
| 181 | //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value |
| 182 | //! [valid]: ptr#safety |
| 183 | |
| 184 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 185 | |
| 186 | use core::borrow::{Borrow, BorrowMut}; |
| 187 | #[cfg (not(no_global_oom_handling))] |
| 188 | use core::clone::CloneToUninit; |
| 189 | use core::cmp::Ordering; |
| 190 | use core::error::{self, Error}; |
| 191 | use core::fmt; |
| 192 | use core::future::Future; |
| 193 | use core::hash::{Hash, Hasher}; |
| 194 | use core::marker::{PointerLike, Tuple, Unsize}; |
| 195 | use core::mem::{self, SizedTypeProperties}; |
| 196 | use core::ops::{ |
| 197 | AsyncFn, AsyncFnMut, AsyncFnOnce, CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut, |
| 198 | DerefPure, DispatchFromDyn, LegacyReceiver, |
| 199 | }; |
| 200 | use core::pin::{Pin, PinCoerceUnsized}; |
| 201 | use core::ptr::{self, NonNull, Unique}; |
| 202 | use core::task::{Context, Poll}; |
| 203 | |
| 204 | #[cfg (not(no_global_oom_handling))] |
| 205 | use crate::alloc::handle_alloc_error; |
| 206 | use crate::alloc::{AllocError, Allocator, Global, Layout}; |
| 207 | use crate::raw_vec::RawVec; |
| 208 | #[cfg (not(no_global_oom_handling))] |
| 209 | use crate::str::from_boxed_utf8_unchecked; |
| 210 | |
| 211 | /// Conversion related impls for `Box<_>` (`From`, `downcast`, etc) |
| 212 | mod convert; |
| 213 | /// Iterator related impls for `Box<_>`. |
| 214 | mod iter; |
| 215 | /// [`ThinBox`] implementation. |
| 216 | mod thin; |
| 217 | |
| 218 | #[unstable (feature = "thin_box" , issue = "92791" )] |
| 219 | pub use thin::ThinBox; |
| 220 | |
| 221 | /// A pointer type that uniquely owns a heap allocation of type `T`. |
| 222 | /// |
| 223 | /// See the [module-level documentation](../../std/boxed/index.html) for more. |
| 224 | #[lang = "owned_box" ] |
| 225 | #[fundamental ] |
| 226 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 227 | #[rustc_insignificant_dtor ] |
| 228 | #[doc (search_unbox)] |
| 229 | // The declaration of the `Box` struct must be kept in sync with the |
| 230 | // compiler or ICEs will happen. |
| 231 | pub struct Box< |
| 232 | T: ?Sized, |
| 233 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 234 | >(Unique<T>, A); |
| 235 | |
| 236 | /// Constructs a `Box<T>` by calling the `exchange_malloc` lang item and moving the argument into |
| 237 | /// the newly allocated memory. This is an intrinsic to avoid unnecessary copies. |
| 238 | /// |
| 239 | /// This is the surface syntax for `box <expr>` expressions. |
| 240 | #[rustc_intrinsic ] |
| 241 | #[unstable (feature = "liballoc_internals" , issue = "none" )] |
| 242 | pub fn box_new<T>(x: T) -> Box<T>; |
| 243 | |
| 244 | impl<T> Box<T> { |
| 245 | /// Allocates memory on the heap and then places `x` into it. |
| 246 | /// |
| 247 | /// This doesn't actually allocate if `T` is zero-sized. |
| 248 | /// |
| 249 | /// # Examples |
| 250 | /// |
| 251 | /// ``` |
| 252 | /// let five = Box::new(5); |
| 253 | /// ``` |
| 254 | #[cfg (not(no_global_oom_handling))] |
| 255 | #[inline (always)] |
| 256 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 257 | #[must_use ] |
| 258 | #[rustc_diagnostic_item = "box_new" ] |
| 259 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 260 | pub fn new(x: T) -> Self { |
| 261 | return box_new(x); |
| 262 | } |
| 263 | |
| 264 | /// Constructs a new box with uninitialized contents. |
| 265 | /// |
| 266 | /// # Examples |
| 267 | /// |
| 268 | /// ``` |
| 269 | /// let mut five = Box::<u32>::new_uninit(); |
| 270 | /// // Deferred initialization: |
| 271 | /// five.write(5); |
| 272 | /// let five = unsafe { five.assume_init() }; |
| 273 | /// |
| 274 | /// assert_eq!(*five, 5) |
| 275 | /// ``` |
| 276 | #[cfg (not(no_global_oom_handling))] |
| 277 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 278 | #[must_use ] |
| 279 | #[inline ] |
| 280 | pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { |
| 281 | Self::new_uninit_in(Global) |
| 282 | } |
| 283 | |
| 284 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 285 | /// being filled with `0` bytes. |
| 286 | /// |
| 287 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 288 | /// of this method. |
| 289 | /// |
| 290 | /// # Examples |
| 291 | /// |
| 292 | /// ``` |
| 293 | /// #![feature(new_zeroed_alloc)] |
| 294 | /// |
| 295 | /// let zero = Box::<u32>::new_zeroed(); |
| 296 | /// let zero = unsafe { zero.assume_init() }; |
| 297 | /// |
| 298 | /// assert_eq!(*zero, 0) |
| 299 | /// ``` |
| 300 | /// |
| 301 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 302 | #[cfg (not(no_global_oom_handling))] |
| 303 | #[inline ] |
| 304 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
| 305 | #[must_use ] |
| 306 | pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { |
| 307 | Self::new_zeroed_in(Global) |
| 308 | } |
| 309 | |
| 310 | /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
| 311 | /// `x` will be pinned in memory and unable to be moved. |
| 312 | /// |
| 313 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` |
| 314 | /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using |
| 315 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to |
| 316 | /// construct a (pinned) `Box` in a different way than with [`Box::new`]. |
| 317 | #[cfg (not(no_global_oom_handling))] |
| 318 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 319 | #[must_use ] |
| 320 | #[inline (always)] |
| 321 | pub fn pin(x: T) -> Pin<Box<T>> { |
| 322 | Box::new(x).into() |
| 323 | } |
| 324 | |
| 325 | /// Allocates memory on the heap then places `x` into it, |
| 326 | /// returning an error if the allocation fails |
| 327 | /// |
| 328 | /// This doesn't actually allocate if `T` is zero-sized. |
| 329 | /// |
| 330 | /// # Examples |
| 331 | /// |
| 332 | /// ``` |
| 333 | /// #![feature(allocator_api)] |
| 334 | /// |
| 335 | /// let five = Box::try_new(5)?; |
| 336 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 337 | /// ``` |
| 338 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 339 | #[inline ] |
| 340 | pub fn try_new(x: T) -> Result<Self, AllocError> { |
| 341 | Self::try_new_in(x, Global) |
| 342 | } |
| 343 | |
| 344 | /// Constructs a new box with uninitialized contents on the heap, |
| 345 | /// returning an error if the allocation fails |
| 346 | /// |
| 347 | /// # Examples |
| 348 | /// |
| 349 | /// ``` |
| 350 | /// #![feature(allocator_api)] |
| 351 | /// |
| 352 | /// let mut five = Box::<u32>::try_new_uninit()?; |
| 353 | /// // Deferred initialization: |
| 354 | /// five.write(5); |
| 355 | /// let five = unsafe { five.assume_init() }; |
| 356 | /// |
| 357 | /// assert_eq!(*five, 5); |
| 358 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 359 | /// ``` |
| 360 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 361 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 362 | #[inline ] |
| 363 | pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
| 364 | Box::try_new_uninit_in(Global) |
| 365 | } |
| 366 | |
| 367 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 368 | /// being filled with `0` bytes on the heap |
| 369 | /// |
| 370 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 371 | /// of this method. |
| 372 | /// |
| 373 | /// # Examples |
| 374 | /// |
| 375 | /// ``` |
| 376 | /// #![feature(allocator_api)] |
| 377 | /// |
| 378 | /// let zero = Box::<u32>::try_new_zeroed()?; |
| 379 | /// let zero = unsafe { zero.assume_init() }; |
| 380 | /// |
| 381 | /// assert_eq!(*zero, 0); |
| 382 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 383 | /// ``` |
| 384 | /// |
| 385 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 386 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 387 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 388 | #[inline ] |
| 389 | pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
| 390 | Box::try_new_zeroed_in(Global) |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | impl<T, A: Allocator> Box<T, A> { |
| 395 | /// Allocates memory in the given allocator then places `x` into it. |
| 396 | /// |
| 397 | /// This doesn't actually allocate if `T` is zero-sized. |
| 398 | /// |
| 399 | /// # Examples |
| 400 | /// |
| 401 | /// ``` |
| 402 | /// #![feature(allocator_api)] |
| 403 | /// |
| 404 | /// use std::alloc::System; |
| 405 | /// |
| 406 | /// let five = Box::new_in(5, System); |
| 407 | /// ``` |
| 408 | #[cfg (not(no_global_oom_handling))] |
| 409 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 410 | #[must_use ] |
| 411 | #[inline ] |
| 412 | pub fn new_in(x: T, alloc: A) -> Self |
| 413 | where |
| 414 | A: Allocator, |
| 415 | { |
| 416 | let mut boxed = Self::new_uninit_in(alloc); |
| 417 | boxed.write(x); |
| 418 | unsafe { boxed.assume_init() } |
| 419 | } |
| 420 | |
| 421 | /// Allocates memory in the given allocator then places `x` into it, |
| 422 | /// returning an error if the allocation fails |
| 423 | /// |
| 424 | /// This doesn't actually allocate if `T` is zero-sized. |
| 425 | /// |
| 426 | /// # Examples |
| 427 | /// |
| 428 | /// ``` |
| 429 | /// #![feature(allocator_api)] |
| 430 | /// |
| 431 | /// use std::alloc::System; |
| 432 | /// |
| 433 | /// let five = Box::try_new_in(5, System)?; |
| 434 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 435 | /// ``` |
| 436 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 437 | #[inline ] |
| 438 | pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> |
| 439 | where |
| 440 | A: Allocator, |
| 441 | { |
| 442 | let mut boxed = Self::try_new_uninit_in(alloc)?; |
| 443 | boxed.write(x); |
| 444 | unsafe { Ok(boxed.assume_init()) } |
| 445 | } |
| 446 | |
| 447 | /// Constructs a new box with uninitialized contents in the provided allocator. |
| 448 | /// |
| 449 | /// # Examples |
| 450 | /// |
| 451 | /// ``` |
| 452 | /// #![feature(allocator_api)] |
| 453 | /// |
| 454 | /// use std::alloc::System; |
| 455 | /// |
| 456 | /// let mut five = Box::<u32, _>::new_uninit_in(System); |
| 457 | /// // Deferred initialization: |
| 458 | /// five.write(5); |
| 459 | /// let five = unsafe { five.assume_init() }; |
| 460 | /// |
| 461 | /// assert_eq!(*five, 5) |
| 462 | /// ``` |
| 463 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 464 | #[cfg (not(no_global_oom_handling))] |
| 465 | #[must_use ] |
| 466 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 467 | pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
| 468 | where |
| 469 | A: Allocator, |
| 470 | { |
| 471 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 472 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
| 473 | // That would make code size bigger. |
| 474 | match Box::try_new_uninit_in(alloc) { |
| 475 | Ok(m) => m, |
| 476 | Err(_) => handle_alloc_error(layout), |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | /// Constructs a new box with uninitialized contents in the provided allocator, |
| 481 | /// returning an error if the allocation fails |
| 482 | /// |
| 483 | /// # Examples |
| 484 | /// |
| 485 | /// ``` |
| 486 | /// #![feature(allocator_api)] |
| 487 | /// |
| 488 | /// use std::alloc::System; |
| 489 | /// |
| 490 | /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; |
| 491 | /// // Deferred initialization: |
| 492 | /// five.write(5); |
| 493 | /// let five = unsafe { five.assume_init() }; |
| 494 | /// |
| 495 | /// assert_eq!(*five, 5); |
| 496 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 497 | /// ``` |
| 498 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 499 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 500 | pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
| 501 | where |
| 502 | A: Allocator, |
| 503 | { |
| 504 | let ptr = if T::IS_ZST { |
| 505 | NonNull::dangling() |
| 506 | } else { |
| 507 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 508 | alloc.allocate(layout)?.cast() |
| 509 | }; |
| 510 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
| 511 | } |
| 512 | |
| 513 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 514 | /// being filled with `0` bytes in the provided allocator. |
| 515 | /// |
| 516 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 517 | /// of this method. |
| 518 | /// |
| 519 | /// # Examples |
| 520 | /// |
| 521 | /// ``` |
| 522 | /// #![feature(allocator_api)] |
| 523 | /// |
| 524 | /// use std::alloc::System; |
| 525 | /// |
| 526 | /// let zero = Box::<u32, _>::new_zeroed_in(System); |
| 527 | /// let zero = unsafe { zero.assume_init() }; |
| 528 | /// |
| 529 | /// assert_eq!(*zero, 0) |
| 530 | /// ``` |
| 531 | /// |
| 532 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 533 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 534 | #[cfg (not(no_global_oom_handling))] |
| 535 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 536 | #[must_use ] |
| 537 | pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
| 538 | where |
| 539 | A: Allocator, |
| 540 | { |
| 541 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 542 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
| 543 | // That would make code size bigger. |
| 544 | match Box::try_new_zeroed_in(alloc) { |
| 545 | Ok(m) => m, |
| 546 | Err(_) => handle_alloc_error(layout), |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 551 | /// being filled with `0` bytes in the provided allocator, |
| 552 | /// returning an error if the allocation fails, |
| 553 | /// |
| 554 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 555 | /// of this method. |
| 556 | /// |
| 557 | /// # Examples |
| 558 | /// |
| 559 | /// ``` |
| 560 | /// #![feature(allocator_api)] |
| 561 | /// |
| 562 | /// use std::alloc::System; |
| 563 | /// |
| 564 | /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; |
| 565 | /// let zero = unsafe { zero.assume_init() }; |
| 566 | /// |
| 567 | /// assert_eq!(*zero, 0); |
| 568 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 569 | /// ``` |
| 570 | /// |
| 571 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 572 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 573 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 574 | pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
| 575 | where |
| 576 | A: Allocator, |
| 577 | { |
| 578 | let ptr = if T::IS_ZST { |
| 579 | NonNull::dangling() |
| 580 | } else { |
| 581 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 582 | alloc.allocate_zeroed(layout)?.cast() |
| 583 | }; |
| 584 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
| 585 | } |
| 586 | |
| 587 | /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then |
| 588 | /// `x` will be pinned in memory and unable to be moved. |
| 589 | /// |
| 590 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` |
| 591 | /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using |
| 592 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to |
| 593 | /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. |
| 594 | #[cfg (not(no_global_oom_handling))] |
| 595 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 596 | #[must_use ] |
| 597 | #[inline (always)] |
| 598 | pub fn pin_in(x: T, alloc: A) -> Pin<Self> |
| 599 | where |
| 600 | A: 'static + Allocator, |
| 601 | { |
| 602 | Self::into_pin(Self::new_in(x, alloc)) |
| 603 | } |
| 604 | |
| 605 | /// Converts a `Box<T>` into a `Box<[T]>` |
| 606 | /// |
| 607 | /// This conversion does not allocate on the heap and happens in place. |
| 608 | #[unstable (feature = "box_into_boxed_slice" , issue = "71582" )] |
| 609 | pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { |
| 610 | let (raw, alloc) = Box::into_raw_with_allocator(boxed); |
| 611 | unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } |
| 612 | } |
| 613 | |
| 614 | /// Consumes the `Box`, returning the wrapped value. |
| 615 | /// |
| 616 | /// # Examples |
| 617 | /// |
| 618 | /// ``` |
| 619 | /// #![feature(box_into_inner)] |
| 620 | /// |
| 621 | /// let c = Box::new(5); |
| 622 | /// |
| 623 | /// assert_eq!(Box::into_inner(c), 5); |
| 624 | /// ``` |
| 625 | #[unstable (feature = "box_into_inner" , issue = "80437" )] |
| 626 | #[inline ] |
| 627 | pub fn into_inner(boxed: Self) -> T { |
| 628 | *boxed |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | impl<T> Box<[T]> { |
| 633 | /// Constructs a new boxed slice with uninitialized contents. |
| 634 | /// |
| 635 | /// # Examples |
| 636 | /// |
| 637 | /// ``` |
| 638 | /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| 639 | /// // Deferred initialization: |
| 640 | /// values[0].write(1); |
| 641 | /// values[1].write(2); |
| 642 | /// values[2].write(3); |
| 643 | /// let values = unsafe {values.assume_init() }; |
| 644 | /// |
| 645 | /// assert_eq!(*values, [1, 2, 3]) |
| 646 | /// ``` |
| 647 | #[cfg (not(no_global_oom_handling))] |
| 648 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 649 | #[must_use ] |
| 650 | pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
| 651 | unsafe { RawVec::with_capacity(len).into_box(len) } |
| 652 | } |
| 653 | |
| 654 | /// Constructs a new boxed slice with uninitialized contents, with the memory |
| 655 | /// being filled with `0` bytes. |
| 656 | /// |
| 657 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 658 | /// of this method. |
| 659 | /// |
| 660 | /// # Examples |
| 661 | /// |
| 662 | /// ``` |
| 663 | /// #![feature(new_zeroed_alloc)] |
| 664 | /// |
| 665 | /// let values = Box::<[u32]>::new_zeroed_slice(3); |
| 666 | /// let values = unsafe { values.assume_init() }; |
| 667 | /// |
| 668 | /// assert_eq!(*values, [0, 0, 0]) |
| 669 | /// ``` |
| 670 | /// |
| 671 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 672 | #[cfg (not(no_global_oom_handling))] |
| 673 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
| 674 | #[must_use ] |
| 675 | pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
| 676 | unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } |
| 677 | } |
| 678 | |
| 679 | /// Constructs a new boxed slice with uninitialized contents. Returns an error if |
| 680 | /// the allocation fails. |
| 681 | /// |
| 682 | /// # Examples |
| 683 | /// |
| 684 | /// ``` |
| 685 | /// #![feature(allocator_api)] |
| 686 | /// |
| 687 | /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; |
| 688 | /// // Deferred initialization: |
| 689 | /// values[0].write(1); |
| 690 | /// values[1].write(2); |
| 691 | /// values[2].write(3); |
| 692 | /// let values = unsafe { values.assume_init() }; |
| 693 | /// |
| 694 | /// assert_eq!(*values, [1, 2, 3]); |
| 695 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 696 | /// ``` |
| 697 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 698 | #[inline ] |
| 699 | pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
| 700 | let ptr = if T::IS_ZST || len == 0 { |
| 701 | NonNull::dangling() |
| 702 | } else { |
| 703 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 704 | Ok(l) => l, |
| 705 | Err(_) => return Err(AllocError), |
| 706 | }; |
| 707 | Global.allocate(layout)?.cast() |
| 708 | }; |
| 709 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } |
| 710 | } |
| 711 | |
| 712 | /// Constructs a new boxed slice with uninitialized contents, with the memory |
| 713 | /// being filled with `0` bytes. Returns an error if the allocation fails. |
| 714 | /// |
| 715 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 716 | /// of this method. |
| 717 | /// |
| 718 | /// # Examples |
| 719 | /// |
| 720 | /// ``` |
| 721 | /// #![feature(allocator_api)] |
| 722 | /// |
| 723 | /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; |
| 724 | /// let values = unsafe { values.assume_init() }; |
| 725 | /// |
| 726 | /// assert_eq!(*values, [0, 0, 0]); |
| 727 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 728 | /// ``` |
| 729 | /// |
| 730 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 731 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 732 | #[inline ] |
| 733 | pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
| 734 | let ptr = if T::IS_ZST || len == 0 { |
| 735 | NonNull::dangling() |
| 736 | } else { |
| 737 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 738 | Ok(l) => l, |
| 739 | Err(_) => return Err(AllocError), |
| 740 | }; |
| 741 | Global.allocate_zeroed(layout)?.cast() |
| 742 | }; |
| 743 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } |
| 744 | } |
| 745 | |
| 746 | /// Converts the boxed slice into a boxed array. |
| 747 | /// |
| 748 | /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type. |
| 749 | /// |
| 750 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
| 751 | #[unstable (feature = "slice_as_array" , issue = "133508" )] |
| 752 | #[inline ] |
| 753 | #[must_use ] |
| 754 | pub fn into_array<const N: usize>(self) -> Option<Box<[T; N]>> { |
| 755 | if self.len() == N { |
| 756 | let ptr = Self::into_raw(self) as *mut [T; N]; |
| 757 | |
| 758 | // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length. |
| 759 | let me = unsafe { Box::from_raw(ptr) }; |
| 760 | Some(me) |
| 761 | } else { |
| 762 | None |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | impl<T, A: Allocator> Box<[T], A> { |
| 768 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. |
| 769 | /// |
| 770 | /// # Examples |
| 771 | /// |
| 772 | /// ``` |
| 773 | /// #![feature(allocator_api)] |
| 774 | /// |
| 775 | /// use std::alloc::System; |
| 776 | /// |
| 777 | /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); |
| 778 | /// // Deferred initialization: |
| 779 | /// values[0].write(1); |
| 780 | /// values[1].write(2); |
| 781 | /// values[2].write(3); |
| 782 | /// let values = unsafe { values.assume_init() }; |
| 783 | /// |
| 784 | /// assert_eq!(*values, [1, 2, 3]) |
| 785 | /// ``` |
| 786 | #[cfg (not(no_global_oom_handling))] |
| 787 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 788 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 789 | #[must_use ] |
| 790 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
| 791 | unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } |
| 792 | } |
| 793 | |
| 794 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, |
| 795 | /// with the memory being filled with `0` bytes. |
| 796 | /// |
| 797 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 798 | /// of this method. |
| 799 | /// |
| 800 | /// # Examples |
| 801 | /// |
| 802 | /// ``` |
| 803 | /// #![feature(allocator_api)] |
| 804 | /// |
| 805 | /// use std::alloc::System; |
| 806 | /// |
| 807 | /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); |
| 808 | /// let values = unsafe { values.assume_init() }; |
| 809 | /// |
| 810 | /// assert_eq!(*values, [0, 0, 0]) |
| 811 | /// ``` |
| 812 | /// |
| 813 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 814 | #[cfg (not(no_global_oom_handling))] |
| 815 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 816 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 817 | #[must_use ] |
| 818 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
| 819 | unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } |
| 820 | } |
| 821 | |
| 822 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if |
| 823 | /// the allocation fails. |
| 824 | /// |
| 825 | /// # Examples |
| 826 | /// |
| 827 | /// ``` |
| 828 | /// #![feature(allocator_api)] |
| 829 | /// |
| 830 | /// use std::alloc::System; |
| 831 | /// |
| 832 | /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?; |
| 833 | /// // Deferred initialization: |
| 834 | /// values[0].write(1); |
| 835 | /// values[1].write(2); |
| 836 | /// values[2].write(3); |
| 837 | /// let values = unsafe { values.assume_init() }; |
| 838 | /// |
| 839 | /// assert_eq!(*values, [1, 2, 3]); |
| 840 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 841 | /// ``` |
| 842 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 843 | #[inline ] |
| 844 | pub fn try_new_uninit_slice_in( |
| 845 | len: usize, |
| 846 | alloc: A, |
| 847 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> { |
| 848 | let ptr = if T::IS_ZST || len == 0 { |
| 849 | NonNull::dangling() |
| 850 | } else { |
| 851 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 852 | Ok(l) => l, |
| 853 | Err(_) => return Err(AllocError), |
| 854 | }; |
| 855 | alloc.allocate(layout)?.cast() |
| 856 | }; |
| 857 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) } |
| 858 | } |
| 859 | |
| 860 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory |
| 861 | /// being filled with `0` bytes. Returns an error if the allocation fails. |
| 862 | /// |
| 863 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 864 | /// of this method. |
| 865 | /// |
| 866 | /// # Examples |
| 867 | /// |
| 868 | /// ``` |
| 869 | /// #![feature(allocator_api)] |
| 870 | /// |
| 871 | /// use std::alloc::System; |
| 872 | /// |
| 873 | /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?; |
| 874 | /// let values = unsafe { values.assume_init() }; |
| 875 | /// |
| 876 | /// assert_eq!(*values, [0, 0, 0]); |
| 877 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 878 | /// ``` |
| 879 | /// |
| 880 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 881 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 882 | #[inline ] |
| 883 | pub fn try_new_zeroed_slice_in( |
| 884 | len: usize, |
| 885 | alloc: A, |
| 886 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> { |
| 887 | let ptr = if T::IS_ZST || len == 0 { |
| 888 | NonNull::dangling() |
| 889 | } else { |
| 890 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 891 | Ok(l) => l, |
| 892 | Err(_) => return Err(AllocError), |
| 893 | }; |
| 894 | alloc.allocate_zeroed(layout)?.cast() |
| 895 | }; |
| 896 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) } |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { |
| 901 | /// Converts to `Box<T, A>`. |
| 902 | /// |
| 903 | /// # Safety |
| 904 | /// |
| 905 | /// As with [`MaybeUninit::assume_init`], |
| 906 | /// it is up to the caller to guarantee that the value |
| 907 | /// really is in an initialized state. |
| 908 | /// Calling this when the content is not yet fully initialized |
| 909 | /// causes immediate undefined behavior. |
| 910 | /// |
| 911 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 912 | /// |
| 913 | /// # Examples |
| 914 | /// |
| 915 | /// ``` |
| 916 | /// let mut five = Box::<u32>::new_uninit(); |
| 917 | /// // Deferred initialization: |
| 918 | /// five.write(5); |
| 919 | /// let five: Box<u32> = unsafe { five.assume_init() }; |
| 920 | /// |
| 921 | /// assert_eq!(*five, 5) |
| 922 | /// ``` |
| 923 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 924 | #[inline ] |
| 925 | pub unsafe fn assume_init(self) -> Box<T, A> { |
| 926 | let (raw, alloc) = Box::into_raw_with_allocator(self); |
| 927 | unsafe { Box::from_raw_in(raw as *mut T, alloc) } |
| 928 | } |
| 929 | |
| 930 | /// Writes the value and converts to `Box<T, A>`. |
| 931 | /// |
| 932 | /// This method converts the box similarly to [`Box::assume_init`] but |
| 933 | /// writes `value` into it before conversion thus guaranteeing safety. |
| 934 | /// In some scenarios use of this method may improve performance because |
| 935 | /// the compiler may be able to optimize copying from stack. |
| 936 | /// |
| 937 | /// # Examples |
| 938 | /// |
| 939 | /// ``` |
| 940 | /// let big_box = Box::<[usize; 1024]>::new_uninit(); |
| 941 | /// |
| 942 | /// let mut array = [0; 1024]; |
| 943 | /// for (i, place) in array.iter_mut().enumerate() { |
| 944 | /// *place = i; |
| 945 | /// } |
| 946 | /// |
| 947 | /// // The optimizer may be able to elide this copy, so previous code writes |
| 948 | /// // to heap directly. |
| 949 | /// let big_box = Box::write(big_box, array); |
| 950 | /// |
| 951 | /// for (i, x) in big_box.iter().enumerate() { |
| 952 | /// assert_eq!(*x, i); |
| 953 | /// } |
| 954 | /// ``` |
| 955 | #[stable (feature = "box_uninit_write" , since = "1.87.0" )] |
| 956 | #[inline ] |
| 957 | pub fn write(mut boxed: Self, value: T) -> Box<T, A> { |
| 958 | unsafe { |
| 959 | (*boxed).write(value); |
| 960 | boxed.assume_init() |
| 961 | } |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { |
| 966 | /// Converts to `Box<[T], A>`. |
| 967 | /// |
| 968 | /// # Safety |
| 969 | /// |
| 970 | /// As with [`MaybeUninit::assume_init`], |
| 971 | /// it is up to the caller to guarantee that the values |
| 972 | /// really are in an initialized state. |
| 973 | /// Calling this when the content is not yet fully initialized |
| 974 | /// causes immediate undefined behavior. |
| 975 | /// |
| 976 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 977 | /// |
| 978 | /// # Examples |
| 979 | /// |
| 980 | /// ``` |
| 981 | /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| 982 | /// // Deferred initialization: |
| 983 | /// values[0].write(1); |
| 984 | /// values[1].write(2); |
| 985 | /// values[2].write(3); |
| 986 | /// let values = unsafe { values.assume_init() }; |
| 987 | /// |
| 988 | /// assert_eq!(*values, [1, 2, 3]) |
| 989 | /// ``` |
| 990 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 991 | #[inline ] |
| 992 | pub unsafe fn assume_init(self) -> Box<[T], A> { |
| 993 | let (raw, alloc) = Box::into_raw_with_allocator(self); |
| 994 | unsafe { Box::from_raw_in(raw as *mut [T], alloc) } |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | impl<T: ?Sized> Box<T> { |
| 999 | /// Constructs a box from a raw pointer. |
| 1000 | /// |
| 1001 | /// After calling this function, the raw pointer is owned by the |
| 1002 | /// resulting `Box`. Specifically, the `Box` destructor will call |
| 1003 | /// the destructor of `T` and free the allocated memory. For this |
| 1004 | /// to be safe, the memory must have been allocated in accordance |
| 1005 | /// with the [memory layout] used by `Box` . |
| 1006 | /// |
| 1007 | /// # Safety |
| 1008 | /// |
| 1009 | /// This function is unsafe because improper use may lead to |
| 1010 | /// memory problems. For example, a double-free may occur if the |
| 1011 | /// function is called twice on the same raw pointer. |
| 1012 | /// |
| 1013 | /// The raw pointer must point to a block of memory allocated by the global allocator. |
| 1014 | /// |
| 1015 | /// The safety conditions are described in the [memory layout] section. |
| 1016 | /// |
| 1017 | /// # Examples |
| 1018 | /// |
| 1019 | /// Recreate a `Box` which was previously converted to a raw pointer |
| 1020 | /// using [`Box::into_raw`]: |
| 1021 | /// ``` |
| 1022 | /// let x = Box::new(5); |
| 1023 | /// let ptr = Box::into_raw(x); |
| 1024 | /// let x = unsafe { Box::from_raw(ptr) }; |
| 1025 | /// ``` |
| 1026 | /// Manually create a `Box` from scratch by using the global allocator: |
| 1027 | /// ``` |
| 1028 | /// use std::alloc::{alloc, Layout}; |
| 1029 | /// |
| 1030 | /// unsafe { |
| 1031 | /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; |
| 1032 | /// // In general .write is required to avoid attempting to destruct |
| 1033 | /// // the (uninitialized) previous contents of `ptr`, though for this |
| 1034 | /// // simple example `*ptr = 5` would have worked as well. |
| 1035 | /// ptr.write(5); |
| 1036 | /// let x = Box::from_raw(ptr); |
| 1037 | /// } |
| 1038 | /// ``` |
| 1039 | /// |
| 1040 | /// [memory layout]: self#memory-layout |
| 1041 | #[stable (feature = "box_raw" , since = "1.4.0" )] |
| 1042 | #[inline ] |
| 1043 | #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`" ] |
| 1044 | pub unsafe fn from_raw(raw: *mut T) -> Self { |
| 1045 | unsafe { Self::from_raw_in(raw, Global) } |
| 1046 | } |
| 1047 | |
| 1048 | /// Constructs a box from a `NonNull` pointer. |
| 1049 | /// |
| 1050 | /// After calling this function, the `NonNull` pointer is owned by |
| 1051 | /// the resulting `Box`. Specifically, the `Box` destructor will call |
| 1052 | /// the destructor of `T` and free the allocated memory. For this |
| 1053 | /// to be safe, the memory must have been allocated in accordance |
| 1054 | /// with the [memory layout] used by `Box` . |
| 1055 | /// |
| 1056 | /// # Safety |
| 1057 | /// |
| 1058 | /// This function is unsafe because improper use may lead to |
| 1059 | /// memory problems. For example, a double-free may occur if the |
| 1060 | /// function is called twice on the same `NonNull` pointer. |
| 1061 | /// |
| 1062 | /// The non-null pointer must point to a block of memory allocated by the global allocator. |
| 1063 | /// |
| 1064 | /// The safety conditions are described in the [memory layout] section. |
| 1065 | /// |
| 1066 | /// # Examples |
| 1067 | /// |
| 1068 | /// Recreate a `Box` which was previously converted to a `NonNull` |
| 1069 | /// pointer using [`Box::into_non_null`]: |
| 1070 | /// ``` |
| 1071 | /// #![feature(box_vec_non_null)] |
| 1072 | /// |
| 1073 | /// let x = Box::new(5); |
| 1074 | /// let non_null = Box::into_non_null(x); |
| 1075 | /// let x = unsafe { Box::from_non_null(non_null) }; |
| 1076 | /// ``` |
| 1077 | /// Manually create a `Box` from scratch by using the global allocator: |
| 1078 | /// ``` |
| 1079 | /// #![feature(box_vec_non_null)] |
| 1080 | /// |
| 1081 | /// use std::alloc::{alloc, Layout}; |
| 1082 | /// use std::ptr::NonNull; |
| 1083 | /// |
| 1084 | /// unsafe { |
| 1085 | /// let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>()) |
| 1086 | /// .expect("allocation failed" ); |
| 1087 | /// // In general .write is required to avoid attempting to destruct |
| 1088 | /// // the (uninitialized) previous contents of `non_null`. |
| 1089 | /// non_null.write(5); |
| 1090 | /// let x = Box::from_non_null(non_null); |
| 1091 | /// } |
| 1092 | /// ``` |
| 1093 | /// |
| 1094 | /// [memory layout]: self#memory-layout |
| 1095 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
| 1096 | #[inline ] |
| 1097 | #[must_use = "call `drop(Box::from_non_null(ptr))` if you intend to drop the `Box`" ] |
| 1098 | pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self { |
| 1099 | unsafe { Self::from_raw(ptr.as_ptr()) } |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | impl<T: ?Sized, A: Allocator> Box<T, A> { |
| 1104 | /// Constructs a box from a raw pointer in the given allocator. |
| 1105 | /// |
| 1106 | /// After calling this function, the raw pointer is owned by the |
| 1107 | /// resulting `Box`. Specifically, the `Box` destructor will call |
| 1108 | /// the destructor of `T` and free the allocated memory. For this |
| 1109 | /// to be safe, the memory must have been allocated in accordance |
| 1110 | /// with the [memory layout] used by `Box` . |
| 1111 | /// |
| 1112 | /// # Safety |
| 1113 | /// |
| 1114 | /// This function is unsafe because improper use may lead to |
| 1115 | /// memory problems. For example, a double-free may occur if the |
| 1116 | /// function is called twice on the same raw pointer. |
| 1117 | /// |
| 1118 | /// The raw pointer must point to a block of memory allocated by `alloc`. |
| 1119 | /// |
| 1120 | /// # Examples |
| 1121 | /// |
| 1122 | /// Recreate a `Box` which was previously converted to a raw pointer |
| 1123 | /// using [`Box::into_raw_with_allocator`]: |
| 1124 | /// ``` |
| 1125 | /// #![feature(allocator_api)] |
| 1126 | /// |
| 1127 | /// use std::alloc::System; |
| 1128 | /// |
| 1129 | /// let x = Box::new_in(5, System); |
| 1130 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| 1131 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
| 1132 | /// ``` |
| 1133 | /// Manually create a `Box` from scratch by using the system allocator: |
| 1134 | /// ``` |
| 1135 | /// #![feature(allocator_api, slice_ptr_get)] |
| 1136 | /// |
| 1137 | /// use std::alloc::{Allocator, Layout, System}; |
| 1138 | /// |
| 1139 | /// unsafe { |
| 1140 | /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; |
| 1141 | /// // In general .write is required to avoid attempting to destruct |
| 1142 | /// // the (uninitialized) previous contents of `ptr`, though for this |
| 1143 | /// // simple example `*ptr = 5` would have worked as well. |
| 1144 | /// ptr.write(5); |
| 1145 | /// let x = Box::from_raw_in(ptr, System); |
| 1146 | /// } |
| 1147 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 1148 | /// ``` |
| 1149 | /// |
| 1150 | /// [memory layout]: self#memory-layout |
| 1151 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1152 | #[inline ] |
| 1153 | pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { |
| 1154 | Box(unsafe { Unique::new_unchecked(raw) }, alloc) |
| 1155 | } |
| 1156 | |
| 1157 | /// Constructs a box from a `NonNull` pointer in the given allocator. |
| 1158 | /// |
| 1159 | /// After calling this function, the `NonNull` pointer is owned by |
| 1160 | /// the resulting `Box`. Specifically, the `Box` destructor will call |
| 1161 | /// the destructor of `T` and free the allocated memory. For this |
| 1162 | /// to be safe, the memory must have been allocated in accordance |
| 1163 | /// with the [memory layout] used by `Box` . |
| 1164 | /// |
| 1165 | /// # Safety |
| 1166 | /// |
| 1167 | /// This function is unsafe because improper use may lead to |
| 1168 | /// memory problems. For example, a double-free may occur if the |
| 1169 | /// function is called twice on the same raw pointer. |
| 1170 | /// |
| 1171 | /// The non-null pointer must point to a block of memory allocated by `alloc`. |
| 1172 | /// |
| 1173 | /// # Examples |
| 1174 | /// |
| 1175 | /// Recreate a `Box` which was previously converted to a `NonNull` pointer |
| 1176 | /// using [`Box::into_non_null_with_allocator`]: |
| 1177 | /// ``` |
| 1178 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1179 | /// |
| 1180 | /// use std::alloc::System; |
| 1181 | /// |
| 1182 | /// let x = Box::new_in(5, System); |
| 1183 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
| 1184 | /// let x = unsafe { Box::from_non_null_in(non_null, alloc) }; |
| 1185 | /// ``` |
| 1186 | /// Manually create a `Box` from scratch by using the system allocator: |
| 1187 | /// ``` |
| 1188 | /// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)] |
| 1189 | /// |
| 1190 | /// use std::alloc::{Allocator, Layout, System}; |
| 1191 | /// |
| 1192 | /// unsafe { |
| 1193 | /// let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>(); |
| 1194 | /// // In general .write is required to avoid attempting to destruct |
| 1195 | /// // the (uninitialized) previous contents of `non_null`. |
| 1196 | /// non_null.write(5); |
| 1197 | /// let x = Box::from_non_null_in(non_null, System); |
| 1198 | /// } |
| 1199 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 1200 | /// ``` |
| 1201 | /// |
| 1202 | /// [memory layout]: self#memory-layout |
| 1203 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1204 | // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] |
| 1205 | #[inline ] |
| 1206 | pub unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self { |
| 1207 | // SAFETY: guaranteed by the caller. |
| 1208 | unsafe { Box::from_raw_in(raw.as_ptr(), alloc) } |
| 1209 | } |
| 1210 | |
| 1211 | /// Consumes the `Box`, returning a wrapped raw pointer. |
| 1212 | /// |
| 1213 | /// The pointer will be properly aligned and non-null. |
| 1214 | /// |
| 1215 | /// After calling this function, the caller is responsible for the |
| 1216 | /// memory previously managed by the `Box`. In particular, the |
| 1217 | /// caller should properly destroy `T` and release the memory, taking |
| 1218 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1219 | /// do this is to convert the raw pointer back into a `Box` with the |
| 1220 | /// [`Box::from_raw`] function, allowing the `Box` destructor to perform |
| 1221 | /// the cleanup. |
| 1222 | /// |
| 1223 | /// Note: this is an associated function, which means that you have |
| 1224 | /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This |
| 1225 | /// is so that there is no conflict with a method on the inner type. |
| 1226 | /// |
| 1227 | /// # Examples |
| 1228 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] |
| 1229 | /// for automatic cleanup: |
| 1230 | /// ``` |
| 1231 | /// let x = Box::new(String::from("Hello" )); |
| 1232 | /// let ptr = Box::into_raw(x); |
| 1233 | /// let x = unsafe { Box::from_raw(ptr) }; |
| 1234 | /// ``` |
| 1235 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1236 | /// the memory: |
| 1237 | /// ``` |
| 1238 | /// use std::alloc::{dealloc, Layout}; |
| 1239 | /// use std::ptr; |
| 1240 | /// |
| 1241 | /// let x = Box::new(String::from("Hello" )); |
| 1242 | /// let ptr = Box::into_raw(x); |
| 1243 | /// unsafe { |
| 1244 | /// ptr::drop_in_place(ptr); |
| 1245 | /// dealloc(ptr as *mut u8, Layout::new::<String>()); |
| 1246 | /// } |
| 1247 | /// ``` |
| 1248 | /// Note: This is equivalent to the following: |
| 1249 | /// ``` |
| 1250 | /// let x = Box::new(String::from("Hello" )); |
| 1251 | /// let ptr = Box::into_raw(x); |
| 1252 | /// unsafe { |
| 1253 | /// drop(Box::from_raw(ptr)); |
| 1254 | /// } |
| 1255 | /// ``` |
| 1256 | /// |
| 1257 | /// [memory layout]: self#memory-layout |
| 1258 | #[must_use = "losing the pointer will leak memory" ] |
| 1259 | #[stable (feature = "box_raw" , since = "1.4.0" )] |
| 1260 | #[inline ] |
| 1261 | pub fn into_raw(b: Self) -> *mut T { |
| 1262 | // Make sure Miri realizes that we transition from a noalias pointer to a raw pointer here. |
| 1263 | unsafe { &raw mut *&mut *Self::into_raw_with_allocator(b).0 } |
| 1264 | } |
| 1265 | |
| 1266 | /// Consumes the `Box`, returning a wrapped `NonNull` pointer. |
| 1267 | /// |
| 1268 | /// The pointer will be properly aligned. |
| 1269 | /// |
| 1270 | /// After calling this function, the caller is responsible for the |
| 1271 | /// memory previously managed by the `Box`. In particular, the |
| 1272 | /// caller should properly destroy `T` and release the memory, taking |
| 1273 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1274 | /// do this is to convert the `NonNull` pointer back into a `Box` with the |
| 1275 | /// [`Box::from_non_null`] function, allowing the `Box` destructor to |
| 1276 | /// perform the cleanup. |
| 1277 | /// |
| 1278 | /// Note: this is an associated function, which means that you have |
| 1279 | /// to call it as `Box::into_non_null(b)` instead of `b.into_non_null()`. |
| 1280 | /// This is so that there is no conflict with a method on the inner type. |
| 1281 | /// |
| 1282 | /// # Examples |
| 1283 | /// Converting the `NonNull` pointer back into a `Box` with [`Box::from_non_null`] |
| 1284 | /// for automatic cleanup: |
| 1285 | /// ``` |
| 1286 | /// #![feature(box_vec_non_null)] |
| 1287 | /// |
| 1288 | /// let x = Box::new(String::from("Hello" )); |
| 1289 | /// let non_null = Box::into_non_null(x); |
| 1290 | /// let x = unsafe { Box::from_non_null(non_null) }; |
| 1291 | /// ``` |
| 1292 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1293 | /// the memory: |
| 1294 | /// ``` |
| 1295 | /// #![feature(box_vec_non_null)] |
| 1296 | /// |
| 1297 | /// use std::alloc::{dealloc, Layout}; |
| 1298 | /// |
| 1299 | /// let x = Box::new(String::from("Hello" )); |
| 1300 | /// let non_null = Box::into_non_null(x); |
| 1301 | /// unsafe { |
| 1302 | /// non_null.drop_in_place(); |
| 1303 | /// dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>()); |
| 1304 | /// } |
| 1305 | /// ``` |
| 1306 | /// Note: This is equivalent to the following: |
| 1307 | /// ``` |
| 1308 | /// #![feature(box_vec_non_null)] |
| 1309 | /// |
| 1310 | /// let x = Box::new(String::from("Hello" )); |
| 1311 | /// let non_null = Box::into_non_null(x); |
| 1312 | /// unsafe { |
| 1313 | /// drop(Box::from_non_null(non_null)); |
| 1314 | /// } |
| 1315 | /// ``` |
| 1316 | /// |
| 1317 | /// [memory layout]: self#memory-layout |
| 1318 | #[must_use = "losing the pointer will leak memory" ] |
| 1319 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
| 1320 | #[inline ] |
| 1321 | pub fn into_non_null(b: Self) -> NonNull<T> { |
| 1322 | // SAFETY: `Box` is guaranteed to be non-null. |
| 1323 | unsafe { NonNull::new_unchecked(Self::into_raw(b)) } |
| 1324 | } |
| 1325 | |
| 1326 | /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. |
| 1327 | /// |
| 1328 | /// The pointer will be properly aligned and non-null. |
| 1329 | /// |
| 1330 | /// After calling this function, the caller is responsible for the |
| 1331 | /// memory previously managed by the `Box`. In particular, the |
| 1332 | /// caller should properly destroy `T` and release the memory, taking |
| 1333 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1334 | /// do this is to convert the raw pointer back into a `Box` with the |
| 1335 | /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform |
| 1336 | /// the cleanup. |
| 1337 | /// |
| 1338 | /// Note: this is an associated function, which means that you have |
| 1339 | /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This |
| 1340 | /// is so that there is no conflict with a method on the inner type. |
| 1341 | /// |
| 1342 | /// # Examples |
| 1343 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] |
| 1344 | /// for automatic cleanup: |
| 1345 | /// ``` |
| 1346 | /// #![feature(allocator_api)] |
| 1347 | /// |
| 1348 | /// use std::alloc::System; |
| 1349 | /// |
| 1350 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1351 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| 1352 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
| 1353 | /// ``` |
| 1354 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1355 | /// the memory: |
| 1356 | /// ``` |
| 1357 | /// #![feature(allocator_api)] |
| 1358 | /// |
| 1359 | /// use std::alloc::{Allocator, Layout, System}; |
| 1360 | /// use std::ptr::{self, NonNull}; |
| 1361 | /// |
| 1362 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1363 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| 1364 | /// unsafe { |
| 1365 | /// ptr::drop_in_place(ptr); |
| 1366 | /// let non_null = NonNull::new_unchecked(ptr); |
| 1367 | /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); |
| 1368 | /// } |
| 1369 | /// ``` |
| 1370 | /// |
| 1371 | /// [memory layout]: self#memory-layout |
| 1372 | #[must_use = "losing the pointer will leak memory" ] |
| 1373 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1374 | #[inline ] |
| 1375 | pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { |
| 1376 | let mut b = mem::ManuallyDrop::new(b); |
| 1377 | // We carefully get the raw pointer out in a way that Miri's aliasing model understands what |
| 1378 | // is happening: using the primitive "deref" of `Box`. In case `A` is *not* `Global`, we |
| 1379 | // want *no* aliasing requirements here! |
| 1380 | // In case `A` *is* `Global`, this does not quite have the right behavior; `into_raw` |
| 1381 | // works around that. |
| 1382 | let ptr = &raw mut **b; |
| 1383 | let alloc = unsafe { ptr::read(&b.1) }; |
| 1384 | (ptr, alloc) |
| 1385 | } |
| 1386 | |
| 1387 | /// Consumes the `Box`, returning a wrapped `NonNull` pointer and the allocator. |
| 1388 | /// |
| 1389 | /// The pointer will be properly aligned. |
| 1390 | /// |
| 1391 | /// After calling this function, the caller is responsible for the |
| 1392 | /// memory previously managed by the `Box`. In particular, the |
| 1393 | /// caller should properly destroy `T` and release the memory, taking |
| 1394 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1395 | /// do this is to convert the `NonNull` pointer back into a `Box` with the |
| 1396 | /// [`Box::from_non_null_in`] function, allowing the `Box` destructor to |
| 1397 | /// perform the cleanup. |
| 1398 | /// |
| 1399 | /// Note: this is an associated function, which means that you have |
| 1400 | /// to call it as `Box::into_non_null_with_allocator(b)` instead of |
| 1401 | /// `b.into_non_null_with_allocator()`. This is so that there is no |
| 1402 | /// conflict with a method on the inner type. |
| 1403 | /// |
| 1404 | /// # Examples |
| 1405 | /// Converting the `NonNull` pointer back into a `Box` with |
| 1406 | /// [`Box::from_non_null_in`] for automatic cleanup: |
| 1407 | /// ``` |
| 1408 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1409 | /// |
| 1410 | /// use std::alloc::System; |
| 1411 | /// |
| 1412 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1413 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
| 1414 | /// let x = unsafe { Box::from_non_null_in(non_null, alloc) }; |
| 1415 | /// ``` |
| 1416 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1417 | /// the memory: |
| 1418 | /// ``` |
| 1419 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1420 | /// |
| 1421 | /// use std::alloc::{Allocator, Layout, System}; |
| 1422 | /// |
| 1423 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1424 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
| 1425 | /// unsafe { |
| 1426 | /// non_null.drop_in_place(); |
| 1427 | /// alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>()); |
| 1428 | /// } |
| 1429 | /// ``` |
| 1430 | /// |
| 1431 | /// [memory layout]: self#memory-layout |
| 1432 | #[must_use = "losing the pointer will leak memory" ] |
| 1433 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1434 | // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] |
| 1435 | #[inline ] |
| 1436 | pub fn into_non_null_with_allocator(b: Self) -> (NonNull<T>, A) { |
| 1437 | let (ptr, alloc) = Box::into_raw_with_allocator(b); |
| 1438 | // SAFETY: `Box` is guaranteed to be non-null. |
| 1439 | unsafe { (NonNull::new_unchecked(ptr), alloc) } |
| 1440 | } |
| 1441 | |
| 1442 | #[unstable ( |
| 1443 | feature = "ptr_internals" , |
| 1444 | issue = "none" , |
| 1445 | reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" |
| 1446 | )] |
| 1447 | #[inline ] |
| 1448 | #[doc (hidden)] |
| 1449 | pub fn into_unique(b: Self) -> (Unique<T>, A) { |
| 1450 | let (ptr, alloc) = Box::into_raw_with_allocator(b); |
| 1451 | unsafe { (Unique::from(&mut *ptr), alloc) } |
| 1452 | } |
| 1453 | |
| 1454 | /// Returns a raw mutable pointer to the `Box`'s contents. |
| 1455 | /// |
| 1456 | /// The caller must ensure that the `Box` outlives the pointer this |
| 1457 | /// function returns, or else it will end up dangling. |
| 1458 | /// |
| 1459 | /// This method guarantees that for the purpose of the aliasing model, this method |
| 1460 | /// does not materialize a reference to the underlying memory, and thus the returned pointer |
| 1461 | /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`]. |
| 1462 | /// Note that calling other methods that materialize references to the memory |
| 1463 | /// may still invalidate this pointer. |
| 1464 | /// See the example below for how this guarantee can be used. |
| 1465 | /// |
| 1466 | /// # Examples |
| 1467 | /// |
| 1468 | /// Due to the aliasing guarantee, the following code is legal: |
| 1469 | /// |
| 1470 | /// ```rust |
| 1471 | /// #![feature(box_as_ptr)] |
| 1472 | /// |
| 1473 | /// unsafe { |
| 1474 | /// let mut b = Box::new(0); |
| 1475 | /// let ptr1 = Box::as_mut_ptr(&mut b); |
| 1476 | /// ptr1.write(1); |
| 1477 | /// let ptr2 = Box::as_mut_ptr(&mut b); |
| 1478 | /// ptr2.write(2); |
| 1479 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`: |
| 1480 | /// ptr1.write(3); |
| 1481 | /// } |
| 1482 | /// ``` |
| 1483 | /// |
| 1484 | /// [`as_mut_ptr`]: Self::as_mut_ptr |
| 1485 | /// [`as_ptr`]: Self::as_ptr |
| 1486 | #[unstable (feature = "box_as_ptr" , issue = "129090" )] |
| 1487 | #[rustc_never_returns_null_ptr ] |
| 1488 | #[rustc_as_ptr] |
| 1489 | #[inline ] |
| 1490 | pub fn as_mut_ptr(b: &mut Self) -> *mut T { |
| 1491 | // This is a primitive deref, not going through `DerefMut`, and therefore not materializing |
| 1492 | // any references. |
| 1493 | &raw mut **b |
| 1494 | } |
| 1495 | |
| 1496 | /// Returns a raw pointer to the `Box`'s contents. |
| 1497 | /// |
| 1498 | /// The caller must ensure that the `Box` outlives the pointer this |
| 1499 | /// function returns, or else it will end up dangling. |
| 1500 | /// |
| 1501 | /// The caller must also ensure that the memory the pointer (non-transitively) points to |
| 1502 | /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer |
| 1503 | /// derived from it. If you need to mutate the contents of the `Box`, use [`as_mut_ptr`]. |
| 1504 | /// |
| 1505 | /// This method guarantees that for the purpose of the aliasing model, this method |
| 1506 | /// does not materialize a reference to the underlying memory, and thus the returned pointer |
| 1507 | /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`]. |
| 1508 | /// Note that calling other methods that materialize mutable references to the memory, |
| 1509 | /// as well as writing to this memory, may still invalidate this pointer. |
| 1510 | /// See the example below for how this guarantee can be used. |
| 1511 | /// |
| 1512 | /// # Examples |
| 1513 | /// |
| 1514 | /// Due to the aliasing guarantee, the following code is legal: |
| 1515 | /// |
| 1516 | /// ```rust |
| 1517 | /// #![feature(box_as_ptr)] |
| 1518 | /// |
| 1519 | /// unsafe { |
| 1520 | /// let mut v = Box::new(0); |
| 1521 | /// let ptr1 = Box::as_ptr(&v); |
| 1522 | /// let ptr2 = Box::as_mut_ptr(&mut v); |
| 1523 | /// let _val = ptr2.read(); |
| 1524 | /// // No write to this memory has happened yet, so `ptr1` is still valid. |
| 1525 | /// let _val = ptr1.read(); |
| 1526 | /// // However, once we do a write... |
| 1527 | /// ptr2.write(1); |
| 1528 | /// // ... `ptr1` is no longer valid. |
| 1529 | /// // This would be UB: let _val = ptr1.read(); |
| 1530 | /// } |
| 1531 | /// ``` |
| 1532 | /// |
| 1533 | /// [`as_mut_ptr`]: Self::as_mut_ptr |
| 1534 | /// [`as_ptr`]: Self::as_ptr |
| 1535 | #[unstable (feature = "box_as_ptr" , issue = "129090" )] |
| 1536 | #[rustc_never_returns_null_ptr ] |
| 1537 | #[rustc_as_ptr] |
| 1538 | #[inline ] |
| 1539 | pub fn as_ptr(b: &Self) -> *const T { |
| 1540 | // This is a primitive deref, not going through `DerefMut`, and therefore not materializing |
| 1541 | // any references. |
| 1542 | &raw const **b |
| 1543 | } |
| 1544 | |
| 1545 | /// Returns a reference to the underlying allocator. |
| 1546 | /// |
| 1547 | /// Note: this is an associated function, which means that you have |
| 1548 | /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This |
| 1549 | /// is so that there is no conflict with a method on the inner type. |
| 1550 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1551 | #[inline ] |
| 1552 | pub fn allocator(b: &Self) -> &A { |
| 1553 | &b.1 |
| 1554 | } |
| 1555 | |
| 1556 | /// Consumes and leaks the `Box`, returning a mutable reference, |
| 1557 | /// `&'a mut T`. |
| 1558 | /// |
| 1559 | /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type |
| 1560 | /// has only static references, or none at all, then this may be chosen to be |
| 1561 | /// `'static`. |
| 1562 | /// |
| 1563 | /// This function is mainly useful for data that lives for the remainder of |
| 1564 | /// the program's life. Dropping the returned reference will cause a memory |
| 1565 | /// leak. If this is not acceptable, the reference should first be wrapped |
| 1566 | /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can |
| 1567 | /// then be dropped which will properly destroy `T` and release the |
| 1568 | /// allocated memory. |
| 1569 | /// |
| 1570 | /// Note: this is an associated function, which means that you have |
| 1571 | /// to call it as `Box::leak(b)` instead of `b.leak()`. This |
| 1572 | /// is so that there is no conflict with a method on the inner type. |
| 1573 | /// |
| 1574 | /// # Examples |
| 1575 | /// |
| 1576 | /// Simple usage: |
| 1577 | /// |
| 1578 | /// ``` |
| 1579 | /// let x = Box::new(41); |
| 1580 | /// let static_ref: &'static mut usize = Box::leak(x); |
| 1581 | /// *static_ref += 1; |
| 1582 | /// assert_eq!(*static_ref, 42); |
| 1583 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
| 1584 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
| 1585 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
| 1586 | /// ``` |
| 1587 | /// |
| 1588 | /// Unsized data: |
| 1589 | /// |
| 1590 | /// ``` |
| 1591 | /// let x = vec![1, 2, 3].into_boxed_slice(); |
| 1592 | /// let static_ref = Box::leak(x); |
| 1593 | /// static_ref[0] = 4; |
| 1594 | /// assert_eq!(*static_ref, [4, 2, 3]); |
| 1595 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
| 1596 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
| 1597 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
| 1598 | /// ``` |
| 1599 | #[stable (feature = "box_leak" , since = "1.26.0" )] |
| 1600 | #[inline ] |
| 1601 | pub fn leak<'a>(b: Self) -> &'a mut T |
| 1602 | where |
| 1603 | A: 'a, |
| 1604 | { |
| 1605 | unsafe { &mut *Box::into_raw(b) } |
| 1606 | } |
| 1607 | |
| 1608 | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
| 1609 | /// `*boxed` will be pinned in memory and unable to be moved. |
| 1610 | /// |
| 1611 | /// This conversion does not allocate on the heap and happens in place. |
| 1612 | /// |
| 1613 | /// This is also available via [`From`]. |
| 1614 | /// |
| 1615 | /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> |
| 1616 | /// can also be written more concisely using <code>[Box::pin]\(x)</code>. |
| 1617 | /// This `into_pin` method is useful if you already have a `Box<T>`, or you are |
| 1618 | /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. |
| 1619 | /// |
| 1620 | /// # Notes |
| 1621 | /// |
| 1622 | /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, |
| 1623 | /// as it'll introduce an ambiguity when calling `Pin::from`. |
| 1624 | /// A demonstration of such a poor impl is shown below. |
| 1625 | /// |
| 1626 | /// ```compile_fail |
| 1627 | /// # use std::pin::Pin; |
| 1628 | /// struct Foo; // A type defined in this crate. |
| 1629 | /// impl From<Box<()>> for Pin<Foo> { |
| 1630 | /// fn from(_: Box<()>) -> Pin<Foo> { |
| 1631 | /// Pin::new(Foo) |
| 1632 | /// } |
| 1633 | /// } |
| 1634 | /// |
| 1635 | /// let foo = Box::new(()); |
| 1636 | /// let bar = Pin::from(foo); |
| 1637 | /// ``` |
| 1638 | #[stable (feature = "box_into_pin" , since = "1.63.0" )] |
| 1639 | pub fn into_pin(boxed: Self) -> Pin<Self> |
| 1640 | where |
| 1641 | A: 'static, |
| 1642 | { |
| 1643 | // It's not possible to move or replace the insides of a `Pin<Box<T>>` |
| 1644 | // when `T: !Unpin`, so it's safe to pin it directly without any |
| 1645 | // additional requirements. |
| 1646 | unsafe { Pin::new_unchecked(boxed) } |
| 1647 | } |
| 1648 | } |
| 1649 | |
| 1650 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1651 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Box<T, A> { |
| 1652 | #[inline ] |
| 1653 | fn drop(&mut self) { |
| 1654 | // the T in the Box is dropped by the compiler before the destructor is run |
| 1655 | |
| 1656 | let ptr: Unique = self.0; |
| 1657 | |
| 1658 | unsafe { |
| 1659 | let layout: Layout = Layout::for_value_raw(ptr.as_ptr()); |
| 1660 | if layout.size() != 0 { |
| 1661 | self.1.deallocate(ptr:From::from(ptr.cast()), layout); |
| 1662 | } |
| 1663 | } |
| 1664 | } |
| 1665 | } |
| 1666 | |
| 1667 | #[cfg (not(no_global_oom_handling))] |
| 1668 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1669 | impl<T: Default> Default for Box<T> { |
| 1670 | /// Creates a `Box<T>`, with the `Default` value for T. |
| 1671 | #[inline ] |
| 1672 | fn default() -> Self { |
| 1673 | let mut x: Box<mem::MaybeUninit<T>> = Box::new_uninit(); |
| 1674 | unsafe { |
| 1675 | // SAFETY: `x` is valid for writing and has the same layout as `T`. |
| 1676 | // If `T::default()` panics, dropping `x` will just deallocate the Box as `MaybeUninit<T>` |
| 1677 | // does not have a destructor. |
| 1678 | // |
| 1679 | // We use `ptr::write` as `MaybeUninit::write` creates |
| 1680 | // extra stack copies of `T` in debug mode. |
| 1681 | // |
| 1682 | // See https://github.com/rust-lang/rust/issues/136043 for more context. |
| 1683 | ptr::write(&raw mut *x as *mut T, T::default()); |
| 1684 | // SAFETY: `x` was just initialized above. |
| 1685 | x.assume_init() |
| 1686 | } |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | #[cfg (not(no_global_oom_handling))] |
| 1691 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1692 | impl<T> Default for Box<[T]> { |
| 1693 | #[inline ] |
| 1694 | fn default() -> Self { |
| 1695 | let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); |
| 1696 | Box(ptr, Global) |
| 1697 | } |
| 1698 | } |
| 1699 | |
| 1700 | #[cfg (not(no_global_oom_handling))] |
| 1701 | #[stable (feature = "default_box_extra" , since = "1.17.0" )] |
| 1702 | impl Default for Box<str> { |
| 1703 | #[inline ] |
| 1704 | fn default() -> Self { |
| 1705 | // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. |
| 1706 | let ptr: Unique<str> = unsafe { |
| 1707 | let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); |
| 1708 | Unique::new_unchecked(bytes.as_ptr() as *mut str) |
| 1709 | }; |
| 1710 | Box(ptr, Global) |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | #[cfg (not(no_global_oom_handling))] |
| 1715 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1716 | impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { |
| 1717 | /// Returns a new box with a `clone()` of this box's contents. |
| 1718 | /// |
| 1719 | /// # Examples |
| 1720 | /// |
| 1721 | /// ``` |
| 1722 | /// let x = Box::new(5); |
| 1723 | /// let y = x.clone(); |
| 1724 | /// |
| 1725 | /// // The value is the same |
| 1726 | /// assert_eq!(x, y); |
| 1727 | /// |
| 1728 | /// // But they are unique objects |
| 1729 | /// assert_ne!(&*x as *const i32, &*y as *const i32); |
| 1730 | /// ``` |
| 1731 | #[inline ] |
| 1732 | fn clone(&self) -> Self { |
| 1733 | // Pre-allocate memory to allow writing the cloned value directly. |
| 1734 | let mut boxed = Self::new_uninit_in(self.1.clone()); |
| 1735 | unsafe { |
| 1736 | (**self).clone_to_uninit(boxed.as_mut_ptr().cast()); |
| 1737 | boxed.assume_init() |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | /// Copies `source`'s contents into `self` without creating a new allocation. |
| 1742 | /// |
| 1743 | /// # Examples |
| 1744 | /// |
| 1745 | /// ``` |
| 1746 | /// let x = Box::new(5); |
| 1747 | /// let mut y = Box::new(10); |
| 1748 | /// let yp: *const i32 = &*y; |
| 1749 | /// |
| 1750 | /// y.clone_from(&x); |
| 1751 | /// |
| 1752 | /// // The value is the same |
| 1753 | /// assert_eq!(x, y); |
| 1754 | /// |
| 1755 | /// // And no allocation occurred |
| 1756 | /// assert_eq!(yp, &*y); |
| 1757 | /// ``` |
| 1758 | #[inline ] |
| 1759 | fn clone_from(&mut self, source: &Self) { |
| 1760 | (**self).clone_from(&(**source)); |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | #[cfg (not(no_global_oom_handling))] |
| 1765 | #[stable (feature = "box_slice_clone" , since = "1.3.0" )] |
| 1766 | impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { |
| 1767 | fn clone(&self) -> Self { |
| 1768 | let alloc = Box::allocator(self).clone(); |
| 1769 | self.to_vec_in(alloc).into_boxed_slice() |
| 1770 | } |
| 1771 | |
| 1772 | /// Copies `source`'s contents into `self` without creating a new allocation, |
| 1773 | /// so long as the two are of the same length. |
| 1774 | /// |
| 1775 | /// # Examples |
| 1776 | /// |
| 1777 | /// ``` |
| 1778 | /// let x = Box::new([5, 6, 7]); |
| 1779 | /// let mut y = Box::new([8, 9, 10]); |
| 1780 | /// let yp: *const [i32] = &*y; |
| 1781 | /// |
| 1782 | /// y.clone_from(&x); |
| 1783 | /// |
| 1784 | /// // The value is the same |
| 1785 | /// assert_eq!(x, y); |
| 1786 | /// |
| 1787 | /// // And no allocation occurred |
| 1788 | /// assert_eq!(yp, &*y); |
| 1789 | /// ``` |
| 1790 | fn clone_from(&mut self, source: &Self) { |
| 1791 | if self.len() == source.len() { |
| 1792 | self.clone_from_slice(&source); |
| 1793 | } else { |
| 1794 | *self = source.clone(); |
| 1795 | } |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | #[cfg (not(no_global_oom_handling))] |
| 1800 | #[stable (feature = "box_slice_clone" , since = "1.3.0" )] |
| 1801 | impl Clone for Box<str> { |
| 1802 | fn clone(&self) -> Self { |
| 1803 | // this makes a copy of the data |
| 1804 | let buf: Box<[u8]> = self.as_bytes().into(); |
| 1805 | unsafe { from_boxed_utf8_unchecked(buf) } |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1810 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { |
| 1811 | #[inline ] |
| 1812 | fn eq(&self, other: &Self) -> bool { |
| 1813 | PartialEq::eq(&**self, &**other) |
| 1814 | } |
| 1815 | #[inline ] |
| 1816 | fn ne(&self, other: &Self) -> bool { |
| 1817 | PartialEq::ne(&**self, &**other) |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1822 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { |
| 1823 | #[inline ] |
| 1824 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| 1825 | PartialOrd::partial_cmp(&**self, &**other) |
| 1826 | } |
| 1827 | #[inline ] |
| 1828 | fn lt(&self, other: &Self) -> bool { |
| 1829 | PartialOrd::lt(&**self, &**other) |
| 1830 | } |
| 1831 | #[inline ] |
| 1832 | fn le(&self, other: &Self) -> bool { |
| 1833 | PartialOrd::le(&**self, &**other) |
| 1834 | } |
| 1835 | #[inline ] |
| 1836 | fn ge(&self, other: &Self) -> bool { |
| 1837 | PartialOrd::ge(&**self, &**other) |
| 1838 | } |
| 1839 | #[inline ] |
| 1840 | fn gt(&self, other: &Self) -> bool { |
| 1841 | PartialOrd::gt(&**self, &**other) |
| 1842 | } |
| 1843 | } |
| 1844 | |
| 1845 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1846 | impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { |
| 1847 | #[inline ] |
| 1848 | fn cmp(&self, other: &Self) -> Ordering { |
| 1849 | Ord::cmp(&**self, &**other) |
| 1850 | } |
| 1851 | } |
| 1852 | |
| 1853 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1854 | impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} |
| 1855 | |
| 1856 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1857 | impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { |
| 1858 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 1859 | (**self).hash(state); |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | #[stable (feature = "indirect_hasher_impl" , since = "1.22.0" )] |
| 1864 | impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { |
| 1865 | fn finish(&self) -> u64 { |
| 1866 | (**self).finish() |
| 1867 | } |
| 1868 | fn write(&mut self, bytes: &[u8]) { |
| 1869 | (**self).write(bytes) |
| 1870 | } |
| 1871 | fn write_u8(&mut self, i: u8) { |
| 1872 | (**self).write_u8(i) |
| 1873 | } |
| 1874 | fn write_u16(&mut self, i: u16) { |
| 1875 | (**self).write_u16(i) |
| 1876 | } |
| 1877 | fn write_u32(&mut self, i: u32) { |
| 1878 | (**self).write_u32(i) |
| 1879 | } |
| 1880 | fn write_u64(&mut self, i: u64) { |
| 1881 | (**self).write_u64(i) |
| 1882 | } |
| 1883 | fn write_u128(&mut self, i: u128) { |
| 1884 | (**self).write_u128(i) |
| 1885 | } |
| 1886 | fn write_usize(&mut self, i: usize) { |
| 1887 | (**self).write_usize(i) |
| 1888 | } |
| 1889 | fn write_i8(&mut self, i: i8) { |
| 1890 | (**self).write_i8(i) |
| 1891 | } |
| 1892 | fn write_i16(&mut self, i: i16) { |
| 1893 | (**self).write_i16(i) |
| 1894 | } |
| 1895 | fn write_i32(&mut self, i: i32) { |
| 1896 | (**self).write_i32(i) |
| 1897 | } |
| 1898 | fn write_i64(&mut self, i: i64) { |
| 1899 | (**self).write_i64(i) |
| 1900 | } |
| 1901 | fn write_i128(&mut self, i: i128) { |
| 1902 | (**self).write_i128(i) |
| 1903 | } |
| 1904 | fn write_isize(&mut self, i: isize) { |
| 1905 | (**self).write_isize(i) |
| 1906 | } |
| 1907 | fn write_length_prefix(&mut self, len: usize) { |
| 1908 | (**self).write_length_prefix(len) |
| 1909 | } |
| 1910 | fn write_str(&mut self, s: &str) { |
| 1911 | (**self).write_str(s) |
| 1912 | } |
| 1913 | } |
| 1914 | |
| 1915 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1916 | impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { |
| 1917 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1918 | fmt::Display::fmt(&**self, f) |
| 1919 | } |
| 1920 | } |
| 1921 | |
| 1922 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1923 | impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { |
| 1924 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1925 | fmt::Debug::fmt(&**self, f) |
| 1926 | } |
| 1927 | } |
| 1928 | |
| 1929 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1930 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { |
| 1931 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1932 | // It's not possible to extract the inner Uniq directly from the Box, |
| 1933 | // instead we cast it to a *const which aliases the Unique |
| 1934 | let ptr: *const T = &**self; |
| 1935 | fmt::Pointer::fmt(&ptr, f) |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1940 | impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { |
| 1941 | type Target = T; |
| 1942 | |
| 1943 | fn deref(&self) -> &T { |
| 1944 | &**self |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1949 | impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { |
| 1950 | fn deref_mut(&mut self) -> &mut T { |
| 1951 | &mut **self |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 1956 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for Box<T, A> {} |
| 1957 | |
| 1958 | #[unstable (feature = "legacy_receiver_trait" , issue = "none" )] |
| 1959 | impl<T: ?Sized, A: Allocator> LegacyReceiver for Box<T, A> {} |
| 1960 | |
| 1961 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
| 1962 | impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { |
| 1963 | type Output = <F as FnOnce<Args>>::Output; |
| 1964 | |
| 1965 | extern "rust-call" fn call_once(self, args: Args) -> Self::Output { |
| 1966 | <F as FnOnce<Args>>::call_once(*self, args) |
| 1967 | } |
| 1968 | } |
| 1969 | |
| 1970 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
| 1971 | impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { |
| 1972 | extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { |
| 1973 | <F as FnMut<Args>>::call_mut(self, args) |
| 1974 | } |
| 1975 | } |
| 1976 | |
| 1977 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
| 1978 | impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { |
| 1979 | extern "rust-call" fn call(&self, args: Args) -> Self::Output { |
| 1980 | <F as Fn<Args>>::call(self, args) |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
| 1985 | impl<Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator> AsyncFnOnce<Args> for Box<F, A> { |
| 1986 | type Output = F::Output; |
| 1987 | type CallOnceFuture = F::CallOnceFuture; |
| 1988 | |
| 1989 | extern "rust-call" fn async_call_once(self, args: Args) -> Self::CallOnceFuture { |
| 1990 | F::async_call_once(*self, args) |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
| 1995 | impl<Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator> AsyncFnMut<Args> for Box<F, A> { |
| 1996 | type CallRefFuture<'a> |
| 1997 | = F::CallRefFuture<'a> |
| 1998 | where |
| 1999 | Self: 'a; |
| 2000 | |
| 2001 | extern "rust-call" fn async_call_mut(&mut self, args: Args) -> Self::CallRefFuture<'_> { |
| 2002 | F::async_call_mut(self, args) |
| 2003 | } |
| 2004 | } |
| 2005 | |
| 2006 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
| 2007 | impl<Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator> AsyncFn<Args> for Box<F, A> { |
| 2008 | extern "rust-call" fn async_call(&self, args: Args) -> Self::CallRefFuture<'_> { |
| 2009 | F::async_call(self, args) |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 2014 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} |
| 2015 | |
| 2016 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2017 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Box<T, A> {} |
| 2018 | |
| 2019 | // It is quite crucial that we only allow the `Global` allocator here. |
| 2020 | // Handling arbitrary custom allocators (which can affect the `Box` layout heavily!) |
| 2021 | // would need a lot of codegen and interpreter adjustments. |
| 2022 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 2023 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} |
| 2024 | |
| 2025 | #[stable (feature = "box_borrow" , since = "1.1.0" )] |
| 2026 | impl<T: ?Sized, A: Allocator> Borrow<T> for Box<T, A> { |
| 2027 | fn borrow(&self) -> &T { |
| 2028 | &**self |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | #[stable (feature = "box_borrow" , since = "1.1.0" )] |
| 2033 | impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A> { |
| 2034 | fn borrow_mut(&mut self) -> &mut T { |
| 2035 | &mut **self |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
| 2040 | impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { |
| 2041 | fn as_ref(&self) -> &T { |
| 2042 | &**self |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
| 2047 | impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { |
| 2048 | fn as_mut(&mut self) -> &mut T { |
| 2049 | &mut **self |
| 2050 | } |
| 2051 | } |
| 2052 | |
| 2053 | /* Nota bene |
| 2054 | * |
| 2055 | * We could have chosen not to add this impl, and instead have written a |
| 2056 | * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, |
| 2057 | * because Box<T> implements Unpin even when T does not, as a result of |
| 2058 | * this impl. |
| 2059 | * |
| 2060 | * We chose this API instead of the alternative for a few reasons: |
| 2061 | * - Logically, it is helpful to understand pinning in regard to the |
| 2062 | * memory region being pointed to. For this reason none of the |
| 2063 | * standard library pointer types support projecting through a pin |
| 2064 | * (Box<T> is the only pointer type in std for which this would be |
| 2065 | * safe.) |
| 2066 | * - It is in practice very useful to have Box<T> be unconditionally |
| 2067 | * Unpin because of trait objects, for which the structural auto |
| 2068 | * trait functionality does not apply (e.g., Box<dyn Foo> would |
| 2069 | * otherwise not be Unpin). |
| 2070 | * |
| 2071 | * Another type with the same semantics as Box but only a conditional |
| 2072 | * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and |
| 2073 | * could have a method to project a Pin<T> from it. |
| 2074 | */ |
| 2075 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 2076 | impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> {} |
| 2077 | |
| 2078 | #[unstable (feature = "coroutine_trait" , issue = "43122" )] |
| 2079 | impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A> { |
| 2080 | type Yield = G::Yield; |
| 2081 | type Return = G::Return; |
| 2082 | |
| 2083 | fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { |
| 2084 | G::resume(self:Pin::new(&mut *self), arg) |
| 2085 | } |
| 2086 | } |
| 2087 | |
| 2088 | #[unstable (feature = "coroutine_trait" , issue = "43122" )] |
| 2089 | impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>> |
| 2090 | where |
| 2091 | A: 'static, |
| 2092 | { |
| 2093 | type Yield = G::Yield; |
| 2094 | type Return = G::Return; |
| 2095 | |
| 2096 | fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { |
| 2097 | G::resume((*self).as_mut(), arg) |
| 2098 | } |
| 2099 | } |
| 2100 | |
| 2101 | #[stable (feature = "futures_api" , since = "1.36.0" )] |
| 2102 | impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> { |
| 2103 | type Output = F::Output; |
| 2104 | |
| 2105 | fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
| 2106 | F::poll(self:Pin::new(&mut *self), cx) |
| 2107 | } |
| 2108 | } |
| 2109 | |
| 2110 | #[stable (feature = "box_error" , since = "1.8.0" )] |
| 2111 | impl<E: Error> Error for Box<E> { |
| 2112 | #[allow (deprecated, deprecated_in_future)] |
| 2113 | fn description(&self) -> &str { |
| 2114 | Error::description(&**self) |
| 2115 | } |
| 2116 | |
| 2117 | #[allow (deprecated)] |
| 2118 | fn cause(&self) -> Option<&dyn Error> { |
| 2119 | Error::cause(&**self) |
| 2120 | } |
| 2121 | |
| 2122 | fn source(&self) -> Option<&(dyn Error + 'static)> { |
| 2123 | Error::source(&**self) |
| 2124 | } |
| 2125 | |
| 2126 | fn provide<'b>(&'b self, request: &mut error::Request<'b>) { |
| 2127 | Error::provide(&**self, request); |
| 2128 | } |
| 2129 | } |
| 2130 | |
| 2131 | #[unstable (feature = "pointer_like_trait" , issue = "none" )] |
| 2132 | impl<T> PointerLike for Box<T> {} |
| 2133 | |