| 1 | //! Operations on ASCII `[u8]`. |
| 2 | |
| 3 | use core::ascii::EscapeDefault; |
| 4 | |
| 5 | use crate::fmt::{self, Write}; |
| 6 | #[cfg (not(all(target_arch = "x86_64" , target_feature = "sse2" )))] |
| 7 | use crate::intrinsics::const_eval_select; |
| 8 | use crate::{ascii, iter, ops}; |
| 9 | |
| 10 | impl [u8] { |
| 11 | /// Checks if all bytes in this slice are within the ASCII range. |
| 12 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
| 13 | #[rustc_const_stable (feature = "const_slice_is_ascii" , since = "1.74.0" )] |
| 14 | #[must_use ] |
| 15 | #[inline ] |
| 16 | pub const fn is_ascii(&self) -> bool { |
| 17 | is_ascii(self) |
| 18 | } |
| 19 | |
| 20 | /// If this slice [`is_ascii`](Self::is_ascii), returns it as a slice of |
| 21 | /// [ASCII characters](`ascii::Char`), otherwise returns `None`. |
| 22 | #[unstable (feature = "ascii_char" , issue = "110998" )] |
| 23 | #[must_use ] |
| 24 | #[inline ] |
| 25 | pub const fn as_ascii(&self) -> Option<&[ascii::Char]> { |
| 26 | if self.is_ascii() { |
| 27 | // SAFETY: Just checked that it's ASCII |
| 28 | Some(unsafe { self.as_ascii_unchecked() }) |
| 29 | } else { |
| 30 | None |
| 31 | } |
| 32 | } |
| 33 | |
| 34 | /// Converts this slice of bytes into a slice of ASCII characters, |
| 35 | /// without checking whether they're valid. |
| 36 | /// |
| 37 | /// # Safety |
| 38 | /// |
| 39 | /// Every byte in the slice must be in `0..=127`, or else this is UB. |
| 40 | #[unstable (feature = "ascii_char" , issue = "110998" )] |
| 41 | #[must_use ] |
| 42 | #[inline ] |
| 43 | pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] { |
| 44 | let byte_ptr: *const [u8] = self; |
| 45 | let ascii_ptr = byte_ptr as *const [ascii::Char]; |
| 46 | // SAFETY: The caller promised all the bytes are ASCII |
| 47 | unsafe { &*ascii_ptr } |
| 48 | } |
| 49 | |
| 50 | /// Checks that two slices are an ASCII case-insensitive match. |
| 51 | /// |
| 52 | /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, |
| 53 | /// but without allocating and copying temporaries. |
| 54 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
| 55 | #[rustc_const_stable (feature = "const_eq_ignore_ascii_case" , since = "CURRENT_RUSTC_VERSION" )] |
| 56 | #[must_use ] |
| 57 | #[inline ] |
| 58 | pub const fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool { |
| 59 | if self.len() != other.len() { |
| 60 | return false; |
| 61 | } |
| 62 | |
| 63 | // FIXME(const-hack): This implementation can be reverted when |
| 64 | // `core::iter::zip` is allowed in const. The original implementation: |
| 65 | // self.len() == other.len() && iter::zip(self, other).all(|(a, b)| a.eq_ignore_ascii_case(b)) |
| 66 | let mut a = self; |
| 67 | let mut b = other; |
| 68 | |
| 69 | while let ([first_a, rest_a @ ..], [first_b, rest_b @ ..]) = (a, b) { |
| 70 | if first_a.eq_ignore_ascii_case(&first_b) { |
| 71 | a = rest_a; |
| 72 | b = rest_b; |
| 73 | } else { |
| 74 | return false; |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | true |
| 79 | } |
| 80 | |
| 81 | /// Converts this slice to its ASCII upper case equivalent in-place. |
| 82 | /// |
| 83 | /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
| 84 | /// but non-ASCII letters are unchanged. |
| 85 | /// |
| 86 | /// To return a new uppercased value without modifying the existing one, use |
| 87 | /// [`to_ascii_uppercase`]. |
| 88 | /// |
| 89 | /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase |
| 90 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
| 91 | #[rustc_const_stable (feature = "const_make_ascii" , since = "1.84.0" )] |
| 92 | #[inline ] |
| 93 | pub const fn make_ascii_uppercase(&mut self) { |
| 94 | // FIXME(const-hack): We would like to simply iterate using `for` loops but this isn't currently allowed in constant expressions. |
| 95 | let mut i = 0; |
| 96 | while i < self.len() { |
| 97 | let byte = &mut self[i]; |
| 98 | byte.make_ascii_uppercase(); |
| 99 | i += 1; |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | /// Converts this slice to its ASCII lower case equivalent in-place. |
| 104 | /// |
| 105 | /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
| 106 | /// but non-ASCII letters are unchanged. |
| 107 | /// |
| 108 | /// To return a new lowercased value without modifying the existing one, use |
| 109 | /// [`to_ascii_lowercase`]. |
| 110 | /// |
| 111 | /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase |
| 112 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
| 113 | #[rustc_const_stable (feature = "const_make_ascii" , since = "1.84.0" )] |
| 114 | #[inline ] |
| 115 | pub const fn make_ascii_lowercase(&mut self) { |
| 116 | // FIXME(const-hack): We would like to simply iterate using `for` loops but this isn't currently allowed in constant expressions. |
| 117 | let mut i = 0; |
| 118 | while i < self.len() { |
| 119 | let byte = &mut self[i]; |
| 120 | byte.make_ascii_lowercase(); |
| 121 | i += 1; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /// Returns an iterator that produces an escaped version of this slice, |
| 126 | /// treating it as an ASCII string. |
| 127 | /// |
| 128 | /// # Examples |
| 129 | /// |
| 130 | /// ``` |
| 131 | /// |
| 132 | /// let s = b"0 \t\r\n' \"\\\x9d" ; |
| 133 | /// let escaped = s.escape_ascii().to_string(); |
| 134 | /// assert_eq!(escaped, "0 \\t \\r \\n \\' \\\"\\\\\\x9d" ); |
| 135 | /// ``` |
| 136 | #[must_use = "this returns the escaped bytes as an iterator, \ |
| 137 | without modifying the original" ] |
| 138 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 139 | pub fn escape_ascii(&self) -> EscapeAscii<'_> { |
| 140 | EscapeAscii { inner: self.iter().flat_map(EscapeByte) } |
| 141 | } |
| 142 | |
| 143 | /// Returns a byte slice with leading ASCII whitespace bytes removed. |
| 144 | /// |
| 145 | /// 'Whitespace' refers to the definition used by |
| 146 | /// [`u8::is_ascii_whitespace`]. |
| 147 | /// |
| 148 | /// # Examples |
| 149 | /// |
| 150 | /// ``` |
| 151 | /// assert_eq!(b" \t hello world \n" .trim_ascii_start(), b"hello world \n" ); |
| 152 | /// assert_eq!(b" " .trim_ascii_start(), b"" ); |
| 153 | /// assert_eq!(b"" .trim_ascii_start(), b"" ); |
| 154 | /// ``` |
| 155 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
| 156 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
| 157 | #[inline ] |
| 158 | pub const fn trim_ascii_start(&self) -> &[u8] { |
| 159 | let mut bytes = self; |
| 160 | // Note: A pattern matching based approach (instead of indexing) allows |
| 161 | // making the function const. |
| 162 | while let [first, rest @ ..] = bytes { |
| 163 | if first.is_ascii_whitespace() { |
| 164 | bytes = rest; |
| 165 | } else { |
| 166 | break; |
| 167 | } |
| 168 | } |
| 169 | bytes |
| 170 | } |
| 171 | |
| 172 | /// Returns a byte slice with trailing ASCII whitespace bytes removed. |
| 173 | /// |
| 174 | /// 'Whitespace' refers to the definition used by |
| 175 | /// [`u8::is_ascii_whitespace`]. |
| 176 | /// |
| 177 | /// # Examples |
| 178 | /// |
| 179 | /// ``` |
| 180 | /// assert_eq!(b" \r hello world \n " .trim_ascii_end(), b" \r hello world" ); |
| 181 | /// assert_eq!(b" " .trim_ascii_end(), b"" ); |
| 182 | /// assert_eq!(b"" .trim_ascii_end(), b"" ); |
| 183 | /// ``` |
| 184 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
| 185 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
| 186 | #[inline ] |
| 187 | pub const fn trim_ascii_end(&self) -> &[u8] { |
| 188 | let mut bytes = self; |
| 189 | // Note: A pattern matching based approach (instead of indexing) allows |
| 190 | // making the function const. |
| 191 | while let [rest @ .., last] = bytes { |
| 192 | if last.is_ascii_whitespace() { |
| 193 | bytes = rest; |
| 194 | } else { |
| 195 | break; |
| 196 | } |
| 197 | } |
| 198 | bytes |
| 199 | } |
| 200 | |
| 201 | /// Returns a byte slice with leading and trailing ASCII whitespace bytes |
| 202 | /// removed. |
| 203 | /// |
| 204 | /// 'Whitespace' refers to the definition used by |
| 205 | /// [`u8::is_ascii_whitespace`]. |
| 206 | /// |
| 207 | /// # Examples |
| 208 | /// |
| 209 | /// ``` |
| 210 | /// assert_eq!(b" \r hello world \n " .trim_ascii(), b"hello world" ); |
| 211 | /// assert_eq!(b" " .trim_ascii(), b"" ); |
| 212 | /// assert_eq!(b"" .trim_ascii(), b"" ); |
| 213 | /// ``` |
| 214 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
| 215 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
| 216 | #[inline ] |
| 217 | pub const fn trim_ascii(&self) -> &[u8] { |
| 218 | self.trim_ascii_start().trim_ascii_end() |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | impl_fn_for_zst! { |
| 223 | #[derive (Clone)] |
| 224 | struct EscapeByte impl Fn = |byte: &u8| -> ascii::EscapeDefault { |
| 225 | ascii::escape_default(*byte) |
| 226 | }; |
| 227 | } |
| 228 | |
| 229 | /// An iterator over the escaped version of a byte slice. |
| 230 | /// |
| 231 | /// This `struct` is created by the [`slice::escape_ascii`] method. See its |
| 232 | /// documentation for more information. |
| 233 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 234 | #[derive (Clone)] |
| 235 | #[must_use = "iterators are lazy and do nothing unless consumed" ] |
| 236 | pub struct EscapeAscii<'a> { |
| 237 | inner: iter::FlatMap<super::Iter<'a, u8>, ascii::EscapeDefault, EscapeByte>, |
| 238 | } |
| 239 | |
| 240 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 241 | impl<'a> iter::Iterator for EscapeAscii<'a> { |
| 242 | type Item = u8; |
| 243 | #[inline ] |
| 244 | fn next(&mut self) -> Option<u8> { |
| 245 | self.inner.next() |
| 246 | } |
| 247 | #[inline ] |
| 248 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 249 | self.inner.size_hint() |
| 250 | } |
| 251 | #[inline ] |
| 252 | fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R |
| 253 | where |
| 254 | Fold: FnMut(Acc, Self::Item) -> R, |
| 255 | R: ops::Try<Output = Acc>, |
| 256 | { |
| 257 | self.inner.try_fold(init, fold) |
| 258 | } |
| 259 | #[inline ] |
| 260 | fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc |
| 261 | where |
| 262 | Fold: FnMut(Acc, Self::Item) -> Acc, |
| 263 | { |
| 264 | self.inner.fold(init, fold) |
| 265 | } |
| 266 | #[inline ] |
| 267 | fn last(mut self) -> Option<u8> { |
| 268 | self.next_back() |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 273 | impl<'a> iter::DoubleEndedIterator for EscapeAscii<'a> { |
| 274 | fn next_back(&mut self) -> Option<u8> { |
| 275 | self.inner.next_back() |
| 276 | } |
| 277 | } |
| 278 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 279 | impl<'a> iter::FusedIterator for EscapeAscii<'a> {} |
| 280 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 281 | impl<'a> fmt::Display for EscapeAscii<'a> { |
| 282 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 283 | // disassemble iterator, including front/back parts of flatmap in case it has been partially consumed |
| 284 | let (front, slice, back) = self.clone().inner.into_parts(); |
| 285 | let front = front.unwrap_or(EscapeDefault::empty()); |
| 286 | let mut bytes = slice.unwrap_or_default().as_slice(); |
| 287 | let back = back.unwrap_or(EscapeDefault::empty()); |
| 288 | |
| 289 | // usually empty, so the formatter won't have to do any work |
| 290 | for byte in front { |
| 291 | f.write_char(byte as char)?; |
| 292 | } |
| 293 | |
| 294 | fn needs_escape(b: u8) -> bool { |
| 295 | b > 0x7E || b < 0x20 || b == b' \\' || b == b' \'' || b == b'"' |
| 296 | } |
| 297 | |
| 298 | while bytes.len() > 0 { |
| 299 | // fast path for the printable, non-escaped subset of ascii |
| 300 | let prefix = bytes.iter().take_while(|&&b| !needs_escape(b)).count(); |
| 301 | // SAFETY: prefix length was derived by counting bytes in the same splice, so it's in-bounds |
| 302 | let (prefix, remainder) = unsafe { bytes.split_at_unchecked(prefix) }; |
| 303 | // SAFETY: prefix is a valid utf8 sequence, as it's a subset of ASCII |
| 304 | let prefix = unsafe { crate::str::from_utf8_unchecked(prefix) }; |
| 305 | |
| 306 | f.write_str(prefix)?; // the fast part |
| 307 | |
| 308 | bytes = remainder; |
| 309 | |
| 310 | if let Some(&b) = bytes.first() { |
| 311 | // guaranteed to be non-empty, better to write it as a str |
| 312 | f.write_str(ascii::escape_default(b).as_str())?; |
| 313 | bytes = &bytes[1..]; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | // also usually empty |
| 318 | for byte in back { |
| 319 | f.write_char(byte as char)?; |
| 320 | } |
| 321 | Ok(()) |
| 322 | } |
| 323 | } |
| 324 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 325 | impl<'a> fmt::Debug for EscapeAscii<'a> { |
| 326 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 327 | f.debug_struct(name:"EscapeAscii" ).finish_non_exhaustive() |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// ASCII test *without* the chunk-at-a-time optimizations. |
| 332 | /// |
| 333 | /// This is carefully structured to produce nice small code -- it's smaller in |
| 334 | /// `-O` than what the "obvious" ways produces under `-C opt-level=s`. If you |
| 335 | /// touch it, be sure to run (and update if needed) the assembly test. |
| 336 | #[unstable (feature = "str_internals" , issue = "none" )] |
| 337 | #[doc (hidden)] |
| 338 | #[inline ] |
| 339 | pub const fn is_ascii_simple(mut bytes: &[u8]) -> bool { |
| 340 | while let [rest: &[u8] @ .., last: &u8] = bytes { |
| 341 | if !last.is_ascii() { |
| 342 | break; |
| 343 | } |
| 344 | bytes = rest; |
| 345 | } |
| 346 | bytes.is_empty() |
| 347 | } |
| 348 | |
| 349 | /// Optimized ASCII test that will use usize-at-a-time operations instead of |
| 350 | /// byte-at-a-time operations (when possible). |
| 351 | /// |
| 352 | /// The algorithm we use here is pretty simple. If `s` is too short, we just |
| 353 | /// check each byte and be done with it. Otherwise: |
| 354 | /// |
| 355 | /// - Read the first word with an unaligned load. |
| 356 | /// - Align the pointer, read subsequent words until end with aligned loads. |
| 357 | /// - Read the last `usize` from `s` with an unaligned load. |
| 358 | /// |
| 359 | /// If any of these loads produces something for which `contains_nonascii` |
| 360 | /// (above) returns true, then we know the answer is false. |
| 361 | #[cfg (not(all(target_arch = "x86_64" , target_feature = "sse2" )))] |
| 362 | #[inline ] |
| 363 | #[rustc_allow_const_fn_unstable (const_eval_select)] // fallback impl has same behavior |
| 364 | const fn is_ascii(s: &[u8]) -> bool { |
| 365 | // The runtime version behaves the same as the compiletime version, it's |
| 366 | // just more optimized. |
| 367 | const_eval_select!( |
| 368 | @capture { s: &[u8] } -> bool: |
| 369 | if const { |
| 370 | is_ascii_simple(s) |
| 371 | } else { |
| 372 | /// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed |
| 373 | /// from `../str/mod.rs`, which does something similar for utf8 validation. |
| 374 | const fn contains_nonascii(v: usize) -> bool { |
| 375 | const NONASCII_MASK: usize = usize::repeat_u8(0x80); |
| 376 | (NONASCII_MASK & v) != 0 |
| 377 | } |
| 378 | |
| 379 | const USIZE_SIZE: usize = size_of::<usize>(); |
| 380 | |
| 381 | let len = s.len(); |
| 382 | let align_offset = s.as_ptr().align_offset(USIZE_SIZE); |
| 383 | |
| 384 | // If we wouldn't gain anything from the word-at-a-time implementation, fall |
| 385 | // back to a scalar loop. |
| 386 | // |
| 387 | // We also do this for architectures where `size_of::<usize>()` isn't |
| 388 | // sufficient alignment for `usize`, because it's a weird edge case. |
| 389 | if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < align_of::<usize>() { |
| 390 | return is_ascii_simple(s); |
| 391 | } |
| 392 | |
| 393 | // We always read the first word unaligned, which means `align_offset` is |
| 394 | // 0, we'd read the same value again for the aligned read. |
| 395 | let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset }; |
| 396 | |
| 397 | let start = s.as_ptr(); |
| 398 | // SAFETY: We verify `len < USIZE_SIZE` above. |
| 399 | let first_word = unsafe { (start as *const usize).read_unaligned() }; |
| 400 | |
| 401 | if contains_nonascii(first_word) { |
| 402 | return false; |
| 403 | } |
| 404 | // We checked this above, somewhat implicitly. Note that `offset_to_aligned` |
| 405 | // is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked |
| 406 | // above. |
| 407 | debug_assert!(offset_to_aligned <= len); |
| 408 | |
| 409 | // SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the |
| 410 | // middle chunk of the slice. |
| 411 | let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize }; |
| 412 | |
| 413 | // `byte_pos` is the byte index of `word_ptr`, used for loop end checks. |
| 414 | let mut byte_pos = offset_to_aligned; |
| 415 | |
| 416 | // Paranoia check about alignment, since we're about to do a bunch of |
| 417 | // unaligned loads. In practice this should be impossible barring a bug in |
| 418 | // `align_offset` though. |
| 419 | // While this method is allowed to spuriously fail in CTFE, if it doesn't |
| 420 | // have alignment information it should have given a `usize::MAX` for |
| 421 | // `align_offset` earlier, sending things through the scalar path instead of |
| 422 | // this one, so this check should pass if it's reachable. |
| 423 | debug_assert!(word_ptr.is_aligned_to(align_of::<usize>())); |
| 424 | |
| 425 | // Read subsequent words until the last aligned word, excluding the last |
| 426 | // aligned word by itself to be done in tail check later, to ensure that |
| 427 | // tail is always one `usize` at most to extra branch `byte_pos == len`. |
| 428 | while byte_pos < len - USIZE_SIZE { |
| 429 | // Sanity check that the read is in bounds |
| 430 | debug_assert!(byte_pos + USIZE_SIZE <= len); |
| 431 | // And that our assumptions about `byte_pos` hold. |
| 432 | debug_assert!(word_ptr.cast::<u8>() == start.wrapping_add(byte_pos)); |
| 433 | |
| 434 | // SAFETY: We know `word_ptr` is properly aligned (because of |
| 435 | // `align_offset`), and we know that we have enough bytes between `word_ptr` and the end |
| 436 | let word = unsafe { word_ptr.read() }; |
| 437 | if contains_nonascii(word) { |
| 438 | return false; |
| 439 | } |
| 440 | |
| 441 | byte_pos += USIZE_SIZE; |
| 442 | // SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that |
| 443 | // after this `add`, `word_ptr` will be at most one-past-the-end. |
| 444 | word_ptr = unsafe { word_ptr.add(1) }; |
| 445 | } |
| 446 | |
| 447 | // Sanity check to ensure there really is only one `usize` left. This should |
| 448 | // be guaranteed by our loop condition. |
| 449 | debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE); |
| 450 | |
| 451 | // SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start. |
| 452 | let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() }; |
| 453 | |
| 454 | !contains_nonascii(last_word) |
| 455 | } |
| 456 | ) |
| 457 | } |
| 458 | |
| 459 | /// ASCII test optimized to use the `pmovmskb` instruction available on `x86-64` |
| 460 | /// platforms. |
| 461 | /// |
| 462 | /// Other platforms are not likely to benefit from this code structure, so they |
| 463 | /// use SWAR techniques to test for ASCII in `usize`-sized chunks. |
| 464 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 465 | #[inline ] |
| 466 | const fn is_ascii(bytes: &[u8]) -> bool { |
| 467 | // Process chunks of 32 bytes at a time in the fast path to enable |
| 468 | // auto-vectorization and use of `pmovmskb`. Two 128-bit vector registers |
| 469 | // can be OR'd together and then the resulting vector can be tested for |
| 470 | // non-ASCII bytes. |
| 471 | const CHUNK_SIZE: usize = 32; |
| 472 | |
| 473 | let mut i = 0; |
| 474 | |
| 475 | while i + CHUNK_SIZE <= bytes.len() { |
| 476 | let chunk_end = i + CHUNK_SIZE; |
| 477 | |
| 478 | // Get LLVM to produce a `pmovmskb` instruction on x86-64 which |
| 479 | // creates a mask from the most significant bit of each byte. |
| 480 | // ASCII bytes are less than 128 (0x80), so their most significant |
| 481 | // bit is unset. |
| 482 | let mut count = 0; |
| 483 | while i < chunk_end { |
| 484 | count += bytes[i].is_ascii() as u8; |
| 485 | i += 1; |
| 486 | } |
| 487 | |
| 488 | // All bytes should be <= 127 so count is equal to chunk size. |
| 489 | if count != CHUNK_SIZE as u8 { |
| 490 | return false; |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | // Process the remaining `bytes.len() % N` bytes. |
| 495 | let mut is_ascii = true; |
| 496 | while i < bytes.len() { |
| 497 | is_ascii &= bytes[i].is_ascii(); |
| 498 | i += 1; |
| 499 | } |
| 500 | |
| 501 | is_ascii |
| 502 | } |
| 503 | |