| 1 | //! Utilities for dynamic typing or type reflection. |
| 2 | //! |
| 3 | //! # `Any` and `TypeId` |
| 4 | //! |
| 5 | //! `Any` itself can be used to get a `TypeId`, and has more features when used |
| 6 | //! as a trait object. As `&dyn Any` (a borrowed trait object), it has the `is` |
| 7 | //! and `downcast_ref` methods, to test if the contained value is of a given type, |
| 8 | //! and to get a reference to the inner value as a type. As `&mut dyn Any`, there |
| 9 | //! is also the `downcast_mut` method, for getting a mutable reference to the |
| 10 | //! inner value. `Box<dyn Any>` adds the `downcast` method, which attempts to |
| 11 | //! convert to a `Box<T>`. See the [`Box`] documentation for the full details. |
| 12 | //! |
| 13 | //! Note that `&dyn Any` is limited to testing whether a value is of a specified |
| 14 | //! concrete type, and cannot be used to test whether a type implements a trait. |
| 15 | //! |
| 16 | //! [`Box`]: ../../std/boxed/struct.Box.html |
| 17 | //! |
| 18 | //! # Smart pointers and `dyn Any` |
| 19 | //! |
| 20 | //! One piece of behavior to keep in mind when using `Any` as a trait object, |
| 21 | //! especially with types like `Box<dyn Any>` or `Arc<dyn Any>`, is that simply |
| 22 | //! calling `.type_id()` on the value will produce the `TypeId` of the |
| 23 | //! *container*, not the underlying trait object. This can be avoided by |
| 24 | //! converting the smart pointer into a `&dyn Any` instead, which will return |
| 25 | //! the object's `TypeId`. For example: |
| 26 | //! |
| 27 | //! ``` |
| 28 | //! use std::any::{Any, TypeId}; |
| 29 | //! |
| 30 | //! let boxed: Box<dyn Any> = Box::new(3_i32); |
| 31 | //! |
| 32 | //! // You're more likely to want this: |
| 33 | //! let actual_id = (&*boxed).type_id(); |
| 34 | //! // ... than this: |
| 35 | //! let boxed_id = boxed.type_id(); |
| 36 | //! |
| 37 | //! assert_eq!(actual_id, TypeId::of::<i32>()); |
| 38 | //! assert_eq!(boxed_id, TypeId::of::<Box<dyn Any>>()); |
| 39 | //! ``` |
| 40 | //! |
| 41 | //! ## Examples |
| 42 | //! |
| 43 | //! Consider a situation where we want to log a value passed to a function. |
| 44 | //! We know the value we're working on implements `Debug`, but we don't know its |
| 45 | //! concrete type. We want to give special treatment to certain types: in this |
| 46 | //! case printing out the length of `String` values prior to their value. |
| 47 | //! We don't know the concrete type of our value at compile time, so we need to |
| 48 | //! use runtime reflection instead. |
| 49 | //! |
| 50 | //! ```rust |
| 51 | //! use std::fmt::Debug; |
| 52 | //! use std::any::Any; |
| 53 | //! |
| 54 | //! // Logger function for any type that implements `Debug`. |
| 55 | //! fn log<T: Any + Debug>(value: &T) { |
| 56 | //! let value_any = value as &dyn Any; |
| 57 | //! |
| 58 | //! // Try to convert our value to a `String`. If successful, we want to |
| 59 | //! // output the `String`'s length as well as its value. If not, it's a |
| 60 | //! // different type: just print it out unadorned. |
| 61 | //! match value_any.downcast_ref::<String>() { |
| 62 | //! Some(as_string) => { |
| 63 | //! println!("String ({}): {}" , as_string.len(), as_string); |
| 64 | //! } |
| 65 | //! None => { |
| 66 | //! println!("{value:?}" ); |
| 67 | //! } |
| 68 | //! } |
| 69 | //! } |
| 70 | //! |
| 71 | //! // This function wants to log its parameter out prior to doing work with it. |
| 72 | //! fn do_work<T: Any + Debug>(value: &T) { |
| 73 | //! log(value); |
| 74 | //! // ...do some other work |
| 75 | //! } |
| 76 | //! |
| 77 | //! fn main() { |
| 78 | //! let my_string = "Hello World" .to_string(); |
| 79 | //! do_work(&my_string); |
| 80 | //! |
| 81 | //! let my_i8: i8 = 100; |
| 82 | //! do_work(&my_i8); |
| 83 | //! } |
| 84 | //! ``` |
| 85 | //! |
| 86 | |
| 87 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 88 | |
| 89 | use crate::{fmt, hash, intrinsics, ptr}; |
| 90 | |
| 91 | /////////////////////////////////////////////////////////////////////////////// |
| 92 | // Any trait |
| 93 | /////////////////////////////////////////////////////////////////////////////// |
| 94 | |
| 95 | /// A trait to emulate dynamic typing. |
| 96 | /// |
| 97 | /// Most types implement `Any`. However, any type which contains a non-`'static` reference does not. |
| 98 | /// See the [module-level documentation][mod] for more details. |
| 99 | /// |
| 100 | /// [mod]: crate::any |
| 101 | // This trait is not unsafe, though we rely on the specifics of it's sole impl's |
| 102 | // `type_id` function in unsafe code (e.g., `downcast`). Normally, that would be |
| 103 | // a problem, but because the only impl of `Any` is a blanket implementation, no |
| 104 | // other code can implement `Any`. |
| 105 | // |
| 106 | // We could plausibly make this trait unsafe -- it would not cause breakage, |
| 107 | // since we control all the implementations -- but we choose not to as that's |
| 108 | // both not really necessary and may confuse users about the distinction of |
| 109 | // unsafe traits and unsafe methods (i.e., `type_id` would still be safe to call, |
| 110 | // but we would likely want to indicate as such in documentation). |
| 111 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 112 | #[rustc_diagnostic_item = "Any" ] |
| 113 | pub trait Any: 'static { |
| 114 | /// Gets the `TypeId` of `self`. |
| 115 | /// |
| 116 | /// If called on a `dyn Any` trait object |
| 117 | /// (or a trait object of a subtrait of `Any`), |
| 118 | /// this returns the `TypeId` of the underlying |
| 119 | /// concrete type, not that of `dyn Any` itself. |
| 120 | /// |
| 121 | /// # Examples |
| 122 | /// |
| 123 | /// ``` |
| 124 | /// use std::any::{Any, TypeId}; |
| 125 | /// |
| 126 | /// fn is_string(s: &dyn Any) -> bool { |
| 127 | /// TypeId::of::<String>() == s.type_id() |
| 128 | /// } |
| 129 | /// |
| 130 | /// assert_eq!(is_string(&0), false); |
| 131 | /// assert_eq!(is_string(&"cookie monster" .to_string()), true); |
| 132 | /// ``` |
| 133 | #[stable (feature = "get_type_id" , since = "1.34.0" )] |
| 134 | fn type_id(&self) -> TypeId; |
| 135 | } |
| 136 | |
| 137 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 138 | impl<T: 'static + ?Sized> Any for T { |
| 139 | fn type_id(&self) -> TypeId { |
| 140 | TypeId::of::<T>() |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | /////////////////////////////////////////////////////////////////////////////// |
| 145 | // Extension methods for Any trait objects. |
| 146 | /////////////////////////////////////////////////////////////////////////////// |
| 147 | |
| 148 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 149 | impl fmt::Debug for dyn Any { |
| 150 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 151 | f.debug_struct(name:"Any" ).finish_non_exhaustive() |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | // Ensure that the result of e.g., joining a thread can be printed and |
| 156 | // hence used with `unwrap`. May eventually no longer be needed if |
| 157 | // dispatch works with upcasting. |
| 158 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 159 | impl fmt::Debug for dyn Any + Send { |
| 160 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 161 | f.debug_struct(name:"Any" ).finish_non_exhaustive() |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | #[stable (feature = "any_send_sync_methods" , since = "1.28.0" )] |
| 166 | impl fmt::Debug for dyn Any + Send + Sync { |
| 167 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 168 | f.debug_struct(name:"Any" ).finish_non_exhaustive() |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | impl dyn Any { |
| 173 | /// Returns `true` if the inner type is the same as `T`. |
| 174 | /// |
| 175 | /// # Examples |
| 176 | /// |
| 177 | /// ``` |
| 178 | /// use std::any::Any; |
| 179 | /// |
| 180 | /// fn is_string(s: &dyn Any) { |
| 181 | /// if s.is::<String>() { |
| 182 | /// println!("It's a string!" ); |
| 183 | /// } else { |
| 184 | /// println!("Not a string..." ); |
| 185 | /// } |
| 186 | /// } |
| 187 | /// |
| 188 | /// is_string(&0); |
| 189 | /// is_string(&"cookie monster" .to_string()); |
| 190 | /// ``` |
| 191 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 192 | #[inline ] |
| 193 | pub fn is<T: Any>(&self) -> bool { |
| 194 | // Get `TypeId` of the type this function is instantiated with. |
| 195 | let t = TypeId::of::<T>(); |
| 196 | |
| 197 | // Get `TypeId` of the type in the trait object (`self`). |
| 198 | let concrete = self.type_id(); |
| 199 | |
| 200 | // Compare both `TypeId`s on equality. |
| 201 | t == concrete |
| 202 | } |
| 203 | |
| 204 | /// Returns some reference to the inner value if it is of type `T`, or |
| 205 | /// `None` if it isn't. |
| 206 | /// |
| 207 | /// # Examples |
| 208 | /// |
| 209 | /// ``` |
| 210 | /// use std::any::Any; |
| 211 | /// |
| 212 | /// fn print_if_string(s: &dyn Any) { |
| 213 | /// if let Some(string) = s.downcast_ref::<String>() { |
| 214 | /// println!("It's a string({}): '{}'" , string.len(), string); |
| 215 | /// } else { |
| 216 | /// println!("Not a string..." ); |
| 217 | /// } |
| 218 | /// } |
| 219 | /// |
| 220 | /// print_if_string(&0); |
| 221 | /// print_if_string(&"cookie monster" .to_string()); |
| 222 | /// ``` |
| 223 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 224 | #[inline ] |
| 225 | pub fn downcast_ref<T: Any>(&self) -> Option<&T> { |
| 226 | if self.is::<T>() { |
| 227 | // SAFETY: just checked whether we are pointing to the correct type, and we can rely on |
| 228 | // that check for memory safety because we have implemented Any for all types; no other |
| 229 | // impls can exist as they would conflict with our impl. |
| 230 | unsafe { Some(self.downcast_unchecked_ref()) } |
| 231 | } else { |
| 232 | None |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | /// Returns some mutable reference to the inner value if it is of type `T`, or |
| 237 | /// `None` if it isn't. |
| 238 | /// |
| 239 | /// # Examples |
| 240 | /// |
| 241 | /// ``` |
| 242 | /// use std::any::Any; |
| 243 | /// |
| 244 | /// fn modify_if_u32(s: &mut dyn Any) { |
| 245 | /// if let Some(num) = s.downcast_mut::<u32>() { |
| 246 | /// *num = 42; |
| 247 | /// } |
| 248 | /// } |
| 249 | /// |
| 250 | /// let mut x = 10u32; |
| 251 | /// let mut s = "starlord" .to_string(); |
| 252 | /// |
| 253 | /// modify_if_u32(&mut x); |
| 254 | /// modify_if_u32(&mut s); |
| 255 | /// |
| 256 | /// assert_eq!(x, 42); |
| 257 | /// assert_eq!(&s, "starlord" ); |
| 258 | /// ``` |
| 259 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 260 | #[inline ] |
| 261 | pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> { |
| 262 | if self.is::<T>() { |
| 263 | // SAFETY: just checked whether we are pointing to the correct type, and we can rely on |
| 264 | // that check for memory safety because we have implemented Any for all types; no other |
| 265 | // impls can exist as they would conflict with our impl. |
| 266 | unsafe { Some(self.downcast_unchecked_mut()) } |
| 267 | } else { |
| 268 | None |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /// Returns a reference to the inner value as type `dyn T`. |
| 273 | /// |
| 274 | /// # Examples |
| 275 | /// |
| 276 | /// ``` |
| 277 | /// #![feature(downcast_unchecked)] |
| 278 | /// |
| 279 | /// use std::any::Any; |
| 280 | /// |
| 281 | /// let x: Box<dyn Any> = Box::new(1_usize); |
| 282 | /// |
| 283 | /// unsafe { |
| 284 | /// assert_eq!(*x.downcast_unchecked_ref::<usize>(), 1); |
| 285 | /// } |
| 286 | /// ``` |
| 287 | /// |
| 288 | /// # Safety |
| 289 | /// |
| 290 | /// The contained value must be of type `T`. Calling this method |
| 291 | /// with the incorrect type is *undefined behavior*. |
| 292 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 293 | #[inline ] |
| 294 | pub unsafe fn downcast_unchecked_ref<T: Any>(&self) -> &T { |
| 295 | debug_assert!(self.is::<T>()); |
| 296 | // SAFETY: caller guarantees that T is the correct type |
| 297 | unsafe { &*(self as *const dyn Any as *const T) } |
| 298 | } |
| 299 | |
| 300 | /// Returns a mutable reference to the inner value as type `dyn T`. |
| 301 | /// |
| 302 | /// # Examples |
| 303 | /// |
| 304 | /// ``` |
| 305 | /// #![feature(downcast_unchecked)] |
| 306 | /// |
| 307 | /// use std::any::Any; |
| 308 | /// |
| 309 | /// let mut x: Box<dyn Any> = Box::new(1_usize); |
| 310 | /// |
| 311 | /// unsafe { |
| 312 | /// *x.downcast_unchecked_mut::<usize>() += 1; |
| 313 | /// } |
| 314 | /// |
| 315 | /// assert_eq!(*x.downcast_ref::<usize>().unwrap(), 2); |
| 316 | /// ``` |
| 317 | /// |
| 318 | /// # Safety |
| 319 | /// |
| 320 | /// The contained value must be of type `T`. Calling this method |
| 321 | /// with the incorrect type is *undefined behavior*. |
| 322 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 323 | #[inline ] |
| 324 | pub unsafe fn downcast_unchecked_mut<T: Any>(&mut self) -> &mut T { |
| 325 | debug_assert!(self.is::<T>()); |
| 326 | // SAFETY: caller guarantees that T is the correct type |
| 327 | unsafe { &mut *(self as *mut dyn Any as *mut T) } |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | impl dyn Any + Send { |
| 332 | /// Forwards to the method defined on the type `dyn Any`. |
| 333 | /// |
| 334 | /// # Examples |
| 335 | /// |
| 336 | /// ``` |
| 337 | /// use std::any::Any; |
| 338 | /// |
| 339 | /// fn is_string(s: &(dyn Any + Send)) { |
| 340 | /// if s.is::<String>() { |
| 341 | /// println!("It's a string!" ); |
| 342 | /// } else { |
| 343 | /// println!("Not a string..." ); |
| 344 | /// } |
| 345 | /// } |
| 346 | /// |
| 347 | /// is_string(&0); |
| 348 | /// is_string(&"cookie monster" .to_string()); |
| 349 | /// ``` |
| 350 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 351 | #[inline ] |
| 352 | pub fn is<T: Any>(&self) -> bool { |
| 353 | <dyn Any>::is::<T>(self) |
| 354 | } |
| 355 | |
| 356 | /// Forwards to the method defined on the type `dyn Any`. |
| 357 | /// |
| 358 | /// # Examples |
| 359 | /// |
| 360 | /// ``` |
| 361 | /// use std::any::Any; |
| 362 | /// |
| 363 | /// fn print_if_string(s: &(dyn Any + Send)) { |
| 364 | /// if let Some(string) = s.downcast_ref::<String>() { |
| 365 | /// println!("It's a string({}): '{}'" , string.len(), string); |
| 366 | /// } else { |
| 367 | /// println!("Not a string..." ); |
| 368 | /// } |
| 369 | /// } |
| 370 | /// |
| 371 | /// print_if_string(&0); |
| 372 | /// print_if_string(&"cookie monster" .to_string()); |
| 373 | /// ``` |
| 374 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 375 | #[inline ] |
| 376 | pub fn downcast_ref<T: Any>(&self) -> Option<&T> { |
| 377 | <dyn Any>::downcast_ref::<T>(self) |
| 378 | } |
| 379 | |
| 380 | /// Forwards to the method defined on the type `dyn Any`. |
| 381 | /// |
| 382 | /// # Examples |
| 383 | /// |
| 384 | /// ``` |
| 385 | /// use std::any::Any; |
| 386 | /// |
| 387 | /// fn modify_if_u32(s: &mut (dyn Any + Send)) { |
| 388 | /// if let Some(num) = s.downcast_mut::<u32>() { |
| 389 | /// *num = 42; |
| 390 | /// } |
| 391 | /// } |
| 392 | /// |
| 393 | /// let mut x = 10u32; |
| 394 | /// let mut s = "starlord" .to_string(); |
| 395 | /// |
| 396 | /// modify_if_u32(&mut x); |
| 397 | /// modify_if_u32(&mut s); |
| 398 | /// |
| 399 | /// assert_eq!(x, 42); |
| 400 | /// assert_eq!(&s, "starlord" ); |
| 401 | /// ``` |
| 402 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 403 | #[inline ] |
| 404 | pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> { |
| 405 | <dyn Any>::downcast_mut::<T>(self) |
| 406 | } |
| 407 | |
| 408 | /// Forwards to the method defined on the type `dyn Any`. |
| 409 | /// |
| 410 | /// # Examples |
| 411 | /// |
| 412 | /// ``` |
| 413 | /// #![feature(downcast_unchecked)] |
| 414 | /// |
| 415 | /// use std::any::Any; |
| 416 | /// |
| 417 | /// let x: Box<dyn Any> = Box::new(1_usize); |
| 418 | /// |
| 419 | /// unsafe { |
| 420 | /// assert_eq!(*x.downcast_unchecked_ref::<usize>(), 1); |
| 421 | /// } |
| 422 | /// ``` |
| 423 | /// |
| 424 | /// # Safety |
| 425 | /// |
| 426 | /// The contained value must be of type `T`. Calling this method |
| 427 | /// with the incorrect type is *undefined behavior*. |
| 428 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 429 | #[inline ] |
| 430 | pub unsafe fn downcast_unchecked_ref<T: Any>(&self) -> &T { |
| 431 | // SAFETY: guaranteed by caller |
| 432 | unsafe { <dyn Any>::downcast_unchecked_ref::<T>(self) } |
| 433 | } |
| 434 | |
| 435 | /// Forwards to the method defined on the type `dyn Any`. |
| 436 | /// |
| 437 | /// # Examples |
| 438 | /// |
| 439 | /// ``` |
| 440 | /// #![feature(downcast_unchecked)] |
| 441 | /// |
| 442 | /// use std::any::Any; |
| 443 | /// |
| 444 | /// let mut x: Box<dyn Any> = Box::new(1_usize); |
| 445 | /// |
| 446 | /// unsafe { |
| 447 | /// *x.downcast_unchecked_mut::<usize>() += 1; |
| 448 | /// } |
| 449 | /// |
| 450 | /// assert_eq!(*x.downcast_ref::<usize>().unwrap(), 2); |
| 451 | /// ``` |
| 452 | /// |
| 453 | /// # Safety |
| 454 | /// |
| 455 | /// The contained value must be of type `T`. Calling this method |
| 456 | /// with the incorrect type is *undefined behavior*. |
| 457 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 458 | #[inline ] |
| 459 | pub unsafe fn downcast_unchecked_mut<T: Any>(&mut self) -> &mut T { |
| 460 | // SAFETY: guaranteed by caller |
| 461 | unsafe { <dyn Any>::downcast_unchecked_mut::<T>(self) } |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | impl dyn Any + Send + Sync { |
| 466 | /// Forwards to the method defined on the type `Any`. |
| 467 | /// |
| 468 | /// # Examples |
| 469 | /// |
| 470 | /// ``` |
| 471 | /// use std::any::Any; |
| 472 | /// |
| 473 | /// fn is_string(s: &(dyn Any + Send + Sync)) { |
| 474 | /// if s.is::<String>() { |
| 475 | /// println!("It's a string!" ); |
| 476 | /// } else { |
| 477 | /// println!("Not a string..." ); |
| 478 | /// } |
| 479 | /// } |
| 480 | /// |
| 481 | /// is_string(&0); |
| 482 | /// is_string(&"cookie monster" .to_string()); |
| 483 | /// ``` |
| 484 | #[stable (feature = "any_send_sync_methods" , since = "1.28.0" )] |
| 485 | #[inline ] |
| 486 | pub fn is<T: Any>(&self) -> bool { |
| 487 | <dyn Any>::is::<T>(self) |
| 488 | } |
| 489 | |
| 490 | /// Forwards to the method defined on the type `Any`. |
| 491 | /// |
| 492 | /// # Examples |
| 493 | /// |
| 494 | /// ``` |
| 495 | /// use std::any::Any; |
| 496 | /// |
| 497 | /// fn print_if_string(s: &(dyn Any + Send + Sync)) { |
| 498 | /// if let Some(string) = s.downcast_ref::<String>() { |
| 499 | /// println!("It's a string({}): '{}'" , string.len(), string); |
| 500 | /// } else { |
| 501 | /// println!("Not a string..." ); |
| 502 | /// } |
| 503 | /// } |
| 504 | /// |
| 505 | /// print_if_string(&0); |
| 506 | /// print_if_string(&"cookie monster" .to_string()); |
| 507 | /// ``` |
| 508 | #[stable (feature = "any_send_sync_methods" , since = "1.28.0" )] |
| 509 | #[inline ] |
| 510 | pub fn downcast_ref<T: Any>(&self) -> Option<&T> { |
| 511 | <dyn Any>::downcast_ref::<T>(self) |
| 512 | } |
| 513 | |
| 514 | /// Forwards to the method defined on the type `Any`. |
| 515 | /// |
| 516 | /// # Examples |
| 517 | /// |
| 518 | /// ``` |
| 519 | /// use std::any::Any; |
| 520 | /// |
| 521 | /// fn modify_if_u32(s: &mut (dyn Any + Send + Sync)) { |
| 522 | /// if let Some(num) = s.downcast_mut::<u32>() { |
| 523 | /// *num = 42; |
| 524 | /// } |
| 525 | /// } |
| 526 | /// |
| 527 | /// let mut x = 10u32; |
| 528 | /// let mut s = "starlord" .to_string(); |
| 529 | /// |
| 530 | /// modify_if_u32(&mut x); |
| 531 | /// modify_if_u32(&mut s); |
| 532 | /// |
| 533 | /// assert_eq!(x, 42); |
| 534 | /// assert_eq!(&s, "starlord" ); |
| 535 | /// ``` |
| 536 | #[stable (feature = "any_send_sync_methods" , since = "1.28.0" )] |
| 537 | #[inline ] |
| 538 | pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> { |
| 539 | <dyn Any>::downcast_mut::<T>(self) |
| 540 | } |
| 541 | |
| 542 | /// Forwards to the method defined on the type `Any`. |
| 543 | /// |
| 544 | /// # Examples |
| 545 | /// |
| 546 | /// ``` |
| 547 | /// #![feature(downcast_unchecked)] |
| 548 | /// |
| 549 | /// use std::any::Any; |
| 550 | /// |
| 551 | /// let x: Box<dyn Any> = Box::new(1_usize); |
| 552 | /// |
| 553 | /// unsafe { |
| 554 | /// assert_eq!(*x.downcast_unchecked_ref::<usize>(), 1); |
| 555 | /// } |
| 556 | /// ``` |
| 557 | /// # Safety |
| 558 | /// |
| 559 | /// The contained value must be of type `T`. Calling this method |
| 560 | /// with the incorrect type is *undefined behavior*. |
| 561 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 562 | #[inline ] |
| 563 | pub unsafe fn downcast_unchecked_ref<T: Any>(&self) -> &T { |
| 564 | // SAFETY: guaranteed by caller |
| 565 | unsafe { <dyn Any>::downcast_unchecked_ref::<T>(self) } |
| 566 | } |
| 567 | |
| 568 | /// Forwards to the method defined on the type `Any`. |
| 569 | /// |
| 570 | /// # Examples |
| 571 | /// |
| 572 | /// ``` |
| 573 | /// #![feature(downcast_unchecked)] |
| 574 | /// |
| 575 | /// use std::any::Any; |
| 576 | /// |
| 577 | /// let mut x: Box<dyn Any> = Box::new(1_usize); |
| 578 | /// |
| 579 | /// unsafe { |
| 580 | /// *x.downcast_unchecked_mut::<usize>() += 1; |
| 581 | /// } |
| 582 | /// |
| 583 | /// assert_eq!(*x.downcast_ref::<usize>().unwrap(), 2); |
| 584 | /// ``` |
| 585 | /// # Safety |
| 586 | /// |
| 587 | /// The contained value must be of type `T`. Calling this method |
| 588 | /// with the incorrect type is *undefined behavior*. |
| 589 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 590 | #[inline ] |
| 591 | pub unsafe fn downcast_unchecked_mut<T: Any>(&mut self) -> &mut T { |
| 592 | // SAFETY: guaranteed by caller |
| 593 | unsafe { <dyn Any>::downcast_unchecked_mut::<T>(self) } |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | /////////////////////////////////////////////////////////////////////////////// |
| 598 | // TypeID and its methods |
| 599 | /////////////////////////////////////////////////////////////////////////////// |
| 600 | |
| 601 | /// A `TypeId` represents a globally unique identifier for a type. |
| 602 | /// |
| 603 | /// Each `TypeId` is an opaque object which does not allow inspection of what's |
| 604 | /// inside but does allow basic operations such as cloning, comparison, |
| 605 | /// printing, and showing. |
| 606 | /// |
| 607 | /// A `TypeId` is currently only available for types which ascribe to `'static`, |
| 608 | /// but this limitation may be removed in the future. |
| 609 | /// |
| 610 | /// While `TypeId` implements `Hash`, `PartialOrd`, and `Ord`, it is worth |
| 611 | /// noting that the hashes and ordering will vary between Rust releases. Beware |
| 612 | /// of relying on them inside of your code! |
| 613 | /// |
| 614 | /// # Layout |
| 615 | /// |
| 616 | /// Like other [`Rust`-representation][repr-rust] types, `TypeId`'s size and layout are unstable. |
| 617 | /// In particular, this means that you cannot rely on the size and layout of `TypeId` remaining the |
| 618 | /// same between Rust releases; they are subject to change without prior notice between Rust |
| 619 | /// releases. |
| 620 | /// |
| 621 | /// [repr-rust]: https://doc.rust-lang.org/reference/type-layout.html#r-layout.repr.rust.unspecified |
| 622 | /// |
| 623 | /// # Danger of Improper Variance |
| 624 | /// |
| 625 | /// You might think that subtyping is impossible between two static types, |
| 626 | /// but this is false; there exists a static type with a static subtype. |
| 627 | /// To wit, `fn(&str)`, which is short for `for<'any> fn(&'any str)`, and |
| 628 | /// `fn(&'static str)`, are two distinct, static types, and yet, |
| 629 | /// `fn(&str)` is a subtype of `fn(&'static str)`, since any value of type |
| 630 | /// `fn(&str)` can be used where a value of type `fn(&'static str)` is needed. |
| 631 | /// |
| 632 | /// This means that abstractions around `TypeId`, despite its |
| 633 | /// `'static` bound on arguments, still need to worry about unnecessary |
| 634 | /// and improper variance: it is advisable to strive for invariance |
| 635 | /// first. The usability impact will be negligible, while the reduction |
| 636 | /// in the risk of unsoundness will be most welcome. |
| 637 | /// |
| 638 | /// ## Examples |
| 639 | /// |
| 640 | /// Suppose `SubType` is a subtype of `SuperType`, that is, |
| 641 | /// a value of type `SubType` can be used wherever |
| 642 | /// a value of type `SuperType` is expected. |
| 643 | /// Suppose also that `CoVar<T>` is a generic type, which is covariant over `T` |
| 644 | /// (like many other types, including `PhantomData<T>` and `Vec<T>`). |
| 645 | /// |
| 646 | /// Then, by covariance, `CoVar<SubType>` is a subtype of `CoVar<SuperType>`, |
| 647 | /// that is, a value of type `CoVar<SubType>` can be used wherever |
| 648 | /// a value of type `CoVar<SuperType>` is expected. |
| 649 | /// |
| 650 | /// Then if `CoVar<SuperType>` relies on `TypeId::of::<SuperType>()` to uphold any invariants, |
| 651 | /// those invariants may be broken because a value of type `CoVar<SuperType>` can be created |
| 652 | /// without going through any of its methods, like so: |
| 653 | /// ``` |
| 654 | /// type SubType = fn(&()); |
| 655 | /// type SuperType = fn(&'static ()); |
| 656 | /// type CoVar<T> = Vec<T>; // imagine something more complicated |
| 657 | /// |
| 658 | /// let sub: CoVar<SubType> = CoVar::new(); |
| 659 | /// // we have a `CoVar<SuperType>` instance without |
| 660 | /// // *ever* having called `CoVar::<SuperType>::new()`! |
| 661 | /// let fake_super: CoVar<SuperType> = sub; |
| 662 | /// ``` |
| 663 | /// |
| 664 | /// The following is an example program that tries to use `TypeId::of` to |
| 665 | /// implement a generic type `Unique<T>` that guarantees unique instances for each `Unique<T>`, |
| 666 | /// that is, and for each type `T` there can be at most one value of type `Unique<T>` at any time. |
| 667 | /// |
| 668 | /// ``` |
| 669 | /// mod unique { |
| 670 | /// use std::any::TypeId; |
| 671 | /// use std::collections::BTreeSet; |
| 672 | /// use std::marker::PhantomData; |
| 673 | /// use std::sync::Mutex; |
| 674 | /// |
| 675 | /// static ID_SET: Mutex<BTreeSet<TypeId>> = Mutex::new(BTreeSet::new()); |
| 676 | /// |
| 677 | /// // TypeId has only covariant uses, which makes Unique covariant over TypeAsId 🚨 |
| 678 | /// #[derive(Debug, PartialEq)] |
| 679 | /// pub struct Unique<TypeAsId: 'static>( |
| 680 | /// // private field prevents creation without `new` outside this module |
| 681 | /// PhantomData<TypeAsId>, |
| 682 | /// ); |
| 683 | /// |
| 684 | /// impl<TypeAsId: 'static> Unique<TypeAsId> { |
| 685 | /// pub fn new() -> Option<Self> { |
| 686 | /// let mut set = ID_SET.lock().unwrap(); |
| 687 | /// (set.insert(TypeId::of::<TypeAsId>())).then(|| Self(PhantomData)) |
| 688 | /// } |
| 689 | /// } |
| 690 | /// |
| 691 | /// impl<TypeAsId: 'static> Drop for Unique<TypeAsId> { |
| 692 | /// fn drop(&mut self) { |
| 693 | /// let mut set = ID_SET.lock().unwrap(); |
| 694 | /// (!set.remove(&TypeId::of::<TypeAsId>())).then(|| panic!("duplicity detected" )); |
| 695 | /// } |
| 696 | /// } |
| 697 | /// } |
| 698 | /// |
| 699 | /// use unique::Unique; |
| 700 | /// |
| 701 | /// // `OtherRing` is a subtype of `TheOneRing`. Both are 'static, and thus have a TypeId. |
| 702 | /// type TheOneRing = fn(&'static ()); |
| 703 | /// type OtherRing = fn(&()); |
| 704 | /// |
| 705 | /// fn main() { |
| 706 | /// let the_one_ring: Unique<TheOneRing> = Unique::new().unwrap(); |
| 707 | /// assert_eq!(Unique::<TheOneRing>::new(), None); |
| 708 | /// |
| 709 | /// let other_ring: Unique<OtherRing> = Unique::new().unwrap(); |
| 710 | /// // Use that `Unique<OtherRing>` is a subtype of `Unique<TheOneRing>` 🚨 |
| 711 | /// let fake_one_ring: Unique<TheOneRing> = other_ring; |
| 712 | /// assert_eq!(fake_one_ring, the_one_ring); |
| 713 | /// |
| 714 | /// std::mem::forget(fake_one_ring); |
| 715 | /// } |
| 716 | /// ``` |
| 717 | #[derive (Copy, PartialOrd, Ord)] |
| 718 | #[derive_const (Clone, Eq)] |
| 719 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 720 | #[lang = "type_id" ] |
| 721 | pub struct TypeId { |
| 722 | /// This needs to be an array of pointers, since there is provenance |
| 723 | /// in the first array field. This provenance knows exactly which type |
| 724 | /// the TypeId actually is, allowing CTFE and miri to operate based off it. |
| 725 | /// At runtime all the pointers in the array contain bits of the hash, making |
| 726 | /// the entire `TypeId` actually just be a `u128` hash of the type. |
| 727 | pub(crate) data: [*const (); 16 / size_of::<*const ()>()], |
| 728 | } |
| 729 | |
| 730 | // SAFETY: the raw pointer is always an integer |
| 731 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 732 | unsafe impl Send for TypeId {} |
| 733 | // SAFETY: the raw pointer is always an integer |
| 734 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 735 | unsafe impl Sync for TypeId {} |
| 736 | |
| 737 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 738 | #[rustc_const_unstable (feature = "const_cmp" , issue = "143800" )] |
| 739 | impl const PartialEq for TypeId { |
| 740 | #[inline ] |
| 741 | fn eq(&self, other: &Self) -> bool { |
| 742 | #[cfg (miri)] |
| 743 | return crate::intrinsics::type_id_eq(*self, *other); |
| 744 | #[cfg (not(miri))] |
| 745 | { |
| 746 | let this = self; |
| 747 | crate::intrinsics::const_eval_select!( |
| 748 | @capture { this: &TypeId, other: &TypeId } -> bool: |
| 749 | if const { |
| 750 | crate::intrinsics::type_id_eq(*this, *other) |
| 751 | } else { |
| 752 | // Ideally we would just invoke `type_id_eq` unconditionally here, |
| 753 | // but since we do not MIR inline intrinsics, because backends |
| 754 | // may want to override them (and miri does!), MIR opts do not |
| 755 | // clean up this call sufficiently for LLVM to turn repeated calls |
| 756 | // of `TypeId` comparisons against one specific `TypeId` into |
| 757 | // a lookup table. |
| 758 | // SAFETY: We know that at runtime none of the bits have provenance and all bits |
| 759 | // are initialized. So we can just convert the whole thing to a `u128` and compare that. |
| 760 | unsafe { |
| 761 | crate::mem::transmute::<_, u128>(*this) == crate::mem::transmute::<_, u128>(*other) |
| 762 | } |
| 763 | } |
| 764 | ) |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | impl TypeId { |
| 770 | /// Returns the `TypeId` of the generic type parameter. |
| 771 | /// |
| 772 | /// # Examples |
| 773 | /// |
| 774 | /// ``` |
| 775 | /// use std::any::{Any, TypeId}; |
| 776 | /// |
| 777 | /// fn is_string<T: ?Sized + Any>(_s: &T) -> bool { |
| 778 | /// TypeId::of::<String>() == TypeId::of::<T>() |
| 779 | /// } |
| 780 | /// |
| 781 | /// assert_eq!(is_string(&0), false); |
| 782 | /// assert_eq!(is_string(&"cookie monster" .to_string()), true); |
| 783 | /// ``` |
| 784 | #[must_use ] |
| 785 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 786 | #[rustc_const_stable (feature = "const_type_id" , since = "1.91.0" )] |
| 787 | pub const fn of<T: ?Sized + 'static>() -> TypeId { |
| 788 | const { intrinsics::type_id::<T>() } |
| 789 | } |
| 790 | |
| 791 | fn as_u128(self) -> u128 { |
| 792 | let mut bytes = [0; 16]; |
| 793 | |
| 794 | // This is a provenance-stripping memcpy. |
| 795 | for (i, chunk) in self.data.iter().copied().enumerate() { |
| 796 | let chunk = chunk.addr().to_ne_bytes(); |
| 797 | let start = i * chunk.len(); |
| 798 | bytes[start..(start + chunk.len())].copy_from_slice(&chunk); |
| 799 | } |
| 800 | u128::from_ne_bytes(bytes) |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 805 | impl hash::Hash for TypeId { |
| 806 | #[inline ] |
| 807 | fn hash<H: hash::Hasher>(&self, state: &mut H) { |
| 808 | // We only hash the lower 64 bits of our (128 bit) internal numeric ID, |
| 809 | // because: |
| 810 | // - The hashing algorithm which backs `TypeId` is expected to be |
| 811 | // unbiased and high quality, meaning further mixing would be somewhat |
| 812 | // redundant compared to choosing (the lower) 64 bits arbitrarily. |
| 813 | // - `Hasher::finish` returns a u64 anyway, so the extra entropy we'd |
| 814 | // get from hashing the full value would probably not be useful |
| 815 | // (especially given the previous point about the lower 64 bits being |
| 816 | // high quality on their own). |
| 817 | // - It is correct to do so -- only hashing a subset of `self` is still |
| 818 | // compatible with an `Eq` implementation that considers the entire |
| 819 | // value, as ours does. |
| 820 | let data: u64 = |
| 821 | // SAFETY: The `offset` stays in-bounds, it just moves the pointer to the 2nd half of the `TypeId`. |
| 822 | // Only the first ptr-sized chunk ever has provenance, so that second half is always |
| 823 | // fine to read at integer type. |
| 824 | unsafe { crate::ptr::read_unaligned(self.data.as_ptr().cast::<u64>().offset(count:1)) }; |
| 825 | data.hash(state); |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 830 | impl fmt::Debug for TypeId { |
| 831 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> { |
| 832 | write!(f, "TypeId( {:#034x})" , self.as_u128()) |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | /// Returns the name of a type as a string slice. |
| 837 | /// |
| 838 | /// # Note |
| 839 | /// |
| 840 | /// This is intended for diagnostic use. The exact contents and format of the |
| 841 | /// string returned are not specified, other than being a best-effort |
| 842 | /// description of the type. For example, amongst the strings |
| 843 | /// that `type_name::<Option<String>>()` might return are `"Option<String>"` and |
| 844 | /// `"std::option::Option<std::string::String>"`. |
| 845 | /// |
| 846 | /// The returned string must not be considered to be a unique identifier of a |
| 847 | /// type as multiple types may map to the same type name. Similarly, there is no |
| 848 | /// guarantee that all parts of a type will appear in the returned string. In |
| 849 | /// addition, the output may change between versions of the compiler. For |
| 850 | /// example, lifetime specifiers were omitted in some earlier versions. |
| 851 | /// |
| 852 | /// The current implementation uses the same infrastructure as compiler |
| 853 | /// diagnostics and debuginfo, but this is not guaranteed. |
| 854 | /// |
| 855 | /// # Examples |
| 856 | /// |
| 857 | /// ```rust |
| 858 | /// assert_eq!( |
| 859 | /// std::any::type_name::<Option<String>>(), |
| 860 | /// "core::option::Option<alloc::string::String>" , |
| 861 | /// ); |
| 862 | /// ``` |
| 863 | #[must_use ] |
| 864 | #[stable (feature = "type_name" , since = "1.38.0" )] |
| 865 | #[rustc_const_unstable (feature = "const_type_name" , issue = "63084" )] |
| 866 | pub const fn type_name<T: ?Sized>() -> &'static str { |
| 867 | const { intrinsics::type_name::<T>() } |
| 868 | } |
| 869 | |
| 870 | /// Returns the type name of the pointed-to value as a string slice. |
| 871 | /// |
| 872 | /// This is the same as `type_name::<T>()`, but can be used where the type of a |
| 873 | /// variable is not easily available. |
| 874 | /// |
| 875 | /// # Note |
| 876 | /// |
| 877 | /// Like [`type_name`], this is intended for diagnostic use and the exact output is not |
| 878 | /// guaranteed. It provides a best-effort description, but the output may change between |
| 879 | /// versions of the compiler. |
| 880 | /// |
| 881 | /// In short: use this for debugging, avoid using the output to affect program behavior. More |
| 882 | /// information is available at [`type_name`]. |
| 883 | /// |
| 884 | /// Additionally, this function does not resolve trait objects. This means that |
| 885 | /// `type_name_of_val(&7u32 as &dyn Debug)` may return `"dyn Debug"`, but will not return `"u32"` |
| 886 | /// at this time. |
| 887 | /// |
| 888 | /// # Examples |
| 889 | /// |
| 890 | /// Prints the default integer and float types. |
| 891 | /// |
| 892 | /// ```rust |
| 893 | /// use std::any::type_name_of_val; |
| 894 | /// |
| 895 | /// let s = "foo" ; |
| 896 | /// let x: i32 = 1; |
| 897 | /// let y: f32 = 1.0; |
| 898 | /// |
| 899 | /// assert!(type_name_of_val(&s).contains("str" )); |
| 900 | /// assert!(type_name_of_val(&x).contains("i32" )); |
| 901 | /// assert!(type_name_of_val(&y).contains("f32" )); |
| 902 | /// ``` |
| 903 | #[must_use ] |
| 904 | #[stable (feature = "type_name_of_val" , since = "1.76.0" )] |
| 905 | #[rustc_const_unstable (feature = "const_type_name" , issue = "63084" )] |
| 906 | pub const fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str { |
| 907 | type_name::<T>() |
| 908 | } |
| 909 | |
| 910 | /// Returns `Some(&U)` if `T` can be coerced to the trait object type `U`. Otherwise, it returns `None`. |
| 911 | /// |
| 912 | /// # Compile-time failures |
| 913 | /// Determining whether `T` can be coerced to the trait object type `U` requires compiler trait resolution. |
| 914 | /// In some cases, that resolution can exceed the recursion limit, |
| 915 | /// and compilation will fail instead of this function returning `None`. |
| 916 | /// # Examples |
| 917 | /// |
| 918 | /// ```rust |
| 919 | /// #![feature(try_as_dyn)] |
| 920 | /// |
| 921 | /// use core::any::try_as_dyn; |
| 922 | /// |
| 923 | /// trait Animal { |
| 924 | /// fn speak(&self) -> &'static str; |
| 925 | /// } |
| 926 | /// |
| 927 | /// struct Dog; |
| 928 | /// impl Animal for Dog { |
| 929 | /// fn speak(&self) -> &'static str { "woof" } |
| 930 | /// } |
| 931 | /// |
| 932 | /// struct Rock; // does not implement Animal |
| 933 | /// |
| 934 | /// let dog = Dog; |
| 935 | /// let rock = Rock; |
| 936 | /// |
| 937 | /// let as_animal: Option<&dyn Animal> = try_as_dyn::<Dog, dyn Animal>(&dog); |
| 938 | /// assert_eq!(as_animal.unwrap().speak(), "woof" ); |
| 939 | /// |
| 940 | /// let not_an_animal: Option<&dyn Animal> = try_as_dyn::<Rock, dyn Animal>(&rock); |
| 941 | /// assert!(not_an_animal.is_none()); |
| 942 | /// ``` |
| 943 | #[must_use ] |
| 944 | #[unstable (feature = "try_as_dyn" , issue = "144361" )] |
| 945 | pub const fn try_as_dyn< |
| 946 | T: Any + 'static, |
| 947 | U: ptr::Pointee<Metadata = ptr::DynMetadata<U>> + ?Sized + 'static, |
| 948 | >( |
| 949 | t: &T, |
| 950 | ) -> Option<&U> { |
| 951 | let vtable: Option<ptr::DynMetadata<U>> = const { intrinsics::vtable_for::<T, U>() }; |
| 952 | match vtable { |
| 953 | Some(dyn_metadata: DynMetadata) => { |
| 954 | let pointer: *const U = ptr::from_raw_parts(data_pointer:t, dyn_metadata); |
| 955 | // SAFETY: `t` is a reference to a type, so we know it is valid. |
| 956 | // `dyn_metadata` is a vtable for T, implementing the trait of `U`. |
| 957 | Some(unsafe { &*pointer }) |
| 958 | } |
| 959 | None => None, |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | /// Returns `Some(&mut U)` if `T` can be coerced to the trait object type `U`. Otherwise, it returns `None`. |
| 964 | /// |
| 965 | /// # Compile-time failures |
| 966 | /// Determining whether `T` can be coerced to the trait object type `U` requires compiler trait resolution. |
| 967 | /// In some cases, that resolution can exceed the recursion limit, |
| 968 | /// and compilation will fail instead of this function returning `None`. |
| 969 | /// # Examples |
| 970 | /// |
| 971 | /// ```rust |
| 972 | /// #![feature(try_as_dyn)] |
| 973 | /// |
| 974 | /// use core::any::try_as_dyn_mut; |
| 975 | /// |
| 976 | /// trait Animal { |
| 977 | /// fn speak(&self) -> &'static str; |
| 978 | /// } |
| 979 | /// |
| 980 | /// struct Dog; |
| 981 | /// impl Animal for Dog { |
| 982 | /// fn speak(&self) -> &'static str { "woof" } |
| 983 | /// } |
| 984 | /// |
| 985 | /// struct Rock; // does not implement Animal |
| 986 | /// |
| 987 | /// let mut dog = Dog; |
| 988 | /// let mut rock = Rock; |
| 989 | /// |
| 990 | /// let as_animal: Option<&mut dyn Animal> = try_as_dyn_mut::<Dog, dyn Animal>(&mut dog); |
| 991 | /// assert_eq!(as_animal.unwrap().speak(), "woof" ); |
| 992 | /// |
| 993 | /// let not_an_animal: Option<&mut dyn Animal> = try_as_dyn_mut::<Rock, dyn Animal>(&mut rock); |
| 994 | /// assert!(not_an_animal.is_none()); |
| 995 | /// ``` |
| 996 | #[must_use ] |
| 997 | #[unstable (feature = "try_as_dyn" , issue = "144361" )] |
| 998 | pub const fn try_as_dyn_mut< |
| 999 | T: Any + 'static, |
| 1000 | U: ptr::Pointee<Metadata = ptr::DynMetadata<U>> + ?Sized + 'static, |
| 1001 | >( |
| 1002 | t: &mut T, |
| 1003 | ) -> Option<&mut U> { |
| 1004 | let vtable: Option<ptr::DynMetadata<U>> = const { intrinsics::vtable_for::<T, U>() }; |
| 1005 | match vtable { |
| 1006 | Some(dyn_metadata: DynMetadata) => { |
| 1007 | let pointer: *mut {unknown} = ptr::from_raw_parts_mut(data_pointer:t, dyn_metadata); |
| 1008 | // SAFETY: `t` is a reference to a type, so we know it is valid. |
| 1009 | // `dyn_metadata` is a vtable for T, implementing the trait of `U`. |
| 1010 | Some(unsafe { &mut *pointer }) |
| 1011 | } |
| 1012 | None => None, |
| 1013 | } |
| 1014 | } |
| 1015 | |