| 1 | //! Shareable mutable containers. |
| 2 | //! |
| 3 | //! Rust memory safety is based on this rule: Given an object `T`, it is only possible to |
| 4 | //! have one of the following: |
| 5 | //! |
| 6 | //! - Several immutable references (`&T`) to the object (also known as **aliasing**). |
| 7 | //! - One mutable reference (`&mut T`) to the object (also known as **mutability**). |
| 8 | //! |
| 9 | //! This is enforced by the Rust compiler. However, there are situations where this rule is not |
| 10 | //! flexible enough. Sometimes it is required to have multiple references to an object and yet |
| 11 | //! mutate it. |
| 12 | //! |
| 13 | //! Shareable mutable containers exist to permit mutability in a controlled manner, even in the |
| 14 | //! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in |
| 15 | //! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and |
| 16 | //! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`] |
| 17 | //! types are the correct data structures to do so). |
| 18 | //! |
| 19 | //! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared |
| 20 | //! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through |
| 21 | //! unique (`&mut T`) references. We say these cell types provide 'interior mutability' |
| 22 | //! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability' |
| 23 | //! (mutable only via `&mut T`). |
| 24 | //! |
| 25 | //! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`. |
| 26 | //! Each provides a different way of providing safe interior mutability. |
| 27 | //! |
| 28 | //! ## `Cell<T>` |
| 29 | //! |
| 30 | //! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an |
| 31 | //! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly |
| 32 | //! obtained without replacing it with something else. Both of these rules ensure that there is |
| 33 | //! never more than one reference pointing to the inner value. This type provides the following |
| 34 | //! methods: |
| 35 | //! |
| 36 | //! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current |
| 37 | //! interior value by duplicating it. |
| 38 | //! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current |
| 39 | //! interior value with [`Default::default()`] and returns the replaced value. |
| 40 | //! - All types have: |
| 41 | //! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced |
| 42 | //! value. |
| 43 | //! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the |
| 44 | //! interior value. |
| 45 | //! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value. |
| 46 | //! |
| 47 | //! `Cell<T>` is typically used for more simple types where copying or moving values isn't too |
| 48 | //! resource intensive (e.g. numbers), and should usually be preferred over other cell types when |
| 49 | //! possible. For larger and non-copy types, `RefCell` provides some advantages. |
| 50 | //! |
| 51 | //! ## `RefCell<T>` |
| 52 | //! |
| 53 | //! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can |
| 54 | //! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are |
| 55 | //! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked |
| 56 | //! statically, at compile time. |
| 57 | //! |
| 58 | //! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with |
| 59 | //! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with |
| 60 | //! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that |
| 61 | //! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a |
| 62 | //! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate |
| 63 | //! these rules, the thread will panic. |
| 64 | //! |
| 65 | //! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`]. |
| 66 | //! |
| 67 | //! ## `OnceCell<T>` |
| 68 | //! |
| 69 | //! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that |
| 70 | //! typically only need to be set once. This means that a reference `&T` can be obtained without |
| 71 | //! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike |
| 72 | //! `RefCell`). However, its value can also not be updated once set unless you have a mutable |
| 73 | //! reference to the `OnceCell`. |
| 74 | //! |
| 75 | //! `OnceCell` provides the following methods: |
| 76 | //! |
| 77 | //! - [`get`](OnceCell::get): obtain a reference to the inner value |
| 78 | //! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`) |
| 79 | //! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed |
| 80 | //! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available |
| 81 | //! if you have a mutable reference to the cell itself. |
| 82 | //! |
| 83 | //! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`]. |
| 84 | //! |
| 85 | //! ## `LazyCell<T, F>` |
| 86 | //! |
| 87 | //! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every |
| 88 | //! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`], |
| 89 | //! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`. |
| 90 | //! This happens implicitly by simply attempting to dereference the LazyCell to get its contents, |
| 91 | //! so its use is much more transparent with a place which has been initialized by a constant. |
| 92 | //! |
| 93 | //! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead. |
| 94 | //! |
| 95 | //! `LazyCell` works by providing an implementation of `impl Deref` that calls the function, |
| 96 | //! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`). |
| 97 | //! |
| 98 | //! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`]. |
| 99 | //! |
| 100 | //! # When to choose interior mutability |
| 101 | //! |
| 102 | //! The more common inherited mutability, where one must have unique access to mutate a value, is |
| 103 | //! one of the key language elements that enables Rust to reason strongly about pointer aliasing, |
| 104 | //! statically preventing crash bugs. Because of that, inherited mutability is preferred, and |
| 105 | //! interior mutability is something of a last resort. Since cell types enable mutation where it |
| 106 | //! would otherwise be disallowed though, there are occasions when interior mutability might be |
| 107 | //! appropriate, or even *must* be used, e.g. |
| 108 | //! |
| 109 | //! * Introducing mutability 'inside' of something immutable |
| 110 | //! * Implementation details of logically-immutable methods. |
| 111 | //! * Mutating implementations of [`Clone`]. |
| 112 | //! |
| 113 | //! ## Introducing mutability 'inside' of something immutable |
| 114 | //! |
| 115 | //! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can |
| 116 | //! be cloned and shared between multiple parties. Because the contained values may be |
| 117 | //! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be |
| 118 | //! impossible to mutate data inside of these smart pointers at all. |
| 119 | //! |
| 120 | //! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce |
| 121 | //! mutability: |
| 122 | //! |
| 123 | //! ``` |
| 124 | //! use std::cell::{RefCell, RefMut}; |
| 125 | //! use std::collections::HashMap; |
| 126 | //! use std::rc::Rc; |
| 127 | //! |
| 128 | //! fn main() { |
| 129 | //! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new())); |
| 130 | //! // Create a new block to limit the scope of the dynamic borrow |
| 131 | //! { |
| 132 | //! let mut map: RefMut<'_, _> = shared_map.borrow_mut(); |
| 133 | //! map.insert("africa" , 92388); |
| 134 | //! map.insert("kyoto" , 11837); |
| 135 | //! map.insert("piccadilly" , 11826); |
| 136 | //! map.insert("marbles" , 38); |
| 137 | //! } |
| 138 | //! |
| 139 | //! // Note that if we had not let the previous borrow of the cache fall out |
| 140 | //! // of scope then the subsequent borrow would cause a dynamic thread panic. |
| 141 | //! // This is the major hazard of using `RefCell`. |
| 142 | //! let total: i32 = shared_map.borrow().values().sum(); |
| 143 | //! println!("{total}" ); |
| 144 | //! } |
| 145 | //! ``` |
| 146 | //! |
| 147 | //! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded |
| 148 | //! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a |
| 149 | //! multi-threaded situation. |
| 150 | //! |
| 151 | //! ## Implementation details of logically-immutable methods |
| 152 | //! |
| 153 | //! Occasionally it may be desirable not to expose in an API that there is mutation happening |
| 154 | //! "under the hood". This may be because logically the operation is immutable, but e.g., caching |
| 155 | //! forces the implementation to perform mutation; or because you must employ mutation to implement |
| 156 | //! a trait method that was originally defined to take `&self`. |
| 157 | //! |
| 158 | //! ``` |
| 159 | //! # #![allow(dead_code)] |
| 160 | //! use std::cell::OnceCell; |
| 161 | //! |
| 162 | //! struct Graph { |
| 163 | //! edges: Vec<(i32, i32)>, |
| 164 | //! span_tree_cache: OnceCell<Vec<(i32, i32)>> |
| 165 | //! } |
| 166 | //! |
| 167 | //! impl Graph { |
| 168 | //! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> { |
| 169 | //! self.span_tree_cache |
| 170 | //! .get_or_init(|| self.calc_span_tree()) |
| 171 | //! .clone() |
| 172 | //! } |
| 173 | //! |
| 174 | //! fn calc_span_tree(&self) -> Vec<(i32, i32)> { |
| 175 | //! // Expensive computation goes here |
| 176 | //! vec![] |
| 177 | //! } |
| 178 | //! } |
| 179 | //! ``` |
| 180 | //! |
| 181 | //! ## Mutating implementations of `Clone` |
| 182 | //! |
| 183 | //! This is simply a special - but common - case of the previous: hiding mutability for operations |
| 184 | //! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the |
| 185 | //! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that |
| 186 | //! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its |
| 187 | //! reference counts within a `Cell<T>`. |
| 188 | //! |
| 189 | //! ``` |
| 190 | //! use std::cell::Cell; |
| 191 | //! use std::ptr::NonNull; |
| 192 | //! use std::process::abort; |
| 193 | //! use std::marker::PhantomData; |
| 194 | //! |
| 195 | //! struct Rc<T: ?Sized> { |
| 196 | //! ptr: NonNull<RcInner<T>>, |
| 197 | //! phantom: PhantomData<RcInner<T>>, |
| 198 | //! } |
| 199 | //! |
| 200 | //! struct RcInner<T: ?Sized> { |
| 201 | //! strong: Cell<usize>, |
| 202 | //! refcount: Cell<usize>, |
| 203 | //! value: T, |
| 204 | //! } |
| 205 | //! |
| 206 | //! impl<T: ?Sized> Clone for Rc<T> { |
| 207 | //! fn clone(&self) -> Rc<T> { |
| 208 | //! self.inc_strong(); |
| 209 | //! Rc { |
| 210 | //! ptr: self.ptr, |
| 211 | //! phantom: PhantomData, |
| 212 | //! } |
| 213 | //! } |
| 214 | //! } |
| 215 | //! |
| 216 | //! trait RcInnerPtr<T: ?Sized> { |
| 217 | //! |
| 218 | //! fn inner(&self) -> &RcInner<T>; |
| 219 | //! |
| 220 | //! fn strong(&self) -> usize { |
| 221 | //! self.inner().strong.get() |
| 222 | //! } |
| 223 | //! |
| 224 | //! fn inc_strong(&self) { |
| 225 | //! self.inner() |
| 226 | //! .strong |
| 227 | //! .set(self.strong() |
| 228 | //! .checked_add(1) |
| 229 | //! .unwrap_or_else(|| abort() )); |
| 230 | //! } |
| 231 | //! } |
| 232 | //! |
| 233 | //! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> { |
| 234 | //! fn inner(&self) -> &RcInner<T> { |
| 235 | //! unsafe { |
| 236 | //! self.ptr.as_ref() |
| 237 | //! } |
| 238 | //! } |
| 239 | //! } |
| 240 | //! ``` |
| 241 | //! |
| 242 | //! [`Arc<T>`]: ../../std/sync/struct.Arc.html |
| 243 | //! [`Rc<T>`]: ../../std/rc/struct.Rc.html |
| 244 | //! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html |
| 245 | //! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html |
| 246 | //! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html |
| 247 | //! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html |
| 248 | //! [`Sync`]: ../../std/marker/trait.Sync.html |
| 249 | //! [`atomic`]: crate::sync::atomic |
| 250 | |
| 251 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 252 | |
| 253 | use crate::cmp::Ordering; |
| 254 | use crate::fmt::{self, Debug, Display}; |
| 255 | use crate::marker::{PhantomData, PointerLike, Unsize}; |
| 256 | use crate::mem; |
| 257 | use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn}; |
| 258 | use crate::pin::PinCoerceUnsized; |
| 259 | use crate::ptr::{self, NonNull}; |
| 260 | |
| 261 | mod lazy; |
| 262 | mod once; |
| 263 | |
| 264 | #[stable (feature = "lazy_cell" , since = "1.80.0" )] |
| 265 | pub use lazy::LazyCell; |
| 266 | #[stable (feature = "once_cell" , since = "1.70.0" )] |
| 267 | pub use once::OnceCell; |
| 268 | |
| 269 | /// A mutable memory location. |
| 270 | /// |
| 271 | /// # Memory layout |
| 272 | /// |
| 273 | /// `Cell<T>` has the same [memory layout and caveats as |
| 274 | /// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that |
| 275 | /// `Cell<T>` has the same in-memory representation as its inner type `T`. |
| 276 | /// |
| 277 | /// # Examples |
| 278 | /// |
| 279 | /// In this example, you can see that `Cell<T>` enables mutation inside an |
| 280 | /// immutable struct. In other words, it enables "interior mutability". |
| 281 | /// |
| 282 | /// ``` |
| 283 | /// use std::cell::Cell; |
| 284 | /// |
| 285 | /// struct SomeStruct { |
| 286 | /// regular_field: u8, |
| 287 | /// special_field: Cell<u8>, |
| 288 | /// } |
| 289 | /// |
| 290 | /// let my_struct = SomeStruct { |
| 291 | /// regular_field: 0, |
| 292 | /// special_field: Cell::new(1), |
| 293 | /// }; |
| 294 | /// |
| 295 | /// let new_value = 100; |
| 296 | /// |
| 297 | /// // ERROR: `my_struct` is immutable |
| 298 | /// // my_struct.regular_field = new_value; |
| 299 | /// |
| 300 | /// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`, |
| 301 | /// // which can always be mutated |
| 302 | /// my_struct.special_field.set(new_value); |
| 303 | /// assert_eq!(my_struct.special_field.get(), new_value); |
| 304 | /// ``` |
| 305 | /// |
| 306 | /// See the [module-level documentation](self) for more. |
| 307 | #[rustc_diagnostic_item = "Cell" ] |
| 308 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 309 | #[repr (transparent)] |
| 310 | #[rustc_pub_transparent] |
| 311 | pub struct Cell<T: ?Sized> { |
| 312 | value: UnsafeCell<T>, |
| 313 | } |
| 314 | |
| 315 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 316 | unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {} |
| 317 | |
| 318 | // Note that this negative impl isn't strictly necessary for correctness, |
| 319 | // as `Cell` wraps `UnsafeCell`, which is itself `!Sync`. |
| 320 | // However, given how important `Cell`'s `!Sync`-ness is, |
| 321 | // having an explicit negative impl is nice for documentation purposes |
| 322 | // and results in nicer error messages. |
| 323 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 324 | impl<T: ?Sized> !Sync for Cell<T> {} |
| 325 | |
| 326 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 327 | impl<T: Copy> Clone for Cell<T> { |
| 328 | #[inline ] |
| 329 | fn clone(&self) -> Cell<T> { |
| 330 | Cell::new(self.get()) |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 335 | impl<T: Default> Default for Cell<T> { |
| 336 | /// Creates a `Cell<T>`, with the `Default` value for T. |
| 337 | #[inline ] |
| 338 | fn default() -> Cell<T> { |
| 339 | Cell::new(Default::default()) |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 344 | impl<T: PartialEq + Copy> PartialEq for Cell<T> { |
| 345 | #[inline ] |
| 346 | fn eq(&self, other: &Cell<T>) -> bool { |
| 347 | self.get() == other.get() |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | #[stable (feature = "cell_eq" , since = "1.2.0" )] |
| 352 | impl<T: Eq + Copy> Eq for Cell<T> {} |
| 353 | |
| 354 | #[stable (feature = "cell_ord" , since = "1.10.0" )] |
| 355 | impl<T: PartialOrd + Copy> PartialOrd for Cell<T> { |
| 356 | #[inline ] |
| 357 | fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> { |
| 358 | self.get().partial_cmp(&other.get()) |
| 359 | } |
| 360 | |
| 361 | #[inline ] |
| 362 | fn lt(&self, other: &Cell<T>) -> bool { |
| 363 | self.get() < other.get() |
| 364 | } |
| 365 | |
| 366 | #[inline ] |
| 367 | fn le(&self, other: &Cell<T>) -> bool { |
| 368 | self.get() <= other.get() |
| 369 | } |
| 370 | |
| 371 | #[inline ] |
| 372 | fn gt(&self, other: &Cell<T>) -> bool { |
| 373 | self.get() > other.get() |
| 374 | } |
| 375 | |
| 376 | #[inline ] |
| 377 | fn ge(&self, other: &Cell<T>) -> bool { |
| 378 | self.get() >= other.get() |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | #[stable (feature = "cell_ord" , since = "1.10.0" )] |
| 383 | impl<T: Ord + Copy> Ord for Cell<T> { |
| 384 | #[inline ] |
| 385 | fn cmp(&self, other: &Cell<T>) -> Ordering { |
| 386 | self.get().cmp(&other.get()) |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | #[stable (feature = "cell_from" , since = "1.12.0" )] |
| 391 | impl<T> From<T> for Cell<T> { |
| 392 | /// Creates a new `Cell<T>` containing the given value. |
| 393 | fn from(t: T) -> Cell<T> { |
| 394 | Cell::new(t) |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | impl<T> Cell<T> { |
| 399 | /// Creates a new `Cell` containing the given value. |
| 400 | /// |
| 401 | /// # Examples |
| 402 | /// |
| 403 | /// ``` |
| 404 | /// use std::cell::Cell; |
| 405 | /// |
| 406 | /// let c = Cell::new(5); |
| 407 | /// ``` |
| 408 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 409 | #[rustc_const_stable (feature = "const_cell_new" , since = "1.24.0" )] |
| 410 | #[inline ] |
| 411 | pub const fn new(value: T) -> Cell<T> { |
| 412 | Cell { value: UnsafeCell::new(value) } |
| 413 | } |
| 414 | |
| 415 | /// Sets the contained value. |
| 416 | /// |
| 417 | /// # Examples |
| 418 | /// |
| 419 | /// ``` |
| 420 | /// use std::cell::Cell; |
| 421 | /// |
| 422 | /// let c = Cell::new(5); |
| 423 | /// |
| 424 | /// c.set(10); |
| 425 | /// ``` |
| 426 | #[inline ] |
| 427 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 428 | pub fn set(&self, val: T) { |
| 429 | self.replace(val); |
| 430 | } |
| 431 | |
| 432 | /// Swaps the values of two `Cell`s. |
| 433 | /// |
| 434 | /// The difference with `std::mem::swap` is that this function doesn't |
| 435 | /// require a `&mut` reference. |
| 436 | /// |
| 437 | /// # Panics |
| 438 | /// |
| 439 | /// This function will panic if `self` and `other` are different `Cell`s that partially overlap. |
| 440 | /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s. |
| 441 | /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.) |
| 442 | /// |
| 443 | /// # Examples |
| 444 | /// |
| 445 | /// ``` |
| 446 | /// use std::cell::Cell; |
| 447 | /// |
| 448 | /// let c1 = Cell::new(5i32); |
| 449 | /// let c2 = Cell::new(10i32); |
| 450 | /// c1.swap(&c2); |
| 451 | /// assert_eq!(10, c1.get()); |
| 452 | /// assert_eq!(5, c2.get()); |
| 453 | /// ``` |
| 454 | #[inline ] |
| 455 | #[stable (feature = "move_cell" , since = "1.17.0" )] |
| 456 | pub fn swap(&self, other: &Self) { |
| 457 | // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't |
| 458 | // do the check in const, so trying to use it here would be inviting unnecessary fragility. |
| 459 | fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool { |
| 460 | let src_usize = src.addr(); |
| 461 | let dst_usize = dst.addr(); |
| 462 | let diff = src_usize.abs_diff(dst_usize); |
| 463 | diff >= size_of::<T>() |
| 464 | } |
| 465 | |
| 466 | if ptr::eq(self, other) { |
| 467 | // Swapping wouldn't change anything. |
| 468 | return; |
| 469 | } |
| 470 | if !is_nonoverlapping(self, other) { |
| 471 | // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here. |
| 472 | panic!("`Cell::swap` on overlapping non-identical `Cell`s" ); |
| 473 | } |
| 474 | // SAFETY: This can be risky if called from separate threads, but `Cell` |
| 475 | // is `!Sync` so this won't happen. This also won't invalidate any |
| 476 | // pointers since `Cell` makes sure nothing else will be pointing into |
| 477 | // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s, |
| 478 | // so `swap` will just properly copy two full values of type `T` back and forth. |
| 479 | unsafe { |
| 480 | mem::swap(&mut *self.value.get(), &mut *other.value.get()); |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | /// Replaces the contained value with `val`, and returns the old contained value. |
| 485 | /// |
| 486 | /// # Examples |
| 487 | /// |
| 488 | /// ``` |
| 489 | /// use std::cell::Cell; |
| 490 | /// |
| 491 | /// let cell = Cell::new(5); |
| 492 | /// assert_eq!(cell.get(), 5); |
| 493 | /// assert_eq!(cell.replace(10), 5); |
| 494 | /// assert_eq!(cell.get(), 10); |
| 495 | /// ``` |
| 496 | #[inline ] |
| 497 | #[stable (feature = "move_cell" , since = "1.17.0" )] |
| 498 | #[rustc_const_stable (feature = "const_cell" , since = "1.88.0" )] |
| 499 | #[rustc_confusables ("swap" )] |
| 500 | pub const fn replace(&self, val: T) -> T { |
| 501 | // SAFETY: This can cause data races if called from a separate thread, |
| 502 | // but `Cell` is `!Sync` so this won't happen. |
| 503 | mem::replace(unsafe { &mut *self.value.get() }, val) |
| 504 | } |
| 505 | |
| 506 | /// Unwraps the value, consuming the cell. |
| 507 | /// |
| 508 | /// # Examples |
| 509 | /// |
| 510 | /// ``` |
| 511 | /// use std::cell::Cell; |
| 512 | /// |
| 513 | /// let c = Cell::new(5); |
| 514 | /// let five = c.into_inner(); |
| 515 | /// |
| 516 | /// assert_eq!(five, 5); |
| 517 | /// ``` |
| 518 | #[stable (feature = "move_cell" , since = "1.17.0" )] |
| 519 | #[rustc_const_stable (feature = "const_cell_into_inner" , since = "1.83.0" )] |
| 520 | #[rustc_allow_const_fn_unstable (const_precise_live_drops)] |
| 521 | pub const fn into_inner(self) -> T { |
| 522 | self.value.into_inner() |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | impl<T: Copy> Cell<T> { |
| 527 | /// Returns a copy of the contained value. |
| 528 | /// |
| 529 | /// # Examples |
| 530 | /// |
| 531 | /// ``` |
| 532 | /// use std::cell::Cell; |
| 533 | /// |
| 534 | /// let c = Cell::new(5); |
| 535 | /// |
| 536 | /// let five = c.get(); |
| 537 | /// ``` |
| 538 | #[inline ] |
| 539 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 540 | #[rustc_const_stable (feature = "const_cell" , since = "1.88.0" )] |
| 541 | pub const fn get(&self) -> T { |
| 542 | // SAFETY: This can cause data races if called from a separate thread, |
| 543 | // but `Cell` is `!Sync` so this won't happen. |
| 544 | unsafe { *self.value.get() } |
| 545 | } |
| 546 | |
| 547 | /// Updates the contained value using a function. |
| 548 | /// |
| 549 | /// # Examples |
| 550 | /// |
| 551 | /// ``` |
| 552 | /// use std::cell::Cell; |
| 553 | /// |
| 554 | /// let c = Cell::new(5); |
| 555 | /// c.update(|x| x + 1); |
| 556 | /// assert_eq!(c.get(), 6); |
| 557 | /// ``` |
| 558 | #[inline ] |
| 559 | #[stable (feature = "cell_update" , since = "1.88.0" )] |
| 560 | pub fn update(&self, f: impl FnOnce(T) -> T) { |
| 561 | let old = self.get(); |
| 562 | self.set(f(old)); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | impl<T: ?Sized> Cell<T> { |
| 567 | /// Returns a raw pointer to the underlying data in this cell. |
| 568 | /// |
| 569 | /// # Examples |
| 570 | /// |
| 571 | /// ``` |
| 572 | /// use std::cell::Cell; |
| 573 | /// |
| 574 | /// let c = Cell::new(5); |
| 575 | /// |
| 576 | /// let ptr = c.as_ptr(); |
| 577 | /// ``` |
| 578 | #[inline ] |
| 579 | #[stable (feature = "cell_as_ptr" , since = "1.12.0" )] |
| 580 | #[rustc_const_stable (feature = "const_cell_as_ptr" , since = "1.32.0" )] |
| 581 | #[rustc_as_ptr] |
| 582 | #[rustc_never_returns_null_ptr ] |
| 583 | pub const fn as_ptr(&self) -> *mut T { |
| 584 | self.value.get() |
| 585 | } |
| 586 | |
| 587 | /// Returns a mutable reference to the underlying data. |
| 588 | /// |
| 589 | /// This call borrows `Cell` mutably (at compile-time) which guarantees |
| 590 | /// that we possess the only reference. |
| 591 | /// |
| 592 | /// However be cautious: this method expects `self` to be mutable, which is |
| 593 | /// generally not the case when using a `Cell`. If you require interior |
| 594 | /// mutability by reference, consider using `RefCell` which provides |
| 595 | /// run-time checked mutable borrows through its [`borrow_mut`] method. |
| 596 | /// |
| 597 | /// [`borrow_mut`]: RefCell::borrow_mut() |
| 598 | /// |
| 599 | /// # Examples |
| 600 | /// |
| 601 | /// ``` |
| 602 | /// use std::cell::Cell; |
| 603 | /// |
| 604 | /// let mut c = Cell::new(5); |
| 605 | /// *c.get_mut() += 1; |
| 606 | /// |
| 607 | /// assert_eq!(c.get(), 6); |
| 608 | /// ``` |
| 609 | #[inline ] |
| 610 | #[stable (feature = "cell_get_mut" , since = "1.11.0" )] |
| 611 | #[rustc_const_stable (feature = "const_cell" , since = "1.88.0" )] |
| 612 | pub const fn get_mut(&mut self) -> &mut T { |
| 613 | self.value.get_mut() |
| 614 | } |
| 615 | |
| 616 | /// Returns a `&Cell<T>` from a `&mut T` |
| 617 | /// |
| 618 | /// # Examples |
| 619 | /// |
| 620 | /// ``` |
| 621 | /// use std::cell::Cell; |
| 622 | /// |
| 623 | /// let slice: &mut [i32] = &mut [1, 2, 3]; |
| 624 | /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice); |
| 625 | /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells(); |
| 626 | /// |
| 627 | /// assert_eq!(slice_cell.len(), 3); |
| 628 | /// ``` |
| 629 | #[inline ] |
| 630 | #[stable (feature = "as_cell" , since = "1.37.0" )] |
| 631 | #[rustc_const_stable (feature = "const_cell" , since = "1.88.0" )] |
| 632 | pub const fn from_mut(t: &mut T) -> &Cell<T> { |
| 633 | // SAFETY: `&mut` ensures unique access. |
| 634 | unsafe { &*(t as *mut T as *const Cell<T>) } |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | impl<T: Default> Cell<T> { |
| 639 | /// Takes the value of the cell, leaving `Default::default()` in its place. |
| 640 | /// |
| 641 | /// # Examples |
| 642 | /// |
| 643 | /// ``` |
| 644 | /// use std::cell::Cell; |
| 645 | /// |
| 646 | /// let c = Cell::new(5); |
| 647 | /// let five = c.take(); |
| 648 | /// |
| 649 | /// assert_eq!(five, 5); |
| 650 | /// assert_eq!(c.into_inner(), 0); |
| 651 | /// ``` |
| 652 | #[stable (feature = "move_cell" , since = "1.17.0" )] |
| 653 | pub fn take(&self) -> T { |
| 654 | self.replace(val:Default::default()) |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 659 | impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {} |
| 660 | |
| 661 | // Allow types that wrap `Cell` to also implement `DispatchFromDyn` |
| 662 | // and become dyn-compatible method receivers. |
| 663 | // Note that currently `Cell` itself cannot be a method receiver |
| 664 | // because it does not implement Deref. |
| 665 | // In other words: |
| 666 | // `self: Cell<&Self>` won't work |
| 667 | // `self: CellWrapper<Self>` becomes possible |
| 668 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 669 | impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {} |
| 670 | |
| 671 | #[unstable (feature = "pointer_like_trait" , issue = "none" )] |
| 672 | impl<T: PointerLike> PointerLike for Cell<T> {} |
| 673 | |
| 674 | impl<T> Cell<[T]> { |
| 675 | /// Returns a `&[Cell<T>]` from a `&Cell<[T]>` |
| 676 | /// |
| 677 | /// # Examples |
| 678 | /// |
| 679 | /// ``` |
| 680 | /// use std::cell::Cell; |
| 681 | /// |
| 682 | /// let slice: &mut [i32] = &mut [1, 2, 3]; |
| 683 | /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice); |
| 684 | /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells(); |
| 685 | /// |
| 686 | /// assert_eq!(slice_cell.len(), 3); |
| 687 | /// ``` |
| 688 | #[stable (feature = "as_cell" , since = "1.37.0" )] |
| 689 | #[rustc_const_stable (feature = "const_cell" , since = "1.88.0" )] |
| 690 | pub const fn as_slice_of_cells(&self) -> &[Cell<T>] { |
| 691 | // SAFETY: `Cell<T>` has the same memory layout as `T`. |
| 692 | unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) } |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | impl<T, const N: usize> Cell<[T; N]> { |
| 697 | /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>` |
| 698 | /// |
| 699 | /// # Examples |
| 700 | /// |
| 701 | /// ``` |
| 702 | /// #![feature(as_array_of_cells)] |
| 703 | /// use std::cell::Cell; |
| 704 | /// |
| 705 | /// let mut array: [i32; 3] = [1, 2, 3]; |
| 706 | /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array); |
| 707 | /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells(); |
| 708 | /// ``` |
| 709 | #[unstable (feature = "as_array_of_cells" , issue = "88248" )] |
| 710 | pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] { |
| 711 | // SAFETY: `Cell<T>` has the same memory layout as `T`. |
| 712 | unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) } |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | /// A mutable memory location with dynamically checked borrow rules |
| 717 | /// |
| 718 | /// See the [module-level documentation](self) for more. |
| 719 | #[rustc_diagnostic_item = "RefCell" ] |
| 720 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 721 | pub struct RefCell<T: ?Sized> { |
| 722 | borrow: Cell<BorrowFlag>, |
| 723 | // Stores the location of the earliest currently active borrow. |
| 724 | // This gets updated whenever we go from having zero borrows |
| 725 | // to having a single borrow. When a borrow occurs, this gets included |
| 726 | // in the generated `BorrowError`/`BorrowMutError` |
| 727 | #[cfg (feature = "debug_refcell" )] |
| 728 | borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>, |
| 729 | value: UnsafeCell<T>, |
| 730 | } |
| 731 | |
| 732 | /// An error returned by [`RefCell::try_borrow`]. |
| 733 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 734 | #[non_exhaustive ] |
| 735 | pub struct BorrowError { |
| 736 | #[cfg (feature = "debug_refcell" )] |
| 737 | location: &'static crate::panic::Location<'static>, |
| 738 | } |
| 739 | |
| 740 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 741 | impl Debug for BorrowError { |
| 742 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 743 | let mut builder: DebugStruct<'_, '_> = f.debug_struct(name:"BorrowError" ); |
| 744 | |
| 745 | #[cfg (feature = "debug_refcell" )] |
| 746 | builder.field("location" , self.location); |
| 747 | |
| 748 | builder.finish() |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 753 | impl Display for BorrowError { |
| 754 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 755 | Display::fmt(self:"already mutably borrowed" , f) |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | /// An error returned by [`RefCell::try_borrow_mut`]. |
| 760 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 761 | #[non_exhaustive ] |
| 762 | pub struct BorrowMutError { |
| 763 | #[cfg (feature = "debug_refcell" )] |
| 764 | location: &'static crate::panic::Location<'static>, |
| 765 | } |
| 766 | |
| 767 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 768 | impl Debug for BorrowMutError { |
| 769 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 770 | let mut builder: DebugStruct<'_, '_> = f.debug_struct(name:"BorrowMutError" ); |
| 771 | |
| 772 | #[cfg (feature = "debug_refcell" )] |
| 773 | builder.field("location" , self.location); |
| 774 | |
| 775 | builder.finish() |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 780 | impl Display for BorrowMutError { |
| 781 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 782 | Display::fmt(self:"already borrowed" , f) |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | // This ensures the panicking code is outlined from `borrow_mut` for `RefCell`. |
| 787 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
| 788 | #[track_caller ] |
| 789 | #[cold ] |
| 790 | fn panic_already_borrowed(err: BorrowMutError) -> ! { |
| 791 | panic!("already borrowed: {:?}" , err) |
| 792 | } |
| 793 | |
| 794 | // This ensures the panicking code is outlined from `borrow` for `RefCell`. |
| 795 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
| 796 | #[track_caller ] |
| 797 | #[cold ] |
| 798 | fn panic_already_mutably_borrowed(err: BorrowError) -> ! { |
| 799 | panic!("already mutably borrowed: {:?}" , err) |
| 800 | } |
| 801 | |
| 802 | // Positive values represent the number of `Ref` active. Negative values |
| 803 | // represent the number of `RefMut` active. Multiple `RefMut`s can only be |
| 804 | // active at a time if they refer to distinct, nonoverlapping components of a |
| 805 | // `RefCell` (e.g., different ranges of a slice). |
| 806 | // |
| 807 | // `Ref` and `RefMut` are both two words in size, and so there will likely never |
| 808 | // be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize` |
| 809 | // range. Thus, a `BorrowFlag` will probably never overflow or underflow. |
| 810 | // However, this is not a guarantee, as a pathological program could repeatedly |
| 811 | // create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must |
| 812 | // explicitly check for overflow and underflow in order to avoid unsafety, or at |
| 813 | // least behave correctly in the event that overflow or underflow happens (e.g., |
| 814 | // see BorrowRef::new). |
| 815 | type BorrowFlag = isize; |
| 816 | const UNUSED: BorrowFlag = 0; |
| 817 | |
| 818 | #[inline (always)] |
| 819 | fn is_writing(x: BorrowFlag) -> bool { |
| 820 | x < UNUSED |
| 821 | } |
| 822 | |
| 823 | #[inline (always)] |
| 824 | fn is_reading(x: BorrowFlag) -> bool { |
| 825 | x > UNUSED |
| 826 | } |
| 827 | |
| 828 | impl<T> RefCell<T> { |
| 829 | /// Creates a new `RefCell` containing `value`. |
| 830 | /// |
| 831 | /// # Examples |
| 832 | /// |
| 833 | /// ``` |
| 834 | /// use std::cell::RefCell; |
| 835 | /// |
| 836 | /// let c = RefCell::new(5); |
| 837 | /// ``` |
| 838 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 839 | #[rustc_const_stable (feature = "const_refcell_new" , since = "1.24.0" )] |
| 840 | #[inline ] |
| 841 | pub const fn new(value: T) -> RefCell<T> { |
| 842 | RefCell { |
| 843 | value: UnsafeCell::new(value), |
| 844 | borrow: Cell::new(UNUSED), |
| 845 | #[cfg (feature = "debug_refcell" )] |
| 846 | borrowed_at: Cell::new(None), |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | /// Consumes the `RefCell`, returning the wrapped value. |
| 851 | /// |
| 852 | /// # Examples |
| 853 | /// |
| 854 | /// ``` |
| 855 | /// use std::cell::RefCell; |
| 856 | /// |
| 857 | /// let c = RefCell::new(5); |
| 858 | /// |
| 859 | /// let five = c.into_inner(); |
| 860 | /// ``` |
| 861 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 862 | #[rustc_const_stable (feature = "const_cell_into_inner" , since = "1.83.0" )] |
| 863 | #[rustc_allow_const_fn_unstable (const_precise_live_drops)] |
| 864 | #[inline ] |
| 865 | pub const fn into_inner(self) -> T { |
| 866 | // Since this function takes `self` (the `RefCell`) by value, the |
| 867 | // compiler statically verifies that it is not currently borrowed. |
| 868 | self.value.into_inner() |
| 869 | } |
| 870 | |
| 871 | /// Replaces the wrapped value with a new one, returning the old value, |
| 872 | /// without deinitializing either one. |
| 873 | /// |
| 874 | /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html). |
| 875 | /// |
| 876 | /// # Panics |
| 877 | /// |
| 878 | /// Panics if the value is currently borrowed. |
| 879 | /// |
| 880 | /// # Examples |
| 881 | /// |
| 882 | /// ``` |
| 883 | /// use std::cell::RefCell; |
| 884 | /// let cell = RefCell::new(5); |
| 885 | /// let old_value = cell.replace(6); |
| 886 | /// assert_eq!(old_value, 5); |
| 887 | /// assert_eq!(cell, RefCell::new(6)); |
| 888 | /// ``` |
| 889 | #[inline ] |
| 890 | #[stable (feature = "refcell_replace" , since = "1.24.0" )] |
| 891 | #[track_caller ] |
| 892 | #[rustc_confusables ("swap" )] |
| 893 | pub fn replace(&self, t: T) -> T { |
| 894 | mem::replace(&mut *self.borrow_mut(), t) |
| 895 | } |
| 896 | |
| 897 | /// Replaces the wrapped value with a new one computed from `f`, returning |
| 898 | /// the old value, without deinitializing either one. |
| 899 | /// |
| 900 | /// # Panics |
| 901 | /// |
| 902 | /// Panics if the value is currently borrowed. |
| 903 | /// |
| 904 | /// # Examples |
| 905 | /// |
| 906 | /// ``` |
| 907 | /// use std::cell::RefCell; |
| 908 | /// let cell = RefCell::new(5); |
| 909 | /// let old_value = cell.replace_with(|&mut old| old + 1); |
| 910 | /// assert_eq!(old_value, 5); |
| 911 | /// assert_eq!(cell, RefCell::new(6)); |
| 912 | /// ``` |
| 913 | #[inline ] |
| 914 | #[stable (feature = "refcell_replace_swap" , since = "1.35.0" )] |
| 915 | #[track_caller ] |
| 916 | pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T { |
| 917 | let mut_borrow = &mut *self.borrow_mut(); |
| 918 | let replacement = f(mut_borrow); |
| 919 | mem::replace(mut_borrow, replacement) |
| 920 | } |
| 921 | |
| 922 | /// Swaps the wrapped value of `self` with the wrapped value of `other`, |
| 923 | /// without deinitializing either one. |
| 924 | /// |
| 925 | /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html). |
| 926 | /// |
| 927 | /// # Panics |
| 928 | /// |
| 929 | /// Panics if the value in either `RefCell` is currently borrowed, or |
| 930 | /// if `self` and `other` point to the same `RefCell`. |
| 931 | /// |
| 932 | /// # Examples |
| 933 | /// |
| 934 | /// ``` |
| 935 | /// use std::cell::RefCell; |
| 936 | /// let c = RefCell::new(5); |
| 937 | /// let d = RefCell::new(6); |
| 938 | /// c.swap(&d); |
| 939 | /// assert_eq!(c, RefCell::new(6)); |
| 940 | /// assert_eq!(d, RefCell::new(5)); |
| 941 | /// ``` |
| 942 | #[inline ] |
| 943 | #[stable (feature = "refcell_swap" , since = "1.24.0" )] |
| 944 | pub fn swap(&self, other: &Self) { |
| 945 | mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut()) |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | impl<T: ?Sized> RefCell<T> { |
| 950 | /// Immutably borrows the wrapped value. |
| 951 | /// |
| 952 | /// The borrow lasts until the returned `Ref` exits scope. Multiple |
| 953 | /// immutable borrows can be taken out at the same time. |
| 954 | /// |
| 955 | /// # Panics |
| 956 | /// |
| 957 | /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use |
| 958 | /// [`try_borrow`](#method.try_borrow). |
| 959 | /// |
| 960 | /// # Examples |
| 961 | /// |
| 962 | /// ``` |
| 963 | /// use std::cell::RefCell; |
| 964 | /// |
| 965 | /// let c = RefCell::new(5); |
| 966 | /// |
| 967 | /// let borrowed_five = c.borrow(); |
| 968 | /// let borrowed_five2 = c.borrow(); |
| 969 | /// ``` |
| 970 | /// |
| 971 | /// An example of panic: |
| 972 | /// |
| 973 | /// ```should_panic |
| 974 | /// use std::cell::RefCell; |
| 975 | /// |
| 976 | /// let c = RefCell::new(5); |
| 977 | /// |
| 978 | /// let m = c.borrow_mut(); |
| 979 | /// let b = c.borrow(); // this causes a panic |
| 980 | /// ``` |
| 981 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 982 | #[inline ] |
| 983 | #[track_caller ] |
| 984 | pub fn borrow(&self) -> Ref<'_, T> { |
| 985 | match self.try_borrow() { |
| 986 | Ok(b) => b, |
| 987 | Err(err) => panic_already_mutably_borrowed(err), |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | /// Immutably borrows the wrapped value, returning an error if the value is currently mutably |
| 992 | /// borrowed. |
| 993 | /// |
| 994 | /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be |
| 995 | /// taken out at the same time. |
| 996 | /// |
| 997 | /// This is the non-panicking variant of [`borrow`](#method.borrow). |
| 998 | /// |
| 999 | /// # Examples |
| 1000 | /// |
| 1001 | /// ``` |
| 1002 | /// use std::cell::RefCell; |
| 1003 | /// |
| 1004 | /// let c = RefCell::new(5); |
| 1005 | /// |
| 1006 | /// { |
| 1007 | /// let m = c.borrow_mut(); |
| 1008 | /// assert!(c.try_borrow().is_err()); |
| 1009 | /// } |
| 1010 | /// |
| 1011 | /// { |
| 1012 | /// let m = c.borrow(); |
| 1013 | /// assert!(c.try_borrow().is_ok()); |
| 1014 | /// } |
| 1015 | /// ``` |
| 1016 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 1017 | #[inline ] |
| 1018 | #[cfg_attr (feature = "debug_refcell" , track_caller)] |
| 1019 | pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> { |
| 1020 | match BorrowRef::new(&self.borrow) { |
| 1021 | Some(b) => { |
| 1022 | #[cfg (feature = "debug_refcell" )] |
| 1023 | { |
| 1024 | // `borrowed_at` is always the *first* active borrow |
| 1025 | if b.borrow.get() == 1 { |
| 1026 | self.borrowed_at.set(Some(crate::panic::Location::caller())); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | // SAFETY: `BorrowRef` ensures that there is only immutable access |
| 1031 | // to the value while borrowed. |
| 1032 | let value = unsafe { NonNull::new_unchecked(self.value.get()) }; |
| 1033 | Ok(Ref { value, borrow: b }) |
| 1034 | } |
| 1035 | None => Err(BorrowError { |
| 1036 | // If a borrow occurred, then we must already have an outstanding borrow, |
| 1037 | // so `borrowed_at` will be `Some` |
| 1038 | #[cfg (feature = "debug_refcell" )] |
| 1039 | location: self.borrowed_at.get().unwrap(), |
| 1040 | }), |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | /// Mutably borrows the wrapped value. |
| 1045 | /// |
| 1046 | /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived |
| 1047 | /// from it exit scope. The value cannot be borrowed while this borrow is |
| 1048 | /// active. |
| 1049 | /// |
| 1050 | /// # Panics |
| 1051 | /// |
| 1052 | /// Panics if the value is currently borrowed. For a non-panicking variant, use |
| 1053 | /// [`try_borrow_mut`](#method.try_borrow_mut). |
| 1054 | /// |
| 1055 | /// # Examples |
| 1056 | /// |
| 1057 | /// ``` |
| 1058 | /// use std::cell::RefCell; |
| 1059 | /// |
| 1060 | /// let c = RefCell::new("hello" .to_owned()); |
| 1061 | /// |
| 1062 | /// *c.borrow_mut() = "bonjour" .to_owned(); |
| 1063 | /// |
| 1064 | /// assert_eq!(&*c.borrow(), "bonjour" ); |
| 1065 | /// ``` |
| 1066 | /// |
| 1067 | /// An example of panic: |
| 1068 | /// |
| 1069 | /// ```should_panic |
| 1070 | /// use std::cell::RefCell; |
| 1071 | /// |
| 1072 | /// let c = RefCell::new(5); |
| 1073 | /// let m = c.borrow(); |
| 1074 | /// |
| 1075 | /// let b = c.borrow_mut(); // this causes a panic |
| 1076 | /// ``` |
| 1077 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1078 | #[inline ] |
| 1079 | #[track_caller ] |
| 1080 | pub fn borrow_mut(&self) -> RefMut<'_, T> { |
| 1081 | match self.try_borrow_mut() { |
| 1082 | Ok(b) => b, |
| 1083 | Err(err) => panic_already_borrowed(err), |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed. |
| 1088 | /// |
| 1089 | /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived |
| 1090 | /// from it exit scope. The value cannot be borrowed while this borrow is |
| 1091 | /// active. |
| 1092 | /// |
| 1093 | /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut). |
| 1094 | /// |
| 1095 | /// # Examples |
| 1096 | /// |
| 1097 | /// ``` |
| 1098 | /// use std::cell::RefCell; |
| 1099 | /// |
| 1100 | /// let c = RefCell::new(5); |
| 1101 | /// |
| 1102 | /// { |
| 1103 | /// let m = c.borrow(); |
| 1104 | /// assert!(c.try_borrow_mut().is_err()); |
| 1105 | /// } |
| 1106 | /// |
| 1107 | /// assert!(c.try_borrow_mut().is_ok()); |
| 1108 | /// ``` |
| 1109 | #[stable (feature = "try_borrow" , since = "1.13.0" )] |
| 1110 | #[inline ] |
| 1111 | #[cfg_attr (feature = "debug_refcell" , track_caller)] |
| 1112 | pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> { |
| 1113 | match BorrowRefMut::new(&self.borrow) { |
| 1114 | Some(b) => { |
| 1115 | #[cfg (feature = "debug_refcell" )] |
| 1116 | { |
| 1117 | self.borrowed_at.set(Some(crate::panic::Location::caller())); |
| 1118 | } |
| 1119 | |
| 1120 | // SAFETY: `BorrowRefMut` guarantees unique access. |
| 1121 | let value = unsafe { NonNull::new_unchecked(self.value.get()) }; |
| 1122 | Ok(RefMut { value, borrow: b, marker: PhantomData }) |
| 1123 | } |
| 1124 | None => Err(BorrowMutError { |
| 1125 | // If a borrow occurred, then we must already have an outstanding borrow, |
| 1126 | // so `borrowed_at` will be `Some` |
| 1127 | #[cfg (feature = "debug_refcell" )] |
| 1128 | location: self.borrowed_at.get().unwrap(), |
| 1129 | }), |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | /// Returns a raw pointer to the underlying data in this cell. |
| 1134 | /// |
| 1135 | /// # Examples |
| 1136 | /// |
| 1137 | /// ``` |
| 1138 | /// use std::cell::RefCell; |
| 1139 | /// |
| 1140 | /// let c = RefCell::new(5); |
| 1141 | /// |
| 1142 | /// let ptr = c.as_ptr(); |
| 1143 | /// ``` |
| 1144 | #[inline ] |
| 1145 | #[stable (feature = "cell_as_ptr" , since = "1.12.0" )] |
| 1146 | #[rustc_as_ptr] |
| 1147 | #[rustc_never_returns_null_ptr ] |
| 1148 | pub fn as_ptr(&self) -> *mut T { |
| 1149 | self.value.get() |
| 1150 | } |
| 1151 | |
| 1152 | /// Returns a mutable reference to the underlying data. |
| 1153 | /// |
| 1154 | /// Since this method borrows `RefCell` mutably, it is statically guaranteed |
| 1155 | /// that no borrows to the underlying data exist. The dynamic checks inherent |
| 1156 | /// in [`borrow_mut`] and most other methods of `RefCell` are therefore |
| 1157 | /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked |
| 1158 | /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose, |
| 1159 | /// consider using the unstable [`undo_leak`] method. |
| 1160 | /// |
| 1161 | /// This method can only be called if `RefCell` can be mutably borrowed, |
| 1162 | /// which in general is only the case directly after the `RefCell` has |
| 1163 | /// been created. In these situations, skipping the aforementioned dynamic |
| 1164 | /// borrowing checks may yield better ergonomics and runtime-performance. |
| 1165 | /// |
| 1166 | /// In most situations where `RefCell` is used, it can't be borrowed mutably. |
| 1167 | /// Use [`borrow_mut`] to get mutable access to the underlying data then. |
| 1168 | /// |
| 1169 | /// [`borrow_mut`]: RefCell::borrow_mut() |
| 1170 | /// [`forget()`]: mem::forget |
| 1171 | /// [`undo_leak`]: RefCell::undo_leak() |
| 1172 | /// |
| 1173 | /// # Examples |
| 1174 | /// |
| 1175 | /// ``` |
| 1176 | /// use std::cell::RefCell; |
| 1177 | /// |
| 1178 | /// let mut c = RefCell::new(5); |
| 1179 | /// *c.get_mut() += 1; |
| 1180 | /// |
| 1181 | /// assert_eq!(c, RefCell::new(6)); |
| 1182 | /// ``` |
| 1183 | #[inline ] |
| 1184 | #[stable (feature = "cell_get_mut" , since = "1.11.0" )] |
| 1185 | pub fn get_mut(&mut self) -> &mut T { |
| 1186 | self.value.get_mut() |
| 1187 | } |
| 1188 | |
| 1189 | /// Undo the effect of leaked guards on the borrow state of the `RefCell`. |
| 1190 | /// |
| 1191 | /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to |
| 1192 | /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant |
| 1193 | /// if some `Ref` or `RefMut` borrows have been leaked. |
| 1194 | /// |
| 1195 | /// [`get_mut`]: RefCell::get_mut() |
| 1196 | /// |
| 1197 | /// # Examples |
| 1198 | /// |
| 1199 | /// ``` |
| 1200 | /// #![feature(cell_leak)] |
| 1201 | /// use std::cell::RefCell; |
| 1202 | /// |
| 1203 | /// let mut c = RefCell::new(0); |
| 1204 | /// std::mem::forget(c.borrow_mut()); |
| 1205 | /// |
| 1206 | /// assert!(c.try_borrow().is_err()); |
| 1207 | /// c.undo_leak(); |
| 1208 | /// assert!(c.try_borrow().is_ok()); |
| 1209 | /// ``` |
| 1210 | #[unstable (feature = "cell_leak" , issue = "69099" )] |
| 1211 | pub fn undo_leak(&mut self) -> &mut T { |
| 1212 | *self.borrow.get_mut() = UNUSED; |
| 1213 | self.get_mut() |
| 1214 | } |
| 1215 | |
| 1216 | /// Immutably borrows the wrapped value, returning an error if the value is |
| 1217 | /// currently mutably borrowed. |
| 1218 | /// |
| 1219 | /// # Safety |
| 1220 | /// |
| 1221 | /// Unlike `RefCell::borrow`, this method is unsafe because it does not |
| 1222 | /// return a `Ref`, thus leaving the borrow flag untouched. Mutably |
| 1223 | /// borrowing the `RefCell` while the reference returned by this method |
| 1224 | /// is alive is undefined behavior. |
| 1225 | /// |
| 1226 | /// # Examples |
| 1227 | /// |
| 1228 | /// ``` |
| 1229 | /// use std::cell::RefCell; |
| 1230 | /// |
| 1231 | /// let c = RefCell::new(5); |
| 1232 | /// |
| 1233 | /// { |
| 1234 | /// let m = c.borrow_mut(); |
| 1235 | /// assert!(unsafe { c.try_borrow_unguarded() }.is_err()); |
| 1236 | /// } |
| 1237 | /// |
| 1238 | /// { |
| 1239 | /// let m = c.borrow(); |
| 1240 | /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok()); |
| 1241 | /// } |
| 1242 | /// ``` |
| 1243 | #[stable (feature = "borrow_state" , since = "1.37.0" )] |
| 1244 | #[inline ] |
| 1245 | pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> { |
| 1246 | if !is_writing(self.borrow.get()) { |
| 1247 | // SAFETY: We check that nobody is actively writing now, but it is |
| 1248 | // the caller's responsibility to ensure that nobody writes until |
| 1249 | // the returned reference is no longer in use. |
| 1250 | // Also, `self.value.get()` refers to the value owned by `self` |
| 1251 | // and is thus guaranteed to be valid for the lifetime of `self`. |
| 1252 | Ok(unsafe { &*self.value.get() }) |
| 1253 | } else { |
| 1254 | Err(BorrowError { |
| 1255 | // If a borrow occurred, then we must already have an outstanding borrow, |
| 1256 | // so `borrowed_at` will be `Some` |
| 1257 | #[cfg (feature = "debug_refcell" )] |
| 1258 | location: self.borrowed_at.get().unwrap(), |
| 1259 | }) |
| 1260 | } |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | impl<T: Default> RefCell<T> { |
| 1265 | /// Takes the wrapped value, leaving `Default::default()` in its place. |
| 1266 | /// |
| 1267 | /// # Panics |
| 1268 | /// |
| 1269 | /// Panics if the value is currently borrowed. |
| 1270 | /// |
| 1271 | /// # Examples |
| 1272 | /// |
| 1273 | /// ``` |
| 1274 | /// use std::cell::RefCell; |
| 1275 | /// |
| 1276 | /// let c = RefCell::new(5); |
| 1277 | /// let five = c.take(); |
| 1278 | /// |
| 1279 | /// assert_eq!(five, 5); |
| 1280 | /// assert_eq!(c.into_inner(), 0); |
| 1281 | /// ``` |
| 1282 | #[stable (feature = "refcell_take" , since = "1.50.0" )] |
| 1283 | pub fn take(&self) -> T { |
| 1284 | self.replace(Default::default()) |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1289 | unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {} |
| 1290 | |
| 1291 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1292 | impl<T: ?Sized> !Sync for RefCell<T> {} |
| 1293 | |
| 1294 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1295 | impl<T: Clone> Clone for RefCell<T> { |
| 1296 | /// # Panics |
| 1297 | /// |
| 1298 | /// Panics if the value is currently mutably borrowed. |
| 1299 | #[inline ] |
| 1300 | #[track_caller ] |
| 1301 | fn clone(&self) -> RefCell<T> { |
| 1302 | RefCell::new(self.borrow().clone()) |
| 1303 | } |
| 1304 | |
| 1305 | /// # Panics |
| 1306 | /// |
| 1307 | /// Panics if `source` is currently mutably borrowed. |
| 1308 | #[inline ] |
| 1309 | #[track_caller ] |
| 1310 | fn clone_from(&mut self, source: &Self) { |
| 1311 | self.get_mut().clone_from(&source.borrow()) |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1316 | impl<T: Default> Default for RefCell<T> { |
| 1317 | /// Creates a `RefCell<T>`, with the `Default` value for T. |
| 1318 | #[inline ] |
| 1319 | fn default() -> RefCell<T> { |
| 1320 | RefCell::new(Default::default()) |
| 1321 | } |
| 1322 | } |
| 1323 | |
| 1324 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1325 | impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> { |
| 1326 | /// # Panics |
| 1327 | /// |
| 1328 | /// Panics if the value in either `RefCell` is currently mutably borrowed. |
| 1329 | #[inline ] |
| 1330 | fn eq(&self, other: &RefCell<T>) -> bool { |
| 1331 | *self.borrow() == *other.borrow() |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | #[stable (feature = "cell_eq" , since = "1.2.0" )] |
| 1336 | impl<T: ?Sized + Eq> Eq for RefCell<T> {} |
| 1337 | |
| 1338 | #[stable (feature = "cell_ord" , since = "1.10.0" )] |
| 1339 | impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> { |
| 1340 | /// # Panics |
| 1341 | /// |
| 1342 | /// Panics if the value in either `RefCell` is currently mutably borrowed. |
| 1343 | #[inline ] |
| 1344 | fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> { |
| 1345 | self.borrow().partial_cmp(&*other.borrow()) |
| 1346 | } |
| 1347 | |
| 1348 | /// # Panics |
| 1349 | /// |
| 1350 | /// Panics if the value in either `RefCell` is currently mutably borrowed. |
| 1351 | #[inline ] |
| 1352 | fn lt(&self, other: &RefCell<T>) -> bool { |
| 1353 | *self.borrow() < *other.borrow() |
| 1354 | } |
| 1355 | |
| 1356 | /// # Panics |
| 1357 | /// |
| 1358 | /// Panics if the value in either `RefCell` is currently mutably borrowed. |
| 1359 | #[inline ] |
| 1360 | fn le(&self, other: &RefCell<T>) -> bool { |
| 1361 | *self.borrow() <= *other.borrow() |
| 1362 | } |
| 1363 | |
| 1364 | /// # Panics |
| 1365 | /// |
| 1366 | /// Panics if the value in either `RefCell` is currently mutably borrowed. |
| 1367 | #[inline ] |
| 1368 | fn gt(&self, other: &RefCell<T>) -> bool { |
| 1369 | *self.borrow() > *other.borrow() |
| 1370 | } |
| 1371 | |
| 1372 | /// # Panics |
| 1373 | /// |
| 1374 | /// Panics if the value in either `RefCell` is currently mutably borrowed. |
| 1375 | #[inline ] |
| 1376 | fn ge(&self, other: &RefCell<T>) -> bool { |
| 1377 | *self.borrow() >= *other.borrow() |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | #[stable (feature = "cell_ord" , since = "1.10.0" )] |
| 1382 | impl<T: ?Sized + Ord> Ord for RefCell<T> { |
| 1383 | /// # Panics |
| 1384 | /// |
| 1385 | /// Panics if the value in either `RefCell` is currently mutably borrowed. |
| 1386 | #[inline ] |
| 1387 | fn cmp(&self, other: &RefCell<T>) -> Ordering { |
| 1388 | self.borrow().cmp(&*other.borrow()) |
| 1389 | } |
| 1390 | } |
| 1391 | |
| 1392 | #[stable (feature = "cell_from" , since = "1.12.0" )] |
| 1393 | impl<T> From<T> for RefCell<T> { |
| 1394 | /// Creates a new `RefCell<T>` containing the given value. |
| 1395 | fn from(t: T) -> RefCell<T> { |
| 1396 | RefCell::new(t) |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 1401 | impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {} |
| 1402 | |
| 1403 | struct BorrowRef<'b> { |
| 1404 | borrow: &'b Cell<BorrowFlag>, |
| 1405 | } |
| 1406 | |
| 1407 | impl<'b> BorrowRef<'b> { |
| 1408 | #[inline ] |
| 1409 | fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> { |
| 1410 | let b: isize = borrow.get().wrapping_add(1); |
| 1411 | if !is_reading(b) { |
| 1412 | // Incrementing borrow can result in a non-reading value (<= 0) in these cases: |
| 1413 | // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow |
| 1414 | // due to Rust's reference aliasing rules |
| 1415 | // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed |
| 1416 | // into isize::MIN (the max amount of writing borrows) so we can't allow |
| 1417 | // an additional read borrow because isize can't represent so many read borrows |
| 1418 | // (this can only happen if you mem::forget more than a small constant amount of |
| 1419 | // `Ref`s, which is not good practice) |
| 1420 | None |
| 1421 | } else { |
| 1422 | // Incrementing borrow can result in a reading value (> 0) in these cases: |
| 1423 | // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow |
| 1424 | // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize |
| 1425 | // is large enough to represent having one more read borrow |
| 1426 | borrow.set(val:b); |
| 1427 | Some(BorrowRef { borrow }) |
| 1428 | } |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | impl Drop for BorrowRef<'_> { |
| 1433 | #[inline ] |
| 1434 | fn drop(&mut self) { |
| 1435 | let borrow: isize = self.borrow.get(); |
| 1436 | debug_assert!(is_reading(borrow)); |
| 1437 | self.borrow.set(val:borrow - 1); |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | impl Clone for BorrowRef<'_> { |
| 1442 | #[inline ] |
| 1443 | fn clone(&self) -> Self { |
| 1444 | // Since this Ref exists, we know the borrow flag |
| 1445 | // is a reading borrow. |
| 1446 | let borrow: isize = self.borrow.get(); |
| 1447 | debug_assert!(is_reading(borrow)); |
| 1448 | // Prevent the borrow counter from overflowing into |
| 1449 | // a writing borrow. |
| 1450 | assert!(borrow != BorrowFlag::MAX); |
| 1451 | self.borrow.set(val:borrow + 1); |
| 1452 | BorrowRef { borrow: self.borrow } |
| 1453 | } |
| 1454 | } |
| 1455 | |
| 1456 | /// Wraps a borrowed reference to a value in a `RefCell` box. |
| 1457 | /// A wrapper type for an immutably borrowed value from a `RefCell<T>`. |
| 1458 | /// |
| 1459 | /// See the [module-level documentation](self) for more. |
| 1460 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1461 | #[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors" ] |
| 1462 | #[rustc_diagnostic_item = "RefCellRef" ] |
| 1463 | pub struct Ref<'b, T: ?Sized + 'b> { |
| 1464 | // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a |
| 1465 | // `Ref` argument doesn't hold immutability for its whole scope, only until it drops. |
| 1466 | // `NonNull` is also covariant over `T`, just like we would have with `&T`. |
| 1467 | value: NonNull<T>, |
| 1468 | borrow: BorrowRef<'b>, |
| 1469 | } |
| 1470 | |
| 1471 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1472 | impl<T: ?Sized> Deref for Ref<'_, T> { |
| 1473 | type Target = T; |
| 1474 | |
| 1475 | #[inline ] |
| 1476 | fn deref(&self) -> &T { |
| 1477 | // SAFETY: the value is accessible as long as we hold our borrow. |
| 1478 | unsafe { self.value.as_ref() } |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 1483 | unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {} |
| 1484 | |
| 1485 | impl<'b, T: ?Sized> Ref<'b, T> { |
| 1486 | /// Copies a `Ref`. |
| 1487 | /// |
| 1488 | /// The `RefCell` is already immutably borrowed, so this cannot fail. |
| 1489 | /// |
| 1490 | /// This is an associated function that needs to be used as |
| 1491 | /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere |
| 1492 | /// with the widespread use of `r.borrow().clone()` to clone the contents of |
| 1493 | /// a `RefCell`. |
| 1494 | #[stable (feature = "cell_extras" , since = "1.15.0" )] |
| 1495 | #[must_use ] |
| 1496 | #[inline ] |
| 1497 | pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> { |
| 1498 | Ref { value: orig.value, borrow: orig.borrow.clone() } |
| 1499 | } |
| 1500 | |
| 1501 | /// Makes a new `Ref` for a component of the borrowed data. |
| 1502 | /// |
| 1503 | /// The `RefCell` is already immutably borrowed, so this cannot fail. |
| 1504 | /// |
| 1505 | /// This is an associated function that needs to be used as `Ref::map(...)`. |
| 1506 | /// A method would interfere with methods of the same name on the contents |
| 1507 | /// of a `RefCell` used through `Deref`. |
| 1508 | /// |
| 1509 | /// # Examples |
| 1510 | /// |
| 1511 | /// ``` |
| 1512 | /// use std::cell::{RefCell, Ref}; |
| 1513 | /// |
| 1514 | /// let c = RefCell::new((5, 'b' )); |
| 1515 | /// let b1: Ref<'_, (u32, char)> = c.borrow(); |
| 1516 | /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0); |
| 1517 | /// assert_eq!(*b2, 5) |
| 1518 | /// ``` |
| 1519 | #[stable (feature = "cell_map" , since = "1.8.0" )] |
| 1520 | #[inline ] |
| 1521 | pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U> |
| 1522 | where |
| 1523 | F: FnOnce(&T) -> &U, |
| 1524 | { |
| 1525 | Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow } |
| 1526 | } |
| 1527 | |
| 1528 | /// Makes a new `Ref` for an optional component of the borrowed data. The |
| 1529 | /// original guard is returned as an `Err(..)` if the closure returns |
| 1530 | /// `None`. |
| 1531 | /// |
| 1532 | /// The `RefCell` is already immutably borrowed, so this cannot fail. |
| 1533 | /// |
| 1534 | /// This is an associated function that needs to be used as |
| 1535 | /// `Ref::filter_map(...)`. A method would interfere with methods of the same |
| 1536 | /// name on the contents of a `RefCell` used through `Deref`. |
| 1537 | /// |
| 1538 | /// # Examples |
| 1539 | /// |
| 1540 | /// ``` |
| 1541 | /// use std::cell::{RefCell, Ref}; |
| 1542 | /// |
| 1543 | /// let c = RefCell::new(vec![1, 2, 3]); |
| 1544 | /// let b1: Ref<'_, Vec<u32>> = c.borrow(); |
| 1545 | /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1)); |
| 1546 | /// assert_eq!(*b2.unwrap(), 2); |
| 1547 | /// ``` |
| 1548 | #[stable (feature = "cell_filter_map" , since = "1.63.0" )] |
| 1549 | #[inline ] |
| 1550 | pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self> |
| 1551 | where |
| 1552 | F: FnOnce(&T) -> Option<&U>, |
| 1553 | { |
| 1554 | match f(&*orig) { |
| 1555 | Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }), |
| 1556 | None => Err(orig), |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | /// Splits a `Ref` into multiple `Ref`s for different components of the |
| 1561 | /// borrowed data. |
| 1562 | /// |
| 1563 | /// The `RefCell` is already immutably borrowed, so this cannot fail. |
| 1564 | /// |
| 1565 | /// This is an associated function that needs to be used as |
| 1566 | /// `Ref::map_split(...)`. A method would interfere with methods of the same |
| 1567 | /// name on the contents of a `RefCell` used through `Deref`. |
| 1568 | /// |
| 1569 | /// # Examples |
| 1570 | /// |
| 1571 | /// ``` |
| 1572 | /// use std::cell::{Ref, RefCell}; |
| 1573 | /// |
| 1574 | /// let cell = RefCell::new([1, 2, 3, 4]); |
| 1575 | /// let borrow = cell.borrow(); |
| 1576 | /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2)); |
| 1577 | /// assert_eq!(*begin, [1, 2]); |
| 1578 | /// assert_eq!(*end, [3, 4]); |
| 1579 | /// ``` |
| 1580 | #[stable (feature = "refcell_map_split" , since = "1.35.0" )] |
| 1581 | #[inline ] |
| 1582 | pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>) |
| 1583 | where |
| 1584 | F: FnOnce(&T) -> (&U, &V), |
| 1585 | { |
| 1586 | let (a, b) = f(&*orig); |
| 1587 | let borrow = orig.borrow.clone(); |
| 1588 | ( |
| 1589 | Ref { value: NonNull::from(a), borrow }, |
| 1590 | Ref { value: NonNull::from(b), borrow: orig.borrow }, |
| 1591 | ) |
| 1592 | } |
| 1593 | |
| 1594 | /// Converts into a reference to the underlying data. |
| 1595 | /// |
| 1596 | /// The underlying `RefCell` can never be mutably borrowed from again and will always appear |
| 1597 | /// already immutably borrowed. It is not a good idea to leak more than a constant number of |
| 1598 | /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks |
| 1599 | /// have occurred in total. |
| 1600 | /// |
| 1601 | /// This is an associated function that needs to be used as |
| 1602 | /// `Ref::leak(...)`. A method would interfere with methods of the |
| 1603 | /// same name on the contents of a `RefCell` used through `Deref`. |
| 1604 | /// |
| 1605 | /// # Examples |
| 1606 | /// |
| 1607 | /// ``` |
| 1608 | /// #![feature(cell_leak)] |
| 1609 | /// use std::cell::{RefCell, Ref}; |
| 1610 | /// let cell = RefCell::new(0); |
| 1611 | /// |
| 1612 | /// let value = Ref::leak(cell.borrow()); |
| 1613 | /// assert_eq!(*value, 0); |
| 1614 | /// |
| 1615 | /// assert!(cell.try_borrow().is_ok()); |
| 1616 | /// assert!(cell.try_borrow_mut().is_err()); |
| 1617 | /// ``` |
| 1618 | #[unstable (feature = "cell_leak" , issue = "69099" )] |
| 1619 | pub fn leak(orig: Ref<'b, T>) -> &'b T { |
| 1620 | // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to |
| 1621 | // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a |
| 1622 | // unique reference to the borrowed RefCell. No further mutable references can be created |
| 1623 | // from the original cell. |
| 1624 | mem::forget(orig.borrow); |
| 1625 | // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`. |
| 1626 | unsafe { orig.value.as_ref() } |
| 1627 | } |
| 1628 | } |
| 1629 | |
| 1630 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 1631 | impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {} |
| 1632 | |
| 1633 | #[stable (feature = "std_guard_impls" , since = "1.20.0" )] |
| 1634 | impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> { |
| 1635 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1636 | (**self).fmt(f) |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | impl<'b, T: ?Sized> RefMut<'b, T> { |
| 1641 | /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum |
| 1642 | /// variant. |
| 1643 | /// |
| 1644 | /// The `RefCell` is already mutably borrowed, so this cannot fail. |
| 1645 | /// |
| 1646 | /// This is an associated function that needs to be used as |
| 1647 | /// `RefMut::map(...)`. A method would interfere with methods of the same |
| 1648 | /// name on the contents of a `RefCell` used through `Deref`. |
| 1649 | /// |
| 1650 | /// # Examples |
| 1651 | /// |
| 1652 | /// ``` |
| 1653 | /// use std::cell::{RefCell, RefMut}; |
| 1654 | /// |
| 1655 | /// let c = RefCell::new((5, 'b' )); |
| 1656 | /// { |
| 1657 | /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut(); |
| 1658 | /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0); |
| 1659 | /// assert_eq!(*b2, 5); |
| 1660 | /// *b2 = 42; |
| 1661 | /// } |
| 1662 | /// assert_eq!(*c.borrow(), (42, 'b' )); |
| 1663 | /// ``` |
| 1664 | #[stable (feature = "cell_map" , since = "1.8.0" )] |
| 1665 | #[inline ] |
| 1666 | pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U> |
| 1667 | where |
| 1668 | F: FnOnce(&mut T) -> &mut U, |
| 1669 | { |
| 1670 | let value = NonNull::from(f(&mut *orig)); |
| 1671 | RefMut { value, borrow: orig.borrow, marker: PhantomData } |
| 1672 | } |
| 1673 | |
| 1674 | /// Makes a new `RefMut` for an optional component of the borrowed data. The |
| 1675 | /// original guard is returned as an `Err(..)` if the closure returns |
| 1676 | /// `None`. |
| 1677 | /// |
| 1678 | /// The `RefCell` is already mutably borrowed, so this cannot fail. |
| 1679 | /// |
| 1680 | /// This is an associated function that needs to be used as |
| 1681 | /// `RefMut::filter_map(...)`. A method would interfere with methods of the |
| 1682 | /// same name on the contents of a `RefCell` used through `Deref`. |
| 1683 | /// |
| 1684 | /// # Examples |
| 1685 | /// |
| 1686 | /// ``` |
| 1687 | /// use std::cell::{RefCell, RefMut}; |
| 1688 | /// |
| 1689 | /// let c = RefCell::new(vec![1, 2, 3]); |
| 1690 | /// |
| 1691 | /// { |
| 1692 | /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut(); |
| 1693 | /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1)); |
| 1694 | /// |
| 1695 | /// if let Ok(mut b2) = b2 { |
| 1696 | /// *b2 += 2; |
| 1697 | /// } |
| 1698 | /// } |
| 1699 | /// |
| 1700 | /// assert_eq!(*c.borrow(), vec![1, 4, 3]); |
| 1701 | /// ``` |
| 1702 | #[stable (feature = "cell_filter_map" , since = "1.63.0" )] |
| 1703 | #[inline ] |
| 1704 | pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self> |
| 1705 | where |
| 1706 | F: FnOnce(&mut T) -> Option<&mut U>, |
| 1707 | { |
| 1708 | // SAFETY: function holds onto an exclusive reference for the duration |
| 1709 | // of its call through `orig`, and the pointer is only de-referenced |
| 1710 | // inside of the function call never allowing the exclusive reference to |
| 1711 | // escape. |
| 1712 | match f(&mut *orig) { |
| 1713 | Some(value) => { |
| 1714 | Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData }) |
| 1715 | } |
| 1716 | None => Err(orig), |
| 1717 | } |
| 1718 | } |
| 1719 | |
| 1720 | /// Splits a `RefMut` into multiple `RefMut`s for different components of the |
| 1721 | /// borrowed data. |
| 1722 | /// |
| 1723 | /// The underlying `RefCell` will remain mutably borrowed until both |
| 1724 | /// returned `RefMut`s go out of scope. |
| 1725 | /// |
| 1726 | /// The `RefCell` is already mutably borrowed, so this cannot fail. |
| 1727 | /// |
| 1728 | /// This is an associated function that needs to be used as |
| 1729 | /// `RefMut::map_split(...)`. A method would interfere with methods of the |
| 1730 | /// same name on the contents of a `RefCell` used through `Deref`. |
| 1731 | /// |
| 1732 | /// # Examples |
| 1733 | /// |
| 1734 | /// ``` |
| 1735 | /// use std::cell::{RefCell, RefMut}; |
| 1736 | /// |
| 1737 | /// let cell = RefCell::new([1, 2, 3, 4]); |
| 1738 | /// let borrow = cell.borrow_mut(); |
| 1739 | /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2)); |
| 1740 | /// assert_eq!(*begin, [1, 2]); |
| 1741 | /// assert_eq!(*end, [3, 4]); |
| 1742 | /// begin.copy_from_slice(&[4, 3]); |
| 1743 | /// end.copy_from_slice(&[2, 1]); |
| 1744 | /// ``` |
| 1745 | #[stable (feature = "refcell_map_split" , since = "1.35.0" )] |
| 1746 | #[inline ] |
| 1747 | pub fn map_split<U: ?Sized, V: ?Sized, F>( |
| 1748 | mut orig: RefMut<'b, T>, |
| 1749 | f: F, |
| 1750 | ) -> (RefMut<'b, U>, RefMut<'b, V>) |
| 1751 | where |
| 1752 | F: FnOnce(&mut T) -> (&mut U, &mut V), |
| 1753 | { |
| 1754 | let borrow = orig.borrow.clone(); |
| 1755 | let (a, b) = f(&mut *orig); |
| 1756 | ( |
| 1757 | RefMut { value: NonNull::from(a), borrow, marker: PhantomData }, |
| 1758 | RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData }, |
| 1759 | ) |
| 1760 | } |
| 1761 | |
| 1762 | /// Converts into a mutable reference to the underlying data. |
| 1763 | /// |
| 1764 | /// The underlying `RefCell` can not be borrowed from again and will always appear already |
| 1765 | /// mutably borrowed, making the returned reference the only to the interior. |
| 1766 | /// |
| 1767 | /// This is an associated function that needs to be used as |
| 1768 | /// `RefMut::leak(...)`. A method would interfere with methods of the |
| 1769 | /// same name on the contents of a `RefCell` used through `Deref`. |
| 1770 | /// |
| 1771 | /// # Examples |
| 1772 | /// |
| 1773 | /// ``` |
| 1774 | /// #![feature(cell_leak)] |
| 1775 | /// use std::cell::{RefCell, RefMut}; |
| 1776 | /// let cell = RefCell::new(0); |
| 1777 | /// |
| 1778 | /// let value = RefMut::leak(cell.borrow_mut()); |
| 1779 | /// assert_eq!(*value, 0); |
| 1780 | /// *value = 1; |
| 1781 | /// |
| 1782 | /// assert!(cell.try_borrow_mut().is_err()); |
| 1783 | /// ``` |
| 1784 | #[unstable (feature = "cell_leak" , issue = "69099" )] |
| 1785 | pub fn leak(mut orig: RefMut<'b, T>) -> &'b mut T { |
| 1786 | // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't |
| 1787 | // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would |
| 1788 | // require a unique reference to the borrowed RefCell. No further references can be created |
| 1789 | // from the original cell within that lifetime, making the current borrow the only |
| 1790 | // reference for the remaining lifetime. |
| 1791 | mem::forget(orig.borrow); |
| 1792 | // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`. |
| 1793 | unsafe { orig.value.as_mut() } |
| 1794 | } |
| 1795 | } |
| 1796 | |
| 1797 | struct BorrowRefMut<'b> { |
| 1798 | borrow: &'b Cell<BorrowFlag>, |
| 1799 | } |
| 1800 | |
| 1801 | impl Drop for BorrowRefMut<'_> { |
| 1802 | #[inline ] |
| 1803 | fn drop(&mut self) { |
| 1804 | let borrow: isize = self.borrow.get(); |
| 1805 | debug_assert!(is_writing(borrow)); |
| 1806 | self.borrow.set(val:borrow + 1); |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | impl<'b> BorrowRefMut<'b> { |
| 1811 | #[inline ] |
| 1812 | fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> { |
| 1813 | // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial |
| 1814 | // mutable reference, and so there must currently be no existing |
| 1815 | // references. Thus, while clone increments the mutable refcount, here |
| 1816 | // we explicitly only allow going from UNUSED to UNUSED - 1. |
| 1817 | match borrow.get() { |
| 1818 | UNUSED => { |
| 1819 | borrow.set(UNUSED - 1); |
| 1820 | Some(BorrowRefMut { borrow }) |
| 1821 | } |
| 1822 | _ => None, |
| 1823 | } |
| 1824 | } |
| 1825 | |
| 1826 | // Clones a `BorrowRefMut`. |
| 1827 | // |
| 1828 | // This is only valid if each `BorrowRefMut` is used to track a mutable |
| 1829 | // reference to a distinct, nonoverlapping range of the original object. |
| 1830 | // This isn't in a Clone impl so that code doesn't call this implicitly. |
| 1831 | #[inline ] |
| 1832 | fn clone(&self) -> BorrowRefMut<'b> { |
| 1833 | let borrow = self.borrow.get(); |
| 1834 | debug_assert!(is_writing(borrow)); |
| 1835 | // Prevent the borrow counter from underflowing. |
| 1836 | assert!(borrow != BorrowFlag::MIN); |
| 1837 | self.borrow.set(borrow - 1); |
| 1838 | BorrowRefMut { borrow: self.borrow } |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | /// A wrapper type for a mutably borrowed value from a `RefCell<T>`. |
| 1843 | /// |
| 1844 | /// See the [module-level documentation](self) for more. |
| 1845 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1846 | #[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors" ] |
| 1847 | #[rustc_diagnostic_item = "RefCellRefMut" ] |
| 1848 | pub struct RefMut<'b, T: ?Sized + 'b> { |
| 1849 | // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a |
| 1850 | // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops. |
| 1851 | value: NonNull<T>, |
| 1852 | borrow: BorrowRefMut<'b>, |
| 1853 | // `NonNull` is covariant over `T`, so we need to reintroduce invariance. |
| 1854 | marker: PhantomData<&'b mut T>, |
| 1855 | } |
| 1856 | |
| 1857 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1858 | impl<T: ?Sized> Deref for RefMut<'_, T> { |
| 1859 | type Target = T; |
| 1860 | |
| 1861 | #[inline ] |
| 1862 | fn deref(&self) -> &T { |
| 1863 | // SAFETY: the value is accessible as long as we hold our borrow. |
| 1864 | unsafe { self.value.as_ref() } |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1869 | impl<T: ?Sized> DerefMut for RefMut<'_, T> { |
| 1870 | #[inline ] |
| 1871 | fn deref_mut(&mut self) -> &mut T { |
| 1872 | // SAFETY: the value is accessible as long as we hold our borrow. |
| 1873 | unsafe { self.value.as_mut() } |
| 1874 | } |
| 1875 | } |
| 1876 | |
| 1877 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 1878 | unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {} |
| 1879 | |
| 1880 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 1881 | impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {} |
| 1882 | |
| 1883 | #[stable (feature = "std_guard_impls" , since = "1.20.0" )] |
| 1884 | impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> { |
| 1885 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1886 | (**self).fmt(f) |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | /// The core primitive for interior mutability in Rust. |
| 1891 | /// |
| 1892 | /// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on |
| 1893 | /// the knowledge that `&T` points to immutable data. Mutating that data, for example through an |
| 1894 | /// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior. |
| 1895 | /// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference |
| 1896 | /// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability". |
| 1897 | /// |
| 1898 | /// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally |
| 1899 | /// use `UnsafeCell` to wrap their data. |
| 1900 | /// |
| 1901 | /// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The |
| 1902 | /// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain |
| 1903 | /// aliasing `&mut`, not even with `UnsafeCell<T>`. |
| 1904 | /// |
| 1905 | /// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple |
| 1906 | /// threads have access to the same `UnsafeCell`, they must follow the usual rules of the |
| 1907 | /// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in |
| 1908 | /// [`core::sync::atomic`]. |
| 1909 | /// |
| 1910 | /// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer |
| 1911 | /// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer |
| 1912 | /// correctly. |
| 1913 | /// |
| 1914 | /// [`.get()`]: `UnsafeCell::get` |
| 1915 | /// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses |
| 1916 | /// |
| 1917 | /// # Aliasing rules |
| 1918 | /// |
| 1919 | /// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious: |
| 1920 | /// |
| 1921 | /// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then |
| 1922 | /// you must not access the data in any way that contradicts that reference for the remainder of |
| 1923 | /// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it |
| 1924 | /// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found |
| 1925 | /// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a `&mut |
| 1926 | /// T` reference that is released to safe code, then you must not access the data within the |
| 1927 | /// `UnsafeCell` until that reference expires. |
| 1928 | /// |
| 1929 | /// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data |
| 1930 | /// until the reference expires. As a special exception, given an `&T`, any part of it that is |
| 1931 | /// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the |
| 1932 | /// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part |
| 1933 | /// of what a reference points to, this means the memory an `&T` points to can be deallocated only if |
| 1934 | /// *every part of it* (including padding) is inside an `UnsafeCell`. |
| 1935 | /// |
| 1936 | /// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to |
| 1937 | /// live memory and the compiler is allowed to insert spurious reads if it can prove that this |
| 1938 | /// memory has not yet been deallocated. |
| 1939 | /// |
| 1940 | /// To assist with proper design, the following scenarios are explicitly declared legal |
| 1941 | /// for single-threaded code: |
| 1942 | /// |
| 1943 | /// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T` |
| 1944 | /// references, but not with a `&mut T` |
| 1945 | /// |
| 1946 | /// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T` |
| 1947 | /// co-exist with it. A `&mut T` must always be unique. |
| 1948 | /// |
| 1949 | /// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other |
| 1950 | /// `&UnsafeCell<T>` references alias the cell) is |
| 1951 | /// ok (provided you enforce the above invariants some other way), it is still undefined behavior |
| 1952 | /// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper |
| 1953 | /// designed to have a special interaction with _shared_ accesses (_i.e._, through an |
| 1954 | /// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_ |
| 1955 | /// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value |
| 1956 | /// may be aliased for the duration of that `&mut` borrow. |
| 1957 | /// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields |
| 1958 | /// a `&mut T`. |
| 1959 | /// |
| 1960 | /// [`.get_mut()`]: `UnsafeCell::get_mut` |
| 1961 | /// |
| 1962 | /// # Memory layout |
| 1963 | /// |
| 1964 | /// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence |
| 1965 | /// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`. |
| 1966 | /// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type |
| 1967 | /// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche] |
| 1968 | /// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on |
| 1969 | /// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space. |
| 1970 | /// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>` |
| 1971 | /// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in |
| 1972 | /// order to avoid its interior mutability property from spreading from `T` into the `Outer` type, |
| 1973 | /// thus this can cause distortions in the type size in these cases. |
| 1974 | /// |
| 1975 | /// Note that the only valid way to obtain a `*mut T` pointer to the contents of a |
| 1976 | /// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference |
| 1977 | /// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`] |
| 1978 | /// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the |
| 1979 | /// same memory layout, the following is not allowed and undefined behavior: |
| 1980 | /// |
| 1981 | /// ```rust,compile_fail |
| 1982 | /// # use std::cell::UnsafeCell; |
| 1983 | /// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T { |
| 1984 | /// let t = ptr as *const UnsafeCell<T> as *mut T; |
| 1985 | /// // This is undefined behavior, because the `*mut T` pointer |
| 1986 | /// // was not obtained through `.get()` nor `.raw_get()`: |
| 1987 | /// unsafe { &mut *t } |
| 1988 | /// } |
| 1989 | /// ``` |
| 1990 | /// |
| 1991 | /// Instead, do this: |
| 1992 | /// |
| 1993 | /// ```rust |
| 1994 | /// # use std::cell::UnsafeCell; |
| 1995 | /// // Safety: the caller must ensure that there are no references that |
| 1996 | /// // point to the *contents* of the `UnsafeCell`. |
| 1997 | /// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T { |
| 1998 | /// unsafe { &mut *ptr.get() } |
| 1999 | /// } |
| 2000 | /// ``` |
| 2001 | /// |
| 2002 | /// Converting in the other direction from a `&mut T` |
| 2003 | /// to an `&UnsafeCell<T>` is allowed: |
| 2004 | /// |
| 2005 | /// ```rust |
| 2006 | /// # use std::cell::UnsafeCell; |
| 2007 | /// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> { |
| 2008 | /// let t = ptr as *mut T as *const UnsafeCell<T>; |
| 2009 | /// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout |
| 2010 | /// unsafe { &*t } |
| 2011 | /// } |
| 2012 | /// ``` |
| 2013 | /// |
| 2014 | /// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche |
| 2015 | /// [`.raw_get()`]: `UnsafeCell::raw_get` |
| 2016 | /// |
| 2017 | /// # Examples |
| 2018 | /// |
| 2019 | /// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite |
| 2020 | /// there being multiple references aliasing the cell: |
| 2021 | /// |
| 2022 | /// ``` |
| 2023 | /// use std::cell::UnsafeCell; |
| 2024 | /// |
| 2025 | /// let x: UnsafeCell<i32> = 42.into(); |
| 2026 | /// // Get multiple / concurrent / shared references to the same `x`. |
| 2027 | /// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x); |
| 2028 | /// |
| 2029 | /// unsafe { |
| 2030 | /// // SAFETY: within this scope there are no other references to `x`'s contents, |
| 2031 | /// // so ours is effectively unique. |
| 2032 | /// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+ |
| 2033 | /// *p1_exclusive += 27; // | |
| 2034 | /// } // <---------- cannot go beyond this point -------------------+ |
| 2035 | /// |
| 2036 | /// unsafe { |
| 2037 | /// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents, |
| 2038 | /// // so we can have multiple shared accesses concurrently. |
| 2039 | /// let p2_shared: &i32 = &*p2.get(); |
| 2040 | /// assert_eq!(*p2_shared, 42 + 27); |
| 2041 | /// let p1_shared: &i32 = &*p1.get(); |
| 2042 | /// assert_eq!(*p1_shared, *p2_shared); |
| 2043 | /// } |
| 2044 | /// ``` |
| 2045 | /// |
| 2046 | /// The following example showcases the fact that exclusive access to an `UnsafeCell<T>` |
| 2047 | /// implies exclusive access to its `T`: |
| 2048 | /// |
| 2049 | /// ```rust |
| 2050 | /// #![forbid(unsafe_code)] // with exclusive accesses, |
| 2051 | /// // `UnsafeCell` is a transparent no-op wrapper, |
| 2052 | /// // so no need for `unsafe` here. |
| 2053 | /// use std::cell::UnsafeCell; |
| 2054 | /// |
| 2055 | /// let mut x: UnsafeCell<i32> = 42.into(); |
| 2056 | /// |
| 2057 | /// // Get a compile-time-checked unique reference to `x`. |
| 2058 | /// let p_unique: &mut UnsafeCell<i32> = &mut x; |
| 2059 | /// // With an exclusive reference, we can mutate the contents for free. |
| 2060 | /// *p_unique.get_mut() = 0; |
| 2061 | /// // Or, equivalently: |
| 2062 | /// x = UnsafeCell::new(0); |
| 2063 | /// |
| 2064 | /// // When we own the value, we can extract the contents for free. |
| 2065 | /// let contents: i32 = x.into_inner(); |
| 2066 | /// assert_eq!(contents, 0); |
| 2067 | /// ``` |
| 2068 | #[lang = "unsafe_cell" ] |
| 2069 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2070 | #[repr (transparent)] |
| 2071 | #[rustc_pub_transparent] |
| 2072 | pub struct UnsafeCell<T: ?Sized> { |
| 2073 | value: T, |
| 2074 | } |
| 2075 | |
| 2076 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2077 | impl<T: ?Sized> !Sync for UnsafeCell<T> {} |
| 2078 | |
| 2079 | impl<T> UnsafeCell<T> { |
| 2080 | /// Constructs a new instance of `UnsafeCell` which will wrap the specified |
| 2081 | /// value. |
| 2082 | /// |
| 2083 | /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code. |
| 2084 | /// |
| 2085 | /// # Examples |
| 2086 | /// |
| 2087 | /// ``` |
| 2088 | /// use std::cell::UnsafeCell; |
| 2089 | /// |
| 2090 | /// let uc = UnsafeCell::new(5); |
| 2091 | /// ``` |
| 2092 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2093 | #[rustc_const_stable (feature = "const_unsafe_cell_new" , since = "1.32.0" )] |
| 2094 | #[inline (always)] |
| 2095 | pub const fn new(value: T) -> UnsafeCell<T> { |
| 2096 | UnsafeCell { value } |
| 2097 | } |
| 2098 | |
| 2099 | /// Unwraps the value, consuming the cell. |
| 2100 | /// |
| 2101 | /// # Examples |
| 2102 | /// |
| 2103 | /// ``` |
| 2104 | /// use std::cell::UnsafeCell; |
| 2105 | /// |
| 2106 | /// let uc = UnsafeCell::new(5); |
| 2107 | /// |
| 2108 | /// let five = uc.into_inner(); |
| 2109 | /// ``` |
| 2110 | #[inline (always)] |
| 2111 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2112 | #[rustc_const_stable (feature = "const_cell_into_inner" , since = "1.83.0" )] |
| 2113 | #[rustc_allow_const_fn_unstable (const_precise_live_drops)] |
| 2114 | pub const fn into_inner(self) -> T { |
| 2115 | self.value |
| 2116 | } |
| 2117 | |
| 2118 | /// Replace the value in this `UnsafeCell` and return the old value. |
| 2119 | /// |
| 2120 | /// # Safety |
| 2121 | /// |
| 2122 | /// The caller must take care to avoid aliasing and data races. |
| 2123 | /// |
| 2124 | /// - It is Undefined Behavior to allow calls to race with |
| 2125 | /// any other access to the wrapped value. |
| 2126 | /// - It is Undefined Behavior to call this while any other |
| 2127 | /// reference(s) to the wrapped value are alive. |
| 2128 | /// |
| 2129 | /// # Examples |
| 2130 | /// |
| 2131 | /// ``` |
| 2132 | /// #![feature(unsafe_cell_access)] |
| 2133 | /// use std::cell::UnsafeCell; |
| 2134 | /// |
| 2135 | /// let uc = UnsafeCell::new(5); |
| 2136 | /// |
| 2137 | /// let old = unsafe { uc.replace(10) }; |
| 2138 | /// assert_eq!(old, 5); |
| 2139 | /// ``` |
| 2140 | #[inline ] |
| 2141 | #[unstable (feature = "unsafe_cell_access" , issue = "136327" )] |
| 2142 | pub const unsafe fn replace(&self, value: T) -> T { |
| 2143 | // SAFETY: pointer comes from `&self` so naturally satisfies invariants. |
| 2144 | unsafe { ptr::replace(self.get(), value) } |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | impl<T: ?Sized> UnsafeCell<T> { |
| 2149 | /// Converts from `&mut T` to `&mut UnsafeCell<T>`. |
| 2150 | /// |
| 2151 | /// # Examples |
| 2152 | /// |
| 2153 | /// ``` |
| 2154 | /// use std::cell::UnsafeCell; |
| 2155 | /// |
| 2156 | /// let mut val = 42; |
| 2157 | /// let uc = UnsafeCell::from_mut(&mut val); |
| 2158 | /// |
| 2159 | /// *uc.get_mut() -= 1; |
| 2160 | /// assert_eq!(*uc.get_mut(), 41); |
| 2161 | /// ``` |
| 2162 | #[inline (always)] |
| 2163 | #[stable (feature = "unsafe_cell_from_mut" , since = "1.84.0" )] |
| 2164 | #[rustc_const_stable (feature = "unsafe_cell_from_mut" , since = "1.84.0" )] |
| 2165 | pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> { |
| 2166 | // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)]. |
| 2167 | unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) } |
| 2168 | } |
| 2169 | |
| 2170 | /// Gets a mutable pointer to the wrapped value. |
| 2171 | /// |
| 2172 | /// This can be cast to a pointer of any kind. When creating references, you must uphold the |
| 2173 | /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and |
| 2174 | /// caveats. |
| 2175 | /// |
| 2176 | /// # Examples |
| 2177 | /// |
| 2178 | /// ``` |
| 2179 | /// use std::cell::UnsafeCell; |
| 2180 | /// |
| 2181 | /// let uc = UnsafeCell::new(5); |
| 2182 | /// |
| 2183 | /// let five = uc.get(); |
| 2184 | /// ``` |
| 2185 | #[inline (always)] |
| 2186 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2187 | #[rustc_const_stable (feature = "const_unsafecell_get" , since = "1.32.0" )] |
| 2188 | #[rustc_as_ptr] |
| 2189 | #[rustc_never_returns_null_ptr ] |
| 2190 | pub const fn get(&self) -> *mut T { |
| 2191 | // We can just cast the pointer from `UnsafeCell<T>` to `T` because of |
| 2192 | // #[repr(transparent)]. This exploits std's special status, there is |
| 2193 | // no guarantee for user code that this will work in future versions of the compiler! |
| 2194 | self as *const UnsafeCell<T> as *const T as *mut T |
| 2195 | } |
| 2196 | |
| 2197 | /// Returns a mutable reference to the underlying data. |
| 2198 | /// |
| 2199 | /// This call borrows the `UnsafeCell` mutably (at compile-time) which |
| 2200 | /// guarantees that we possess the only reference. |
| 2201 | /// |
| 2202 | /// # Examples |
| 2203 | /// |
| 2204 | /// ``` |
| 2205 | /// use std::cell::UnsafeCell; |
| 2206 | /// |
| 2207 | /// let mut c = UnsafeCell::new(5); |
| 2208 | /// *c.get_mut() += 1; |
| 2209 | /// |
| 2210 | /// assert_eq!(*c.get_mut(), 6); |
| 2211 | /// ``` |
| 2212 | #[inline (always)] |
| 2213 | #[stable (feature = "unsafe_cell_get_mut" , since = "1.50.0" )] |
| 2214 | #[rustc_const_stable (feature = "const_unsafecell_get_mut" , since = "1.83.0" )] |
| 2215 | pub const fn get_mut(&mut self) -> &mut T { |
| 2216 | &mut self.value |
| 2217 | } |
| 2218 | |
| 2219 | /// Gets a mutable pointer to the wrapped value. |
| 2220 | /// The difference from [`get`] is that this function accepts a raw pointer, |
| 2221 | /// which is useful to avoid the creation of temporary references. |
| 2222 | /// |
| 2223 | /// This can be cast to a pointer of any kind. When creating references, you must uphold the |
| 2224 | /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and |
| 2225 | /// caveats. |
| 2226 | /// |
| 2227 | /// [`get`]: UnsafeCell::get() |
| 2228 | /// |
| 2229 | /// # Examples |
| 2230 | /// |
| 2231 | /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as |
| 2232 | /// calling `get` would require creating a reference to uninitialized data: |
| 2233 | /// |
| 2234 | /// ``` |
| 2235 | /// use std::cell::UnsafeCell; |
| 2236 | /// use std::mem::MaybeUninit; |
| 2237 | /// |
| 2238 | /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit(); |
| 2239 | /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); } |
| 2240 | /// // avoid below which references to uninitialized data |
| 2241 | /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); } |
| 2242 | /// let uc = unsafe { m.assume_init() }; |
| 2243 | /// |
| 2244 | /// assert_eq!(uc.into_inner(), 5); |
| 2245 | /// ``` |
| 2246 | #[inline (always)] |
| 2247 | #[stable (feature = "unsafe_cell_raw_get" , since = "1.56.0" )] |
| 2248 | #[rustc_const_stable (feature = "unsafe_cell_raw_get" , since = "1.56.0" )] |
| 2249 | #[rustc_diagnostic_item = "unsafe_cell_raw_get" ] |
| 2250 | pub const fn raw_get(this: *const Self) -> *mut T { |
| 2251 | // We can just cast the pointer from `UnsafeCell<T>` to `T` because of |
| 2252 | // #[repr(transparent)]. This exploits std's special status, there is |
| 2253 | // no guarantee for user code that this will work in future versions of the compiler! |
| 2254 | this as *const T as *mut T |
| 2255 | } |
| 2256 | |
| 2257 | /// Get a shared reference to the value within the `UnsafeCell`. |
| 2258 | /// |
| 2259 | /// # Safety |
| 2260 | /// |
| 2261 | /// - It is Undefined Behavior to call this while any mutable |
| 2262 | /// reference to the wrapped value is alive. |
| 2263 | /// - Mutating the wrapped value while the returned |
| 2264 | /// reference is alive is Undefined Behavior. |
| 2265 | /// |
| 2266 | /// # Examples |
| 2267 | /// |
| 2268 | /// ``` |
| 2269 | /// #![feature(unsafe_cell_access)] |
| 2270 | /// use std::cell::UnsafeCell; |
| 2271 | /// |
| 2272 | /// let uc = UnsafeCell::new(5); |
| 2273 | /// |
| 2274 | /// let val = unsafe { uc.as_ref_unchecked() }; |
| 2275 | /// assert_eq!(val, &5); |
| 2276 | /// ``` |
| 2277 | #[inline ] |
| 2278 | #[unstable (feature = "unsafe_cell_access" , issue = "136327" )] |
| 2279 | pub const unsafe fn as_ref_unchecked(&self) -> &T { |
| 2280 | // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants. |
| 2281 | unsafe { self.get().as_ref_unchecked() } |
| 2282 | } |
| 2283 | |
| 2284 | /// Get an exclusive reference to the value within the `UnsafeCell`. |
| 2285 | /// |
| 2286 | /// # Safety |
| 2287 | /// |
| 2288 | /// - It is Undefined Behavior to call this while any other |
| 2289 | /// reference(s) to the wrapped value are alive. |
| 2290 | /// - Mutating the wrapped value through other means while the |
| 2291 | /// returned reference is alive is Undefined Behavior. |
| 2292 | /// |
| 2293 | /// # Examples |
| 2294 | /// |
| 2295 | /// ``` |
| 2296 | /// #![feature(unsafe_cell_access)] |
| 2297 | /// use std::cell::UnsafeCell; |
| 2298 | /// |
| 2299 | /// let uc = UnsafeCell::new(5); |
| 2300 | /// |
| 2301 | /// unsafe { *uc.as_mut_unchecked() += 1; } |
| 2302 | /// assert_eq!(uc.into_inner(), 6); |
| 2303 | /// ``` |
| 2304 | #[inline ] |
| 2305 | #[unstable (feature = "unsafe_cell_access" , issue = "136327" )] |
| 2306 | #[allow (clippy::mut_from_ref)] |
| 2307 | pub const unsafe fn as_mut_unchecked(&self) -> &mut T { |
| 2308 | // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants. |
| 2309 | unsafe { self.get().as_mut_unchecked() } |
| 2310 | } |
| 2311 | } |
| 2312 | |
| 2313 | #[stable (feature = "unsafe_cell_default" , since = "1.10.0" )] |
| 2314 | impl<T: Default> Default for UnsafeCell<T> { |
| 2315 | /// Creates an `UnsafeCell`, with the `Default` value for T. |
| 2316 | fn default() -> UnsafeCell<T> { |
| 2317 | UnsafeCell::new(Default::default()) |
| 2318 | } |
| 2319 | } |
| 2320 | |
| 2321 | #[stable (feature = "cell_from" , since = "1.12.0" )] |
| 2322 | impl<T> From<T> for UnsafeCell<T> { |
| 2323 | /// Creates a new `UnsafeCell<T>` containing the given value. |
| 2324 | fn from(t: T) -> UnsafeCell<T> { |
| 2325 | UnsafeCell::new(t) |
| 2326 | } |
| 2327 | } |
| 2328 | |
| 2329 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 2330 | impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {} |
| 2331 | |
| 2332 | // Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn` |
| 2333 | // and become dyn-compatible method receivers. |
| 2334 | // Note that currently `UnsafeCell` itself cannot be a method receiver |
| 2335 | // because it does not implement Deref. |
| 2336 | // In other words: |
| 2337 | // `self: UnsafeCell<&Self>` won't work |
| 2338 | // `self: UnsafeCellWrapper<Self>` becomes possible |
| 2339 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 2340 | impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {} |
| 2341 | |
| 2342 | #[unstable (feature = "pointer_like_trait" , issue = "none" )] |
| 2343 | impl<T: PointerLike> PointerLike for UnsafeCell<T> {} |
| 2344 | |
| 2345 | /// [`UnsafeCell`], but [`Sync`]. |
| 2346 | /// |
| 2347 | /// This is just an `UnsafeCell`, except it implements `Sync` |
| 2348 | /// if `T` implements `Sync`. |
| 2349 | /// |
| 2350 | /// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use. |
| 2351 | /// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be |
| 2352 | /// shared between threads, if that's intentional. |
| 2353 | /// Providing proper synchronization is still the task of the user, |
| 2354 | /// making this type just as unsafe to use. |
| 2355 | /// |
| 2356 | /// See [`UnsafeCell`] for details. |
| 2357 | #[unstable (feature = "sync_unsafe_cell" , issue = "95439" )] |
| 2358 | #[repr (transparent)] |
| 2359 | #[rustc_diagnostic_item = "SyncUnsafeCell" ] |
| 2360 | #[rustc_pub_transparent] |
| 2361 | pub struct SyncUnsafeCell<T: ?Sized> { |
| 2362 | value: UnsafeCell<T>, |
| 2363 | } |
| 2364 | |
| 2365 | #[unstable (feature = "sync_unsafe_cell" , issue = "95439" )] |
| 2366 | unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {} |
| 2367 | |
| 2368 | #[unstable (feature = "sync_unsafe_cell" , issue = "95439" )] |
| 2369 | impl<T> SyncUnsafeCell<T> { |
| 2370 | /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value. |
| 2371 | #[inline ] |
| 2372 | pub const fn new(value: T) -> Self { |
| 2373 | Self { value: UnsafeCell { value } } |
| 2374 | } |
| 2375 | |
| 2376 | /// Unwraps the value, consuming the cell. |
| 2377 | #[inline ] |
| 2378 | #[rustc_const_unstable (feature = "sync_unsafe_cell" , issue = "95439" )] |
| 2379 | pub const fn into_inner(self) -> T { |
| 2380 | self.value.into_inner() |
| 2381 | } |
| 2382 | } |
| 2383 | |
| 2384 | #[unstable (feature = "sync_unsafe_cell" , issue = "95439" )] |
| 2385 | impl<T: ?Sized> SyncUnsafeCell<T> { |
| 2386 | /// Gets a mutable pointer to the wrapped value. |
| 2387 | /// |
| 2388 | /// This can be cast to a pointer of any kind. |
| 2389 | /// Ensure that the access is unique (no active references, mutable or not) |
| 2390 | /// when casting to `&mut T`, and ensure that there are no mutations |
| 2391 | /// or mutable aliases going on when casting to `&T` |
| 2392 | #[inline ] |
| 2393 | #[rustc_as_ptr] |
| 2394 | #[rustc_never_returns_null_ptr ] |
| 2395 | pub const fn get(&self) -> *mut T { |
| 2396 | self.value.get() |
| 2397 | } |
| 2398 | |
| 2399 | /// Returns a mutable reference to the underlying data. |
| 2400 | /// |
| 2401 | /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which |
| 2402 | /// guarantees that we possess the only reference. |
| 2403 | #[inline ] |
| 2404 | pub const fn get_mut(&mut self) -> &mut T { |
| 2405 | self.value.get_mut() |
| 2406 | } |
| 2407 | |
| 2408 | /// Gets a mutable pointer to the wrapped value. |
| 2409 | /// |
| 2410 | /// See [`UnsafeCell::get`] for details. |
| 2411 | #[inline ] |
| 2412 | pub const fn raw_get(this: *const Self) -> *mut T { |
| 2413 | // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because |
| 2414 | // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell. |
| 2415 | // See UnsafeCell::raw_get. |
| 2416 | this as *const T as *mut T |
| 2417 | } |
| 2418 | } |
| 2419 | |
| 2420 | #[unstable (feature = "sync_unsafe_cell" , issue = "95439" )] |
| 2421 | impl<T: Default> Default for SyncUnsafeCell<T> { |
| 2422 | /// Creates an `SyncUnsafeCell`, with the `Default` value for T. |
| 2423 | fn default() -> SyncUnsafeCell<T> { |
| 2424 | SyncUnsafeCell::new(Default::default()) |
| 2425 | } |
| 2426 | } |
| 2427 | |
| 2428 | #[unstable (feature = "sync_unsafe_cell" , issue = "95439" )] |
| 2429 | impl<T> From<T> for SyncUnsafeCell<T> { |
| 2430 | /// Creates a new `SyncUnsafeCell<T>` containing the given value. |
| 2431 | fn from(t: T) -> SyncUnsafeCell<T> { |
| 2432 | SyncUnsafeCell::new(t) |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 2437 | //#[unstable(feature = "sync_unsafe_cell", issue = "95439")] |
| 2438 | impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {} |
| 2439 | |
| 2440 | // Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn` |
| 2441 | // and become dyn-compatible method receivers. |
| 2442 | // Note that currently `SyncUnsafeCell` itself cannot be a method receiver |
| 2443 | // because it does not implement Deref. |
| 2444 | // In other words: |
| 2445 | // `self: SyncUnsafeCell<&Self>` won't work |
| 2446 | // `self: SyncUnsafeCellWrapper<Self>` becomes possible |
| 2447 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 2448 | //#[unstable(feature = "sync_unsafe_cell", issue = "95439")] |
| 2449 | impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {} |
| 2450 | |
| 2451 | #[unstable (feature = "pointer_like_trait" , issue = "none" )] |
| 2452 | impl<T: PointerLike> PointerLike for SyncUnsafeCell<T> {} |
| 2453 | |
| 2454 | #[allow (unused)] |
| 2455 | fn assert_coerce_unsized( |
| 2456 | a: UnsafeCell<&i32>, |
| 2457 | b: SyncUnsafeCell<&i32>, |
| 2458 | c: Cell<&i32>, |
| 2459 | d: RefCell<&i32>, |
| 2460 | ) { |
| 2461 | let _: UnsafeCell<&dyn Send> = a; |
| 2462 | let _: SyncUnsafeCell<&dyn Send> = b; |
| 2463 | let _: Cell<&dyn Send> = c; |
| 2464 | let _: RefCell<&dyn Send> = d; |
| 2465 | } |
| 2466 | |
| 2467 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2468 | unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {} |
| 2469 | |
| 2470 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2471 | unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {} |
| 2472 | |
| 2473 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2474 | unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {} |
| 2475 | |
| 2476 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2477 | unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {} |
| 2478 | |
| 2479 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2480 | unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {} |
| 2481 | |
| 2482 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2483 | unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {} |
| 2484 | |