1//! The `Box<T>` type for heap allocation.
2//!
3//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4//! heap allocation in Rust. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope. Boxes also ensure that they
6//! never allocate more than `isize::MAX` bytes.
7//!
8//! # Examples
9//!
10//! Move a value from the stack to the heap by creating a [`Box`]:
11//!
12//! ```
13//! let val: u8 = 5;
14//! let boxed: Box<u8> = Box::new(val);
15//! ```
16//!
17//! Move a value from a [`Box`] back to the stack by [dereferencing]:
18//!
19//! ```
20//! let boxed: Box<u8> = Box::new(5);
21//! let val: u8 = *boxed;
22//! ```
23//!
24//! Creating a recursive data structure:
25//!
26//! ```
27//! ##[allow(dead_code)]
28//! #[derive(Debug)]
29//! enum List<T> {
30//! Cons(T, Box<List<T>>),
31//! Nil,
32//! }
33//!
34//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
35//! println!("{list:?}");
36//! ```
37//!
38//! This will print `Cons(1, Cons(2, Nil))`.
39//!
40//! Recursive structures must be boxed, because if the definition of `Cons`
41//! looked like this:
42//!
43//! ```compile_fail,E0072
44//! # enum List<T> {
45//! Cons(T, List<T>),
46//! # }
47//! ```
48//!
49//! It wouldn't work. This is because the size of a `List` depends on how many
50//! elements are in the list, and so we don't know how much memory to allocate
51//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
52//! big `Cons` needs to be.
53//!
54//! # Memory layout
55//!
56//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
57//! its allocation. It is valid to convert both ways between a [`Box`] and a
58//! raw pointer allocated with the [`Global`] allocator, given that the
59//! [`Layout`] used with the allocator is correct for the type. More precisely,
60//! a `value: *mut T` that has been allocated with the [`Global`] allocator
61//! with `Layout::for_value(&*value)` may be converted into a box using
62//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
63//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
64//! [`Global`] allocator with [`Layout::for_value(&*value)`].
65//!
66//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
67//! and writes and sufficiently aligned. In particular, casting any aligned
68//! non-zero integer literal to a raw pointer produces a valid pointer, but a
69//! pointer pointing into previously allocated memory that since got freed is
70//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
71//! be used is to use [`ptr::NonNull::dangling`].
72//!
73//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
74//! as a single pointer and is also ABI-compatible with C pointers
75//! (i.e. the C type `T*`). This means that if you have extern "C"
76//! Rust functions that will be called from C, you can define those
77//! Rust functions using `Box<T>` types, and use `T*` as corresponding
78//! type on the C side. As an example, consider this C header which
79//! declares functions that create and destroy some kind of `Foo`
80//! value:
81//!
82//! ```c
83//! /* C header */
84//!
85//! /* Returns ownership to the caller */
86//! struct Foo* foo_new(void);
87//!
88//! /* Takes ownership from the caller; no-op when invoked with null */
89//! void foo_delete(struct Foo*);
90//! ```
91//!
92//! These two functions might be implemented in Rust as follows. Here, the
93//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
94//! the ownership constraints. Note also that the nullable argument to
95//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
96//! cannot be null.
97//!
98//! ```
99//! #[repr(C)]
100//! pub struct Foo;
101//!
102//! #[no_mangle]
103//! pub extern "C" fn foo_new() -> Box<Foo> {
104//! Box::new(Foo)
105//! }
106//!
107//! #[no_mangle]
108//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
109//! ```
110//!
111//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
112//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
113//! and expect things to work. `Box<T>` values will always be fully aligned,
114//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
115//! free the value with the global allocator. In general, the best practice
116//! is to only use `Box<T>` for pointers that originated from the global
117//! allocator.
118//!
119//! **Important.** At least at present, you should avoid using
120//! `Box<T>` types for functions that are defined in C but invoked
121//! from Rust. In those cases, you should directly mirror the C types
122//! as closely as possible. Using types like `Box<T>` where the C
123//! definition is just using `T*` can lead to undefined behavior, as
124//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
125//!
126//! # Considerations for unsafe code
127//!
128//! **Warning: This section is not normative and is subject to change, possibly
129//! being relaxed in the future! It is a simplified summary of the rules
130//! currently implemented in the compiler.**
131//!
132//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
133//! asserts uniqueness over its content. Using raw pointers derived from a box
134//! after that box has been mutated through, moved or borrowed as `&mut T`
135//! is not allowed. For more guidance on working with box from unsafe code, see
136//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
137//!
138//!
139//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
140//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
141//! [dereferencing]: core::ops::Deref
142//! [`Box::<T>::from_raw(value)`]: Box::from_raw
143//! [`Global`]: crate::alloc::Global
144//! [`Layout`]: crate::alloc::Layout
145//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
146//! [valid]: ptr#safety
147
148#![stable(feature = "rust1", since = "1.0.0")]
149
150use core::any::Any;
151use core::async_iter::AsyncIterator;
152use core::borrow;
153use core::cmp::Ordering;
154use core::error::Error;
155use core::fmt;
156use core::future::Future;
157use core::hash::{Hash, Hasher};
158use core::iter::FusedIterator;
159use core::marker::Tuple;
160use core::marker::Unsize;
161use core::mem::{self, SizedTypeProperties};
162use core::ops::{AsyncFn, AsyncFnMut, AsyncFnOnce};
163use core::ops::{
164 CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut, DerefPure, DispatchFromDyn, Receiver,
165};
166use core::pin::Pin;
167use core::ptr::{self, addr_of_mut, NonNull, Unique};
168use core::task::{Context, Poll};
169
170#[cfg(not(no_global_oom_handling))]
171use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
172use crate::alloc::{AllocError, Allocator, Global, Layout};
173#[cfg(not(no_global_oom_handling))]
174use crate::borrow::Cow;
175use crate::raw_vec::RawVec;
176#[cfg(not(no_global_oom_handling))]
177use crate::str::from_boxed_utf8_unchecked;
178#[cfg(not(no_global_oom_handling))]
179use crate::string::String;
180#[cfg(not(no_global_oom_handling))]
181use crate::vec::Vec;
182
183#[unstable(feature = "thin_box", issue = "92791")]
184pub use thin::ThinBox;
185
186mod thin;
187
188/// A pointer type that uniquely owns a heap allocation of type `T`.
189///
190/// See the [module-level documentation](../../std/boxed/index.html) for more.
191#[lang = "owned_box"]
192#[fundamental]
193#[stable(feature = "rust1", since = "1.0.0")]
194// The declaration of the `Box` struct must be kept in sync with the
195// compiler or ICEs will happen.
196pub struct Box<
197 T: ?Sized,
198 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
199>(Unique<T>, A);
200
201impl<T> Box<T> {
202 /// Allocates memory on the heap and then places `x` into it.
203 ///
204 /// This doesn't actually allocate if `T` is zero-sized.
205 ///
206 /// # Examples
207 ///
208 /// ```
209 /// let five = Box::new(5);
210 /// ```
211 #[cfg(not(no_global_oom_handling))]
212 #[inline(always)]
213 #[stable(feature = "rust1", since = "1.0.0")]
214 #[must_use]
215 #[rustc_diagnostic_item = "box_new"]
216 pub fn new(x: T) -> Self {
217 #[rustc_box]
218 Box::new(x)
219 }
220
221 /// Constructs a new box with uninitialized contents.
222 ///
223 /// # Examples
224 ///
225 /// ```
226 /// #![feature(new_uninit)]
227 ///
228 /// let mut five = Box::<u32>::new_uninit();
229 ///
230 /// let five = unsafe {
231 /// // Deferred initialization:
232 /// five.as_mut_ptr().write(5);
233 ///
234 /// five.assume_init()
235 /// };
236 ///
237 /// assert_eq!(*five, 5)
238 /// ```
239 #[cfg(not(no_global_oom_handling))]
240 #[unstable(feature = "new_uninit", issue = "63291")]
241 #[must_use]
242 #[inline]
243 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
244 Self::new_uninit_in(Global)
245 }
246
247 /// Constructs a new `Box` with uninitialized contents, with the memory
248 /// being filled with `0` bytes.
249 ///
250 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
251 /// of this method.
252 ///
253 /// # Examples
254 ///
255 /// ```
256 /// #![feature(new_uninit)]
257 ///
258 /// let zero = Box::<u32>::new_zeroed();
259 /// let zero = unsafe { zero.assume_init() };
260 ///
261 /// assert_eq!(*zero, 0)
262 /// ```
263 ///
264 /// [zeroed]: mem::MaybeUninit::zeroed
265 #[cfg(not(no_global_oom_handling))]
266 #[inline]
267 #[unstable(feature = "new_uninit", issue = "63291")]
268 #[must_use]
269 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
270 Self::new_zeroed_in(Global)
271 }
272
273 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
274 /// `x` will be pinned in memory and unable to be moved.
275 ///
276 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
277 /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
278 /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
279 /// construct a (pinned) `Box` in a different way than with [`Box::new`].
280 #[cfg(not(no_global_oom_handling))]
281 #[stable(feature = "pin", since = "1.33.0")]
282 #[must_use]
283 #[inline(always)]
284 pub fn pin(x: T) -> Pin<Box<T>> {
285 Box::new(x).into()
286 }
287
288 /// Allocates memory on the heap then places `x` into it,
289 /// returning an error if the allocation fails
290 ///
291 /// This doesn't actually allocate if `T` is zero-sized.
292 ///
293 /// # Examples
294 ///
295 /// ```
296 /// #![feature(allocator_api)]
297 ///
298 /// let five = Box::try_new(5)?;
299 /// # Ok::<(), std::alloc::AllocError>(())
300 /// ```
301 #[unstable(feature = "allocator_api", issue = "32838")]
302 #[inline]
303 pub fn try_new(x: T) -> Result<Self, AllocError> {
304 Self::try_new_in(x, Global)
305 }
306
307 /// Constructs a new box with uninitialized contents on the heap,
308 /// returning an error if the allocation fails
309 ///
310 /// # Examples
311 ///
312 /// ```
313 /// #![feature(allocator_api, new_uninit)]
314 ///
315 /// let mut five = Box::<u32>::try_new_uninit()?;
316 ///
317 /// let five = unsafe {
318 /// // Deferred initialization:
319 /// five.as_mut_ptr().write(5);
320 ///
321 /// five.assume_init()
322 /// };
323 ///
324 /// assert_eq!(*five, 5);
325 /// # Ok::<(), std::alloc::AllocError>(())
326 /// ```
327 #[unstable(feature = "allocator_api", issue = "32838")]
328 // #[unstable(feature = "new_uninit", issue = "63291")]
329 #[inline]
330 pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
331 Box::try_new_uninit_in(Global)
332 }
333
334 /// Constructs a new `Box` with uninitialized contents, with the memory
335 /// being filled with `0` bytes on the heap
336 ///
337 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
338 /// of this method.
339 ///
340 /// # Examples
341 ///
342 /// ```
343 /// #![feature(allocator_api, new_uninit)]
344 ///
345 /// let zero = Box::<u32>::try_new_zeroed()?;
346 /// let zero = unsafe { zero.assume_init() };
347 ///
348 /// assert_eq!(*zero, 0);
349 /// # Ok::<(), std::alloc::AllocError>(())
350 /// ```
351 ///
352 /// [zeroed]: mem::MaybeUninit::zeroed
353 #[unstable(feature = "allocator_api", issue = "32838")]
354 // #[unstable(feature = "new_uninit", issue = "63291")]
355 #[inline]
356 pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
357 Box::try_new_zeroed_in(Global)
358 }
359}
360
361impl<T, A: Allocator> Box<T, A> {
362 /// Allocates memory in the given allocator then places `x` into it.
363 ///
364 /// This doesn't actually allocate if `T` is zero-sized.
365 ///
366 /// # Examples
367 ///
368 /// ```
369 /// #![feature(allocator_api)]
370 ///
371 /// use std::alloc::System;
372 ///
373 /// let five = Box::new_in(5, System);
374 /// ```
375 #[cfg(not(no_global_oom_handling))]
376 #[unstable(feature = "allocator_api", issue = "32838")]
377 #[must_use]
378 #[inline]
379 pub fn new_in(x: T, alloc: A) -> Self
380 where
381 A: Allocator,
382 {
383 let mut boxed = Self::new_uninit_in(alloc);
384 unsafe {
385 boxed.as_mut_ptr().write(x);
386 boxed.assume_init()
387 }
388 }
389
390 /// Allocates memory in the given allocator then places `x` into it,
391 /// returning an error if the allocation fails
392 ///
393 /// This doesn't actually allocate if `T` is zero-sized.
394 ///
395 /// # Examples
396 ///
397 /// ```
398 /// #![feature(allocator_api)]
399 ///
400 /// use std::alloc::System;
401 ///
402 /// let five = Box::try_new_in(5, System)?;
403 /// # Ok::<(), std::alloc::AllocError>(())
404 /// ```
405 #[unstable(feature = "allocator_api", issue = "32838")]
406 #[inline]
407 pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
408 where
409 A: Allocator,
410 {
411 let mut boxed = Self::try_new_uninit_in(alloc)?;
412 unsafe {
413 boxed.as_mut_ptr().write(x);
414 Ok(boxed.assume_init())
415 }
416 }
417
418 /// Constructs a new box with uninitialized contents in the provided allocator.
419 ///
420 /// # Examples
421 ///
422 /// ```
423 /// #![feature(allocator_api, new_uninit)]
424 ///
425 /// use std::alloc::System;
426 ///
427 /// let mut five = Box::<u32, _>::new_uninit_in(System);
428 ///
429 /// let five = unsafe {
430 /// // Deferred initialization:
431 /// five.as_mut_ptr().write(5);
432 ///
433 /// five.assume_init()
434 /// };
435 ///
436 /// assert_eq!(*five, 5)
437 /// ```
438 #[unstable(feature = "allocator_api", issue = "32838")]
439 #[cfg(not(no_global_oom_handling))]
440 #[must_use]
441 // #[unstable(feature = "new_uninit", issue = "63291")]
442 pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
443 where
444 A: Allocator,
445 {
446 let layout = Layout::new::<mem::MaybeUninit<T>>();
447 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
448 // That would make code size bigger.
449 match Box::try_new_uninit_in(alloc) {
450 Ok(m) => m,
451 Err(_) => handle_alloc_error(layout),
452 }
453 }
454
455 /// Constructs a new box with uninitialized contents in the provided allocator,
456 /// returning an error if the allocation fails
457 ///
458 /// # Examples
459 ///
460 /// ```
461 /// #![feature(allocator_api, new_uninit)]
462 ///
463 /// use std::alloc::System;
464 ///
465 /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
466 ///
467 /// let five = unsafe {
468 /// // Deferred initialization:
469 /// five.as_mut_ptr().write(5);
470 ///
471 /// five.assume_init()
472 /// };
473 ///
474 /// assert_eq!(*five, 5);
475 /// # Ok::<(), std::alloc::AllocError>(())
476 /// ```
477 #[unstable(feature = "allocator_api", issue = "32838")]
478 // #[unstable(feature = "new_uninit", issue = "63291")]
479 pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
480 where
481 A: Allocator,
482 {
483 let ptr = if T::IS_ZST {
484 NonNull::dangling()
485 } else {
486 let layout = Layout::new::<mem::MaybeUninit<T>>();
487 alloc.allocate(layout)?.cast()
488 };
489 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
490 }
491
492 /// Constructs a new `Box` with uninitialized contents, with the memory
493 /// being filled with `0` bytes in the provided allocator.
494 ///
495 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
496 /// of this method.
497 ///
498 /// # Examples
499 ///
500 /// ```
501 /// #![feature(allocator_api, new_uninit)]
502 ///
503 /// use std::alloc::System;
504 ///
505 /// let zero = Box::<u32, _>::new_zeroed_in(System);
506 /// let zero = unsafe { zero.assume_init() };
507 ///
508 /// assert_eq!(*zero, 0)
509 /// ```
510 ///
511 /// [zeroed]: mem::MaybeUninit::zeroed
512 #[unstable(feature = "allocator_api", issue = "32838")]
513 #[cfg(not(no_global_oom_handling))]
514 // #[unstable(feature = "new_uninit", issue = "63291")]
515 #[must_use]
516 pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
517 where
518 A: Allocator,
519 {
520 let layout = Layout::new::<mem::MaybeUninit<T>>();
521 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
522 // That would make code size bigger.
523 match Box::try_new_zeroed_in(alloc) {
524 Ok(m) => m,
525 Err(_) => handle_alloc_error(layout),
526 }
527 }
528
529 /// Constructs a new `Box` with uninitialized contents, with the memory
530 /// being filled with `0` bytes in the provided allocator,
531 /// returning an error if the allocation fails,
532 ///
533 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
534 /// of this method.
535 ///
536 /// # Examples
537 ///
538 /// ```
539 /// #![feature(allocator_api, new_uninit)]
540 ///
541 /// use std::alloc::System;
542 ///
543 /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
544 /// let zero = unsafe { zero.assume_init() };
545 ///
546 /// assert_eq!(*zero, 0);
547 /// # Ok::<(), std::alloc::AllocError>(())
548 /// ```
549 ///
550 /// [zeroed]: mem::MaybeUninit::zeroed
551 #[unstable(feature = "allocator_api", issue = "32838")]
552 // #[unstable(feature = "new_uninit", issue = "63291")]
553 pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
554 where
555 A: Allocator,
556 {
557 let ptr = if T::IS_ZST {
558 NonNull::dangling()
559 } else {
560 let layout = Layout::new::<mem::MaybeUninit<T>>();
561 alloc.allocate_zeroed(layout)?.cast()
562 };
563 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
564 }
565
566 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
567 /// `x` will be pinned in memory and unable to be moved.
568 ///
569 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
570 /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
571 /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
572 /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
573 #[cfg(not(no_global_oom_handling))]
574 #[unstable(feature = "allocator_api", issue = "32838")]
575 #[must_use]
576 #[inline(always)]
577 pub fn pin_in(x: T, alloc: A) -> Pin<Self>
578 where
579 A: 'static + Allocator,
580 {
581 Self::into_pin(Self::new_in(x, alloc))
582 }
583
584 /// Converts a `Box<T>` into a `Box<[T]>`
585 ///
586 /// This conversion does not allocate on the heap and happens in place.
587 #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
588 pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
589 let (raw, alloc) = Box::into_raw_with_allocator(boxed);
590 unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
591 }
592
593 /// Consumes the `Box`, returning the wrapped value.
594 ///
595 /// # Examples
596 ///
597 /// ```
598 /// #![feature(box_into_inner)]
599 ///
600 /// let c = Box::new(5);
601 ///
602 /// assert_eq!(Box::into_inner(c), 5);
603 /// ```
604 #[unstable(feature = "box_into_inner", issue = "80437")]
605 #[inline]
606 pub fn into_inner(boxed: Self) -> T {
607 *boxed
608 }
609}
610
611impl<T> Box<[T]> {
612 /// Constructs a new boxed slice with uninitialized contents.
613 ///
614 /// # Examples
615 ///
616 /// ```
617 /// #![feature(new_uninit)]
618 ///
619 /// let mut values = Box::<[u32]>::new_uninit_slice(3);
620 ///
621 /// let values = unsafe {
622 /// // Deferred initialization:
623 /// values[0].as_mut_ptr().write(1);
624 /// values[1].as_mut_ptr().write(2);
625 /// values[2].as_mut_ptr().write(3);
626 ///
627 /// values.assume_init()
628 /// };
629 ///
630 /// assert_eq!(*values, [1, 2, 3])
631 /// ```
632 #[cfg(not(no_global_oom_handling))]
633 #[unstable(feature = "new_uninit", issue = "63291")]
634 #[must_use]
635 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
636 unsafe { RawVec::with_capacity(len).into_box(len) }
637 }
638
639 /// Constructs a new boxed slice with uninitialized contents, with the memory
640 /// being filled with `0` bytes.
641 ///
642 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
643 /// of this method.
644 ///
645 /// # Examples
646 ///
647 /// ```
648 /// #![feature(new_uninit)]
649 ///
650 /// let values = Box::<[u32]>::new_zeroed_slice(3);
651 /// let values = unsafe { values.assume_init() };
652 ///
653 /// assert_eq!(*values, [0, 0, 0])
654 /// ```
655 ///
656 /// [zeroed]: mem::MaybeUninit::zeroed
657 #[cfg(not(no_global_oom_handling))]
658 #[unstable(feature = "new_uninit", issue = "63291")]
659 #[must_use]
660 pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
661 unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
662 }
663
664 /// Constructs a new boxed slice with uninitialized contents. Returns an error if
665 /// the allocation fails
666 ///
667 /// # Examples
668 ///
669 /// ```
670 /// #![feature(allocator_api, new_uninit)]
671 ///
672 /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
673 /// let values = unsafe {
674 /// // Deferred initialization:
675 /// values[0].as_mut_ptr().write(1);
676 /// values[1].as_mut_ptr().write(2);
677 /// values[2].as_mut_ptr().write(3);
678 /// values.assume_init()
679 /// };
680 ///
681 /// assert_eq!(*values, [1, 2, 3]);
682 /// # Ok::<(), std::alloc::AllocError>(())
683 /// ```
684 #[unstable(feature = "allocator_api", issue = "32838")]
685 #[inline]
686 pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
687 let ptr = if T::IS_ZST || len == 0 {
688 NonNull::dangling()
689 } else {
690 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
691 Ok(l) => l,
692 Err(_) => return Err(AllocError),
693 };
694 Global.allocate(layout)?.cast()
695 };
696 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
697 }
698
699 /// Constructs a new boxed slice with uninitialized contents, with the memory
700 /// being filled with `0` bytes. Returns an error if the allocation fails
701 ///
702 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
703 /// of this method.
704 ///
705 /// # Examples
706 ///
707 /// ```
708 /// #![feature(allocator_api, new_uninit)]
709 ///
710 /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
711 /// let values = unsafe { values.assume_init() };
712 ///
713 /// assert_eq!(*values, [0, 0, 0]);
714 /// # Ok::<(), std::alloc::AllocError>(())
715 /// ```
716 ///
717 /// [zeroed]: mem::MaybeUninit::zeroed
718 #[unstable(feature = "allocator_api", issue = "32838")]
719 #[inline]
720 pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
721 let ptr = if T::IS_ZST || len == 0 {
722 NonNull::dangling()
723 } else {
724 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
725 Ok(l) => l,
726 Err(_) => return Err(AllocError),
727 };
728 Global.allocate_zeroed(layout)?.cast()
729 };
730 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
731 }
732}
733
734impl<T, A: Allocator> Box<[T], A> {
735 /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
736 ///
737 /// # Examples
738 ///
739 /// ```
740 /// #![feature(allocator_api, new_uninit)]
741 ///
742 /// use std::alloc::System;
743 ///
744 /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
745 ///
746 /// let values = unsafe {
747 /// // Deferred initialization:
748 /// values[0].as_mut_ptr().write(1);
749 /// values[1].as_mut_ptr().write(2);
750 /// values[2].as_mut_ptr().write(3);
751 ///
752 /// values.assume_init()
753 /// };
754 ///
755 /// assert_eq!(*values, [1, 2, 3])
756 /// ```
757 #[cfg(not(no_global_oom_handling))]
758 #[unstable(feature = "allocator_api", issue = "32838")]
759 // #[unstable(feature = "new_uninit", issue = "63291")]
760 #[must_use]
761 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
762 unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
763 }
764
765 /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
766 /// with the memory being filled with `0` bytes.
767 ///
768 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
769 /// of this method.
770 ///
771 /// # Examples
772 ///
773 /// ```
774 /// #![feature(allocator_api, new_uninit)]
775 ///
776 /// use std::alloc::System;
777 ///
778 /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
779 /// let values = unsafe { values.assume_init() };
780 ///
781 /// assert_eq!(*values, [0, 0, 0])
782 /// ```
783 ///
784 /// [zeroed]: mem::MaybeUninit::zeroed
785 #[cfg(not(no_global_oom_handling))]
786 #[unstable(feature = "allocator_api", issue = "32838")]
787 // #[unstable(feature = "new_uninit", issue = "63291")]
788 #[must_use]
789 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
790 unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
791 }
792}
793
794impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
795 /// Converts to `Box<T, A>`.
796 ///
797 /// # Safety
798 ///
799 /// As with [`MaybeUninit::assume_init`],
800 /// it is up to the caller to guarantee that the value
801 /// really is in an initialized state.
802 /// Calling this when the content is not yet fully initialized
803 /// causes immediate undefined behavior.
804 ///
805 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
806 ///
807 /// # Examples
808 ///
809 /// ```
810 /// #![feature(new_uninit)]
811 ///
812 /// let mut five = Box::<u32>::new_uninit();
813 ///
814 /// let five: Box<u32> = unsafe {
815 /// // Deferred initialization:
816 /// five.as_mut_ptr().write(5);
817 ///
818 /// five.assume_init()
819 /// };
820 ///
821 /// assert_eq!(*five, 5)
822 /// ```
823 #[unstable(feature = "new_uninit", issue = "63291")]
824 #[inline]
825 pub unsafe fn assume_init(self) -> Box<T, A> {
826 let (raw, alloc) = Box::into_raw_with_allocator(self);
827 unsafe { Box::from_raw_in(raw as *mut T, alloc) }
828 }
829
830 /// Writes the value and converts to `Box<T, A>`.
831 ///
832 /// This method converts the box similarly to [`Box::assume_init`] but
833 /// writes `value` into it before conversion thus guaranteeing safety.
834 /// In some scenarios use of this method may improve performance because
835 /// the compiler may be able to optimize copying from stack.
836 ///
837 /// # Examples
838 ///
839 /// ```
840 /// #![feature(new_uninit)]
841 ///
842 /// let big_box = Box::<[usize; 1024]>::new_uninit();
843 ///
844 /// let mut array = [0; 1024];
845 /// for (i, place) in array.iter_mut().enumerate() {
846 /// *place = i;
847 /// }
848 ///
849 /// // The optimizer may be able to elide this copy, so previous code writes
850 /// // to heap directly.
851 /// let big_box = Box::write(big_box, array);
852 ///
853 /// for (i, x) in big_box.iter().enumerate() {
854 /// assert_eq!(*x, i);
855 /// }
856 /// ```
857 #[unstable(feature = "new_uninit", issue = "63291")]
858 #[inline]
859 pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
860 unsafe {
861 (*boxed).write(value);
862 boxed.assume_init()
863 }
864 }
865}
866
867impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
868 /// Converts to `Box<[T], A>`.
869 ///
870 /// # Safety
871 ///
872 /// As with [`MaybeUninit::assume_init`],
873 /// it is up to the caller to guarantee that the values
874 /// really are in an initialized state.
875 /// Calling this when the content is not yet fully initialized
876 /// causes immediate undefined behavior.
877 ///
878 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
879 ///
880 /// # Examples
881 ///
882 /// ```
883 /// #![feature(new_uninit)]
884 ///
885 /// let mut values = Box::<[u32]>::new_uninit_slice(3);
886 ///
887 /// let values = unsafe {
888 /// // Deferred initialization:
889 /// values[0].as_mut_ptr().write(1);
890 /// values[1].as_mut_ptr().write(2);
891 /// values[2].as_mut_ptr().write(3);
892 ///
893 /// values.assume_init()
894 /// };
895 ///
896 /// assert_eq!(*values, [1, 2, 3])
897 /// ```
898 #[unstable(feature = "new_uninit", issue = "63291")]
899 #[inline]
900 pub unsafe fn assume_init(self) -> Box<[T], A> {
901 let (raw, alloc) = Box::into_raw_with_allocator(self);
902 unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
903 }
904}
905
906impl<T: ?Sized> Box<T> {
907 /// Constructs a box from a raw pointer.
908 ///
909 /// After calling this function, the raw pointer is owned by the
910 /// resulting `Box`. Specifically, the `Box` destructor will call
911 /// the destructor of `T` and free the allocated memory. For this
912 /// to be safe, the memory must have been allocated in accordance
913 /// with the [memory layout] used by `Box` .
914 ///
915 /// # Safety
916 ///
917 /// This function is unsafe because improper use may lead to
918 /// memory problems. For example, a double-free may occur if the
919 /// function is called twice on the same raw pointer.
920 ///
921 /// The safety conditions are described in the [memory layout] section.
922 ///
923 /// # Examples
924 ///
925 /// Recreate a `Box` which was previously converted to a raw pointer
926 /// using [`Box::into_raw`]:
927 /// ```
928 /// let x = Box::new(5);
929 /// let ptr = Box::into_raw(x);
930 /// let x = unsafe { Box::from_raw(ptr) };
931 /// ```
932 /// Manually create a `Box` from scratch by using the global allocator:
933 /// ```
934 /// use std::alloc::{alloc, Layout};
935 ///
936 /// unsafe {
937 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
938 /// // In general .write is required to avoid attempting to destruct
939 /// // the (uninitialized) previous contents of `ptr`, though for this
940 /// // simple example `*ptr = 5` would have worked as well.
941 /// ptr.write(5);
942 /// let x = Box::from_raw(ptr);
943 /// }
944 /// ```
945 ///
946 /// [memory layout]: self#memory-layout
947 /// [`Layout`]: crate::Layout
948 #[stable(feature = "box_raw", since = "1.4.0")]
949 #[inline]
950 #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"]
951 pub unsafe fn from_raw(raw: *mut T) -> Self {
952 unsafe { Self::from_raw_in(raw, Global) }
953 }
954}
955
956impl<T: ?Sized, A: Allocator> Box<T, A> {
957 /// Constructs a box from a raw pointer in the given allocator.
958 ///
959 /// After calling this function, the raw pointer is owned by the
960 /// resulting `Box`. Specifically, the `Box` destructor will call
961 /// the destructor of `T` and free the allocated memory. For this
962 /// to be safe, the memory must have been allocated in accordance
963 /// with the [memory layout] used by `Box` .
964 ///
965 /// # Safety
966 ///
967 /// This function is unsafe because improper use may lead to
968 /// memory problems. For example, a double-free may occur if the
969 /// function is called twice on the same raw pointer.
970 ///
971 ///
972 /// # Examples
973 ///
974 /// Recreate a `Box` which was previously converted to a raw pointer
975 /// using [`Box::into_raw_with_allocator`]:
976 /// ```
977 /// #![feature(allocator_api)]
978 ///
979 /// use std::alloc::System;
980 ///
981 /// let x = Box::new_in(5, System);
982 /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
983 /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
984 /// ```
985 /// Manually create a `Box` from scratch by using the system allocator:
986 /// ```
987 /// #![feature(allocator_api, slice_ptr_get)]
988 ///
989 /// use std::alloc::{Allocator, Layout, System};
990 ///
991 /// unsafe {
992 /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
993 /// // In general .write is required to avoid attempting to destruct
994 /// // the (uninitialized) previous contents of `ptr`, though for this
995 /// // simple example `*ptr = 5` would have worked as well.
996 /// ptr.write(5);
997 /// let x = Box::from_raw_in(ptr, System);
998 /// }
999 /// # Ok::<(), std::alloc::AllocError>(())
1000 /// ```
1001 ///
1002 /// [memory layout]: self#memory-layout
1003 /// [`Layout`]: crate::Layout
1004 #[unstable(feature = "allocator_api", issue = "32838")]
1005 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1006 #[inline]
1007 pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
1008 Box(unsafe { Unique::new_unchecked(raw) }, alloc)
1009 }
1010
1011 /// Consumes the `Box`, returning a wrapped raw pointer.
1012 ///
1013 /// The pointer will be properly aligned and non-null.
1014 ///
1015 /// After calling this function, the caller is responsible for the
1016 /// memory previously managed by the `Box`. In particular, the
1017 /// caller should properly destroy `T` and release the memory, taking
1018 /// into account the [memory layout] used by `Box`. The easiest way to
1019 /// do this is to convert the raw pointer back into a `Box` with the
1020 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1021 /// the cleanup.
1022 ///
1023 /// Note: this is an associated function, which means that you have
1024 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1025 /// is so that there is no conflict with a method on the inner type.
1026 ///
1027 /// # Examples
1028 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1029 /// for automatic cleanup:
1030 /// ```
1031 /// let x = Box::new(String::from("Hello"));
1032 /// let ptr = Box::into_raw(x);
1033 /// let x = unsafe { Box::from_raw(ptr) };
1034 /// ```
1035 /// Manual cleanup by explicitly running the destructor and deallocating
1036 /// the memory:
1037 /// ```
1038 /// use std::alloc::{dealloc, Layout};
1039 /// use std::ptr;
1040 ///
1041 /// let x = Box::new(String::from("Hello"));
1042 /// let ptr = Box::into_raw(x);
1043 /// unsafe {
1044 /// ptr::drop_in_place(ptr);
1045 /// dealloc(ptr as *mut u8, Layout::new::<String>());
1046 /// }
1047 /// ```
1048 /// Note: This is equivalent to the following:
1049 /// ```
1050 /// let x = Box::new(String::from("Hello"));
1051 /// let ptr = Box::into_raw(x);
1052 /// unsafe {
1053 /// drop(Box::from_raw(ptr));
1054 /// }
1055 /// ```
1056 ///
1057 /// [memory layout]: self#memory-layout
1058 #[stable(feature = "box_raw", since = "1.4.0")]
1059 #[inline]
1060 pub fn into_raw(b: Self) -> *mut T {
1061 // Make sure Miri realizes that we transition from a noalias pointer to a raw pointer here.
1062 unsafe { addr_of_mut!(*&mut *Self::into_raw_with_allocator(b).0) }
1063 }
1064
1065 /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1066 ///
1067 /// The pointer will be properly aligned and non-null.
1068 ///
1069 /// After calling this function, the caller is responsible for the
1070 /// memory previously managed by the `Box`. In particular, the
1071 /// caller should properly destroy `T` and release the memory, taking
1072 /// into account the [memory layout] used by `Box`. The easiest way to
1073 /// do this is to convert the raw pointer back into a `Box` with the
1074 /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1075 /// the cleanup.
1076 ///
1077 /// Note: this is an associated function, which means that you have
1078 /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1079 /// is so that there is no conflict with a method on the inner type.
1080 ///
1081 /// # Examples
1082 /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1083 /// for automatic cleanup:
1084 /// ```
1085 /// #![feature(allocator_api)]
1086 ///
1087 /// use std::alloc::System;
1088 ///
1089 /// let x = Box::new_in(String::from("Hello"), System);
1090 /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1091 /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1092 /// ```
1093 /// Manual cleanup by explicitly running the destructor and deallocating
1094 /// the memory:
1095 /// ```
1096 /// #![feature(allocator_api)]
1097 ///
1098 /// use std::alloc::{Allocator, Layout, System};
1099 /// use std::ptr::{self, NonNull};
1100 ///
1101 /// let x = Box::new_in(String::from("Hello"), System);
1102 /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1103 /// unsafe {
1104 /// ptr::drop_in_place(ptr);
1105 /// let non_null = NonNull::new_unchecked(ptr);
1106 /// alloc.deallocate(non_null.cast(), Layout::new::<String>());
1107 /// }
1108 /// ```
1109 ///
1110 /// [memory layout]: self#memory-layout
1111 #[unstable(feature = "allocator_api", issue = "32838")]
1112 #[inline]
1113 pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1114 let mut b = mem::ManuallyDrop::new(b);
1115 // We carefully get the raw pointer out in a way that Miri's aliasing model understands what
1116 // is happening: using the primitive "deref" of `Box`. In case `A` is *not* `Global`, we
1117 // want *no* aliasing requirements here!
1118 // In case `A` *is* `Global`, this does not quite have the right behavior; `into_raw`
1119 // works around that.
1120 let ptr = addr_of_mut!(**b);
1121 let alloc = unsafe { ptr::read(&b.1) };
1122 (ptr, alloc)
1123 }
1124
1125 #[unstable(
1126 feature = "ptr_internals",
1127 issue = "none",
1128 reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
1129 )]
1130 #[inline]
1131 #[doc(hidden)]
1132 pub fn into_unique(b: Self) -> (Unique<T>, A) {
1133 let (ptr, alloc) = Box::into_raw_with_allocator(b);
1134 unsafe { (Unique::from(&mut *ptr), alloc) }
1135 }
1136
1137 /// Returns a reference to the underlying allocator.
1138 ///
1139 /// Note: this is an associated function, which means that you have
1140 /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1141 /// is so that there is no conflict with a method on the inner type.
1142 #[unstable(feature = "allocator_api", issue = "32838")]
1143 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1144 #[inline]
1145 pub const fn allocator(b: &Self) -> &A {
1146 &b.1
1147 }
1148
1149 /// Consumes and leaks the `Box`, returning a mutable reference,
1150 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1151 /// `'a`. If the type has only static references, or none at all, then this
1152 /// may be chosen to be `'static`.
1153 ///
1154 /// This function is mainly useful for data that lives for the remainder of
1155 /// the program's life. Dropping the returned reference will cause a memory
1156 /// leak. If this is not acceptable, the reference should first be wrapped
1157 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1158 /// then be dropped which will properly destroy `T` and release the
1159 /// allocated memory.
1160 ///
1161 /// Note: this is an associated function, which means that you have
1162 /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1163 /// is so that there is no conflict with a method on the inner type.
1164 ///
1165 /// # Examples
1166 ///
1167 /// Simple usage:
1168 ///
1169 /// ```
1170 /// let x = Box::new(41);
1171 /// let static_ref: &'static mut usize = Box::leak(x);
1172 /// *static_ref += 1;
1173 /// assert_eq!(*static_ref, 42);
1174 /// ```
1175 ///
1176 /// Unsized data:
1177 ///
1178 /// ```
1179 /// let x = vec![1, 2, 3].into_boxed_slice();
1180 /// let static_ref = Box::leak(x);
1181 /// static_ref[0] = 4;
1182 /// assert_eq!(*static_ref, [4, 2, 3]);
1183 /// ```
1184 #[stable(feature = "box_leak", since = "1.26.0")]
1185 #[inline]
1186 pub fn leak<'a>(b: Self) -> &'a mut T
1187 where
1188 A: 'a,
1189 {
1190 unsafe { &mut *Box::into_raw(b) }
1191 }
1192
1193 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1194 /// `*boxed` will be pinned in memory and unable to be moved.
1195 ///
1196 /// This conversion does not allocate on the heap and happens in place.
1197 ///
1198 /// This is also available via [`From`].
1199 ///
1200 /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1201 /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1202 /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1203 /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1204 ///
1205 /// # Notes
1206 ///
1207 /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1208 /// as it'll introduce an ambiguity when calling `Pin::from`.
1209 /// A demonstration of such a poor impl is shown below.
1210 ///
1211 /// ```compile_fail
1212 /// # use std::pin::Pin;
1213 /// struct Foo; // A type defined in this crate.
1214 /// impl From<Box<()>> for Pin<Foo> {
1215 /// fn from(_: Box<()>) -> Pin<Foo> {
1216 /// Pin::new(Foo)
1217 /// }
1218 /// }
1219 ///
1220 /// let foo = Box::new(());
1221 /// let bar = Pin::from(foo);
1222 /// ```
1223 #[stable(feature = "box_into_pin", since = "1.63.0")]
1224 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1225 pub const fn into_pin(boxed: Self) -> Pin<Self>
1226 where
1227 A: 'static,
1228 {
1229 // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1230 // when `T: !Unpin`, so it's safe to pin it directly without any
1231 // additional requirements.
1232 unsafe { Pin::new_unchecked(boxed) }
1233 }
1234}
1235
1236#[stable(feature = "rust1", since = "1.0.0")]
1237unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
1238 #[inline]
1239 fn drop(&mut self) {
1240 // the T in the Box is dropped by the compiler before the destructor is run
1241
1242 let ptr: Unique = self.0;
1243
1244 unsafe {
1245 let layout: Layout = Layout::for_value_raw(ptr.as_ptr());
1246 if layout.size() != 0 {
1247 self.1.deallocate(ptr:From::from(ptr.cast()), layout);
1248 }
1249 }
1250 }
1251}
1252
1253#[cfg(not(no_global_oom_handling))]
1254#[stable(feature = "rust1", since = "1.0.0")]
1255impl<T: Default> Default for Box<T> {
1256 /// Creates a `Box<T>`, with the `Default` value for T.
1257 #[inline]
1258 fn default() -> Self {
1259 Box::new(T::default())
1260 }
1261}
1262
1263#[cfg(not(no_global_oom_handling))]
1264#[stable(feature = "rust1", since = "1.0.0")]
1265impl<T> Default for Box<[T]> {
1266 #[inline]
1267 fn default() -> Self {
1268 let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
1269 Box(ptr, Global)
1270 }
1271}
1272
1273#[cfg(not(no_global_oom_handling))]
1274#[stable(feature = "default_box_extra", since = "1.17.0")]
1275impl Default for Box<str> {
1276 #[inline]
1277 fn default() -> Self {
1278 // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1279 let ptr: Unique<str> = unsafe {
1280 let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
1281 Unique::new_unchecked(bytes.as_ptr() as *mut str)
1282 };
1283 Box(ptr, Global)
1284 }
1285}
1286
1287#[cfg(not(no_global_oom_handling))]
1288#[stable(feature = "rust1", since = "1.0.0")]
1289impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1290 /// Returns a new box with a `clone()` of this box's contents.
1291 ///
1292 /// # Examples
1293 ///
1294 /// ```
1295 /// let x = Box::new(5);
1296 /// let y = x.clone();
1297 ///
1298 /// // The value is the same
1299 /// assert_eq!(x, y);
1300 ///
1301 /// // But they are unique objects
1302 /// assert_ne!(&*x as *const i32, &*y as *const i32);
1303 /// ```
1304 #[inline]
1305 fn clone(&self) -> Self {
1306 // Pre-allocate memory to allow writing the cloned value directly.
1307 let mut boxed = Self::new_uninit_in(self.1.clone());
1308 unsafe {
1309 (**self).write_clone_into_raw(boxed.as_mut_ptr());
1310 boxed.assume_init()
1311 }
1312 }
1313
1314 /// Copies `source`'s contents into `self` without creating a new allocation.
1315 ///
1316 /// # Examples
1317 ///
1318 /// ```
1319 /// let x = Box::new(5);
1320 /// let mut y = Box::new(10);
1321 /// let yp: *const i32 = &*y;
1322 ///
1323 /// y.clone_from(&x);
1324 ///
1325 /// // The value is the same
1326 /// assert_eq!(x, y);
1327 ///
1328 /// // And no allocation occurred
1329 /// assert_eq!(yp, &*y);
1330 /// ```
1331 #[inline]
1332 fn clone_from(&mut self, source: &Self) {
1333 (**self).clone_from(&(**source));
1334 }
1335}
1336
1337#[cfg(not(no_global_oom_handling))]
1338#[stable(feature = "box_slice_clone", since = "1.3.0")]
1339impl Clone for Box<str> {
1340 fn clone(&self) -> Self {
1341 // this makes a copy of the data
1342 let buf: Box<[u8]> = self.as_bytes().into();
1343 unsafe { from_boxed_utf8_unchecked(buf) }
1344 }
1345}
1346
1347#[stable(feature = "rust1", since = "1.0.0")]
1348impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1349 #[inline]
1350 fn eq(&self, other: &Self) -> bool {
1351 PartialEq::eq(&**self, &**other)
1352 }
1353 #[inline]
1354 fn ne(&self, other: &Self) -> bool {
1355 PartialEq::ne(&**self, &**other)
1356 }
1357}
1358#[stable(feature = "rust1", since = "1.0.0")]
1359impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1360 #[inline]
1361 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1362 PartialOrd::partial_cmp(&**self, &**other)
1363 }
1364 #[inline]
1365 fn lt(&self, other: &Self) -> bool {
1366 PartialOrd::lt(&**self, &**other)
1367 }
1368 #[inline]
1369 fn le(&self, other: &Self) -> bool {
1370 PartialOrd::le(&**self, &**other)
1371 }
1372 #[inline]
1373 fn ge(&self, other: &Self) -> bool {
1374 PartialOrd::ge(&**self, &**other)
1375 }
1376 #[inline]
1377 fn gt(&self, other: &Self) -> bool {
1378 PartialOrd::gt(&**self, &**other)
1379 }
1380}
1381#[stable(feature = "rust1", since = "1.0.0")]
1382impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1383 #[inline]
1384 fn cmp(&self, other: &Self) -> Ordering {
1385 Ord::cmp(&**self, &**other)
1386 }
1387}
1388#[stable(feature = "rust1", since = "1.0.0")]
1389impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1390
1391#[stable(feature = "rust1", since = "1.0.0")]
1392impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1393 fn hash<H: Hasher>(&self, state: &mut H) {
1394 (**self).hash(state);
1395 }
1396}
1397
1398#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
1399impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1400 fn finish(&self) -> u64 {
1401 (**self).finish()
1402 }
1403 fn write(&mut self, bytes: &[u8]) {
1404 (**self).write(bytes)
1405 }
1406 fn write_u8(&mut self, i: u8) {
1407 (**self).write_u8(i)
1408 }
1409 fn write_u16(&mut self, i: u16) {
1410 (**self).write_u16(i)
1411 }
1412 fn write_u32(&mut self, i: u32) {
1413 (**self).write_u32(i)
1414 }
1415 fn write_u64(&mut self, i: u64) {
1416 (**self).write_u64(i)
1417 }
1418 fn write_u128(&mut self, i: u128) {
1419 (**self).write_u128(i)
1420 }
1421 fn write_usize(&mut self, i: usize) {
1422 (**self).write_usize(i)
1423 }
1424 fn write_i8(&mut self, i: i8) {
1425 (**self).write_i8(i)
1426 }
1427 fn write_i16(&mut self, i: i16) {
1428 (**self).write_i16(i)
1429 }
1430 fn write_i32(&mut self, i: i32) {
1431 (**self).write_i32(i)
1432 }
1433 fn write_i64(&mut self, i: i64) {
1434 (**self).write_i64(i)
1435 }
1436 fn write_i128(&mut self, i: i128) {
1437 (**self).write_i128(i)
1438 }
1439 fn write_isize(&mut self, i: isize) {
1440 (**self).write_isize(i)
1441 }
1442 fn write_length_prefix(&mut self, len: usize) {
1443 (**self).write_length_prefix(len)
1444 }
1445 fn write_str(&mut self, s: &str) {
1446 (**self).write_str(s)
1447 }
1448}
1449
1450#[cfg(not(no_global_oom_handling))]
1451#[stable(feature = "from_for_ptrs", since = "1.6.0")]
1452impl<T> From<T> for Box<T> {
1453 /// Converts a `T` into a `Box<T>`
1454 ///
1455 /// The conversion allocates on the heap and moves `t`
1456 /// from the stack into it.
1457 ///
1458 /// # Examples
1459 ///
1460 /// ```rust
1461 /// let x = 5;
1462 /// let boxed = Box::new(5);
1463 ///
1464 /// assert_eq!(Box::from(x), boxed);
1465 /// ```
1466 fn from(t: T) -> Self {
1467 Box::new(t)
1468 }
1469}
1470
1471#[stable(feature = "pin", since = "1.33.0")]
1472impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1473where
1474 A: 'static,
1475{
1476 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1477 /// `*boxed` will be pinned in memory and unable to be moved.
1478 ///
1479 /// This conversion does not allocate on the heap and happens in place.
1480 ///
1481 /// This is also available via [`Box::into_pin`].
1482 ///
1483 /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1484 /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1485 /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1486 /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1487 fn from(boxed: Box<T, A>) -> Self {
1488 Box::into_pin(boxed)
1489 }
1490}
1491
1492/// Specialization trait used for `From<&[T]>`.
1493#[cfg(not(no_global_oom_handling))]
1494trait BoxFromSlice<T> {
1495 fn from_slice(slice: &[T]) -> Self;
1496}
1497
1498#[cfg(not(no_global_oom_handling))]
1499impl<T: Clone> BoxFromSlice<T> for Box<[T]> {
1500 #[inline]
1501 default fn from_slice(slice: &[T]) -> Self {
1502 slice.to_vec().into_boxed_slice()
1503 }
1504}
1505
1506#[cfg(not(no_global_oom_handling))]
1507impl<T: Copy> BoxFromSlice<T> for Box<[T]> {
1508 #[inline]
1509 fn from_slice(slice: &[T]) -> Self {
1510 let len: usize = slice.len();
1511 let buf: RawVec = RawVec::with_capacity(len);
1512 unsafe {
1513 ptr::copy_nonoverlapping(src:slice.as_ptr(), dst:buf.ptr(), count:len);
1514 buf.into_box(slice.len()).assume_init()
1515 }
1516 }
1517}
1518
1519#[cfg(not(no_global_oom_handling))]
1520#[stable(feature = "box_from_slice", since = "1.17.0")]
1521impl<T: Clone> From<&[T]> for Box<[T]> {
1522 /// Converts a `&[T]` into a `Box<[T]>`
1523 ///
1524 /// This conversion allocates on the heap
1525 /// and performs a copy of `slice` and its contents.
1526 ///
1527 /// # Examples
1528 /// ```rust
1529 /// // create a &[u8] which will be used to create a Box<[u8]>
1530 /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1531 /// let boxed_slice: Box<[u8]> = Box::from(slice);
1532 ///
1533 /// println!("{boxed_slice:?}");
1534 /// ```
1535 #[inline]
1536 fn from(slice: &[T]) -> Box<[T]> {
1537 <Self as BoxFromSlice<T>>::from_slice(slice)
1538 }
1539}
1540
1541#[cfg(not(no_global_oom_handling))]
1542#[stable(feature = "box_from_cow", since = "1.45.0")]
1543impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> {
1544 /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
1545 ///
1546 /// When `cow` is the `Cow::Borrowed` variant, this
1547 /// conversion allocates on the heap and copies the
1548 /// underlying slice. Otherwise, it will try to reuse the owned
1549 /// `Vec`'s allocation.
1550 #[inline]
1551 fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
1552 match cow {
1553 Cow::Borrowed(slice: &[T]) => Box::from(slice),
1554 Cow::Owned(slice: Vec) => Box::from(slice),
1555 }
1556 }
1557}
1558
1559#[cfg(not(no_global_oom_handling))]
1560#[stable(feature = "box_from_slice", since = "1.17.0")]
1561impl From<&str> for Box<str> {
1562 /// Converts a `&str` into a `Box<str>`
1563 ///
1564 /// This conversion allocates on the heap
1565 /// and performs a copy of `s`.
1566 ///
1567 /// # Examples
1568 ///
1569 /// ```rust
1570 /// let boxed: Box<str> = Box::from("hello");
1571 /// println!("{boxed}");
1572 /// ```
1573 #[inline]
1574 fn from(s: &str) -> Box<str> {
1575 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
1576 }
1577}
1578
1579#[cfg(not(no_global_oom_handling))]
1580#[stable(feature = "box_from_cow", since = "1.45.0")]
1581impl From<Cow<'_, str>> for Box<str> {
1582 /// Converts a `Cow<'_, str>` into a `Box<str>`
1583 ///
1584 /// When `cow` is the `Cow::Borrowed` variant, this
1585 /// conversion allocates on the heap and copies the
1586 /// underlying `str`. Otherwise, it will try to reuse the owned
1587 /// `String`'s allocation.
1588 ///
1589 /// # Examples
1590 ///
1591 /// ```rust
1592 /// use std::borrow::Cow;
1593 ///
1594 /// let unboxed = Cow::Borrowed("hello");
1595 /// let boxed: Box<str> = Box::from(unboxed);
1596 /// println!("{boxed}");
1597 /// ```
1598 ///
1599 /// ```rust
1600 /// # use std::borrow::Cow;
1601 /// let unboxed = Cow::Owned("hello".to_string());
1602 /// let boxed: Box<str> = Box::from(unboxed);
1603 /// println!("{boxed}");
1604 /// ```
1605 #[inline]
1606 fn from(cow: Cow<'_, str>) -> Box<str> {
1607 match cow {
1608 Cow::Borrowed(s) => Box::from(s),
1609 Cow::Owned(s) => Box::from(s),
1610 }
1611 }
1612}
1613
1614#[stable(feature = "boxed_str_conv", since = "1.19.0")]
1615impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1616 /// Converts a `Box<str>` into a `Box<[u8]>`
1617 ///
1618 /// This conversion does not allocate on the heap and happens in place.
1619 ///
1620 /// # Examples
1621 /// ```rust
1622 /// // create a Box<str> which will be used to create a Box<[u8]>
1623 /// let boxed: Box<str> = Box::from("hello");
1624 /// let boxed_str: Box<[u8]> = Box::from(boxed);
1625 ///
1626 /// // create a &[u8] which will be used to create a Box<[u8]>
1627 /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1628 /// let boxed_slice = Box::from(slice);
1629 ///
1630 /// assert_eq!(boxed_slice, boxed_str);
1631 /// ```
1632 #[inline]
1633 fn from(s: Box<str, A>) -> Self {
1634 let (raw: *mut str, alloc: A) = Box::into_raw_with_allocator(s);
1635 unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1636 }
1637}
1638
1639#[cfg(not(no_global_oom_handling))]
1640#[stable(feature = "box_from_array", since = "1.45.0")]
1641impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1642 /// Converts a `[T; N]` into a `Box<[T]>`
1643 ///
1644 /// This conversion moves the array to newly heap-allocated memory.
1645 ///
1646 /// # Examples
1647 ///
1648 /// ```rust
1649 /// let boxed: Box<[u8]> = Box::from([4, 2]);
1650 /// println!("{boxed:?}");
1651 /// ```
1652 fn from(array: [T; N]) -> Box<[T]> {
1653 Box::new(array)
1654 }
1655}
1656
1657/// Casts a boxed slice to a boxed array.
1658///
1659/// # Safety
1660///
1661/// `boxed_slice.len()` must be exactly `N`.
1662unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>(
1663 boxed_slice: Box<[T], A>,
1664) -> Box<[T; N], A> {
1665 debug_assert_eq!(boxed_slice.len(), N);
1666
1667 let (ptr: *mut [T], alloc: A) = Box::into_raw_with_allocator(boxed_slice);
1668 // SAFETY: Pointer and allocator came from an existing box,
1669 // and our safety condition requires that the length is exactly `N`
1670 unsafe { Box::from_raw_in(raw:ptr as *mut [T; N], alloc) }
1671}
1672
1673#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
1674impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
1675 type Error = Box<[T]>;
1676
1677 /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1678 ///
1679 /// The conversion occurs in-place and does not require a
1680 /// new memory allocation.
1681 ///
1682 /// # Errors
1683 ///
1684 /// Returns the old `Box<[T]>` in the `Err` variant if
1685 /// `boxed_slice.len()` does not equal `N`.
1686 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
1687 if boxed_slice.len() == N {
1688 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1689 } else {
1690 Err(boxed_slice)
1691 }
1692 }
1693}
1694
1695#[cfg(not(no_global_oom_handling))]
1696#[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")]
1697impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> {
1698 type Error = Vec<T>;
1699
1700 /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`.
1701 ///
1702 /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`,
1703 /// but will require a reallocation otherwise.
1704 ///
1705 /// # Errors
1706 ///
1707 /// Returns the original `Vec<T>` in the `Err` variant if
1708 /// `boxed_slice.len()` does not equal `N`.
1709 ///
1710 /// # Examples
1711 ///
1712 /// This can be used with [`vec!`] to create an array on the heap:
1713 ///
1714 /// ```
1715 /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap();
1716 /// assert_eq!(state.len(), 100);
1717 /// ```
1718 fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> {
1719 if vec.len() == N {
1720 let boxed_slice = vec.into_boxed_slice();
1721 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1722 } else {
1723 Err(vec)
1724 }
1725 }
1726}
1727
1728impl<A: Allocator> Box<dyn Any, A> {
1729 /// Attempt to downcast the box to a concrete type.
1730 ///
1731 /// # Examples
1732 ///
1733 /// ```
1734 /// use std::any::Any;
1735 ///
1736 /// fn print_if_string(value: Box<dyn Any>) {
1737 /// if let Ok(string) = value.downcast::<String>() {
1738 /// println!("String ({}): {}", string.len(), string);
1739 /// }
1740 /// }
1741 ///
1742 /// let my_string = "Hello World".to_string();
1743 /// print_if_string(Box::new(my_string));
1744 /// print_if_string(Box::new(0i8));
1745 /// ```
1746 #[inline]
1747 #[stable(feature = "rust1", since = "1.0.0")]
1748 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1749 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1750 }
1751
1752 /// Downcasts the box to a concrete type.
1753 ///
1754 /// For a safe alternative see [`downcast`].
1755 ///
1756 /// # Examples
1757 ///
1758 /// ```
1759 /// #![feature(downcast_unchecked)]
1760 ///
1761 /// use std::any::Any;
1762 ///
1763 /// let x: Box<dyn Any> = Box::new(1_usize);
1764 ///
1765 /// unsafe {
1766 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1767 /// }
1768 /// ```
1769 ///
1770 /// # Safety
1771 ///
1772 /// The contained value must be of type `T`. Calling this method
1773 /// with the incorrect type is *undefined behavior*.
1774 ///
1775 /// [`downcast`]: Self::downcast
1776 #[inline]
1777 #[unstable(feature = "downcast_unchecked", issue = "90850")]
1778 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1779 debug_assert!(self.is::<T>());
1780 unsafe {
1781 let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
1782 Box::from_raw_in(raw as *mut T, alloc)
1783 }
1784 }
1785}
1786
1787impl<A: Allocator> Box<dyn Any + Send, A> {
1788 /// Attempt to downcast the box to a concrete type.
1789 ///
1790 /// # Examples
1791 ///
1792 /// ```
1793 /// use std::any::Any;
1794 ///
1795 /// fn print_if_string(value: Box<dyn Any + Send>) {
1796 /// if let Ok(string) = value.downcast::<String>() {
1797 /// println!("String ({}): {}", string.len(), string);
1798 /// }
1799 /// }
1800 ///
1801 /// let my_string = "Hello World".to_string();
1802 /// print_if_string(Box::new(my_string));
1803 /// print_if_string(Box::new(0i8));
1804 /// ```
1805 #[inline]
1806 #[stable(feature = "rust1", since = "1.0.0")]
1807 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1808 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1809 }
1810
1811 /// Downcasts the box to a concrete type.
1812 ///
1813 /// For a safe alternative see [`downcast`].
1814 ///
1815 /// # Examples
1816 ///
1817 /// ```
1818 /// #![feature(downcast_unchecked)]
1819 ///
1820 /// use std::any::Any;
1821 ///
1822 /// let x: Box<dyn Any + Send> = Box::new(1_usize);
1823 ///
1824 /// unsafe {
1825 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1826 /// }
1827 /// ```
1828 ///
1829 /// # Safety
1830 ///
1831 /// The contained value must be of type `T`. Calling this method
1832 /// with the incorrect type is *undefined behavior*.
1833 ///
1834 /// [`downcast`]: Self::downcast
1835 #[inline]
1836 #[unstable(feature = "downcast_unchecked", issue = "90850")]
1837 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1838 debug_assert!(self.is::<T>());
1839 unsafe {
1840 let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
1841 Box::from_raw_in(raw as *mut T, alloc)
1842 }
1843 }
1844}
1845
1846impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
1847 /// Attempt to downcast the box to a concrete type.
1848 ///
1849 /// # Examples
1850 ///
1851 /// ```
1852 /// use std::any::Any;
1853 ///
1854 /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
1855 /// if let Ok(string) = value.downcast::<String>() {
1856 /// println!("String ({}): {}", string.len(), string);
1857 /// }
1858 /// }
1859 ///
1860 /// let my_string = "Hello World".to_string();
1861 /// print_if_string(Box::new(my_string));
1862 /// print_if_string(Box::new(0i8));
1863 /// ```
1864 #[inline]
1865 #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
1866 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1867 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1868 }
1869
1870 /// Downcasts the box to a concrete type.
1871 ///
1872 /// For a safe alternative see [`downcast`].
1873 ///
1874 /// # Examples
1875 ///
1876 /// ```
1877 /// #![feature(downcast_unchecked)]
1878 ///
1879 /// use std::any::Any;
1880 ///
1881 /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
1882 ///
1883 /// unsafe {
1884 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1885 /// }
1886 /// ```
1887 ///
1888 /// # Safety
1889 ///
1890 /// The contained value must be of type `T`. Calling this method
1891 /// with the incorrect type is *undefined behavior*.
1892 ///
1893 /// [`downcast`]: Self::downcast
1894 #[inline]
1895 #[unstable(feature = "downcast_unchecked", issue = "90850")]
1896 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1897 debug_assert!(self.is::<T>());
1898 unsafe {
1899 let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
1900 Box::into_raw_with_allocator(self);
1901 Box::from_raw_in(raw as *mut T, alloc)
1902 }
1903 }
1904}
1905
1906#[stable(feature = "rust1", since = "1.0.0")]
1907impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
1908 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1909 fmt::Display::fmt(&**self, f)
1910 }
1911}
1912
1913#[stable(feature = "rust1", since = "1.0.0")]
1914impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
1915 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1916 fmt::Debug::fmt(&**self, f)
1917 }
1918}
1919
1920#[stable(feature = "rust1", since = "1.0.0")]
1921impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
1922 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1923 // It's not possible to extract the inner Uniq directly from the Box,
1924 // instead we cast it to a *const which aliases the Unique
1925 let ptr: *const T = &**self;
1926 fmt::Pointer::fmt(&ptr, f)
1927 }
1928}
1929
1930#[stable(feature = "rust1", since = "1.0.0")]
1931impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
1932 type Target = T;
1933
1934 fn deref(&self) -> &T {
1935 &**self
1936 }
1937}
1938
1939#[stable(feature = "rust1", since = "1.0.0")]
1940impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
1941 fn deref_mut(&mut self) -> &mut T {
1942 &mut **self
1943 }
1944}
1945
1946#[unstable(feature = "deref_pure_trait", issue = "87121")]
1947unsafe impl<T: ?Sized, A: Allocator> DerefPure for Box<T, A> {}
1948
1949#[unstable(feature = "receiver_trait", issue = "none")]
1950impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
1951
1952#[stable(feature = "rust1", since = "1.0.0")]
1953impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
1954 type Item = I::Item;
1955 fn next(&mut self) -> Option<I::Item> {
1956 (**self).next()
1957 }
1958 fn size_hint(&self) -> (usize, Option<usize>) {
1959 (**self).size_hint()
1960 }
1961 fn nth(&mut self, n: usize) -> Option<I::Item> {
1962 (**self).nth(n)
1963 }
1964 fn last(self) -> Option<I::Item> {
1965 BoxIter::last(self)
1966 }
1967}
1968
1969trait BoxIter {
1970 type Item;
1971 fn last(self) -> Option<Self::Item>;
1972}
1973
1974impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
1975 type Item = I::Item;
1976 default fn last(self) -> Option<I::Item> {
1977 #[inline]
1978 fn some<T>(_: Option<T>, x: T) -> Option<T> {
1979 Some(x)
1980 }
1981
1982 self.fold(init:None, f:some)
1983 }
1984}
1985
1986/// Specialization for sized `I`s that uses `I`s implementation of `last()`
1987/// instead of the default.
1988#[stable(feature = "rust1", since = "1.0.0")]
1989impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
1990 fn last(self) -> Option<I::Item> {
1991 (*self).last()
1992 }
1993}
1994
1995#[stable(feature = "rust1", since = "1.0.0")]
1996impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
1997 fn next_back(&mut self) -> Option<I::Item> {
1998 (**self).next_back()
1999 }
2000 fn nth_back(&mut self, n: usize) -> Option<I::Item> {
2001 (**self).nth_back(n)
2002 }
2003}
2004#[stable(feature = "rust1", since = "1.0.0")]
2005impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
2006 fn len(&self) -> usize {
2007 (**self).len()
2008 }
2009 fn is_empty(&self) -> bool {
2010 (**self).is_empty()
2011 }
2012}
2013
2014#[stable(feature = "fused", since = "1.26.0")]
2015impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
2016
2017#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2018impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
2019 type Output = <F as FnOnce<Args>>::Output;
2020
2021 extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
2022 <F as FnOnce<Args>>::call_once(*self, args)
2023 }
2024}
2025
2026#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2027impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
2028 extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
2029 <F as FnMut<Args>>::call_mut(self, args)
2030 }
2031}
2032
2033#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2034impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
2035 extern "rust-call" fn call(&self, args: Args) -> Self::Output {
2036 <F as Fn<Args>>::call(self, args)
2037 }
2038}
2039
2040#[unstable(feature = "async_fn_traits", issue = "none")]
2041impl<Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator> AsyncFnOnce<Args> for Box<F, A> {
2042 type Output = F::Output;
2043 type CallOnceFuture = F::CallOnceFuture;
2044
2045 extern "rust-call" fn async_call_once(self, args: Args) -> Self::CallOnceFuture {
2046 F::async_call_once(*self, args)
2047 }
2048}
2049
2050#[unstable(feature = "async_fn_traits", issue = "none")]
2051impl<Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator> AsyncFnMut<Args> for Box<F, A> {
2052 type CallRefFuture<'a> = F::CallRefFuture<'a> where Self: 'a;
2053
2054 extern "rust-call" fn async_call_mut(&mut self, args: Args) -> Self::CallRefFuture<'_> {
2055 F::async_call_mut(self, args)
2056 }
2057}
2058
2059#[unstable(feature = "async_fn_traits", issue = "none")]
2060impl<Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator> AsyncFn<Args> for Box<F, A> {
2061 extern "rust-call" fn async_call(&self, args: Args) -> Self::CallRefFuture<'_> {
2062 F::async_call(self, args)
2063 }
2064}
2065
2066#[unstable(feature = "coerce_unsized", issue = "18598")]
2067impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
2068
2069// It is quite crucial that we only allow the `Global` allocator here.
2070// Handling arbitrary custom allocators (which can affect the `Box` layout heavily!)
2071// would need a lot of codegen and interpreter adjustments.
2072#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2073impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
2074
2075#[cfg(not(no_global_oom_handling))]
2076#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
2077impl<I> FromIterator<I> for Box<[I]> {
2078 fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
2079 iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
2080 }
2081}
2082
2083#[cfg(not(no_global_oom_handling))]
2084#[stable(feature = "box_slice_clone", since = "1.3.0")]
2085impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
2086 fn clone(&self) -> Self {
2087 let alloc = Box::allocator(self).clone();
2088 self.to_vec_in(alloc).into_boxed_slice()
2089 }
2090
2091 /// Copies `source`'s contents into `self` without creating a new allocation,
2092 /// so long as the two are of the same length.
2093 ///
2094 /// # Examples
2095 ///
2096 /// ```
2097 /// let x = Box::new([5, 6, 7]);
2098 /// let mut y = Box::new([8, 9, 10]);
2099 /// let yp: *const [i32] = &*y;
2100 ///
2101 /// y.clone_from(&x);
2102 ///
2103 /// // The value is the same
2104 /// assert_eq!(x, y);
2105 ///
2106 /// // And no allocation occurred
2107 /// assert_eq!(yp, &*y);
2108 /// ```
2109 fn clone_from(&mut self, source: &Self) {
2110 if self.len() == source.len() {
2111 self.clone_from_slice(&source);
2112 } else {
2113 *self = source.clone();
2114 }
2115 }
2116}
2117
2118#[stable(feature = "box_borrow", since = "1.1.0")]
2119impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
2120 fn borrow(&self) -> &T {
2121 &**self
2122 }
2123}
2124
2125#[stable(feature = "box_borrow", since = "1.1.0")]
2126impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
2127 fn borrow_mut(&mut self) -> &mut T {
2128 &mut **self
2129 }
2130}
2131
2132#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2133impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
2134 fn as_ref(&self) -> &T {
2135 &**self
2136 }
2137}
2138
2139#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2140impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
2141 fn as_mut(&mut self) -> &mut T {
2142 &mut **self
2143 }
2144}
2145
2146/* Nota bene
2147 *
2148 * We could have chosen not to add this impl, and instead have written a
2149 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2150 * because Box<T> implements Unpin even when T does not, as a result of
2151 * this impl.
2152 *
2153 * We chose this API instead of the alternative for a few reasons:
2154 * - Logically, it is helpful to understand pinning in regard to the
2155 * memory region being pointed to. For this reason none of the
2156 * standard library pointer types support projecting through a pin
2157 * (Box<T> is the only pointer type in std for which this would be
2158 * safe.)
2159 * - It is in practice very useful to have Box<T> be unconditionally
2160 * Unpin because of trait objects, for which the structural auto
2161 * trait functionality does not apply (e.g., Box<dyn Foo> would
2162 * otherwise not be Unpin).
2163 *
2164 * Another type with the same semantics as Box but only a conditional
2165 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2166 * could have a method to project a Pin<T> from it.
2167 */
2168#[stable(feature = "pin", since = "1.33.0")]
2169impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> {}
2170
2171#[unstable(feature = "coroutine_trait", issue = "43122")]
2172impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A> {
2173 type Yield = G::Yield;
2174 type Return = G::Return;
2175
2176 fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
2177 G::resume(self:Pin::new(&mut *self), arg)
2178 }
2179}
2180
2181#[unstable(feature = "coroutine_trait", issue = "43122")]
2182impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>>
2183where
2184 A: 'static,
2185{
2186 type Yield = G::Yield;
2187 type Return = G::Return;
2188
2189 fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
2190 G::resume((*self).as_mut(), arg)
2191 }
2192}
2193
2194#[stable(feature = "futures_api", since = "1.36.0")]
2195impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> {
2196 type Output = F::Output;
2197
2198 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2199 F::poll(self:Pin::new(&mut *self), cx)
2200 }
2201}
2202
2203#[unstable(feature = "async_iterator", issue = "79024")]
2204impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
2205 type Item = S::Item;
2206
2207 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
2208 Pin::new(&mut **self).poll_next(cx)
2209 }
2210
2211 fn size_hint(&self) -> (usize, Option<usize>) {
2212 (**self).size_hint()
2213 }
2214}
2215
2216impl dyn Error {
2217 #[inline]
2218 #[stable(feature = "error_downcast", since = "1.3.0")]
2219 #[rustc_allow_incoherent_impl]
2220 /// Attempts to downcast the box to a concrete type.
2221 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> {
2222 if self.is::<T>() {
2223 unsafe {
2224 let raw: *mut dyn Error = Box::into_raw(self);
2225 Ok(Box::from_raw(raw as *mut T))
2226 }
2227 } else {
2228 Err(self)
2229 }
2230 }
2231}
2232
2233impl dyn Error + Send {
2234 #[inline]
2235 #[stable(feature = "error_downcast", since = "1.3.0")]
2236 #[rustc_allow_incoherent_impl]
2237 /// Attempts to downcast the box to a concrete type.
2238 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> {
2239 let err: Box<dyn Error> = self;
2240 <dyn Error>::downcast(err).map_err(|s: Box| unsafe {
2241 // Reapply the `Send` marker.
2242 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send))
2243 })
2244 }
2245}
2246
2247impl dyn Error + Send + Sync {
2248 #[inline]
2249 #[stable(feature = "error_downcast", since = "1.3.0")]
2250 #[rustc_allow_incoherent_impl]
2251 /// Attempts to downcast the box to a concrete type.
2252 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> {
2253 let err: Box<dyn Error> = self;
2254 <dyn Error>::downcast(err).map_err(|s: Box| unsafe {
2255 // Reapply the `Send + Sync` marker.
2256 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send + Sync))
2257 })
2258 }
2259}
2260
2261#[cfg(not(no_global_oom_handling))]
2262#[stable(feature = "rust1", since = "1.0.0")]
2263impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
2264 /// Converts a type of [`Error`] into a box of dyn [`Error`].
2265 ///
2266 /// # Examples
2267 ///
2268 /// ```
2269 /// use std::error::Error;
2270 /// use std::fmt;
2271 /// use std::mem;
2272 ///
2273 /// #[derive(Debug)]
2274 /// struct AnError;
2275 ///
2276 /// impl fmt::Display for AnError {
2277 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2278 /// write!(f, "An error")
2279 /// }
2280 /// }
2281 ///
2282 /// impl Error for AnError {}
2283 ///
2284 /// let an_error = AnError;
2285 /// assert!(0 == mem::size_of_val(&an_error));
2286 /// let a_boxed_error = Box::<dyn Error>::from(an_error);
2287 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2288 /// ```
2289 fn from(err: E) -> Box<dyn Error + 'a> {
2290 Box::new(err)
2291 }
2292}
2293
2294#[cfg(not(no_global_oom_handling))]
2295#[stable(feature = "rust1", since = "1.0.0")]
2296impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
2297 /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
2298 /// dyn [`Error`] + [`Send`] + [`Sync`].
2299 ///
2300 /// # Examples
2301 ///
2302 /// ```
2303 /// use std::error::Error;
2304 /// use std::fmt;
2305 /// use std::mem;
2306 ///
2307 /// #[derive(Debug)]
2308 /// struct AnError;
2309 ///
2310 /// impl fmt::Display for AnError {
2311 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2312 /// write!(f, "An error")
2313 /// }
2314 /// }
2315 ///
2316 /// impl Error for AnError {}
2317 ///
2318 /// unsafe impl Send for AnError {}
2319 ///
2320 /// unsafe impl Sync for AnError {}
2321 ///
2322 /// let an_error = AnError;
2323 /// assert!(0 == mem::size_of_val(&an_error));
2324 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2325 /// assert!(
2326 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2327 /// ```
2328 fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2329 Box::new(err)
2330 }
2331}
2332
2333#[cfg(not(no_global_oom_handling))]
2334#[stable(feature = "rust1", since = "1.0.0")]
2335impl<'a> From<String> for Box<dyn Error + Send + Sync + 'a> {
2336 /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2337 ///
2338 /// # Examples
2339 ///
2340 /// ```
2341 /// use std::error::Error;
2342 /// use std::mem;
2343 ///
2344 /// let a_string_error = "a string error".to_string();
2345 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
2346 /// assert!(
2347 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2348 /// ```
2349 #[inline]
2350 fn from(err: String) -> Box<dyn Error + Send + Sync + 'a> {
2351 struct StringError(String);
2352
2353 impl Error for StringError {
2354 #[allow(deprecated)]
2355 fn description(&self) -> &str {
2356 &self.0
2357 }
2358 }
2359
2360 impl fmt::Display for StringError {
2361 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2362 fmt::Display::fmt(&self.0, f)
2363 }
2364 }
2365
2366 // Purposefully skip printing "StringError(..)"
2367 impl fmt::Debug for StringError {
2368 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2369 fmt::Debug::fmt(&self.0, f)
2370 }
2371 }
2372
2373 Box::new(StringError(err))
2374 }
2375}
2376
2377#[cfg(not(no_global_oom_handling))]
2378#[stable(feature = "string_box_error", since = "1.6.0")]
2379impl<'a> From<String> for Box<dyn Error + 'a> {
2380 /// Converts a [`String`] into a box of dyn [`Error`].
2381 ///
2382 /// # Examples
2383 ///
2384 /// ```
2385 /// use std::error::Error;
2386 /// use std::mem;
2387 ///
2388 /// let a_string_error = "a string error".to_string();
2389 /// let a_boxed_error = Box::<dyn Error>::from(a_string_error);
2390 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2391 /// ```
2392 fn from(str_err: String) -> Box<dyn Error + 'a> {
2393 let err1: Box<dyn Error + Send + Sync> = From::from(str_err);
2394 let err2: Box<dyn Error> = err1;
2395 err2
2396 }
2397}
2398
2399#[cfg(not(no_global_oom_handling))]
2400#[stable(feature = "rust1", since = "1.0.0")]
2401impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> {
2402 /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2403 ///
2404 /// [`str`]: prim@str
2405 ///
2406 /// # Examples
2407 ///
2408 /// ```
2409 /// use std::error::Error;
2410 /// use std::mem;
2411 ///
2412 /// let a_str_error = "a str error";
2413 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error);
2414 /// assert!(
2415 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2416 /// ```
2417 #[inline]
2418 fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> {
2419 From::from(String::from(err))
2420 }
2421}
2422
2423#[cfg(not(no_global_oom_handling))]
2424#[stable(feature = "string_box_error", since = "1.6.0")]
2425impl<'a> From<&str> for Box<dyn Error + 'a> {
2426 /// Converts a [`str`] into a box of dyn [`Error`].
2427 ///
2428 /// [`str`]: prim@str
2429 ///
2430 /// # Examples
2431 ///
2432 /// ```
2433 /// use std::error::Error;
2434 /// use std::mem;
2435 ///
2436 /// let a_str_error = "a str error";
2437 /// let a_boxed_error = Box::<dyn Error>::from(a_str_error);
2438 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2439 /// ```
2440 fn from(err: &str) -> Box<dyn Error + 'a> {
2441 From::from(String::from(err))
2442 }
2443}
2444
2445#[cfg(not(no_global_oom_handling))]
2446#[stable(feature = "cow_box_error", since = "1.22.0")]
2447impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> {
2448 /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2449 ///
2450 /// # Examples
2451 ///
2452 /// ```
2453 /// use std::error::Error;
2454 /// use std::mem;
2455 /// use std::borrow::Cow;
2456 ///
2457 /// let a_cow_str_error = Cow::from("a str error");
2458 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error);
2459 /// assert!(
2460 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2461 /// ```
2462 fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> {
2463 From::from(String::from(err))
2464 }
2465}
2466
2467#[cfg(not(no_global_oom_handling))]
2468#[stable(feature = "cow_box_error", since = "1.22.0")]
2469impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + 'a> {
2470 /// Converts a [`Cow`] into a box of dyn [`Error`].
2471 ///
2472 /// # Examples
2473 ///
2474 /// ```
2475 /// use std::error::Error;
2476 /// use std::mem;
2477 /// use std::borrow::Cow;
2478 ///
2479 /// let a_cow_str_error = Cow::from("a str error");
2480 /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error);
2481 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2482 /// ```
2483 fn from(err: Cow<'b, str>) -> Box<dyn Error + 'a> {
2484 From::from(String::from(err))
2485 }
2486}
2487
2488#[stable(feature = "box_error", since = "1.8.0")]
2489impl<T: core::error::Error> core::error::Error for Box<T> {
2490 #[allow(deprecated, deprecated_in_future)]
2491 fn description(&self) -> &str {
2492 core::error::Error::description(&**self)
2493 }
2494
2495 #[allow(deprecated)]
2496 fn cause(&self) -> Option<&dyn core::error::Error> {
2497 core::error::Error::cause(&**self)
2498 }
2499
2500 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
2501 core::error::Error::source(&**self)
2502 }
2503
2504 fn provide<'b>(&'b self, request: &mut core::error::Request<'b>) {
2505 core::error::Error::provide(&**self, request);
2506 }
2507}
2508