| 1 | //! The `Box<T>` type for heap allocation. |
| 2 | //! |
| 3 | //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of |
| 4 | //! heap allocation in Rust. Boxes provide ownership for this allocation, and |
| 5 | //! drop their contents when they go out of scope. Boxes also ensure that they |
| 6 | //! never allocate more than `isize::MAX` bytes. |
| 7 | //! |
| 8 | //! # Examples |
| 9 | //! |
| 10 | //! Move a value from the stack to the heap by creating a [`Box`]: |
| 11 | //! |
| 12 | //! ``` |
| 13 | //! let val: u8 = 5; |
| 14 | //! let boxed: Box<u8> = Box::new(val); |
| 15 | //! ``` |
| 16 | //! |
| 17 | //! Move a value from a [`Box`] back to the stack by [dereferencing]: |
| 18 | //! |
| 19 | //! ``` |
| 20 | //! let boxed: Box<u8> = Box::new(5); |
| 21 | //! let val: u8 = *boxed; |
| 22 | //! ``` |
| 23 | //! |
| 24 | //! Creating a recursive data structure: |
| 25 | //! |
| 26 | //! ``` |
| 27 | //! # #[allow (dead_code)] |
| 28 | //! #[derive(Debug)] |
| 29 | //! enum List<T> { |
| 30 | //! Cons(T, Box<List<T>>), |
| 31 | //! Nil, |
| 32 | //! } |
| 33 | //! |
| 34 | //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); |
| 35 | //! println!("{list:?}" ); |
| 36 | //! ``` |
| 37 | //! |
| 38 | //! This will print `Cons(1, Cons(2, Nil))`. |
| 39 | //! |
| 40 | //! Recursive structures must be boxed, because if the definition of `Cons` |
| 41 | //! looked like this: |
| 42 | //! |
| 43 | //! ```compile_fail,E0072 |
| 44 | //! # enum List<T> { |
| 45 | //! Cons(T, List<T>), |
| 46 | //! # } |
| 47 | //! ``` |
| 48 | //! |
| 49 | //! It wouldn't work. This is because the size of a `List` depends on how many |
| 50 | //! elements are in the list, and so we don't know how much memory to allocate |
| 51 | //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how |
| 52 | //! big `Cons` needs to be. |
| 53 | //! |
| 54 | //! # Memory layout |
| 55 | //! |
| 56 | //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for its allocation. It is |
| 57 | //! valid to convert both ways between a [`Box`] and a raw pointer allocated with the [`Global`] |
| 58 | //! allocator, given that the [`Layout`] used with the allocator is correct for the type and the raw |
| 59 | //! pointer points to a valid value of the right type. More precisely, a `value: *mut T` that has |
| 60 | //! been allocated with the [`Global`] allocator with `Layout::for_value(&*value)` may be converted |
| 61 | //! into a box using [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut T` |
| 62 | //! obtained from [`Box::<T>::into_raw`] may be deallocated using the [`Global`] allocator with |
| 63 | //! [`Layout::for_value(&*value)`]. |
| 64 | //! |
| 65 | //! For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned. The |
| 66 | //! recommended way to build a Box to a ZST if `Box::new` cannot be used is to use |
| 67 | //! [`ptr::NonNull::dangling`]. |
| 68 | //! |
| 69 | //! On top of these basic layout requirements, a `Box<T>` must point to a valid value of `T`. |
| 70 | //! |
| 71 | //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented |
| 72 | //! as a single pointer and is also ABI-compatible with C pointers |
| 73 | //! (i.e. the C type `T*`). This means that if you have extern "C" |
| 74 | //! Rust functions that will be called from C, you can define those |
| 75 | //! Rust functions using `Box<T>` types, and use `T*` as corresponding |
| 76 | //! type on the C side. As an example, consider this C header which |
| 77 | //! declares functions that create and destroy some kind of `Foo` |
| 78 | //! value: |
| 79 | //! |
| 80 | //! ```c |
| 81 | //! /* C header */ |
| 82 | //! |
| 83 | //! /* Returns ownership to the caller */ |
| 84 | //! struct Foo* foo_new(void); |
| 85 | //! |
| 86 | //! /* Takes ownership from the caller; no-op when invoked with null */ |
| 87 | //! void foo_delete(struct Foo*); |
| 88 | //! ``` |
| 89 | //! |
| 90 | //! These two functions might be implemented in Rust as follows. Here, the |
| 91 | //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures |
| 92 | //! the ownership constraints. Note also that the nullable argument to |
| 93 | //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` |
| 94 | //! cannot be null. |
| 95 | //! |
| 96 | //! ``` |
| 97 | //! #[repr(C)] |
| 98 | //! pub struct Foo; |
| 99 | //! |
| 100 | //! #[unsafe(no_mangle)] |
| 101 | //! pub extern "C" fn foo_new() -> Box<Foo> { |
| 102 | //! Box::new(Foo) |
| 103 | //! } |
| 104 | //! |
| 105 | //! #[unsafe(no_mangle)] |
| 106 | //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} |
| 107 | //! ``` |
| 108 | //! |
| 109 | //! Even though `Box<T>` has the same representation and C ABI as a C pointer, |
| 110 | //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` |
| 111 | //! and expect things to work. `Box<T>` values will always be fully aligned, |
| 112 | //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to |
| 113 | //! free the value with the global allocator. In general, the best practice |
| 114 | //! is to only use `Box<T>` for pointers that originated from the global |
| 115 | //! allocator. |
| 116 | //! |
| 117 | //! **Important.** At least at present, you should avoid using |
| 118 | //! `Box<T>` types for functions that are defined in C but invoked |
| 119 | //! from Rust. In those cases, you should directly mirror the C types |
| 120 | //! as closely as possible. Using types like `Box<T>` where the C |
| 121 | //! definition is just using `T*` can lead to undefined behavior, as |
| 122 | //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. |
| 123 | //! |
| 124 | //! # Considerations for unsafe code |
| 125 | //! |
| 126 | //! **Warning: This section is not normative and is subject to change, possibly |
| 127 | //! being relaxed in the future! It is a simplified summary of the rules |
| 128 | //! currently implemented in the compiler.** |
| 129 | //! |
| 130 | //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>` |
| 131 | //! asserts uniqueness over its content. Using raw pointers derived from a box |
| 132 | //! after that box has been mutated through, moved or borrowed as `&mut T` |
| 133 | //! is not allowed. For more guidance on working with box from unsafe code, see |
| 134 | //! [rust-lang/unsafe-code-guidelines#326][ucg#326]. |
| 135 | //! |
| 136 | //! # Editions |
| 137 | //! |
| 138 | //! A special case exists for the implementation of `IntoIterator` for arrays on the Rust 2021 |
| 139 | //! edition, as documented [here][array]. Unfortunately, it was later found that a similar |
| 140 | //! workaround should be added for boxed slices, and this was applied in the 2024 edition. |
| 141 | //! |
| 142 | //! Specifically, `IntoIterator` is implemented for `Box<[T]>` on all editions, but specific calls |
| 143 | //! to `into_iter()` for boxed slices will defer to the slice implementation on editions before |
| 144 | //! 2024: |
| 145 | //! |
| 146 | //! ```rust,edition2021 |
| 147 | //! // Rust 2015, 2018, and 2021: |
| 148 | //! |
| 149 | //! # #![allow(boxed_slice_into_iter)] // override our `deny(warnings)` |
| 150 | //! let boxed_slice: Box<[i32]> = vec![0; 3].into_boxed_slice(); |
| 151 | //! |
| 152 | //! // This creates a slice iterator, producing references to each value. |
| 153 | //! for item in boxed_slice.into_iter().enumerate() { |
| 154 | //! let (i, x): (usize, &i32) = item; |
| 155 | //! println!("boxed_slice[{i}] = {x}" ); |
| 156 | //! } |
| 157 | //! |
| 158 | //! // The `boxed_slice_into_iter` lint suggests this change for future compatibility: |
| 159 | //! for item in boxed_slice.iter().enumerate() { |
| 160 | //! let (i, x): (usize, &i32) = item; |
| 161 | //! println!("boxed_slice[{i}] = {x}" ); |
| 162 | //! } |
| 163 | //! |
| 164 | //! // You can explicitly iterate a boxed slice by value using `IntoIterator::into_iter` |
| 165 | //! for item in IntoIterator::into_iter(boxed_slice).enumerate() { |
| 166 | //! let (i, x): (usize, i32) = item; |
| 167 | //! println!("boxed_slice[{i}] = {x}" ); |
| 168 | //! } |
| 169 | //! ``` |
| 170 | //! |
| 171 | //! Similar to the array implementation, this may be modified in the future to remove this override, |
| 172 | //! and it's best to avoid relying on this edition-dependent behavior if you wish to preserve |
| 173 | //! compatibility with future versions of the compiler. |
| 174 | //! |
| 175 | //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 |
| 176 | //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326 |
| 177 | //! [dereferencing]: core::ops::Deref |
| 178 | //! [`Box::<T>::from_raw(value)`]: Box::from_raw |
| 179 | //! [`Global`]: crate::alloc::Global |
| 180 | //! [`Layout`]: crate::alloc::Layout |
| 181 | //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value |
| 182 | //! [valid]: ptr#safety |
| 183 | |
| 184 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 185 | |
| 186 | use core::borrow::{Borrow, BorrowMut}; |
| 187 | use core::clone::CloneToUninit; |
| 188 | use core::cmp::Ordering; |
| 189 | use core::error::{self, Error}; |
| 190 | use core::fmt; |
| 191 | use core::future::Future; |
| 192 | use core::hash::{Hash, Hasher}; |
| 193 | use core::marker::{Tuple, Unsize}; |
| 194 | #[cfg (not(no_global_oom_handling))] |
| 195 | use core::mem::MaybeUninit; |
| 196 | use core::mem::{self, SizedTypeProperties}; |
| 197 | use core::ops::{ |
| 198 | AsyncFn, AsyncFnMut, AsyncFnOnce, CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut, |
| 199 | DerefPure, DispatchFromDyn, LegacyReceiver, |
| 200 | }; |
| 201 | #[cfg (not(no_global_oom_handling))] |
| 202 | use core::ops::{Residual, Try}; |
| 203 | use core::pin::{Pin, PinCoerceUnsized}; |
| 204 | use core::ptr::{self, NonNull, Unique}; |
| 205 | use core::task::{Context, Poll}; |
| 206 | |
| 207 | #[cfg (not(no_global_oom_handling))] |
| 208 | use crate::alloc::handle_alloc_error; |
| 209 | use crate::alloc::{AllocError, Allocator, Global, Layout}; |
| 210 | use crate::raw_vec::RawVec; |
| 211 | #[cfg (not(no_global_oom_handling))] |
| 212 | use crate::str::from_boxed_utf8_unchecked; |
| 213 | |
| 214 | /// Conversion related impls for `Box<_>` (`From`, `downcast`, etc) |
| 215 | mod convert; |
| 216 | /// Iterator related impls for `Box<_>`. |
| 217 | mod iter; |
| 218 | /// [`ThinBox`] implementation. |
| 219 | mod thin; |
| 220 | |
| 221 | #[unstable (feature = "thin_box" , issue = "92791" )] |
| 222 | pub use thin::ThinBox; |
| 223 | |
| 224 | /// A pointer type that uniquely owns a heap allocation of type `T`. |
| 225 | /// |
| 226 | /// See the [module-level documentation](../../std/boxed/index.html) for more. |
| 227 | #[lang = "owned_box" ] |
| 228 | #[fundamental ] |
| 229 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 230 | #[rustc_insignificant_dtor ] |
| 231 | #[doc (search_unbox)] |
| 232 | // The declaration of the `Box` struct must be kept in sync with the |
| 233 | // compiler or ICEs will happen. |
| 234 | pub struct Box< |
| 235 | T: ?Sized, |
| 236 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 237 | >(Unique<T>, A); |
| 238 | |
| 239 | /// Constructs a `Box<T>` by calling the `exchange_malloc` lang item and moving the argument into |
| 240 | /// the newly allocated memory. This is an intrinsic to avoid unnecessary copies. |
| 241 | /// |
| 242 | /// This is the surface syntax for `box <expr>` expressions. |
| 243 | #[doc (hidden)] |
| 244 | #[rustc_intrinsic ] |
| 245 | #[unstable (feature = "liballoc_internals" , issue = "none" )] |
| 246 | pub fn box_new<T>(x: T) -> Box<T>; |
| 247 | |
| 248 | impl<T> Box<T> { |
| 249 | /// Allocates memory on the heap and then places `x` into it. |
| 250 | /// |
| 251 | /// This doesn't actually allocate if `T` is zero-sized. |
| 252 | /// |
| 253 | /// # Examples |
| 254 | /// |
| 255 | /// ``` |
| 256 | /// let five = Box::new(5); |
| 257 | /// ``` |
| 258 | #[cfg (not(no_global_oom_handling))] |
| 259 | #[inline (always)] |
| 260 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 261 | #[must_use ] |
| 262 | #[rustc_diagnostic_item = "box_new" ] |
| 263 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 264 | pub fn new(x: T) -> Self { |
| 265 | return box_new(x); |
| 266 | } |
| 267 | |
| 268 | /// Constructs a new box with uninitialized contents. |
| 269 | /// |
| 270 | /// # Examples |
| 271 | /// |
| 272 | /// ``` |
| 273 | /// let mut five = Box::<u32>::new_uninit(); |
| 274 | /// // Deferred initialization: |
| 275 | /// five.write(5); |
| 276 | /// let five = unsafe { five.assume_init() }; |
| 277 | /// |
| 278 | /// assert_eq!(*five, 5) |
| 279 | /// ``` |
| 280 | #[cfg (not(no_global_oom_handling))] |
| 281 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 282 | #[must_use ] |
| 283 | #[inline ] |
| 284 | pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { |
| 285 | Self::new_uninit_in(Global) |
| 286 | } |
| 287 | |
| 288 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 289 | /// being filled with `0` bytes. |
| 290 | /// |
| 291 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 292 | /// of this method. |
| 293 | /// |
| 294 | /// # Examples |
| 295 | /// |
| 296 | /// ``` |
| 297 | /// let zero = Box::<u32>::new_zeroed(); |
| 298 | /// let zero = unsafe { zero.assume_init() }; |
| 299 | /// |
| 300 | /// assert_eq!(*zero, 0) |
| 301 | /// ``` |
| 302 | /// |
| 303 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 304 | #[cfg (not(no_global_oom_handling))] |
| 305 | #[inline ] |
| 306 | #[stable (feature = "new_zeroed_alloc" , since = "1.92.0" )] |
| 307 | #[must_use ] |
| 308 | pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { |
| 309 | Self::new_zeroed_in(Global) |
| 310 | } |
| 311 | |
| 312 | /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
| 313 | /// `x` will be pinned in memory and unable to be moved. |
| 314 | /// |
| 315 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)` |
| 316 | /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using |
| 317 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to |
| 318 | /// construct a (pinned) `Box` in a different way than with [`Box::new`]. |
| 319 | #[cfg (not(no_global_oom_handling))] |
| 320 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 321 | #[must_use ] |
| 322 | #[inline (always)] |
| 323 | pub fn pin(x: T) -> Pin<Box<T>> { |
| 324 | Box::new(x).into() |
| 325 | } |
| 326 | |
| 327 | /// Allocates memory on the heap then places `x` into it, |
| 328 | /// returning an error if the allocation fails |
| 329 | /// |
| 330 | /// This doesn't actually allocate if `T` is zero-sized. |
| 331 | /// |
| 332 | /// # Examples |
| 333 | /// |
| 334 | /// ``` |
| 335 | /// #![feature(allocator_api)] |
| 336 | /// |
| 337 | /// let five = Box::try_new(5)?; |
| 338 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 339 | /// ``` |
| 340 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 341 | #[inline ] |
| 342 | pub fn try_new(x: T) -> Result<Self, AllocError> { |
| 343 | Self::try_new_in(x, Global) |
| 344 | } |
| 345 | |
| 346 | /// Constructs a new box with uninitialized contents on the heap, |
| 347 | /// returning an error if the allocation fails |
| 348 | /// |
| 349 | /// # Examples |
| 350 | /// |
| 351 | /// ``` |
| 352 | /// #![feature(allocator_api)] |
| 353 | /// |
| 354 | /// let mut five = Box::<u32>::try_new_uninit()?; |
| 355 | /// // Deferred initialization: |
| 356 | /// five.write(5); |
| 357 | /// let five = unsafe { five.assume_init() }; |
| 358 | /// |
| 359 | /// assert_eq!(*five, 5); |
| 360 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 361 | /// ``` |
| 362 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 363 | #[inline ] |
| 364 | pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
| 365 | Box::try_new_uninit_in(Global) |
| 366 | } |
| 367 | |
| 368 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 369 | /// being filled with `0` bytes on the heap |
| 370 | /// |
| 371 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 372 | /// of this method. |
| 373 | /// |
| 374 | /// # Examples |
| 375 | /// |
| 376 | /// ``` |
| 377 | /// #![feature(allocator_api)] |
| 378 | /// |
| 379 | /// let zero = Box::<u32>::try_new_zeroed()?; |
| 380 | /// let zero = unsafe { zero.assume_init() }; |
| 381 | /// |
| 382 | /// assert_eq!(*zero, 0); |
| 383 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 384 | /// ``` |
| 385 | /// |
| 386 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 387 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 388 | #[inline ] |
| 389 | pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> { |
| 390 | Box::try_new_zeroed_in(Global) |
| 391 | } |
| 392 | |
| 393 | /// Maps the value in a box, reusing the allocation if possible. |
| 394 | /// |
| 395 | /// `f` is called on the value in the box, and the result is returned, also boxed. |
| 396 | /// |
| 397 | /// Note: this is an associated function, which means that you have |
| 398 | /// to call it as `Box::map(b, f)` instead of `b.map(f)`. This |
| 399 | /// is so that there is no conflict with a method on the inner type. |
| 400 | /// |
| 401 | /// # Examples |
| 402 | /// |
| 403 | /// ``` |
| 404 | /// #![feature(smart_pointer_try_map)] |
| 405 | /// |
| 406 | /// let b = Box::new(7); |
| 407 | /// let new = Box::map(b, |i| i + 7); |
| 408 | /// assert_eq!(*new, 14); |
| 409 | /// ``` |
| 410 | #[cfg (not(no_global_oom_handling))] |
| 411 | #[unstable (feature = "smart_pointer_try_map" , issue = "144419" )] |
| 412 | pub fn map<U>(this: Self, f: impl FnOnce(T) -> U) -> Box<U> { |
| 413 | if size_of::<T>() == size_of::<U>() && align_of::<T>() == align_of::<U>() { |
| 414 | let (value, allocation) = Box::take(this); |
| 415 | Box::write( |
| 416 | unsafe { mem::transmute::<Box<MaybeUninit<T>>, Box<MaybeUninit<U>>>(allocation) }, |
| 417 | f(value), |
| 418 | ) |
| 419 | } else { |
| 420 | Box::new(f(*this)) |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | /// Attempts to map the value in a box, reusing the allocation if possible. |
| 425 | /// |
| 426 | /// `f` is called on the value in the box, and if the operation succeeds, the result is |
| 427 | /// returned, also boxed. |
| 428 | /// |
| 429 | /// Note: this is an associated function, which means that you have |
| 430 | /// to call it as `Box::try_map(b, f)` instead of `b.try_map(f)`. This |
| 431 | /// is so that there is no conflict with a method on the inner type. |
| 432 | /// |
| 433 | /// # Examples |
| 434 | /// |
| 435 | /// ``` |
| 436 | /// #![feature(smart_pointer_try_map)] |
| 437 | /// |
| 438 | /// let b = Box::new(7); |
| 439 | /// let new = Box::try_map(b, u32::try_from).unwrap(); |
| 440 | /// assert_eq!(*new, 7); |
| 441 | /// ``` |
| 442 | #[cfg (not(no_global_oom_handling))] |
| 443 | #[unstable (feature = "smart_pointer_try_map" , issue = "144419" )] |
| 444 | pub fn try_map<R>( |
| 445 | this: Self, |
| 446 | f: impl FnOnce(T) -> R, |
| 447 | ) -> <R::Residual as Residual<Box<R::Output>>>::TryType |
| 448 | where |
| 449 | R: Try, |
| 450 | R::Residual: Residual<Box<R::Output>>, |
| 451 | { |
| 452 | if size_of::<T>() == size_of::<R::Output>() && align_of::<T>() == align_of::<R::Output>() { |
| 453 | let (value, allocation) = Box::take(this); |
| 454 | try { |
| 455 | Box::write( |
| 456 | unsafe { |
| 457 | mem::transmute::<Box<MaybeUninit<T>>, Box<MaybeUninit<R::Output>>>( |
| 458 | allocation, |
| 459 | ) |
| 460 | }, |
| 461 | f(value)?, |
| 462 | ) |
| 463 | } |
| 464 | } else { |
| 465 | try { Box::new(f(*this)?) } |
| 466 | } |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | impl<T, A: Allocator> Box<T, A> { |
| 471 | /// Allocates memory in the given allocator then places `x` into it. |
| 472 | /// |
| 473 | /// This doesn't actually allocate if `T` is zero-sized. |
| 474 | /// |
| 475 | /// # Examples |
| 476 | /// |
| 477 | /// ``` |
| 478 | /// #![feature(allocator_api)] |
| 479 | /// |
| 480 | /// use std::alloc::System; |
| 481 | /// |
| 482 | /// let five = Box::new_in(5, System); |
| 483 | /// ``` |
| 484 | #[cfg (not(no_global_oom_handling))] |
| 485 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 486 | #[must_use ] |
| 487 | #[inline ] |
| 488 | pub fn new_in(x: T, alloc: A) -> Self |
| 489 | where |
| 490 | A: Allocator, |
| 491 | { |
| 492 | let mut boxed = Self::new_uninit_in(alloc); |
| 493 | boxed.write(x); |
| 494 | unsafe { boxed.assume_init() } |
| 495 | } |
| 496 | |
| 497 | /// Allocates memory in the given allocator then places `x` into it, |
| 498 | /// returning an error if the allocation fails |
| 499 | /// |
| 500 | /// This doesn't actually allocate if `T` is zero-sized. |
| 501 | /// |
| 502 | /// # Examples |
| 503 | /// |
| 504 | /// ``` |
| 505 | /// #![feature(allocator_api)] |
| 506 | /// |
| 507 | /// use std::alloc::System; |
| 508 | /// |
| 509 | /// let five = Box::try_new_in(5, System)?; |
| 510 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 511 | /// ``` |
| 512 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 513 | #[inline ] |
| 514 | pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError> |
| 515 | where |
| 516 | A: Allocator, |
| 517 | { |
| 518 | let mut boxed = Self::try_new_uninit_in(alloc)?; |
| 519 | boxed.write(x); |
| 520 | unsafe { Ok(boxed.assume_init()) } |
| 521 | } |
| 522 | |
| 523 | /// Constructs a new box with uninitialized contents in the provided allocator. |
| 524 | /// |
| 525 | /// # Examples |
| 526 | /// |
| 527 | /// ``` |
| 528 | /// #![feature(allocator_api)] |
| 529 | /// |
| 530 | /// use std::alloc::System; |
| 531 | /// |
| 532 | /// let mut five = Box::<u32, _>::new_uninit_in(System); |
| 533 | /// // Deferred initialization: |
| 534 | /// five.write(5); |
| 535 | /// let five = unsafe { five.assume_init() }; |
| 536 | /// |
| 537 | /// assert_eq!(*five, 5) |
| 538 | /// ``` |
| 539 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 540 | #[cfg (not(no_global_oom_handling))] |
| 541 | #[must_use ] |
| 542 | pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
| 543 | where |
| 544 | A: Allocator, |
| 545 | { |
| 546 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 547 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
| 548 | // That would make code size bigger. |
| 549 | match Box::try_new_uninit_in(alloc) { |
| 550 | Ok(m) => m, |
| 551 | Err(_) => handle_alloc_error(layout), |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /// Constructs a new box with uninitialized contents in the provided allocator, |
| 556 | /// returning an error if the allocation fails |
| 557 | /// |
| 558 | /// # Examples |
| 559 | /// |
| 560 | /// ``` |
| 561 | /// #![feature(allocator_api)] |
| 562 | /// |
| 563 | /// use std::alloc::System; |
| 564 | /// |
| 565 | /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?; |
| 566 | /// // Deferred initialization: |
| 567 | /// five.write(5); |
| 568 | /// let five = unsafe { five.assume_init() }; |
| 569 | /// |
| 570 | /// assert_eq!(*five, 5); |
| 571 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 572 | /// ``` |
| 573 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 574 | pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
| 575 | where |
| 576 | A: Allocator, |
| 577 | { |
| 578 | let ptr = if T::IS_ZST { |
| 579 | NonNull::dangling() |
| 580 | } else { |
| 581 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 582 | alloc.allocate(layout)?.cast() |
| 583 | }; |
| 584 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
| 585 | } |
| 586 | |
| 587 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 588 | /// being filled with `0` bytes in the provided allocator. |
| 589 | /// |
| 590 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 591 | /// of this method. |
| 592 | /// |
| 593 | /// # Examples |
| 594 | /// |
| 595 | /// ``` |
| 596 | /// #![feature(allocator_api)] |
| 597 | /// |
| 598 | /// use std::alloc::System; |
| 599 | /// |
| 600 | /// let zero = Box::<u32, _>::new_zeroed_in(System); |
| 601 | /// let zero = unsafe { zero.assume_init() }; |
| 602 | /// |
| 603 | /// assert_eq!(*zero, 0) |
| 604 | /// ``` |
| 605 | /// |
| 606 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 607 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 608 | #[cfg (not(no_global_oom_handling))] |
| 609 | #[must_use ] |
| 610 | pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A> |
| 611 | where |
| 612 | A: Allocator, |
| 613 | { |
| 614 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 615 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
| 616 | // That would make code size bigger. |
| 617 | match Box::try_new_zeroed_in(alloc) { |
| 618 | Ok(m) => m, |
| 619 | Err(_) => handle_alloc_error(layout), |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | /// Constructs a new `Box` with uninitialized contents, with the memory |
| 624 | /// being filled with `0` bytes in the provided allocator, |
| 625 | /// returning an error if the allocation fails, |
| 626 | /// |
| 627 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 628 | /// of this method. |
| 629 | /// |
| 630 | /// # Examples |
| 631 | /// |
| 632 | /// ``` |
| 633 | /// #![feature(allocator_api)] |
| 634 | /// |
| 635 | /// use std::alloc::System; |
| 636 | /// |
| 637 | /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?; |
| 638 | /// let zero = unsafe { zero.assume_init() }; |
| 639 | /// |
| 640 | /// assert_eq!(*zero, 0); |
| 641 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 642 | /// ``` |
| 643 | /// |
| 644 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 645 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 646 | pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError> |
| 647 | where |
| 648 | A: Allocator, |
| 649 | { |
| 650 | let ptr = if T::IS_ZST { |
| 651 | NonNull::dangling() |
| 652 | } else { |
| 653 | let layout = Layout::new::<mem::MaybeUninit<T>>(); |
| 654 | alloc.allocate_zeroed(layout)?.cast() |
| 655 | }; |
| 656 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } |
| 657 | } |
| 658 | |
| 659 | /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then |
| 660 | /// `x` will be pinned in memory and unable to be moved. |
| 661 | /// |
| 662 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)` |
| 663 | /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using |
| 664 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to |
| 665 | /// construct a (pinned) `Box` in a different way than with [`Box::new_in`]. |
| 666 | #[cfg (not(no_global_oom_handling))] |
| 667 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 668 | #[must_use ] |
| 669 | #[inline (always)] |
| 670 | pub fn pin_in(x: T, alloc: A) -> Pin<Self> |
| 671 | where |
| 672 | A: 'static + Allocator, |
| 673 | { |
| 674 | Self::into_pin(Self::new_in(x, alloc)) |
| 675 | } |
| 676 | |
| 677 | /// Converts a `Box<T>` into a `Box<[T]>` |
| 678 | /// |
| 679 | /// This conversion does not allocate on the heap and happens in place. |
| 680 | #[unstable (feature = "box_into_boxed_slice" , issue = "71582" )] |
| 681 | pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> { |
| 682 | let (raw, alloc) = Box::into_raw_with_allocator(boxed); |
| 683 | unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } |
| 684 | } |
| 685 | |
| 686 | /// Consumes the `Box`, returning the wrapped value. |
| 687 | /// |
| 688 | /// # Examples |
| 689 | /// |
| 690 | /// ``` |
| 691 | /// #![feature(box_into_inner)] |
| 692 | /// |
| 693 | /// let c = Box::new(5); |
| 694 | /// |
| 695 | /// assert_eq!(Box::into_inner(c), 5); |
| 696 | /// ``` |
| 697 | #[unstable (feature = "box_into_inner" , issue = "80437" )] |
| 698 | #[inline ] |
| 699 | pub fn into_inner(boxed: Self) -> T { |
| 700 | *boxed |
| 701 | } |
| 702 | |
| 703 | /// Consumes the `Box` without consuming its allocation, returning the wrapped value and a `Box` |
| 704 | /// to the uninitialized memory where the wrapped value used to live. |
| 705 | /// |
| 706 | /// This can be used together with [`write`](Box::write) to reuse the allocation for multiple |
| 707 | /// boxed values. |
| 708 | /// |
| 709 | /// # Examples |
| 710 | /// |
| 711 | /// ``` |
| 712 | /// #![feature(box_take)] |
| 713 | /// |
| 714 | /// let c = Box::new(5); |
| 715 | /// |
| 716 | /// // take the value out of the box |
| 717 | /// let (value, uninit) = Box::take(c); |
| 718 | /// assert_eq!(value, 5); |
| 719 | /// |
| 720 | /// // reuse the box for a second value |
| 721 | /// let c = Box::write(uninit, 6); |
| 722 | /// assert_eq!(*c, 6); |
| 723 | /// ``` |
| 724 | #[unstable (feature = "box_take" , issue = "147212" )] |
| 725 | pub fn take(boxed: Self) -> (T, Box<mem::MaybeUninit<T>, A>) { |
| 726 | unsafe { |
| 727 | let (raw, alloc) = Box::into_non_null_with_allocator(boxed); |
| 728 | let value = raw.read(); |
| 729 | let uninit = Box::from_non_null_in(raw.cast_uninit(), alloc); |
| 730 | (value, uninit) |
| 731 | } |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | impl<T: ?Sized + CloneToUninit> Box<T> { |
| 736 | /// Allocates memory on the heap then clones `src` into it. |
| 737 | /// |
| 738 | /// This doesn't actually allocate if `src` is zero-sized. |
| 739 | /// |
| 740 | /// # Examples |
| 741 | /// |
| 742 | /// ``` |
| 743 | /// #![feature(clone_from_ref)] |
| 744 | /// |
| 745 | /// let hello: Box<str> = Box::clone_from_ref("hello" ); |
| 746 | /// ``` |
| 747 | #[cfg (not(no_global_oom_handling))] |
| 748 | #[unstable (feature = "clone_from_ref" , issue = "149075" )] |
| 749 | #[must_use ] |
| 750 | #[inline ] |
| 751 | pub fn clone_from_ref(src: &T) -> Box<T> { |
| 752 | Box::clone_from_ref_in(src, Global) |
| 753 | } |
| 754 | |
| 755 | /// Allocates memory on the heap then clones `src` into it, returning an error if allocation fails. |
| 756 | /// |
| 757 | /// This doesn't actually allocate if `src` is zero-sized. |
| 758 | /// |
| 759 | /// # Examples |
| 760 | /// |
| 761 | /// ``` |
| 762 | /// #![feature(clone_from_ref)] |
| 763 | /// #![feature(allocator_api)] |
| 764 | /// |
| 765 | /// let hello: Box<str> = Box::try_clone_from_ref("hello" )?; |
| 766 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 767 | /// ``` |
| 768 | #[unstable (feature = "clone_from_ref" , issue = "149075" )] |
| 769 | //#[unstable(feature = "allocator_api", issue = "32838")] |
| 770 | #[must_use ] |
| 771 | #[inline ] |
| 772 | pub fn try_clone_from_ref(src: &T) -> Result<Box<T>, AllocError> { |
| 773 | Box::try_clone_from_ref_in(src, Global) |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | impl<T: ?Sized + CloneToUninit, A: Allocator> Box<T, A> { |
| 778 | /// Allocates memory in the given allocator then clones `src` into it. |
| 779 | /// |
| 780 | /// This doesn't actually allocate if `src` is zero-sized. |
| 781 | /// |
| 782 | /// # Examples |
| 783 | /// |
| 784 | /// ``` |
| 785 | /// #![feature(clone_from_ref)] |
| 786 | /// #![feature(allocator_api)] |
| 787 | /// |
| 788 | /// use std::alloc::System; |
| 789 | /// |
| 790 | /// let hello: Box<str, System> = Box::clone_from_ref_in("hello" , System); |
| 791 | /// ``` |
| 792 | #[cfg (not(no_global_oom_handling))] |
| 793 | #[unstable (feature = "clone_from_ref" , issue = "149075" )] |
| 794 | //#[unstable(feature = "allocator_api", issue = "32838")] |
| 795 | #[must_use ] |
| 796 | #[inline ] |
| 797 | pub fn clone_from_ref_in(src: &T, alloc: A) -> Box<T, A> { |
| 798 | let layout = Layout::for_value::<T>(src); |
| 799 | match Box::try_clone_from_ref_in(src, alloc) { |
| 800 | Ok(bx) => bx, |
| 801 | Err(_) => handle_alloc_error(layout), |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | /// Allocates memory in the given allocator then clones `src` into it, returning an error if allocation fails. |
| 806 | /// |
| 807 | /// This doesn't actually allocate if `src` is zero-sized. |
| 808 | /// |
| 809 | /// # Examples |
| 810 | /// |
| 811 | /// ``` |
| 812 | /// #![feature(clone_from_ref)] |
| 813 | /// #![feature(allocator_api)] |
| 814 | /// |
| 815 | /// use std::alloc::System; |
| 816 | /// |
| 817 | /// let hello: Box<str, System> = Box::try_clone_from_ref_in("hello" , System)?; |
| 818 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 819 | /// ``` |
| 820 | #[unstable (feature = "clone_from_ref" , issue = "149075" )] |
| 821 | //#[unstable(feature = "allocator_api", issue = "32838")] |
| 822 | #[must_use ] |
| 823 | #[inline ] |
| 824 | pub fn try_clone_from_ref_in(src: &T, alloc: A) -> Result<Box<T, A>, AllocError> { |
| 825 | struct DeallocDropGuard<'a, A: Allocator>(Layout, &'a A, NonNull<u8>); |
| 826 | impl<'a, A: Allocator> Drop for DeallocDropGuard<'a, A> { |
| 827 | fn drop(&mut self) { |
| 828 | let &mut DeallocDropGuard(layout, alloc, ptr) = self; |
| 829 | // Safety: `ptr` was allocated by `*alloc` with layout `layout` |
| 830 | unsafe { |
| 831 | alloc.deallocate(ptr, layout); |
| 832 | } |
| 833 | } |
| 834 | } |
| 835 | let layout = Layout::for_value::<T>(src); |
| 836 | let (ptr, guard) = if layout.size() == 0 { |
| 837 | (layout.dangling_ptr(), None) |
| 838 | } else { |
| 839 | // Safety: layout is non-zero-sized |
| 840 | let ptr = alloc.allocate(layout)?.cast(); |
| 841 | (ptr, Some(DeallocDropGuard(layout, &alloc, ptr))) |
| 842 | }; |
| 843 | let ptr = ptr.as_ptr(); |
| 844 | // Safety: `*ptr` is newly allocated, correctly aligned to `align_of_val(src)`, |
| 845 | // and is valid for writes for `size_of_val(src)`. |
| 846 | // If this panics, then `guard` will deallocate for us (if allocation occuured) |
| 847 | unsafe { |
| 848 | <T as CloneToUninit>::clone_to_uninit(src, ptr); |
| 849 | } |
| 850 | // Defuse the deallocate guard |
| 851 | core::mem::forget(guard); |
| 852 | // Safety: We just initialized `*ptr` as a clone of `src` |
| 853 | Ok(unsafe { Box::from_raw_in(ptr.with_metadata_of(src), alloc) }) |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | impl<T> Box<[T]> { |
| 858 | /// Constructs a new boxed slice with uninitialized contents. |
| 859 | /// |
| 860 | /// # Examples |
| 861 | /// |
| 862 | /// ``` |
| 863 | /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| 864 | /// // Deferred initialization: |
| 865 | /// values[0].write(1); |
| 866 | /// values[1].write(2); |
| 867 | /// values[2].write(3); |
| 868 | /// let values = unsafe { values.assume_init() }; |
| 869 | /// |
| 870 | /// assert_eq!(*values, [1, 2, 3]) |
| 871 | /// ``` |
| 872 | #[cfg (not(no_global_oom_handling))] |
| 873 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 874 | #[must_use ] |
| 875 | pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
| 876 | unsafe { RawVec::with_capacity(len).into_box(len) } |
| 877 | } |
| 878 | |
| 879 | /// Constructs a new boxed slice with uninitialized contents, with the memory |
| 880 | /// being filled with `0` bytes. |
| 881 | /// |
| 882 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 883 | /// of this method. |
| 884 | /// |
| 885 | /// # Examples |
| 886 | /// |
| 887 | /// ``` |
| 888 | /// let values = Box::<[u32]>::new_zeroed_slice(3); |
| 889 | /// let values = unsafe { values.assume_init() }; |
| 890 | /// |
| 891 | /// assert_eq!(*values, [0, 0, 0]) |
| 892 | /// ``` |
| 893 | /// |
| 894 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 895 | #[cfg (not(no_global_oom_handling))] |
| 896 | #[stable (feature = "new_zeroed_alloc" , since = "1.92.0" )] |
| 897 | #[must_use ] |
| 898 | pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
| 899 | unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } |
| 900 | } |
| 901 | |
| 902 | /// Constructs a new boxed slice with uninitialized contents. Returns an error if |
| 903 | /// the allocation fails. |
| 904 | /// |
| 905 | /// # Examples |
| 906 | /// |
| 907 | /// ``` |
| 908 | /// #![feature(allocator_api)] |
| 909 | /// |
| 910 | /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; |
| 911 | /// // Deferred initialization: |
| 912 | /// values[0].write(1); |
| 913 | /// values[1].write(2); |
| 914 | /// values[2].write(3); |
| 915 | /// let values = unsafe { values.assume_init() }; |
| 916 | /// |
| 917 | /// assert_eq!(*values, [1, 2, 3]); |
| 918 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 919 | /// ``` |
| 920 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 921 | #[inline ] |
| 922 | pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
| 923 | let ptr = if T::IS_ZST || len == 0 { |
| 924 | NonNull::dangling() |
| 925 | } else { |
| 926 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 927 | Ok(l) => l, |
| 928 | Err(_) => return Err(AllocError), |
| 929 | }; |
| 930 | Global.allocate(layout)?.cast() |
| 931 | }; |
| 932 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } |
| 933 | } |
| 934 | |
| 935 | /// Constructs a new boxed slice with uninitialized contents, with the memory |
| 936 | /// being filled with `0` bytes. Returns an error if the allocation fails. |
| 937 | /// |
| 938 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 939 | /// of this method. |
| 940 | /// |
| 941 | /// # Examples |
| 942 | /// |
| 943 | /// ``` |
| 944 | /// #![feature(allocator_api)] |
| 945 | /// |
| 946 | /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; |
| 947 | /// let values = unsafe { values.assume_init() }; |
| 948 | /// |
| 949 | /// assert_eq!(*values, [0, 0, 0]); |
| 950 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 951 | /// ``` |
| 952 | /// |
| 953 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 954 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 955 | #[inline ] |
| 956 | pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> { |
| 957 | let ptr = if T::IS_ZST || len == 0 { |
| 958 | NonNull::dangling() |
| 959 | } else { |
| 960 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 961 | Ok(l) => l, |
| 962 | Err(_) => return Err(AllocError), |
| 963 | }; |
| 964 | Global.allocate_zeroed(layout)?.cast() |
| 965 | }; |
| 966 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) } |
| 967 | } |
| 968 | |
| 969 | /// Converts the boxed slice into a boxed array. |
| 970 | /// |
| 971 | /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type. |
| 972 | /// |
| 973 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
| 974 | #[unstable (feature = "alloc_slice_into_array" , issue = "148082" )] |
| 975 | #[inline ] |
| 976 | #[must_use ] |
| 977 | pub fn into_array<const N: usize>(self) -> Option<Box<[T; N]>> { |
| 978 | if self.len() == N { |
| 979 | let ptr = Self::into_raw(self) as *mut [T; N]; |
| 980 | |
| 981 | // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length. |
| 982 | let me = unsafe { Box::from_raw(ptr) }; |
| 983 | Some(me) |
| 984 | } else { |
| 985 | None |
| 986 | } |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | impl<T, A: Allocator> Box<[T], A> { |
| 991 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. |
| 992 | /// |
| 993 | /// # Examples |
| 994 | /// |
| 995 | /// ``` |
| 996 | /// #![feature(allocator_api)] |
| 997 | /// |
| 998 | /// use std::alloc::System; |
| 999 | /// |
| 1000 | /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); |
| 1001 | /// // Deferred initialization: |
| 1002 | /// values[0].write(1); |
| 1003 | /// values[1].write(2); |
| 1004 | /// values[2].write(3); |
| 1005 | /// let values = unsafe { values.assume_init() }; |
| 1006 | /// |
| 1007 | /// assert_eq!(*values, [1, 2, 3]) |
| 1008 | /// ``` |
| 1009 | #[cfg (not(no_global_oom_handling))] |
| 1010 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1011 | #[must_use ] |
| 1012 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
| 1013 | unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } |
| 1014 | } |
| 1015 | |
| 1016 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, |
| 1017 | /// with the memory being filled with `0` bytes. |
| 1018 | /// |
| 1019 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 1020 | /// of this method. |
| 1021 | /// |
| 1022 | /// # Examples |
| 1023 | /// |
| 1024 | /// ``` |
| 1025 | /// #![feature(allocator_api)] |
| 1026 | /// |
| 1027 | /// use std::alloc::System; |
| 1028 | /// |
| 1029 | /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); |
| 1030 | /// let values = unsafe { values.assume_init() }; |
| 1031 | /// |
| 1032 | /// assert_eq!(*values, [0, 0, 0]) |
| 1033 | /// ``` |
| 1034 | /// |
| 1035 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 1036 | #[cfg (not(no_global_oom_handling))] |
| 1037 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1038 | #[must_use ] |
| 1039 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> { |
| 1040 | unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } |
| 1041 | } |
| 1042 | |
| 1043 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if |
| 1044 | /// the allocation fails. |
| 1045 | /// |
| 1046 | /// # Examples |
| 1047 | /// |
| 1048 | /// ``` |
| 1049 | /// #![feature(allocator_api)] |
| 1050 | /// |
| 1051 | /// use std::alloc::System; |
| 1052 | /// |
| 1053 | /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?; |
| 1054 | /// // Deferred initialization: |
| 1055 | /// values[0].write(1); |
| 1056 | /// values[1].write(2); |
| 1057 | /// values[2].write(3); |
| 1058 | /// let values = unsafe { values.assume_init() }; |
| 1059 | /// |
| 1060 | /// assert_eq!(*values, [1, 2, 3]); |
| 1061 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 1062 | /// ``` |
| 1063 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1064 | #[inline ] |
| 1065 | pub fn try_new_uninit_slice_in( |
| 1066 | len: usize, |
| 1067 | alloc: A, |
| 1068 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> { |
| 1069 | let ptr = if T::IS_ZST || len == 0 { |
| 1070 | NonNull::dangling() |
| 1071 | } else { |
| 1072 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 1073 | Ok(l) => l, |
| 1074 | Err(_) => return Err(AllocError), |
| 1075 | }; |
| 1076 | alloc.allocate(layout)?.cast() |
| 1077 | }; |
| 1078 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) } |
| 1079 | } |
| 1080 | |
| 1081 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory |
| 1082 | /// being filled with `0` bytes. Returns an error if the allocation fails. |
| 1083 | /// |
| 1084 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 1085 | /// of this method. |
| 1086 | /// |
| 1087 | /// # Examples |
| 1088 | /// |
| 1089 | /// ``` |
| 1090 | /// #![feature(allocator_api)] |
| 1091 | /// |
| 1092 | /// use std::alloc::System; |
| 1093 | /// |
| 1094 | /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?; |
| 1095 | /// let values = unsafe { values.assume_init() }; |
| 1096 | /// |
| 1097 | /// assert_eq!(*values, [0, 0, 0]); |
| 1098 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 1099 | /// ``` |
| 1100 | /// |
| 1101 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 1102 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1103 | #[inline ] |
| 1104 | pub fn try_new_zeroed_slice_in( |
| 1105 | len: usize, |
| 1106 | alloc: A, |
| 1107 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> { |
| 1108 | let ptr = if T::IS_ZST || len == 0 { |
| 1109 | NonNull::dangling() |
| 1110 | } else { |
| 1111 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) { |
| 1112 | Ok(l) => l, |
| 1113 | Err(_) => return Err(AllocError), |
| 1114 | }; |
| 1115 | alloc.allocate_zeroed(layout)?.cast() |
| 1116 | }; |
| 1117 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) } |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> { |
| 1122 | /// Converts to `Box<T, A>`. |
| 1123 | /// |
| 1124 | /// # Safety |
| 1125 | /// |
| 1126 | /// As with [`MaybeUninit::assume_init`], |
| 1127 | /// it is up to the caller to guarantee that the value |
| 1128 | /// really is in an initialized state. |
| 1129 | /// Calling this when the content is not yet fully initialized |
| 1130 | /// causes immediate undefined behavior. |
| 1131 | /// |
| 1132 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 1133 | /// |
| 1134 | /// # Examples |
| 1135 | /// |
| 1136 | /// ``` |
| 1137 | /// let mut five = Box::<u32>::new_uninit(); |
| 1138 | /// // Deferred initialization: |
| 1139 | /// five.write(5); |
| 1140 | /// let five: Box<u32> = unsafe { five.assume_init() }; |
| 1141 | /// |
| 1142 | /// assert_eq!(*five, 5) |
| 1143 | /// ``` |
| 1144 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1145 | #[inline ] |
| 1146 | pub unsafe fn assume_init(self) -> Box<T, A> { |
| 1147 | let (raw, alloc) = Box::into_raw_with_allocator(self); |
| 1148 | unsafe { Box::from_raw_in(raw as *mut T, alloc) } |
| 1149 | } |
| 1150 | |
| 1151 | /// Writes the value and converts to `Box<T, A>`. |
| 1152 | /// |
| 1153 | /// This method converts the box similarly to [`Box::assume_init`] but |
| 1154 | /// writes `value` into it before conversion thus guaranteeing safety. |
| 1155 | /// In some scenarios use of this method may improve performance because |
| 1156 | /// the compiler may be able to optimize copying from stack. |
| 1157 | /// |
| 1158 | /// # Examples |
| 1159 | /// |
| 1160 | /// ``` |
| 1161 | /// let big_box = Box::<[usize; 1024]>::new_uninit(); |
| 1162 | /// |
| 1163 | /// let mut array = [0; 1024]; |
| 1164 | /// for (i, place) in array.iter_mut().enumerate() { |
| 1165 | /// *place = i; |
| 1166 | /// } |
| 1167 | /// |
| 1168 | /// // The optimizer may be able to elide this copy, so previous code writes |
| 1169 | /// // to heap directly. |
| 1170 | /// let big_box = Box::write(big_box, array); |
| 1171 | /// |
| 1172 | /// for (i, x) in big_box.iter().enumerate() { |
| 1173 | /// assert_eq!(*x, i); |
| 1174 | /// } |
| 1175 | /// ``` |
| 1176 | #[stable (feature = "box_uninit_write" , since = "1.87.0" )] |
| 1177 | #[inline ] |
| 1178 | pub fn write(mut boxed: Self, value: T) -> Box<T, A> { |
| 1179 | unsafe { |
| 1180 | (*boxed).write(value); |
| 1181 | boxed.assume_init() |
| 1182 | } |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> { |
| 1187 | /// Converts to `Box<[T], A>`. |
| 1188 | /// |
| 1189 | /// # Safety |
| 1190 | /// |
| 1191 | /// As with [`MaybeUninit::assume_init`], |
| 1192 | /// it is up to the caller to guarantee that the values |
| 1193 | /// really are in an initialized state. |
| 1194 | /// Calling this when the content is not yet fully initialized |
| 1195 | /// causes immediate undefined behavior. |
| 1196 | /// |
| 1197 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 1198 | /// |
| 1199 | /// # Examples |
| 1200 | /// |
| 1201 | /// ``` |
| 1202 | /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| 1203 | /// // Deferred initialization: |
| 1204 | /// values[0].write(1); |
| 1205 | /// values[1].write(2); |
| 1206 | /// values[2].write(3); |
| 1207 | /// let values = unsafe { values.assume_init() }; |
| 1208 | /// |
| 1209 | /// assert_eq!(*values, [1, 2, 3]) |
| 1210 | /// ``` |
| 1211 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1212 | #[inline ] |
| 1213 | pub unsafe fn assume_init(self) -> Box<[T], A> { |
| 1214 | let (raw, alloc) = Box::into_raw_with_allocator(self); |
| 1215 | unsafe { Box::from_raw_in(raw as *mut [T], alloc) } |
| 1216 | } |
| 1217 | } |
| 1218 | |
| 1219 | impl<T: ?Sized> Box<T> { |
| 1220 | /// Constructs a box from a raw pointer. |
| 1221 | /// |
| 1222 | /// After calling this function, the raw pointer is owned by the |
| 1223 | /// resulting `Box`. Specifically, the `Box` destructor will call |
| 1224 | /// the destructor of `T` and free the allocated memory. For this |
| 1225 | /// to be safe, the memory must have been allocated in accordance |
| 1226 | /// with the [memory layout] used by `Box` . |
| 1227 | /// |
| 1228 | /// # Safety |
| 1229 | /// |
| 1230 | /// This function is unsafe because improper use may lead to |
| 1231 | /// memory problems. For example, a double-free may occur if the |
| 1232 | /// function is called twice on the same raw pointer. |
| 1233 | /// |
| 1234 | /// The raw pointer must point to a block of memory allocated by the global allocator. |
| 1235 | /// |
| 1236 | /// The safety conditions are described in the [memory layout] section. |
| 1237 | /// |
| 1238 | /// # Examples |
| 1239 | /// |
| 1240 | /// Recreate a `Box` which was previously converted to a raw pointer |
| 1241 | /// using [`Box::into_raw`]: |
| 1242 | /// ``` |
| 1243 | /// let x = Box::new(5); |
| 1244 | /// let ptr = Box::into_raw(x); |
| 1245 | /// let x = unsafe { Box::from_raw(ptr) }; |
| 1246 | /// ``` |
| 1247 | /// Manually create a `Box` from scratch by using the global allocator: |
| 1248 | /// ``` |
| 1249 | /// use std::alloc::{alloc, Layout}; |
| 1250 | /// |
| 1251 | /// unsafe { |
| 1252 | /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; |
| 1253 | /// // In general .write is required to avoid attempting to destruct |
| 1254 | /// // the (uninitialized) previous contents of `ptr`, though for this |
| 1255 | /// // simple example `*ptr = 5` would have worked as well. |
| 1256 | /// ptr.write(5); |
| 1257 | /// let x = Box::from_raw(ptr); |
| 1258 | /// } |
| 1259 | /// ``` |
| 1260 | /// |
| 1261 | /// [memory layout]: self#memory-layout |
| 1262 | #[stable (feature = "box_raw" , since = "1.4.0" )] |
| 1263 | #[inline ] |
| 1264 | #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`" ] |
| 1265 | pub unsafe fn from_raw(raw: *mut T) -> Self { |
| 1266 | unsafe { Self::from_raw_in(raw, Global) } |
| 1267 | } |
| 1268 | |
| 1269 | /// Constructs a box from a `NonNull` pointer. |
| 1270 | /// |
| 1271 | /// After calling this function, the `NonNull` pointer is owned by |
| 1272 | /// the resulting `Box`. Specifically, the `Box` destructor will call |
| 1273 | /// the destructor of `T` and free the allocated memory. For this |
| 1274 | /// to be safe, the memory must have been allocated in accordance |
| 1275 | /// with the [memory layout] used by `Box` . |
| 1276 | /// |
| 1277 | /// # Safety |
| 1278 | /// |
| 1279 | /// This function is unsafe because improper use may lead to |
| 1280 | /// memory problems. For example, a double-free may occur if the |
| 1281 | /// function is called twice on the same `NonNull` pointer. |
| 1282 | /// |
| 1283 | /// The non-null pointer must point to a block of memory allocated by the global allocator. |
| 1284 | /// |
| 1285 | /// The safety conditions are described in the [memory layout] section. |
| 1286 | /// |
| 1287 | /// # Examples |
| 1288 | /// |
| 1289 | /// Recreate a `Box` which was previously converted to a `NonNull` |
| 1290 | /// pointer using [`Box::into_non_null`]: |
| 1291 | /// ``` |
| 1292 | /// #![feature(box_vec_non_null)] |
| 1293 | /// |
| 1294 | /// let x = Box::new(5); |
| 1295 | /// let non_null = Box::into_non_null(x); |
| 1296 | /// let x = unsafe { Box::from_non_null(non_null) }; |
| 1297 | /// ``` |
| 1298 | /// Manually create a `Box` from scratch by using the global allocator: |
| 1299 | /// ``` |
| 1300 | /// #![feature(box_vec_non_null)] |
| 1301 | /// |
| 1302 | /// use std::alloc::{alloc, Layout}; |
| 1303 | /// use std::ptr::NonNull; |
| 1304 | /// |
| 1305 | /// unsafe { |
| 1306 | /// let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>()) |
| 1307 | /// .expect("allocation failed" ); |
| 1308 | /// // In general .write is required to avoid attempting to destruct |
| 1309 | /// // the (uninitialized) previous contents of `non_null`. |
| 1310 | /// non_null.write(5); |
| 1311 | /// let x = Box::from_non_null(non_null); |
| 1312 | /// } |
| 1313 | /// ``` |
| 1314 | /// |
| 1315 | /// [memory layout]: self#memory-layout |
| 1316 | #[unstable (feature = "box_vec_non_null" , issue = "130364" )] |
| 1317 | #[inline ] |
| 1318 | #[must_use = "call `drop(Box::from_non_null(ptr))` if you intend to drop the `Box`" ] |
| 1319 | pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self { |
| 1320 | unsafe { Self::from_raw(ptr.as_ptr()) } |
| 1321 | } |
| 1322 | |
| 1323 | /// Consumes the `Box`, returning a wrapped raw pointer. |
| 1324 | /// |
| 1325 | /// The pointer will be properly aligned and non-null. |
| 1326 | /// |
| 1327 | /// After calling this function, the caller is responsible for the |
| 1328 | /// memory previously managed by the `Box`. In particular, the |
| 1329 | /// caller should properly destroy `T` and release the memory, taking |
| 1330 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1331 | /// do this is to convert the raw pointer back into a `Box` with the |
| 1332 | /// [`Box::from_raw`] function, allowing the `Box` destructor to perform |
| 1333 | /// the cleanup. |
| 1334 | /// |
| 1335 | /// Note: this is an associated function, which means that you have |
| 1336 | /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This |
| 1337 | /// is so that there is no conflict with a method on the inner type. |
| 1338 | /// |
| 1339 | /// # Examples |
| 1340 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] |
| 1341 | /// for automatic cleanup: |
| 1342 | /// ``` |
| 1343 | /// let x = Box::new(String::from("Hello" )); |
| 1344 | /// let ptr = Box::into_raw(x); |
| 1345 | /// let x = unsafe { Box::from_raw(ptr) }; |
| 1346 | /// ``` |
| 1347 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1348 | /// the memory: |
| 1349 | /// ``` |
| 1350 | /// use std::alloc::{dealloc, Layout}; |
| 1351 | /// use std::ptr; |
| 1352 | /// |
| 1353 | /// let x = Box::new(String::from("Hello" )); |
| 1354 | /// let ptr = Box::into_raw(x); |
| 1355 | /// unsafe { |
| 1356 | /// ptr::drop_in_place(ptr); |
| 1357 | /// dealloc(ptr as *mut u8, Layout::new::<String>()); |
| 1358 | /// } |
| 1359 | /// ``` |
| 1360 | /// Note: This is equivalent to the following: |
| 1361 | /// ``` |
| 1362 | /// let x = Box::new(String::from("Hello" )); |
| 1363 | /// let ptr = Box::into_raw(x); |
| 1364 | /// unsafe { |
| 1365 | /// drop(Box::from_raw(ptr)); |
| 1366 | /// } |
| 1367 | /// ``` |
| 1368 | /// |
| 1369 | /// [memory layout]: self#memory-layout |
| 1370 | #[must_use = "losing the pointer will leak memory" ] |
| 1371 | #[stable (feature = "box_raw" , since = "1.4.0" )] |
| 1372 | #[inline ] |
| 1373 | pub fn into_raw(b: Self) -> *mut T { |
| 1374 | // Avoid `into_raw_with_allocator` as that interacts poorly with Miri's Stacked Borrows. |
| 1375 | let mut b = mem::ManuallyDrop::new(b); |
| 1376 | // We go through the built-in deref for `Box`, which is crucial for Miri to recognize this |
| 1377 | // operation for it's alias tracking. |
| 1378 | &raw mut **b |
| 1379 | } |
| 1380 | |
| 1381 | /// Consumes the `Box`, returning a wrapped `NonNull` pointer. |
| 1382 | /// |
| 1383 | /// The pointer will be properly aligned. |
| 1384 | /// |
| 1385 | /// After calling this function, the caller is responsible for the |
| 1386 | /// memory previously managed by the `Box`. In particular, the |
| 1387 | /// caller should properly destroy `T` and release the memory, taking |
| 1388 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1389 | /// do this is to convert the `NonNull` pointer back into a `Box` with the |
| 1390 | /// [`Box::from_non_null`] function, allowing the `Box` destructor to |
| 1391 | /// perform the cleanup. |
| 1392 | /// |
| 1393 | /// Note: this is an associated function, which means that you have |
| 1394 | /// to call it as `Box::into_non_null(b)` instead of `b.into_non_null()`. |
| 1395 | /// This is so that there is no conflict with a method on the inner type. |
| 1396 | /// |
| 1397 | /// # Examples |
| 1398 | /// Converting the `NonNull` pointer back into a `Box` with [`Box::from_non_null`] |
| 1399 | /// for automatic cleanup: |
| 1400 | /// ``` |
| 1401 | /// #![feature(box_vec_non_null)] |
| 1402 | /// |
| 1403 | /// let x = Box::new(String::from("Hello" )); |
| 1404 | /// let non_null = Box::into_non_null(x); |
| 1405 | /// let x = unsafe { Box::from_non_null(non_null) }; |
| 1406 | /// ``` |
| 1407 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1408 | /// the memory: |
| 1409 | /// ``` |
| 1410 | /// #![feature(box_vec_non_null)] |
| 1411 | /// |
| 1412 | /// use std::alloc::{dealloc, Layout}; |
| 1413 | /// |
| 1414 | /// let x = Box::new(String::from("Hello" )); |
| 1415 | /// let non_null = Box::into_non_null(x); |
| 1416 | /// unsafe { |
| 1417 | /// non_null.drop_in_place(); |
| 1418 | /// dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>()); |
| 1419 | /// } |
| 1420 | /// ``` |
| 1421 | /// Note: This is equivalent to the following: |
| 1422 | /// ``` |
| 1423 | /// #![feature(box_vec_non_null)] |
| 1424 | /// |
| 1425 | /// let x = Box::new(String::from("Hello" )); |
| 1426 | /// let non_null = Box::into_non_null(x); |
| 1427 | /// unsafe { |
| 1428 | /// drop(Box::from_non_null(non_null)); |
| 1429 | /// } |
| 1430 | /// ``` |
| 1431 | /// |
| 1432 | /// [memory layout]: self#memory-layout |
| 1433 | #[must_use = "losing the pointer will leak memory" ] |
| 1434 | #[unstable (feature = "box_vec_non_null" , issue = "130364" )] |
| 1435 | #[inline ] |
| 1436 | pub fn into_non_null(b: Self) -> NonNull<T> { |
| 1437 | // SAFETY: `Box` is guaranteed to be non-null. |
| 1438 | unsafe { NonNull::new_unchecked(Self::into_raw(b)) } |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | impl<T: ?Sized, A: Allocator> Box<T, A> { |
| 1443 | /// Constructs a box from a raw pointer in the given allocator. |
| 1444 | /// |
| 1445 | /// After calling this function, the raw pointer is owned by the |
| 1446 | /// resulting `Box`. Specifically, the `Box` destructor will call |
| 1447 | /// the destructor of `T` and free the allocated memory. For this |
| 1448 | /// to be safe, the memory must have been allocated in accordance |
| 1449 | /// with the [memory layout] used by `Box` . |
| 1450 | /// |
| 1451 | /// # Safety |
| 1452 | /// |
| 1453 | /// This function is unsafe because improper use may lead to |
| 1454 | /// memory problems. For example, a double-free may occur if the |
| 1455 | /// function is called twice on the same raw pointer. |
| 1456 | /// |
| 1457 | /// The raw pointer must point to a block of memory allocated by `alloc`. |
| 1458 | /// |
| 1459 | /// # Examples |
| 1460 | /// |
| 1461 | /// Recreate a `Box` which was previously converted to a raw pointer |
| 1462 | /// using [`Box::into_raw_with_allocator`]: |
| 1463 | /// ``` |
| 1464 | /// #![feature(allocator_api)] |
| 1465 | /// |
| 1466 | /// use std::alloc::System; |
| 1467 | /// |
| 1468 | /// let x = Box::new_in(5, System); |
| 1469 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| 1470 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
| 1471 | /// ``` |
| 1472 | /// Manually create a `Box` from scratch by using the system allocator: |
| 1473 | /// ``` |
| 1474 | /// #![feature(allocator_api, slice_ptr_get)] |
| 1475 | /// |
| 1476 | /// use std::alloc::{Allocator, Layout, System}; |
| 1477 | /// |
| 1478 | /// unsafe { |
| 1479 | /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; |
| 1480 | /// // In general .write is required to avoid attempting to destruct |
| 1481 | /// // the (uninitialized) previous contents of `ptr`, though for this |
| 1482 | /// // simple example `*ptr = 5` would have worked as well. |
| 1483 | /// ptr.write(5); |
| 1484 | /// let x = Box::from_raw_in(ptr, System); |
| 1485 | /// } |
| 1486 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 1487 | /// ``` |
| 1488 | /// |
| 1489 | /// [memory layout]: self#memory-layout |
| 1490 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1491 | #[inline ] |
| 1492 | pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { |
| 1493 | Box(unsafe { Unique::new_unchecked(raw) }, alloc) |
| 1494 | } |
| 1495 | |
| 1496 | /// Constructs a box from a `NonNull` pointer in the given allocator. |
| 1497 | /// |
| 1498 | /// After calling this function, the `NonNull` pointer is owned by |
| 1499 | /// the resulting `Box`. Specifically, the `Box` destructor will call |
| 1500 | /// the destructor of `T` and free the allocated memory. For this |
| 1501 | /// to be safe, the memory must have been allocated in accordance |
| 1502 | /// with the [memory layout] used by `Box` . |
| 1503 | /// |
| 1504 | /// # Safety |
| 1505 | /// |
| 1506 | /// This function is unsafe because improper use may lead to |
| 1507 | /// memory problems. For example, a double-free may occur if the |
| 1508 | /// function is called twice on the same raw pointer. |
| 1509 | /// |
| 1510 | /// The non-null pointer must point to a block of memory allocated by `alloc`. |
| 1511 | /// |
| 1512 | /// # Examples |
| 1513 | /// |
| 1514 | /// Recreate a `Box` which was previously converted to a `NonNull` pointer |
| 1515 | /// using [`Box::into_non_null_with_allocator`]: |
| 1516 | /// ``` |
| 1517 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1518 | /// |
| 1519 | /// use std::alloc::System; |
| 1520 | /// |
| 1521 | /// let x = Box::new_in(5, System); |
| 1522 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
| 1523 | /// let x = unsafe { Box::from_non_null_in(non_null, alloc) }; |
| 1524 | /// ``` |
| 1525 | /// Manually create a `Box` from scratch by using the system allocator: |
| 1526 | /// ``` |
| 1527 | /// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)] |
| 1528 | /// |
| 1529 | /// use std::alloc::{Allocator, Layout, System}; |
| 1530 | /// |
| 1531 | /// unsafe { |
| 1532 | /// let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>(); |
| 1533 | /// // In general .write is required to avoid attempting to destruct |
| 1534 | /// // the (uninitialized) previous contents of `non_null`. |
| 1535 | /// non_null.write(5); |
| 1536 | /// let x = Box::from_non_null_in(non_null, System); |
| 1537 | /// } |
| 1538 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 1539 | /// ``` |
| 1540 | /// |
| 1541 | /// [memory layout]: self#memory-layout |
| 1542 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1543 | // #[unstable(feature = "box_vec_non_null", issue = "130364")] |
| 1544 | #[inline ] |
| 1545 | pub unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self { |
| 1546 | // SAFETY: guaranteed by the caller. |
| 1547 | unsafe { Box::from_raw_in(raw.as_ptr(), alloc) } |
| 1548 | } |
| 1549 | |
| 1550 | /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. |
| 1551 | /// |
| 1552 | /// The pointer will be properly aligned and non-null. |
| 1553 | /// |
| 1554 | /// After calling this function, the caller is responsible for the |
| 1555 | /// memory previously managed by the `Box`. In particular, the |
| 1556 | /// caller should properly destroy `T` and release the memory, taking |
| 1557 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1558 | /// do this is to convert the raw pointer back into a `Box` with the |
| 1559 | /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform |
| 1560 | /// the cleanup. |
| 1561 | /// |
| 1562 | /// Note: this is an associated function, which means that you have |
| 1563 | /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This |
| 1564 | /// is so that there is no conflict with a method on the inner type. |
| 1565 | /// |
| 1566 | /// # Examples |
| 1567 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] |
| 1568 | /// for automatic cleanup: |
| 1569 | /// ``` |
| 1570 | /// #![feature(allocator_api)] |
| 1571 | /// |
| 1572 | /// use std::alloc::System; |
| 1573 | /// |
| 1574 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1575 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| 1576 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; |
| 1577 | /// ``` |
| 1578 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1579 | /// the memory: |
| 1580 | /// ``` |
| 1581 | /// #![feature(allocator_api)] |
| 1582 | /// |
| 1583 | /// use std::alloc::{Allocator, Layout, System}; |
| 1584 | /// use std::ptr::{self, NonNull}; |
| 1585 | /// |
| 1586 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1587 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x); |
| 1588 | /// unsafe { |
| 1589 | /// ptr::drop_in_place(ptr); |
| 1590 | /// let non_null = NonNull::new_unchecked(ptr); |
| 1591 | /// alloc.deallocate(non_null.cast(), Layout::new::<String>()); |
| 1592 | /// } |
| 1593 | /// ``` |
| 1594 | /// |
| 1595 | /// [memory layout]: self#memory-layout |
| 1596 | #[must_use = "losing the pointer will leak memory" ] |
| 1597 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1598 | #[inline ] |
| 1599 | pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) { |
| 1600 | let mut b = mem::ManuallyDrop::new(b); |
| 1601 | // We carefully get the raw pointer out in a way that Miri's aliasing model understands what |
| 1602 | // is happening: using the primitive "deref" of `Box`. In case `A` is *not* `Global`, we |
| 1603 | // want *no* aliasing requirements here! |
| 1604 | // In case `A` *is* `Global`, this does not quite have the right behavior; `into_raw` |
| 1605 | // works around that. |
| 1606 | let ptr = &raw mut **b; |
| 1607 | let alloc = unsafe { ptr::read(&b.1) }; |
| 1608 | (ptr, alloc) |
| 1609 | } |
| 1610 | |
| 1611 | /// Consumes the `Box`, returning a wrapped `NonNull` pointer and the allocator. |
| 1612 | /// |
| 1613 | /// The pointer will be properly aligned. |
| 1614 | /// |
| 1615 | /// After calling this function, the caller is responsible for the |
| 1616 | /// memory previously managed by the `Box`. In particular, the |
| 1617 | /// caller should properly destroy `T` and release the memory, taking |
| 1618 | /// into account the [memory layout] used by `Box`. The easiest way to |
| 1619 | /// do this is to convert the `NonNull` pointer back into a `Box` with the |
| 1620 | /// [`Box::from_non_null_in`] function, allowing the `Box` destructor to |
| 1621 | /// perform the cleanup. |
| 1622 | /// |
| 1623 | /// Note: this is an associated function, which means that you have |
| 1624 | /// to call it as `Box::into_non_null_with_allocator(b)` instead of |
| 1625 | /// `b.into_non_null_with_allocator()`. This is so that there is no |
| 1626 | /// conflict with a method on the inner type. |
| 1627 | /// |
| 1628 | /// # Examples |
| 1629 | /// Converting the `NonNull` pointer back into a `Box` with |
| 1630 | /// [`Box::from_non_null_in`] for automatic cleanup: |
| 1631 | /// ``` |
| 1632 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1633 | /// |
| 1634 | /// use std::alloc::System; |
| 1635 | /// |
| 1636 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1637 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
| 1638 | /// let x = unsafe { Box::from_non_null_in(non_null, alloc) }; |
| 1639 | /// ``` |
| 1640 | /// Manual cleanup by explicitly running the destructor and deallocating |
| 1641 | /// the memory: |
| 1642 | /// ``` |
| 1643 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1644 | /// |
| 1645 | /// use std::alloc::{Allocator, Layout, System}; |
| 1646 | /// |
| 1647 | /// let x = Box::new_in(String::from("Hello" ), System); |
| 1648 | /// let (non_null, alloc) = Box::into_non_null_with_allocator(x); |
| 1649 | /// unsafe { |
| 1650 | /// non_null.drop_in_place(); |
| 1651 | /// alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>()); |
| 1652 | /// } |
| 1653 | /// ``` |
| 1654 | /// |
| 1655 | /// [memory layout]: self#memory-layout |
| 1656 | #[must_use = "losing the pointer will leak memory" ] |
| 1657 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1658 | // #[unstable(feature = "box_vec_non_null", issue = "130364")] |
| 1659 | #[inline ] |
| 1660 | pub fn into_non_null_with_allocator(b: Self) -> (NonNull<T>, A) { |
| 1661 | let (ptr, alloc) = Box::into_raw_with_allocator(b); |
| 1662 | // SAFETY: `Box` is guaranteed to be non-null. |
| 1663 | unsafe { (NonNull::new_unchecked(ptr), alloc) } |
| 1664 | } |
| 1665 | |
| 1666 | #[unstable ( |
| 1667 | feature = "ptr_internals" , |
| 1668 | issue = "none" , |
| 1669 | reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" |
| 1670 | )] |
| 1671 | #[inline ] |
| 1672 | #[doc (hidden)] |
| 1673 | pub fn into_unique(b: Self) -> (Unique<T>, A) { |
| 1674 | let (ptr, alloc) = Box::into_raw_with_allocator(b); |
| 1675 | unsafe { (Unique::from(&mut *ptr), alloc) } |
| 1676 | } |
| 1677 | |
| 1678 | /// Returns a raw mutable pointer to the `Box`'s contents. |
| 1679 | /// |
| 1680 | /// The caller must ensure that the `Box` outlives the pointer this |
| 1681 | /// function returns, or else it will end up dangling. |
| 1682 | /// |
| 1683 | /// This method guarantees that for the purpose of the aliasing model, this method |
| 1684 | /// does not materialize a reference to the underlying memory, and thus the returned pointer |
| 1685 | /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`]. |
| 1686 | /// Note that calling other methods that materialize references to the memory |
| 1687 | /// may still invalidate this pointer. |
| 1688 | /// See the example below for how this guarantee can be used. |
| 1689 | /// |
| 1690 | /// # Examples |
| 1691 | /// |
| 1692 | /// Due to the aliasing guarantee, the following code is legal: |
| 1693 | /// |
| 1694 | /// ```rust |
| 1695 | /// #![feature(box_as_ptr)] |
| 1696 | /// |
| 1697 | /// unsafe { |
| 1698 | /// let mut b = Box::new(0); |
| 1699 | /// let ptr1 = Box::as_mut_ptr(&mut b); |
| 1700 | /// ptr1.write(1); |
| 1701 | /// let ptr2 = Box::as_mut_ptr(&mut b); |
| 1702 | /// ptr2.write(2); |
| 1703 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`: |
| 1704 | /// ptr1.write(3); |
| 1705 | /// } |
| 1706 | /// ``` |
| 1707 | /// |
| 1708 | /// [`as_mut_ptr`]: Self::as_mut_ptr |
| 1709 | /// [`as_ptr`]: Self::as_ptr |
| 1710 | #[unstable (feature = "box_as_ptr" , issue = "129090" )] |
| 1711 | #[rustc_never_returns_null_ptr ] |
| 1712 | #[rustc_as_ptr] |
| 1713 | #[inline ] |
| 1714 | pub fn as_mut_ptr(b: &mut Self) -> *mut T { |
| 1715 | // This is a primitive deref, not going through `DerefMut`, and therefore not materializing |
| 1716 | // any references. |
| 1717 | &raw mut **b |
| 1718 | } |
| 1719 | |
| 1720 | /// Returns a raw pointer to the `Box`'s contents. |
| 1721 | /// |
| 1722 | /// The caller must ensure that the `Box` outlives the pointer this |
| 1723 | /// function returns, or else it will end up dangling. |
| 1724 | /// |
| 1725 | /// The caller must also ensure that the memory the pointer (non-transitively) points to |
| 1726 | /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer |
| 1727 | /// derived from it. If you need to mutate the contents of the `Box`, use [`as_mut_ptr`]. |
| 1728 | /// |
| 1729 | /// This method guarantees that for the purpose of the aliasing model, this method |
| 1730 | /// does not materialize a reference to the underlying memory, and thus the returned pointer |
| 1731 | /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`]. |
| 1732 | /// Note that calling other methods that materialize mutable references to the memory, |
| 1733 | /// as well as writing to this memory, may still invalidate this pointer. |
| 1734 | /// See the example below for how this guarantee can be used. |
| 1735 | /// |
| 1736 | /// # Examples |
| 1737 | /// |
| 1738 | /// Due to the aliasing guarantee, the following code is legal: |
| 1739 | /// |
| 1740 | /// ```rust |
| 1741 | /// #![feature(box_as_ptr)] |
| 1742 | /// |
| 1743 | /// unsafe { |
| 1744 | /// let mut v = Box::new(0); |
| 1745 | /// let ptr1 = Box::as_ptr(&v); |
| 1746 | /// let ptr2 = Box::as_mut_ptr(&mut v); |
| 1747 | /// let _val = ptr2.read(); |
| 1748 | /// // No write to this memory has happened yet, so `ptr1` is still valid. |
| 1749 | /// let _val = ptr1.read(); |
| 1750 | /// // However, once we do a write... |
| 1751 | /// ptr2.write(1); |
| 1752 | /// // ... `ptr1` is no longer valid. |
| 1753 | /// // This would be UB: let _val = ptr1.read(); |
| 1754 | /// } |
| 1755 | /// ``` |
| 1756 | /// |
| 1757 | /// [`as_mut_ptr`]: Self::as_mut_ptr |
| 1758 | /// [`as_ptr`]: Self::as_ptr |
| 1759 | #[unstable (feature = "box_as_ptr" , issue = "129090" )] |
| 1760 | #[rustc_never_returns_null_ptr ] |
| 1761 | #[rustc_as_ptr] |
| 1762 | #[inline ] |
| 1763 | pub fn as_ptr(b: &Self) -> *const T { |
| 1764 | // This is a primitive deref, not going through `DerefMut`, and therefore not materializing |
| 1765 | // any references. |
| 1766 | &raw const **b |
| 1767 | } |
| 1768 | |
| 1769 | /// Returns a reference to the underlying allocator. |
| 1770 | /// |
| 1771 | /// Note: this is an associated function, which means that you have |
| 1772 | /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This |
| 1773 | /// is so that there is no conflict with a method on the inner type. |
| 1774 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1775 | #[inline ] |
| 1776 | pub fn allocator(b: &Self) -> &A { |
| 1777 | &b.1 |
| 1778 | } |
| 1779 | |
| 1780 | /// Consumes and leaks the `Box`, returning a mutable reference, |
| 1781 | /// `&'a mut T`. |
| 1782 | /// |
| 1783 | /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type |
| 1784 | /// has only static references, or none at all, then this may be chosen to be |
| 1785 | /// `'static`. |
| 1786 | /// |
| 1787 | /// This function is mainly useful for data that lives for the remainder of |
| 1788 | /// the program's life. Dropping the returned reference will cause a memory |
| 1789 | /// leak. If this is not acceptable, the reference should first be wrapped |
| 1790 | /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can |
| 1791 | /// then be dropped which will properly destroy `T` and release the |
| 1792 | /// allocated memory. |
| 1793 | /// |
| 1794 | /// Note: this is an associated function, which means that you have |
| 1795 | /// to call it as `Box::leak(b)` instead of `b.leak()`. This |
| 1796 | /// is so that there is no conflict with a method on the inner type. |
| 1797 | /// |
| 1798 | /// # Examples |
| 1799 | /// |
| 1800 | /// Simple usage: |
| 1801 | /// |
| 1802 | /// ``` |
| 1803 | /// let x = Box::new(41); |
| 1804 | /// let static_ref: &'static mut usize = Box::leak(x); |
| 1805 | /// *static_ref += 1; |
| 1806 | /// assert_eq!(*static_ref, 42); |
| 1807 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
| 1808 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
| 1809 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
| 1810 | /// ``` |
| 1811 | /// |
| 1812 | /// Unsized data: |
| 1813 | /// |
| 1814 | /// ``` |
| 1815 | /// let x = vec![1, 2, 3].into_boxed_slice(); |
| 1816 | /// let static_ref = Box::leak(x); |
| 1817 | /// static_ref[0] = 4; |
| 1818 | /// assert_eq!(*static_ref, [4, 2, 3]); |
| 1819 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
| 1820 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
| 1821 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
| 1822 | /// ``` |
| 1823 | #[stable (feature = "box_leak" , since = "1.26.0" )] |
| 1824 | #[inline ] |
| 1825 | pub fn leak<'a>(b: Self) -> &'a mut T |
| 1826 | where |
| 1827 | A: 'a, |
| 1828 | { |
| 1829 | let (ptr, alloc) = Box::into_raw_with_allocator(b); |
| 1830 | mem::forget(alloc); |
| 1831 | unsafe { &mut *ptr } |
| 1832 | } |
| 1833 | |
| 1834 | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then |
| 1835 | /// `*boxed` will be pinned in memory and unable to be moved. |
| 1836 | /// |
| 1837 | /// This conversion does not allocate on the heap and happens in place. |
| 1838 | /// |
| 1839 | /// This is also available via [`From`]. |
| 1840 | /// |
| 1841 | /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code> |
| 1842 | /// can also be written more concisely using <code>[Box::pin]\(x)</code>. |
| 1843 | /// This `into_pin` method is useful if you already have a `Box<T>`, or you are |
| 1844 | /// constructing a (pinned) `Box` in a different way than with [`Box::new`]. |
| 1845 | /// |
| 1846 | /// # Notes |
| 1847 | /// |
| 1848 | /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`, |
| 1849 | /// as it'll introduce an ambiguity when calling `Pin::from`. |
| 1850 | /// A demonstration of such a poor impl is shown below. |
| 1851 | /// |
| 1852 | /// ```compile_fail |
| 1853 | /// # use std::pin::Pin; |
| 1854 | /// struct Foo; // A type defined in this crate. |
| 1855 | /// impl From<Box<()>> for Pin<Foo> { |
| 1856 | /// fn from(_: Box<()>) -> Pin<Foo> { |
| 1857 | /// Pin::new(Foo) |
| 1858 | /// } |
| 1859 | /// } |
| 1860 | /// |
| 1861 | /// let foo = Box::new(()); |
| 1862 | /// let bar = Pin::from(foo); |
| 1863 | /// ``` |
| 1864 | #[stable (feature = "box_into_pin" , since = "1.63.0" )] |
| 1865 | pub fn into_pin(boxed: Self) -> Pin<Self> |
| 1866 | where |
| 1867 | A: 'static, |
| 1868 | { |
| 1869 | // It's not possible to move or replace the insides of a `Pin<Box<T>>` |
| 1870 | // when `T: !Unpin`, so it's safe to pin it directly without any |
| 1871 | // additional requirements. |
| 1872 | unsafe { Pin::new_unchecked(boxed) } |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1877 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Box<T, A> { |
| 1878 | #[inline ] |
| 1879 | fn drop(&mut self) { |
| 1880 | // the T in the Box is dropped by the compiler before the destructor is run |
| 1881 | |
| 1882 | let ptr = self.0; |
| 1883 | |
| 1884 | unsafe { |
| 1885 | let layout = Layout::for_value_raw(ptr.as_ptr()); |
| 1886 | if layout.size() != 0 { |
| 1887 | self.1.deallocate(From::from(ptr.cast()), layout); |
| 1888 | } |
| 1889 | } |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | #[cfg (not(no_global_oom_handling))] |
| 1894 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1895 | impl<T: Default> Default for Box<T> { |
| 1896 | /// Creates a `Box<T>`, with the `Default` value for `T`. |
| 1897 | #[inline ] |
| 1898 | fn default() -> Self { |
| 1899 | let mut x: Box<mem::MaybeUninit<T>> = Box::new_uninit(); |
| 1900 | unsafe { |
| 1901 | // SAFETY: `x` is valid for writing and has the same layout as `T`. |
| 1902 | // If `T::default()` panics, dropping `x` will just deallocate the Box as `MaybeUninit<T>` |
| 1903 | // does not have a destructor. |
| 1904 | // |
| 1905 | // We use `ptr::write` as `MaybeUninit::write` creates |
| 1906 | // extra stack copies of `T` in debug mode. |
| 1907 | // |
| 1908 | // See https://github.com/rust-lang/rust/issues/136043 for more context. |
| 1909 | ptr::write(&raw mut *x as *mut T, T::default()); |
| 1910 | // SAFETY: `x` was just initialized above. |
| 1911 | x.assume_init() |
| 1912 | } |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | #[cfg (not(no_global_oom_handling))] |
| 1917 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1918 | impl<T> Default for Box<[T]> { |
| 1919 | /// Creates an empty `[T]` inside a `Box`. |
| 1920 | #[inline ] |
| 1921 | fn default() -> Self { |
| 1922 | let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); |
| 1923 | Box(ptr, Global) |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | #[cfg (not(no_global_oom_handling))] |
| 1928 | #[stable (feature = "default_box_extra" , since = "1.17.0" )] |
| 1929 | impl Default for Box<str> { |
| 1930 | #[inline ] |
| 1931 | fn default() -> Self { |
| 1932 | // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`. |
| 1933 | let ptr: Unique<str> = unsafe { |
| 1934 | let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); |
| 1935 | Unique::new_unchecked(bytes.as_ptr() as *mut str) |
| 1936 | }; |
| 1937 | Box(ptr, Global) |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | #[cfg (not(no_global_oom_handling))] |
| 1942 | #[stable (feature = "pin_default_impls" , since = "1.91.0" )] |
| 1943 | impl<T> Default for Pin<Box<T>> |
| 1944 | where |
| 1945 | T: ?Sized, |
| 1946 | Box<T>: Default, |
| 1947 | { |
| 1948 | #[inline ] |
| 1949 | fn default() -> Self { |
| 1950 | Box::into_pin(boxed:Box::<T>::default()) |
| 1951 | } |
| 1952 | } |
| 1953 | |
| 1954 | #[cfg (not(no_global_oom_handling))] |
| 1955 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1956 | impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> { |
| 1957 | /// Returns a new box with a `clone()` of this box's contents. |
| 1958 | /// |
| 1959 | /// # Examples |
| 1960 | /// |
| 1961 | /// ``` |
| 1962 | /// let x = Box::new(5); |
| 1963 | /// let y = x.clone(); |
| 1964 | /// |
| 1965 | /// // The value is the same |
| 1966 | /// assert_eq!(x, y); |
| 1967 | /// |
| 1968 | /// // But they are unique objects |
| 1969 | /// assert_ne!(&*x as *const i32, &*y as *const i32); |
| 1970 | /// ``` |
| 1971 | #[inline ] |
| 1972 | fn clone(&self) -> Self { |
| 1973 | // Pre-allocate memory to allow writing the cloned value directly. |
| 1974 | let mut boxed = Self::new_uninit_in(self.1.clone()); |
| 1975 | unsafe { |
| 1976 | (**self).clone_to_uninit(boxed.as_mut_ptr().cast()); |
| 1977 | boxed.assume_init() |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | /// Copies `source`'s contents into `self` without creating a new allocation. |
| 1982 | /// |
| 1983 | /// # Examples |
| 1984 | /// |
| 1985 | /// ``` |
| 1986 | /// let x = Box::new(5); |
| 1987 | /// let mut y = Box::new(10); |
| 1988 | /// let yp: *const i32 = &*y; |
| 1989 | /// |
| 1990 | /// y.clone_from(&x); |
| 1991 | /// |
| 1992 | /// // The value is the same |
| 1993 | /// assert_eq!(x, y); |
| 1994 | /// |
| 1995 | /// // And no allocation occurred |
| 1996 | /// assert_eq!(yp, &*y); |
| 1997 | /// ``` |
| 1998 | #[inline ] |
| 1999 | fn clone_from(&mut self, source: &Self) { |
| 2000 | (**self).clone_from(&(**source)); |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | #[cfg (not(no_global_oom_handling))] |
| 2005 | #[stable (feature = "box_slice_clone" , since = "1.3.0" )] |
| 2006 | impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> { |
| 2007 | fn clone(&self) -> Self { |
| 2008 | let alloc = Box::allocator(self).clone(); |
| 2009 | self.to_vec_in(alloc).into_boxed_slice() |
| 2010 | } |
| 2011 | |
| 2012 | /// Copies `source`'s contents into `self` without creating a new allocation, |
| 2013 | /// so long as the two are of the same length. |
| 2014 | /// |
| 2015 | /// # Examples |
| 2016 | /// |
| 2017 | /// ``` |
| 2018 | /// let x = Box::new([5, 6, 7]); |
| 2019 | /// let mut y = Box::new([8, 9, 10]); |
| 2020 | /// let yp: *const [i32] = &*y; |
| 2021 | /// |
| 2022 | /// y.clone_from(&x); |
| 2023 | /// |
| 2024 | /// // The value is the same |
| 2025 | /// assert_eq!(x, y); |
| 2026 | /// |
| 2027 | /// // And no allocation occurred |
| 2028 | /// assert_eq!(yp, &*y); |
| 2029 | /// ``` |
| 2030 | fn clone_from(&mut self, source: &Self) { |
| 2031 | if self.len() == source.len() { |
| 2032 | self.clone_from_slice(&source); |
| 2033 | } else { |
| 2034 | *self = source.clone(); |
| 2035 | } |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | #[cfg (not(no_global_oom_handling))] |
| 2040 | #[stable (feature = "box_slice_clone" , since = "1.3.0" )] |
| 2041 | impl Clone for Box<str> { |
| 2042 | fn clone(&self) -> Self { |
| 2043 | // this makes a copy of the data |
| 2044 | let buf: Box<[u8]> = self.as_bytes().into(); |
| 2045 | unsafe { from_boxed_utf8_unchecked(buf) } |
| 2046 | } |
| 2047 | } |
| 2048 | |
| 2049 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2050 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> { |
| 2051 | #[inline ] |
| 2052 | fn eq(&self, other: &Self) -> bool { |
| 2053 | PartialEq::eq(&**self, &**other) |
| 2054 | } |
| 2055 | #[inline ] |
| 2056 | fn ne(&self, other: &Self) -> bool { |
| 2057 | PartialEq::ne(&**self, &**other) |
| 2058 | } |
| 2059 | } |
| 2060 | |
| 2061 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2062 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> { |
| 2063 | #[inline ] |
| 2064 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| 2065 | PartialOrd::partial_cmp(&**self, &**other) |
| 2066 | } |
| 2067 | #[inline ] |
| 2068 | fn lt(&self, other: &Self) -> bool { |
| 2069 | PartialOrd::lt(&**self, &**other) |
| 2070 | } |
| 2071 | #[inline ] |
| 2072 | fn le(&self, other: &Self) -> bool { |
| 2073 | PartialOrd::le(&**self, &**other) |
| 2074 | } |
| 2075 | #[inline ] |
| 2076 | fn ge(&self, other: &Self) -> bool { |
| 2077 | PartialOrd::ge(&**self, &**other) |
| 2078 | } |
| 2079 | #[inline ] |
| 2080 | fn gt(&self, other: &Self) -> bool { |
| 2081 | PartialOrd::gt(&**self, &**other) |
| 2082 | } |
| 2083 | } |
| 2084 | |
| 2085 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2086 | impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> { |
| 2087 | #[inline ] |
| 2088 | fn cmp(&self, other: &Self) -> Ordering { |
| 2089 | Ord::cmp(&**self, &**other) |
| 2090 | } |
| 2091 | } |
| 2092 | |
| 2093 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2094 | impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {} |
| 2095 | |
| 2096 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2097 | impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> { |
| 2098 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 2099 | (**self).hash(state); |
| 2100 | } |
| 2101 | } |
| 2102 | |
| 2103 | #[stable (feature = "indirect_hasher_impl" , since = "1.22.0" )] |
| 2104 | impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> { |
| 2105 | fn finish(&self) -> u64 { |
| 2106 | (**self).finish() |
| 2107 | } |
| 2108 | fn write(&mut self, bytes: &[u8]) { |
| 2109 | (**self).write(bytes) |
| 2110 | } |
| 2111 | fn write_u8(&mut self, i: u8) { |
| 2112 | (**self).write_u8(i) |
| 2113 | } |
| 2114 | fn write_u16(&mut self, i: u16) { |
| 2115 | (**self).write_u16(i) |
| 2116 | } |
| 2117 | fn write_u32(&mut self, i: u32) { |
| 2118 | (**self).write_u32(i) |
| 2119 | } |
| 2120 | fn write_u64(&mut self, i: u64) { |
| 2121 | (**self).write_u64(i) |
| 2122 | } |
| 2123 | fn write_u128(&mut self, i: u128) { |
| 2124 | (**self).write_u128(i) |
| 2125 | } |
| 2126 | fn write_usize(&mut self, i: usize) { |
| 2127 | (**self).write_usize(i) |
| 2128 | } |
| 2129 | fn write_i8(&mut self, i: i8) { |
| 2130 | (**self).write_i8(i) |
| 2131 | } |
| 2132 | fn write_i16(&mut self, i: i16) { |
| 2133 | (**self).write_i16(i) |
| 2134 | } |
| 2135 | fn write_i32(&mut self, i: i32) { |
| 2136 | (**self).write_i32(i) |
| 2137 | } |
| 2138 | fn write_i64(&mut self, i: i64) { |
| 2139 | (**self).write_i64(i) |
| 2140 | } |
| 2141 | fn write_i128(&mut self, i: i128) { |
| 2142 | (**self).write_i128(i) |
| 2143 | } |
| 2144 | fn write_isize(&mut self, i: isize) { |
| 2145 | (**self).write_isize(i) |
| 2146 | } |
| 2147 | fn write_length_prefix(&mut self, len: usize) { |
| 2148 | (**self).write_length_prefix(len) |
| 2149 | } |
| 2150 | fn write_str(&mut self, s: &str) { |
| 2151 | (**self).write_str(s) |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2156 | impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> { |
| 2157 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2158 | fmt::Display::fmt(&**self, f) |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2163 | impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> { |
| 2164 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2165 | fmt::Debug::fmt(&**self, f) |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2170 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> { |
| 2171 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2172 | // It's not possible to extract the inner Uniq directly from the Box, |
| 2173 | // instead we cast it to a *const which aliases the Unique |
| 2174 | let ptr: *const T = &**self; |
| 2175 | fmt::Pointer::fmt(&ptr, f) |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2180 | impl<T: ?Sized, A: Allocator> Deref for Box<T, A> { |
| 2181 | type Target = T; |
| 2182 | |
| 2183 | fn deref(&self) -> &T { |
| 2184 | &**self |
| 2185 | } |
| 2186 | } |
| 2187 | |
| 2188 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2189 | impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> { |
| 2190 | fn deref_mut(&mut self) -> &mut T { |
| 2191 | &mut **self |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 2196 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for Box<T, A> {} |
| 2197 | |
| 2198 | #[unstable (feature = "legacy_receiver_trait" , issue = "none" )] |
| 2199 | impl<T: ?Sized, A: Allocator> LegacyReceiver for Box<T, A> {} |
| 2200 | |
| 2201 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
| 2202 | impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> { |
| 2203 | type Output = <F as FnOnce<Args>>::Output; |
| 2204 | |
| 2205 | extern "rust-call" fn call_once(self, args: Args) -> Self::Output { |
| 2206 | <F as FnOnce<Args>>::call_once(*self, args) |
| 2207 | } |
| 2208 | } |
| 2209 | |
| 2210 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
| 2211 | impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> { |
| 2212 | extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { |
| 2213 | <F as FnMut<Args>>::call_mut(self, args) |
| 2214 | } |
| 2215 | } |
| 2216 | |
| 2217 | #[stable (feature = "boxed_closure_impls" , since = "1.35.0" )] |
| 2218 | impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> { |
| 2219 | extern "rust-call" fn call(&self, args: Args) -> Self::Output { |
| 2220 | <F as Fn<Args>>::call(self, args) |
| 2221 | } |
| 2222 | } |
| 2223 | |
| 2224 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
| 2225 | impl<Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator> AsyncFnOnce<Args> for Box<F, A> { |
| 2226 | type Output = F::Output; |
| 2227 | type CallOnceFuture = F::CallOnceFuture; |
| 2228 | |
| 2229 | extern "rust-call" fn async_call_once(self, args: Args) -> Self::CallOnceFuture { |
| 2230 | F::async_call_once(*self, args) |
| 2231 | } |
| 2232 | } |
| 2233 | |
| 2234 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
| 2235 | impl<Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator> AsyncFnMut<Args> for Box<F, A> { |
| 2236 | type CallRefFuture<'a> |
| 2237 | = F::CallRefFuture<'a> |
| 2238 | where |
| 2239 | Self: 'a; |
| 2240 | |
| 2241 | extern "rust-call" fn async_call_mut(&mut self, args: Args) -> Self::CallRefFuture<'_> { |
| 2242 | F::async_call_mut(self, args) |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | #[stable (feature = "async_closure" , since = "1.85.0" )] |
| 2247 | impl<Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator> AsyncFn<Args> for Box<F, A> { |
| 2248 | extern "rust-call" fn async_call(&self, args: Args) -> Self::CallRefFuture<'_> { |
| 2249 | F::async_call(self, args) |
| 2250 | } |
| 2251 | } |
| 2252 | |
| 2253 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 2254 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {} |
| 2255 | |
| 2256 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "150112" )] |
| 2257 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Box<T, A> {} |
| 2258 | |
| 2259 | // It is quite crucial that we only allow the `Global` allocator here. |
| 2260 | // Handling arbitrary custom allocators (which can affect the `Box` layout heavily!) |
| 2261 | // would need a lot of codegen and interpreter adjustments. |
| 2262 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 2263 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {} |
| 2264 | |
| 2265 | #[stable (feature = "box_borrow" , since = "1.1.0" )] |
| 2266 | impl<T: ?Sized, A: Allocator> Borrow<T> for Box<T, A> { |
| 2267 | fn borrow(&self) -> &T { |
| 2268 | &**self |
| 2269 | } |
| 2270 | } |
| 2271 | |
| 2272 | #[stable (feature = "box_borrow" , since = "1.1.0" )] |
| 2273 | impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A> { |
| 2274 | fn borrow_mut(&mut self) -> &mut T { |
| 2275 | &mut **self |
| 2276 | } |
| 2277 | } |
| 2278 | |
| 2279 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
| 2280 | impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> { |
| 2281 | fn as_ref(&self) -> &T { |
| 2282 | &**self |
| 2283 | } |
| 2284 | } |
| 2285 | |
| 2286 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
| 2287 | impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> { |
| 2288 | fn as_mut(&mut self) -> &mut T { |
| 2289 | &mut **self |
| 2290 | } |
| 2291 | } |
| 2292 | |
| 2293 | /* Nota bene |
| 2294 | * |
| 2295 | * We could have chosen not to add this impl, and instead have written a |
| 2296 | * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, |
| 2297 | * because Box<T> implements Unpin even when T does not, as a result of |
| 2298 | * this impl. |
| 2299 | * |
| 2300 | * We chose this API instead of the alternative for a few reasons: |
| 2301 | * - Logically, it is helpful to understand pinning in regard to the |
| 2302 | * memory region being pointed to. For this reason none of the |
| 2303 | * standard library pointer types support projecting through a pin |
| 2304 | * (Box<T> is the only pointer type in std for which this would be |
| 2305 | * safe.) |
| 2306 | * - It is in practice very useful to have Box<T> be unconditionally |
| 2307 | * Unpin because of trait objects, for which the structural auto |
| 2308 | * trait functionality does not apply (e.g., Box<dyn Foo> would |
| 2309 | * otherwise not be Unpin). |
| 2310 | * |
| 2311 | * Another type with the same semantics as Box but only a conditional |
| 2312 | * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and |
| 2313 | * could have a method to project a Pin<T> from it. |
| 2314 | */ |
| 2315 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 2316 | impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> {} |
| 2317 | |
| 2318 | #[unstable (feature = "coroutine_trait" , issue = "43122" )] |
| 2319 | impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A> { |
| 2320 | type Yield = G::Yield; |
| 2321 | type Return = G::Return; |
| 2322 | |
| 2323 | fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { |
| 2324 | G::resume(Pin::new(&mut *self), arg) |
| 2325 | } |
| 2326 | } |
| 2327 | |
| 2328 | #[unstable (feature = "coroutine_trait" , issue = "43122" )] |
| 2329 | impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>> |
| 2330 | where |
| 2331 | A: 'static, |
| 2332 | { |
| 2333 | type Yield = G::Yield; |
| 2334 | type Return = G::Return; |
| 2335 | |
| 2336 | fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> { |
| 2337 | G::resume((*self).as_mut(), arg) |
| 2338 | } |
| 2339 | } |
| 2340 | |
| 2341 | #[stable (feature = "futures_api" , since = "1.36.0" )] |
| 2342 | impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A> { |
| 2343 | type Output = F::Output; |
| 2344 | |
| 2345 | fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
| 2346 | F::poll(Pin::new(&mut *self), cx) |
| 2347 | } |
| 2348 | } |
| 2349 | |
| 2350 | #[stable (feature = "box_error" , since = "1.8.0" )] |
| 2351 | impl<E: Error> Error for Box<E> { |
| 2352 | #[allow (deprecated)] |
| 2353 | fn cause(&self) -> Option<&dyn Error> { |
| 2354 | Error::cause(&**self) |
| 2355 | } |
| 2356 | |
| 2357 | fn source(&self) -> Option<&(dyn Error + 'static)> { |
| 2358 | Error::source(&**self) |
| 2359 | } |
| 2360 | |
| 2361 | fn provide<'b>(&'b self, request: &mut error::Request<'b>) { |
| 2362 | Error::provide(&**self, request); |
| 2363 | } |
| 2364 | } |
| 2365 | |
| 2366 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 2367 | unsafe impl<T: ?Sized + Allocator, A: Allocator> Allocator for Box<T, A> { |
| 2368 | #[inline ] |
| 2369 | fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { |
| 2370 | (**self).allocate(layout) |
| 2371 | } |
| 2372 | |
| 2373 | #[inline ] |
| 2374 | fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { |
| 2375 | (**self).allocate_zeroed(layout) |
| 2376 | } |
| 2377 | |
| 2378 | #[inline ] |
| 2379 | unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { |
| 2380 | // SAFETY: the safety contract must be upheld by the caller |
| 2381 | unsafe { (**self).deallocate(ptr, layout) } |
| 2382 | } |
| 2383 | |
| 2384 | #[inline ] |
| 2385 | unsafe fn grow( |
| 2386 | &self, |
| 2387 | ptr: NonNull<u8>, |
| 2388 | old_layout: Layout, |
| 2389 | new_layout: Layout, |
| 2390 | ) -> Result<NonNull<[u8]>, AllocError> { |
| 2391 | // SAFETY: the safety contract must be upheld by the caller |
| 2392 | unsafe { (**self).grow(ptr, old_layout, new_layout) } |
| 2393 | } |
| 2394 | |
| 2395 | #[inline ] |
| 2396 | unsafe fn grow_zeroed( |
| 2397 | &self, |
| 2398 | ptr: NonNull<u8>, |
| 2399 | old_layout: Layout, |
| 2400 | new_layout: Layout, |
| 2401 | ) -> Result<NonNull<[u8]>, AllocError> { |
| 2402 | // SAFETY: the safety contract must be upheld by the caller |
| 2403 | unsafe { (**self).grow_zeroed(ptr, old_layout, new_layout) } |
| 2404 | } |
| 2405 | |
| 2406 | #[inline ] |
| 2407 | unsafe fn shrink( |
| 2408 | &self, |
| 2409 | ptr: NonNull<u8>, |
| 2410 | old_layout: Layout, |
| 2411 | new_layout: Layout, |
| 2412 | ) -> Result<NonNull<[u8]>, AllocError> { |
| 2413 | // SAFETY: the safety contract must be upheld by the caller |
| 2414 | unsafe { (**self).shrink(ptr, old_layout, new_layout) } |
| 2415 | } |
| 2416 | } |
| 2417 | |