| 1 | //! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference |
| 2 | //! Counted'. |
| 3 | //! |
| 4 | //! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`, |
| 5 | //! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new |
| 6 | //! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a |
| 7 | //! given allocation is destroyed, the value stored in that allocation (often |
| 8 | //! referred to as "inner value") is also dropped. |
| 9 | //! |
| 10 | //! Shared references in Rust disallow mutation by default, and [`Rc`] |
| 11 | //! is no exception: you cannot generally obtain a mutable reference to |
| 12 | //! something inside an [`Rc`]. If you need mutability, put a [`Cell`] |
| 13 | //! or [`RefCell`] inside the [`Rc`]; see [an example of mutability |
| 14 | //! inside an `Rc`][mutability]. |
| 15 | //! |
| 16 | //! [`Rc`] uses non-atomic reference counting. This means that overhead is very |
| 17 | //! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`] |
| 18 | //! does not implement [`Send`]. As a result, the Rust compiler |
| 19 | //! will check *at compile time* that you are not sending [`Rc`]s between |
| 20 | //! threads. If you need multi-threaded, atomic reference counting, use |
| 21 | //! [`sync::Arc`][arc]. |
| 22 | //! |
| 23 | //! The [`downgrade`][downgrade] method can be used to create a non-owning |
| 24 | //! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d |
| 25 | //! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has |
| 26 | //! already been dropped. In other words, `Weak` pointers do not keep the value |
| 27 | //! inside the allocation alive; however, they *do* keep the allocation |
| 28 | //! (the backing store for the inner value) alive. |
| 29 | //! |
| 30 | //! A cycle between [`Rc`] pointers will never be deallocated. For this reason, |
| 31 | //! [`Weak`] is used to break cycles. For example, a tree could have strong |
| 32 | //! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from |
| 33 | //! children back to their parents. |
| 34 | //! |
| 35 | //! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait), |
| 36 | //! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name |
| 37 | //! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated |
| 38 | //! functions, called using [fully qualified syntax]: |
| 39 | //! |
| 40 | //! ``` |
| 41 | //! use std::rc::Rc; |
| 42 | //! |
| 43 | //! let my_rc = Rc::new(()); |
| 44 | //! let my_weak = Rc::downgrade(&my_rc); |
| 45 | //! ``` |
| 46 | //! |
| 47 | //! `Rc<T>`'s implementations of traits like `Clone` may also be called using |
| 48 | //! fully qualified syntax. Some people prefer to use fully qualified syntax, |
| 49 | //! while others prefer using method-call syntax. |
| 50 | //! |
| 51 | //! ``` |
| 52 | //! use std::rc::Rc; |
| 53 | //! |
| 54 | //! let rc = Rc::new(()); |
| 55 | //! // Method-call syntax |
| 56 | //! let rc2 = rc.clone(); |
| 57 | //! // Fully qualified syntax |
| 58 | //! let rc3 = Rc::clone(&rc); |
| 59 | //! ``` |
| 60 | //! |
| 61 | //! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have |
| 62 | //! already been dropped. |
| 63 | //! |
| 64 | //! # Cloning references |
| 65 | //! |
| 66 | //! Creating a new reference to the same allocation as an existing reference counted pointer |
| 67 | //! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`]. |
| 68 | //! |
| 69 | //! ``` |
| 70 | //! use std::rc::Rc; |
| 71 | //! |
| 72 | //! let foo = Rc::new(vec![1.0, 2.0, 3.0]); |
| 73 | //! // The two syntaxes below are equivalent. |
| 74 | //! let a = foo.clone(); |
| 75 | //! let b = Rc::clone(&foo); |
| 76 | //! // a and b both point to the same memory location as foo. |
| 77 | //! ``` |
| 78 | //! |
| 79 | //! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly |
| 80 | //! the meaning of the code. In the example above, this syntax makes it easier to see that |
| 81 | //! this code is creating a new reference rather than copying the whole content of foo. |
| 82 | //! |
| 83 | //! # Examples |
| 84 | //! |
| 85 | //! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`. |
| 86 | //! We want to have our `Gadget`s point to their `Owner`. We can't do this with |
| 87 | //! unique ownership, because more than one gadget may belong to the same |
| 88 | //! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s, |
| 89 | //! and have the `Owner` remain allocated as long as any `Gadget` points at it. |
| 90 | //! |
| 91 | //! ``` |
| 92 | //! use std::rc::Rc; |
| 93 | //! |
| 94 | //! struct Owner { |
| 95 | //! name: String, |
| 96 | //! // ...other fields |
| 97 | //! } |
| 98 | //! |
| 99 | //! struct Gadget { |
| 100 | //! id: i32, |
| 101 | //! owner: Rc<Owner>, |
| 102 | //! // ...other fields |
| 103 | //! } |
| 104 | //! |
| 105 | //! fn main() { |
| 106 | //! // Create a reference-counted `Owner`. |
| 107 | //! let gadget_owner: Rc<Owner> = Rc::new( |
| 108 | //! Owner { |
| 109 | //! name: "Gadget Man" .to_string(), |
| 110 | //! } |
| 111 | //! ); |
| 112 | //! |
| 113 | //! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>` |
| 114 | //! // gives us a new pointer to the same `Owner` allocation, incrementing |
| 115 | //! // the reference count in the process. |
| 116 | //! let gadget1 = Gadget { |
| 117 | //! id: 1, |
| 118 | //! owner: Rc::clone(&gadget_owner), |
| 119 | //! }; |
| 120 | //! let gadget2 = Gadget { |
| 121 | //! id: 2, |
| 122 | //! owner: Rc::clone(&gadget_owner), |
| 123 | //! }; |
| 124 | //! |
| 125 | //! // Dispose of our local variable `gadget_owner`. |
| 126 | //! drop(gadget_owner); |
| 127 | //! |
| 128 | //! // Despite dropping `gadget_owner`, we're still able to print out the name |
| 129 | //! // of the `Owner` of the `Gadget`s. This is because we've only dropped a |
| 130 | //! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are |
| 131 | //! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain |
| 132 | //! // live. The field projection `gadget1.owner.name` works because |
| 133 | //! // `Rc<Owner>` automatically dereferences to `Owner`. |
| 134 | //! println!("Gadget {} owned by {}" , gadget1.id, gadget1.owner.name); |
| 135 | //! println!("Gadget {} owned by {}" , gadget2.id, gadget2.owner.name); |
| 136 | //! |
| 137 | //! // At the end of the function, `gadget1` and `gadget2` are destroyed, and |
| 138 | //! // with them the last counted references to our `Owner`. Gadget Man now |
| 139 | //! // gets destroyed as well. |
| 140 | //! } |
| 141 | //! ``` |
| 142 | //! |
| 143 | //! If our requirements change, and we also need to be able to traverse from |
| 144 | //! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner` |
| 145 | //! to `Gadget` introduces a cycle. This means that their |
| 146 | //! reference counts can never reach 0, and the allocation will never be destroyed: |
| 147 | //! a memory leak. In order to get around this, we can use [`Weak`] |
| 148 | //! pointers. |
| 149 | //! |
| 150 | //! Rust actually makes it somewhat difficult to produce this loop in the first |
| 151 | //! place. In order to end up with two values that point at each other, one of |
| 152 | //! them needs to be mutable. This is difficult because [`Rc`] enforces |
| 153 | //! memory safety by only giving out shared references to the value it wraps, |
| 154 | //! and these don't allow direct mutation. We need to wrap the part of the |
| 155 | //! value we wish to mutate in a [`RefCell`], which provides *interior |
| 156 | //! mutability*: a method to achieve mutability through a shared reference. |
| 157 | //! [`RefCell`] enforces Rust's borrowing rules at runtime. |
| 158 | //! |
| 159 | //! ``` |
| 160 | //! use std::rc::Rc; |
| 161 | //! use std::rc::Weak; |
| 162 | //! use std::cell::RefCell; |
| 163 | //! |
| 164 | //! struct Owner { |
| 165 | //! name: String, |
| 166 | //! gadgets: RefCell<Vec<Weak<Gadget>>>, |
| 167 | //! // ...other fields |
| 168 | //! } |
| 169 | //! |
| 170 | //! struct Gadget { |
| 171 | //! id: i32, |
| 172 | //! owner: Rc<Owner>, |
| 173 | //! // ...other fields |
| 174 | //! } |
| 175 | //! |
| 176 | //! fn main() { |
| 177 | //! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s |
| 178 | //! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through |
| 179 | //! // a shared reference. |
| 180 | //! let gadget_owner: Rc<Owner> = Rc::new( |
| 181 | //! Owner { |
| 182 | //! name: "Gadget Man" .to_string(), |
| 183 | //! gadgets: RefCell::new(vec![]), |
| 184 | //! } |
| 185 | //! ); |
| 186 | //! |
| 187 | //! // Create `Gadget`s belonging to `gadget_owner`, as before. |
| 188 | //! let gadget1 = Rc::new( |
| 189 | //! Gadget { |
| 190 | //! id: 1, |
| 191 | //! owner: Rc::clone(&gadget_owner), |
| 192 | //! } |
| 193 | //! ); |
| 194 | //! let gadget2 = Rc::new( |
| 195 | //! Gadget { |
| 196 | //! id: 2, |
| 197 | //! owner: Rc::clone(&gadget_owner), |
| 198 | //! } |
| 199 | //! ); |
| 200 | //! |
| 201 | //! // Add the `Gadget`s to their `Owner`. |
| 202 | //! { |
| 203 | //! let mut gadgets = gadget_owner.gadgets.borrow_mut(); |
| 204 | //! gadgets.push(Rc::downgrade(&gadget1)); |
| 205 | //! gadgets.push(Rc::downgrade(&gadget2)); |
| 206 | //! |
| 207 | //! // `RefCell` dynamic borrow ends here. |
| 208 | //! } |
| 209 | //! |
| 210 | //! // Iterate over our `Gadget`s, printing their details out. |
| 211 | //! for gadget_weak in gadget_owner.gadgets.borrow().iter() { |
| 212 | //! |
| 213 | //! // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't |
| 214 | //! // guarantee the allocation still exists, we need to call |
| 215 | //! // `upgrade`, which returns an `Option<Rc<Gadget>>`. |
| 216 | //! // |
| 217 | //! // In this case we know the allocation still exists, so we simply |
| 218 | //! // `unwrap` the `Option`. In a more complicated program, you might |
| 219 | //! // need graceful error handling for a `None` result. |
| 220 | //! |
| 221 | //! let gadget = gadget_weak.upgrade().unwrap(); |
| 222 | //! println!("Gadget {} owned by {}" , gadget.id, gadget.owner.name); |
| 223 | //! } |
| 224 | //! |
| 225 | //! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2` |
| 226 | //! // are destroyed. There are now no strong (`Rc`) pointers to the |
| 227 | //! // gadgets, so they are destroyed. This zeroes the reference count on |
| 228 | //! // Gadget Man, so he gets destroyed as well. |
| 229 | //! } |
| 230 | //! ``` |
| 231 | //! |
| 232 | //! [clone]: Clone::clone |
| 233 | //! [`Cell`]: core::cell::Cell |
| 234 | //! [`RefCell`]: core::cell::RefCell |
| 235 | //! [arc]: crate::sync::Arc |
| 236 | //! [`Deref`]: core::ops::Deref |
| 237 | //! [downgrade]: Rc::downgrade |
| 238 | //! [upgrade]: Weak::upgrade |
| 239 | //! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable |
| 240 | //! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name |
| 241 | |
| 242 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 243 | |
| 244 | use core::any::Any; |
| 245 | use core::cell::Cell; |
| 246 | #[cfg (not(no_global_oom_handling))] |
| 247 | use core::clone::CloneToUninit; |
| 248 | use core::clone::UseCloned; |
| 249 | use core::cmp::Ordering; |
| 250 | use core::hash::{Hash, Hasher}; |
| 251 | use core::intrinsics::abort; |
| 252 | #[cfg (not(no_global_oom_handling))] |
| 253 | use core::iter; |
| 254 | use core::marker::{PhantomData, Unsize}; |
| 255 | use core::mem::{self, ManuallyDrop, align_of_val_raw}; |
| 256 | use core::num::NonZeroUsize; |
| 257 | use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver}; |
| 258 | use core::panic::{RefUnwindSafe, UnwindSafe}; |
| 259 | #[cfg (not(no_global_oom_handling))] |
| 260 | use core::pin::Pin; |
| 261 | use core::pin::PinCoerceUnsized; |
| 262 | use core::ptr::{self, NonNull, drop_in_place}; |
| 263 | #[cfg (not(no_global_oom_handling))] |
| 264 | use core::slice::from_raw_parts_mut; |
| 265 | use core::{borrow, fmt, hint}; |
| 266 | |
| 267 | #[cfg (not(no_global_oom_handling))] |
| 268 | use crate::alloc::handle_alloc_error; |
| 269 | use crate::alloc::{AllocError, Allocator, Global, Layout}; |
| 270 | use crate::borrow::{Cow, ToOwned}; |
| 271 | use crate::boxed::Box; |
| 272 | #[cfg (not(no_global_oom_handling))] |
| 273 | use crate::string::String; |
| 274 | #[cfg (not(no_global_oom_handling))] |
| 275 | use crate::vec::Vec; |
| 276 | |
| 277 | // This is repr(C) to future-proof against possible field-reordering, which |
| 278 | // would interfere with otherwise safe [into|from]_raw() of transmutable |
| 279 | // inner types. |
| 280 | #[repr (C)] |
| 281 | struct RcInner<T: ?Sized> { |
| 282 | strong: Cell<usize>, |
| 283 | weak: Cell<usize>, |
| 284 | value: T, |
| 285 | } |
| 286 | |
| 287 | /// Calculate layout for `RcInner<T>` using the inner value's layout |
| 288 | fn rc_inner_layout_for_value_layout(layout: Layout) -> Layout { |
| 289 | // Calculate layout using the given value layout. |
| 290 | // Previously, layout was calculated on the expression |
| 291 | // `&*(ptr as *const RcInner<T>)`, but this created a misaligned |
| 292 | // reference (see #54908). |
| 293 | Layout::new::<RcInner<()>>().extend(next:layout).unwrap().0.pad_to_align() |
| 294 | } |
| 295 | |
| 296 | /// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference |
| 297 | /// Counted'. |
| 298 | /// |
| 299 | /// See the [module-level documentation](./index.html) for more details. |
| 300 | /// |
| 301 | /// The inherent methods of `Rc` are all associated functions, which means |
| 302 | /// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of |
| 303 | /// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`. |
| 304 | /// |
| 305 | /// [get_mut]: Rc::get_mut |
| 306 | #[doc (search_unbox)] |
| 307 | #[rustc_diagnostic_item = "Rc" ] |
| 308 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 309 | #[rustc_insignificant_dtor ] |
| 310 | pub struct Rc< |
| 311 | T: ?Sized, |
| 312 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 313 | > { |
| 314 | ptr: NonNull<RcInner<T>>, |
| 315 | phantom: PhantomData<RcInner<T>>, |
| 316 | alloc: A, |
| 317 | } |
| 318 | |
| 319 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 320 | impl<T: ?Sized, A: Allocator> !Send for Rc<T, A> {} |
| 321 | |
| 322 | // Note that this negative impl isn't strictly necessary for correctness, |
| 323 | // as `Rc` transitively contains a `Cell`, which is itself `!Sync`. |
| 324 | // However, given how important `Rc`'s `!Sync`-ness is, |
| 325 | // having an explicit negative impl is nice for documentation purposes |
| 326 | // and results in nicer error messages. |
| 327 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 328 | impl<T: ?Sized, A: Allocator> !Sync for Rc<T, A> {} |
| 329 | |
| 330 | #[stable (feature = "catch_unwind" , since = "1.9.0" )] |
| 331 | impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Rc<T, A> {} |
| 332 | #[stable (feature = "rc_ref_unwind_safe" , since = "1.58.0" )] |
| 333 | impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> RefUnwindSafe for Rc<T, A> {} |
| 334 | |
| 335 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 336 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Rc<U, A>> for Rc<T, A> {} |
| 337 | |
| 338 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 339 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {} |
| 340 | |
| 341 | impl<T: ?Sized> Rc<T> { |
| 342 | #[inline ] |
| 343 | unsafe fn from_inner(ptr: NonNull<RcInner<T>>) -> Self { |
| 344 | unsafe { Self::from_inner_in(ptr, alloc:Global) } |
| 345 | } |
| 346 | |
| 347 | #[inline ] |
| 348 | unsafe fn from_ptr(ptr: *mut RcInner<T>) -> Self { |
| 349 | unsafe { Self::from_inner(ptr:NonNull::new_unchecked(ptr)) } |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | impl<T: ?Sized, A: Allocator> Rc<T, A> { |
| 354 | #[inline (always)] |
| 355 | fn inner(&self) -> &RcInner<T> { |
| 356 | // This unsafety is ok because while this Rc is alive we're guaranteed |
| 357 | // that the inner pointer is valid. |
| 358 | unsafe { self.ptr.as_ref() } |
| 359 | } |
| 360 | |
| 361 | #[inline ] |
| 362 | fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) { |
| 363 | let this = mem::ManuallyDrop::new(this); |
| 364 | (this.ptr, unsafe { ptr::read(&this.alloc) }) |
| 365 | } |
| 366 | |
| 367 | #[inline ] |
| 368 | unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self { |
| 369 | Self { ptr, phantom: PhantomData, alloc } |
| 370 | } |
| 371 | |
| 372 | #[inline ] |
| 373 | unsafe fn from_ptr_in(ptr: *mut RcInner<T>, alloc: A) -> Self { |
| 374 | unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) } |
| 375 | } |
| 376 | |
| 377 | // Non-inlined part of `drop`. |
| 378 | #[inline (never)] |
| 379 | unsafe fn drop_slow(&mut self) { |
| 380 | // Reconstruct the "strong weak" pointer and drop it when this |
| 381 | // variable goes out of scope. This ensures that the memory is |
| 382 | // deallocated even if the destructor of `T` panics. |
| 383 | let _weak = Weak { ptr: self.ptr, alloc: &self.alloc }; |
| 384 | |
| 385 | // Destroy the contained object. |
| 386 | // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed. |
| 387 | unsafe { |
| 388 | ptr::drop_in_place(&mut (*self.ptr.as_ptr()).value); |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | impl<T> Rc<T> { |
| 394 | /// Constructs a new `Rc<T>`. |
| 395 | /// |
| 396 | /// # Examples |
| 397 | /// |
| 398 | /// ``` |
| 399 | /// use std::rc::Rc; |
| 400 | /// |
| 401 | /// let five = Rc::new(5); |
| 402 | /// ``` |
| 403 | #[cfg (not(no_global_oom_handling))] |
| 404 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 405 | pub fn new(value: T) -> Rc<T> { |
| 406 | // There is an implicit weak pointer owned by all the strong |
| 407 | // pointers, which ensures that the weak destructor never frees |
| 408 | // the allocation while the strong destructor is running, even |
| 409 | // if the weak pointer is stored inside the strong one. |
| 410 | unsafe { |
| 411 | Self::from_inner( |
| 412 | Box::leak(Box::new(RcInner { strong: Cell::new(1), weak: Cell::new(1), value })) |
| 413 | .into(), |
| 414 | ) |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation, |
| 419 | /// to allow you to construct a `T` which holds a weak pointer to itself. |
| 420 | /// |
| 421 | /// Generally, a structure circularly referencing itself, either directly or |
| 422 | /// indirectly, should not hold a strong reference to itself to prevent a memory leak. |
| 423 | /// Using this function, you get access to the weak pointer during the |
| 424 | /// initialization of `T`, before the `Rc<T>` is created, such that you can |
| 425 | /// clone and store it inside the `T`. |
| 426 | /// |
| 427 | /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`, |
| 428 | /// then calls your closure, giving it a `Weak<T>` to this allocation, |
| 429 | /// and only afterwards completes the construction of the `Rc<T>` by placing |
| 430 | /// the `T` returned from your closure into the allocation. |
| 431 | /// |
| 432 | /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic` |
| 433 | /// returns, calling [`upgrade`] on the weak reference inside your closure will |
| 434 | /// fail and result in a `None` value. |
| 435 | /// |
| 436 | /// # Panics |
| 437 | /// |
| 438 | /// If `data_fn` panics, the panic is propagated to the caller, and the |
| 439 | /// temporary [`Weak<T>`] is dropped normally. |
| 440 | /// |
| 441 | /// # Examples |
| 442 | /// |
| 443 | /// ``` |
| 444 | /// # #![allow (dead_code)] |
| 445 | /// use std::rc::{Rc, Weak}; |
| 446 | /// |
| 447 | /// struct Gadget { |
| 448 | /// me: Weak<Gadget>, |
| 449 | /// } |
| 450 | /// |
| 451 | /// impl Gadget { |
| 452 | /// /// Constructs a reference counted Gadget. |
| 453 | /// fn new() -> Rc<Self> { |
| 454 | /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the |
| 455 | /// // `Rc` we're constructing. |
| 456 | /// Rc::new_cyclic(|me| { |
| 457 | /// // Create the actual struct here. |
| 458 | /// Gadget { me: me.clone() } |
| 459 | /// }) |
| 460 | /// } |
| 461 | /// |
| 462 | /// /// Returns a reference counted pointer to Self. |
| 463 | /// fn me(&self) -> Rc<Self> { |
| 464 | /// self.me.upgrade().unwrap() |
| 465 | /// } |
| 466 | /// } |
| 467 | /// ``` |
| 468 | /// [`upgrade`]: Weak::upgrade |
| 469 | #[cfg (not(no_global_oom_handling))] |
| 470 | #[stable (feature = "arc_new_cyclic" , since = "1.60.0" )] |
| 471 | pub fn new_cyclic<F>(data_fn: F) -> Rc<T> |
| 472 | where |
| 473 | F: FnOnce(&Weak<T>) -> T, |
| 474 | { |
| 475 | Self::new_cyclic_in(data_fn, Global) |
| 476 | } |
| 477 | |
| 478 | /// Constructs a new `Rc` with uninitialized contents. |
| 479 | /// |
| 480 | /// # Examples |
| 481 | /// |
| 482 | /// ``` |
| 483 | /// #![feature(get_mut_unchecked)] |
| 484 | /// |
| 485 | /// use std::rc::Rc; |
| 486 | /// |
| 487 | /// let mut five = Rc::<u32>::new_uninit(); |
| 488 | /// |
| 489 | /// // Deferred initialization: |
| 490 | /// Rc::get_mut(&mut five).unwrap().write(5); |
| 491 | /// |
| 492 | /// let five = unsafe { five.assume_init() }; |
| 493 | /// |
| 494 | /// assert_eq!(*five, 5) |
| 495 | /// ``` |
| 496 | #[cfg (not(no_global_oom_handling))] |
| 497 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 498 | #[must_use ] |
| 499 | pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> { |
| 500 | unsafe { |
| 501 | Rc::from_ptr(Rc::allocate_for_layout( |
| 502 | Layout::new::<T>(), |
| 503 | |layout| Global.allocate(layout), |
| 504 | <*mut u8>::cast, |
| 505 | )) |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
| 510 | /// being filled with `0` bytes. |
| 511 | /// |
| 512 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 513 | /// incorrect usage of this method. |
| 514 | /// |
| 515 | /// # Examples |
| 516 | /// |
| 517 | /// ``` |
| 518 | /// #![feature(new_zeroed_alloc)] |
| 519 | /// |
| 520 | /// use std::rc::Rc; |
| 521 | /// |
| 522 | /// let zero = Rc::<u32>::new_zeroed(); |
| 523 | /// let zero = unsafe { zero.assume_init() }; |
| 524 | /// |
| 525 | /// assert_eq!(*zero, 0) |
| 526 | /// ``` |
| 527 | /// |
| 528 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 529 | #[cfg (not(no_global_oom_handling))] |
| 530 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
| 531 | #[must_use ] |
| 532 | pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> { |
| 533 | unsafe { |
| 534 | Rc::from_ptr(Rc::allocate_for_layout( |
| 535 | Layout::new::<T>(), |
| 536 | |layout| Global.allocate_zeroed(layout), |
| 537 | <*mut u8>::cast, |
| 538 | )) |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | /// Constructs a new `Rc<T>`, returning an error if the allocation fails |
| 543 | /// |
| 544 | /// # Examples |
| 545 | /// |
| 546 | /// ``` |
| 547 | /// #![feature(allocator_api)] |
| 548 | /// use std::rc::Rc; |
| 549 | /// |
| 550 | /// let five = Rc::try_new(5); |
| 551 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 552 | /// ``` |
| 553 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 554 | pub fn try_new(value: T) -> Result<Rc<T>, AllocError> { |
| 555 | // There is an implicit weak pointer owned by all the strong |
| 556 | // pointers, which ensures that the weak destructor never frees |
| 557 | // the allocation while the strong destructor is running, even |
| 558 | // if the weak pointer is stored inside the strong one. |
| 559 | unsafe { |
| 560 | Ok(Self::from_inner( |
| 561 | Box::leak(Box::try_new(RcInner { |
| 562 | strong: Cell::new(1), |
| 563 | weak: Cell::new(1), |
| 564 | value, |
| 565 | })?) |
| 566 | .into(), |
| 567 | )) |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails |
| 572 | /// |
| 573 | /// # Examples |
| 574 | /// |
| 575 | /// ``` |
| 576 | /// #![feature(allocator_api)] |
| 577 | /// #![feature(get_mut_unchecked)] |
| 578 | /// |
| 579 | /// use std::rc::Rc; |
| 580 | /// |
| 581 | /// let mut five = Rc::<u32>::try_new_uninit()?; |
| 582 | /// |
| 583 | /// // Deferred initialization: |
| 584 | /// Rc::get_mut(&mut five).unwrap().write(5); |
| 585 | /// |
| 586 | /// let five = unsafe { five.assume_init() }; |
| 587 | /// |
| 588 | /// assert_eq!(*five, 5); |
| 589 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 590 | /// ``` |
| 591 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 592 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 593 | pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> { |
| 594 | unsafe { |
| 595 | Ok(Rc::from_ptr(Rc::try_allocate_for_layout( |
| 596 | Layout::new::<T>(), |
| 597 | |layout| Global.allocate(layout), |
| 598 | <*mut u8>::cast, |
| 599 | )?)) |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
| 604 | /// being filled with `0` bytes, returning an error if the allocation fails |
| 605 | /// |
| 606 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 607 | /// incorrect usage of this method. |
| 608 | /// |
| 609 | /// # Examples |
| 610 | /// |
| 611 | /// ``` |
| 612 | /// #![feature(allocator_api)] |
| 613 | /// |
| 614 | /// use std::rc::Rc; |
| 615 | /// |
| 616 | /// let zero = Rc::<u32>::try_new_zeroed()?; |
| 617 | /// let zero = unsafe { zero.assume_init() }; |
| 618 | /// |
| 619 | /// assert_eq!(*zero, 0); |
| 620 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 621 | /// ``` |
| 622 | /// |
| 623 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 624 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 625 | //#[unstable(feature = "new_uninit", issue = "63291")] |
| 626 | pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> { |
| 627 | unsafe { |
| 628 | Ok(Rc::from_ptr(Rc::try_allocate_for_layout( |
| 629 | Layout::new::<T>(), |
| 630 | |layout| Global.allocate_zeroed(layout), |
| 631 | <*mut u8>::cast, |
| 632 | )?)) |
| 633 | } |
| 634 | } |
| 635 | /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then |
| 636 | /// `value` will be pinned in memory and unable to be moved. |
| 637 | #[cfg (not(no_global_oom_handling))] |
| 638 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 639 | #[must_use ] |
| 640 | pub fn pin(value: T) -> Pin<Rc<T>> { |
| 641 | unsafe { Pin::new_unchecked(Rc::new(value)) } |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | impl<T, A: Allocator> Rc<T, A> { |
| 646 | /// Constructs a new `Rc` in the provided allocator. |
| 647 | /// |
| 648 | /// # Examples |
| 649 | /// |
| 650 | /// ``` |
| 651 | /// #![feature(allocator_api)] |
| 652 | /// use std::rc::Rc; |
| 653 | /// use std::alloc::System; |
| 654 | /// |
| 655 | /// let five = Rc::new_in(5, System); |
| 656 | /// ``` |
| 657 | #[cfg (not(no_global_oom_handling))] |
| 658 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 659 | #[inline ] |
| 660 | pub fn new_in(value: T, alloc: A) -> Rc<T, A> { |
| 661 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. |
| 662 | // That would make code size bigger. |
| 663 | match Self::try_new_in(value, alloc) { |
| 664 | Ok(m) => m, |
| 665 | Err(_) => handle_alloc_error(Layout::new::<RcInner<T>>()), |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | /// Constructs a new `Rc` with uninitialized contents in the provided allocator. |
| 670 | /// |
| 671 | /// # Examples |
| 672 | /// |
| 673 | /// ``` |
| 674 | /// #![feature(get_mut_unchecked)] |
| 675 | /// #![feature(allocator_api)] |
| 676 | /// |
| 677 | /// use std::rc::Rc; |
| 678 | /// use std::alloc::System; |
| 679 | /// |
| 680 | /// let mut five = Rc::<u32, _>::new_uninit_in(System); |
| 681 | /// |
| 682 | /// let five = unsafe { |
| 683 | /// // Deferred initialization: |
| 684 | /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
| 685 | /// |
| 686 | /// five.assume_init() |
| 687 | /// }; |
| 688 | /// |
| 689 | /// assert_eq!(*five, 5) |
| 690 | /// ``` |
| 691 | #[cfg (not(no_global_oom_handling))] |
| 692 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 693 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 694 | #[inline ] |
| 695 | pub fn new_uninit_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> { |
| 696 | unsafe { |
| 697 | Rc::from_ptr_in( |
| 698 | Rc::allocate_for_layout( |
| 699 | Layout::new::<T>(), |
| 700 | |layout| alloc.allocate(layout), |
| 701 | <*mut u8>::cast, |
| 702 | ), |
| 703 | alloc, |
| 704 | ) |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
| 709 | /// being filled with `0` bytes, in the provided allocator. |
| 710 | /// |
| 711 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 712 | /// incorrect usage of this method. |
| 713 | /// |
| 714 | /// # Examples |
| 715 | /// |
| 716 | /// ``` |
| 717 | /// #![feature(allocator_api)] |
| 718 | /// |
| 719 | /// use std::rc::Rc; |
| 720 | /// use std::alloc::System; |
| 721 | /// |
| 722 | /// let zero = Rc::<u32, _>::new_zeroed_in(System); |
| 723 | /// let zero = unsafe { zero.assume_init() }; |
| 724 | /// |
| 725 | /// assert_eq!(*zero, 0) |
| 726 | /// ``` |
| 727 | /// |
| 728 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 729 | #[cfg (not(no_global_oom_handling))] |
| 730 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 731 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 732 | #[inline ] |
| 733 | pub fn new_zeroed_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> { |
| 734 | unsafe { |
| 735 | Rc::from_ptr_in( |
| 736 | Rc::allocate_for_layout( |
| 737 | Layout::new::<T>(), |
| 738 | |layout| alloc.allocate_zeroed(layout), |
| 739 | <*mut u8>::cast, |
| 740 | ), |
| 741 | alloc, |
| 742 | ) |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | /// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation, |
| 747 | /// to allow you to construct a `T` which holds a weak pointer to itself. |
| 748 | /// |
| 749 | /// Generally, a structure circularly referencing itself, either directly or |
| 750 | /// indirectly, should not hold a strong reference to itself to prevent a memory leak. |
| 751 | /// Using this function, you get access to the weak pointer during the |
| 752 | /// initialization of `T`, before the `Rc<T, A>` is created, such that you can |
| 753 | /// clone and store it inside the `T`. |
| 754 | /// |
| 755 | /// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`, |
| 756 | /// then calls your closure, giving it a `Weak<T, A>` to this allocation, |
| 757 | /// and only afterwards completes the construction of the `Rc<T, A>` by placing |
| 758 | /// the `T` returned from your closure into the allocation. |
| 759 | /// |
| 760 | /// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in` |
| 761 | /// returns, calling [`upgrade`] on the weak reference inside your closure will |
| 762 | /// fail and result in a `None` value. |
| 763 | /// |
| 764 | /// # Panics |
| 765 | /// |
| 766 | /// If `data_fn` panics, the panic is propagated to the caller, and the |
| 767 | /// temporary [`Weak<T, A>`] is dropped normally. |
| 768 | /// |
| 769 | /// # Examples |
| 770 | /// |
| 771 | /// See [`new_cyclic`]. |
| 772 | /// |
| 773 | /// [`new_cyclic`]: Rc::new_cyclic |
| 774 | /// [`upgrade`]: Weak::upgrade |
| 775 | #[cfg (not(no_global_oom_handling))] |
| 776 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 777 | pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A> |
| 778 | where |
| 779 | F: FnOnce(&Weak<T, A>) -> T, |
| 780 | { |
| 781 | // Construct the inner in the "uninitialized" state with a single |
| 782 | // weak reference. |
| 783 | let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in( |
| 784 | RcInner { |
| 785 | strong: Cell::new(0), |
| 786 | weak: Cell::new(1), |
| 787 | value: mem::MaybeUninit::<T>::uninit(), |
| 788 | }, |
| 789 | alloc, |
| 790 | )); |
| 791 | let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into(); |
| 792 | let init_ptr: NonNull<RcInner<T>> = uninit_ptr.cast(); |
| 793 | |
| 794 | let weak = Weak { ptr: init_ptr, alloc }; |
| 795 | |
| 796 | // It's important we don't give up ownership of the weak pointer, or |
| 797 | // else the memory might be freed by the time `data_fn` returns. If |
| 798 | // we really wanted to pass ownership, we could create an additional |
| 799 | // weak pointer for ourselves, but this would result in additional |
| 800 | // updates to the weak reference count which might not be necessary |
| 801 | // otherwise. |
| 802 | let data = data_fn(&weak); |
| 803 | |
| 804 | let strong = unsafe { |
| 805 | let inner = init_ptr.as_ptr(); |
| 806 | ptr::write(&raw mut (*inner).value, data); |
| 807 | |
| 808 | let prev_value = (*inner).strong.get(); |
| 809 | debug_assert_eq!(prev_value, 0, "No prior strong references should exist" ); |
| 810 | (*inner).strong.set(1); |
| 811 | |
| 812 | // Strong references should collectively own a shared weak reference, |
| 813 | // so don't run the destructor for our old weak reference. |
| 814 | // Calling into_raw_with_allocator has the double effect of giving us back the allocator, |
| 815 | // and forgetting the weak reference. |
| 816 | let alloc = weak.into_raw_with_allocator().1; |
| 817 | |
| 818 | Rc::from_inner_in(init_ptr, alloc) |
| 819 | }; |
| 820 | |
| 821 | strong |
| 822 | } |
| 823 | |
| 824 | /// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation |
| 825 | /// fails |
| 826 | /// |
| 827 | /// # Examples |
| 828 | /// |
| 829 | /// ``` |
| 830 | /// #![feature(allocator_api)] |
| 831 | /// use std::rc::Rc; |
| 832 | /// use std::alloc::System; |
| 833 | /// |
| 834 | /// let five = Rc::try_new_in(5, System); |
| 835 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 836 | /// ``` |
| 837 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 838 | #[inline ] |
| 839 | pub fn try_new_in(value: T, alloc: A) -> Result<Self, AllocError> { |
| 840 | // There is an implicit weak pointer owned by all the strong |
| 841 | // pointers, which ensures that the weak destructor never frees |
| 842 | // the allocation while the strong destructor is running, even |
| 843 | // if the weak pointer is stored inside the strong one. |
| 844 | let (ptr, alloc) = Box::into_unique(Box::try_new_in( |
| 845 | RcInner { strong: Cell::new(1), weak: Cell::new(1), value }, |
| 846 | alloc, |
| 847 | )?); |
| 848 | Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) }) |
| 849 | } |
| 850 | |
| 851 | /// Constructs a new `Rc` with uninitialized contents, in the provided allocator, returning an |
| 852 | /// error if the allocation fails |
| 853 | /// |
| 854 | /// # Examples |
| 855 | /// |
| 856 | /// ``` |
| 857 | /// #![feature(allocator_api)] |
| 858 | /// #![feature(get_mut_unchecked)] |
| 859 | /// |
| 860 | /// use std::rc::Rc; |
| 861 | /// use std::alloc::System; |
| 862 | /// |
| 863 | /// let mut five = Rc::<u32, _>::try_new_uninit_in(System)?; |
| 864 | /// |
| 865 | /// let five = unsafe { |
| 866 | /// // Deferred initialization: |
| 867 | /// Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
| 868 | /// |
| 869 | /// five.assume_init() |
| 870 | /// }; |
| 871 | /// |
| 872 | /// assert_eq!(*five, 5); |
| 873 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 874 | /// ``` |
| 875 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 876 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 877 | #[inline ] |
| 878 | pub fn try_new_uninit_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> { |
| 879 | unsafe { |
| 880 | Ok(Rc::from_ptr_in( |
| 881 | Rc::try_allocate_for_layout( |
| 882 | Layout::new::<T>(), |
| 883 | |layout| alloc.allocate(layout), |
| 884 | <*mut u8>::cast, |
| 885 | )?, |
| 886 | alloc, |
| 887 | )) |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | /// Constructs a new `Rc` with uninitialized contents, with the memory |
| 892 | /// being filled with `0` bytes, in the provided allocator, returning an error if the allocation |
| 893 | /// fails |
| 894 | /// |
| 895 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 896 | /// incorrect usage of this method. |
| 897 | /// |
| 898 | /// # Examples |
| 899 | /// |
| 900 | /// ``` |
| 901 | /// #![feature(allocator_api)] |
| 902 | /// |
| 903 | /// use std::rc::Rc; |
| 904 | /// use std::alloc::System; |
| 905 | /// |
| 906 | /// let zero = Rc::<u32, _>::try_new_zeroed_in(System)?; |
| 907 | /// let zero = unsafe { zero.assume_init() }; |
| 908 | /// |
| 909 | /// assert_eq!(*zero, 0); |
| 910 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 911 | /// ``` |
| 912 | /// |
| 913 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 914 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 915 | //#[unstable(feature = "new_uninit", issue = "63291")] |
| 916 | #[inline ] |
| 917 | pub fn try_new_zeroed_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> { |
| 918 | unsafe { |
| 919 | Ok(Rc::from_ptr_in( |
| 920 | Rc::try_allocate_for_layout( |
| 921 | Layout::new::<T>(), |
| 922 | |layout| alloc.allocate_zeroed(layout), |
| 923 | <*mut u8>::cast, |
| 924 | )?, |
| 925 | alloc, |
| 926 | )) |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | /// Constructs a new `Pin<Rc<T>>` in the provided allocator. If `T` does not implement `Unpin`, then |
| 931 | /// `value` will be pinned in memory and unable to be moved. |
| 932 | #[cfg (not(no_global_oom_handling))] |
| 933 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 934 | #[inline ] |
| 935 | pub fn pin_in(value: T, alloc: A) -> Pin<Self> |
| 936 | where |
| 937 | A: 'static, |
| 938 | { |
| 939 | unsafe { Pin::new_unchecked(Rc::new_in(value, alloc)) } |
| 940 | } |
| 941 | |
| 942 | /// Returns the inner value, if the `Rc` has exactly one strong reference. |
| 943 | /// |
| 944 | /// Otherwise, an [`Err`] is returned with the same `Rc` that was |
| 945 | /// passed in. |
| 946 | /// |
| 947 | /// This will succeed even if there are outstanding weak references. |
| 948 | /// |
| 949 | /// # Examples |
| 950 | /// |
| 951 | /// ``` |
| 952 | /// use std::rc::Rc; |
| 953 | /// |
| 954 | /// let x = Rc::new(3); |
| 955 | /// assert_eq!(Rc::try_unwrap(x), Ok(3)); |
| 956 | /// |
| 957 | /// let x = Rc::new(4); |
| 958 | /// let _y = Rc::clone(&x); |
| 959 | /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4); |
| 960 | /// ``` |
| 961 | #[inline ] |
| 962 | #[stable (feature = "rc_unique" , since = "1.4.0" )] |
| 963 | pub fn try_unwrap(this: Self) -> Result<T, Self> { |
| 964 | if Rc::strong_count(&this) == 1 { |
| 965 | let this = ManuallyDrop::new(this); |
| 966 | |
| 967 | let val: T = unsafe { ptr::read(&**this) }; // copy the contained object |
| 968 | let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator |
| 969 | |
| 970 | // Indicate to Weaks that they can't be promoted by decrementing |
| 971 | // the strong count, and then remove the implicit "strong weak" |
| 972 | // pointer while also handling drop logic by just crafting a |
| 973 | // fake Weak. |
| 974 | this.inner().dec_strong(); |
| 975 | let _weak = Weak { ptr: this.ptr, alloc }; |
| 976 | Ok(val) |
| 977 | } else { |
| 978 | Err(this) |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | /// Returns the inner value, if the `Rc` has exactly one strong reference. |
| 983 | /// |
| 984 | /// Otherwise, [`None`] is returned and the `Rc` is dropped. |
| 985 | /// |
| 986 | /// This will succeed even if there are outstanding weak references. |
| 987 | /// |
| 988 | /// If `Rc::into_inner` is called on every clone of this `Rc`, |
| 989 | /// it is guaranteed that exactly one of the calls returns the inner value. |
| 990 | /// This means in particular that the inner value is not dropped. |
| 991 | /// |
| 992 | /// [`Rc::try_unwrap`] is conceptually similar to `Rc::into_inner`. |
| 993 | /// And while they are meant for different use-cases, `Rc::into_inner(this)` |
| 994 | /// is in fact equivalent to <code>[Rc::try_unwrap]\(this).[ok][Result::ok]()</code>. |
| 995 | /// (Note that the same kind of equivalence does **not** hold true for |
| 996 | /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`!) |
| 997 | /// |
| 998 | /// # Examples |
| 999 | /// |
| 1000 | /// ``` |
| 1001 | /// use std::rc::Rc; |
| 1002 | /// |
| 1003 | /// let x = Rc::new(3); |
| 1004 | /// assert_eq!(Rc::into_inner(x), Some(3)); |
| 1005 | /// |
| 1006 | /// let x = Rc::new(4); |
| 1007 | /// let y = Rc::clone(&x); |
| 1008 | /// |
| 1009 | /// assert_eq!(Rc::into_inner(y), None); |
| 1010 | /// assert_eq!(Rc::into_inner(x), Some(4)); |
| 1011 | /// ``` |
| 1012 | #[inline ] |
| 1013 | #[stable (feature = "rc_into_inner" , since = "1.70.0" )] |
| 1014 | pub fn into_inner(this: Self) -> Option<T> { |
| 1015 | Rc::try_unwrap(this).ok() |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | impl<T> Rc<[T]> { |
| 1020 | /// Constructs a new reference-counted slice with uninitialized contents. |
| 1021 | /// |
| 1022 | /// # Examples |
| 1023 | /// |
| 1024 | /// ``` |
| 1025 | /// #![feature(get_mut_unchecked)] |
| 1026 | /// |
| 1027 | /// use std::rc::Rc; |
| 1028 | /// |
| 1029 | /// let mut values = Rc::<[u32]>::new_uninit_slice(3); |
| 1030 | /// |
| 1031 | /// // Deferred initialization: |
| 1032 | /// let data = Rc::get_mut(&mut values).unwrap(); |
| 1033 | /// data[0].write(1); |
| 1034 | /// data[1].write(2); |
| 1035 | /// data[2].write(3); |
| 1036 | /// |
| 1037 | /// let values = unsafe { values.assume_init() }; |
| 1038 | /// |
| 1039 | /// assert_eq!(*values, [1, 2, 3]) |
| 1040 | /// ``` |
| 1041 | #[cfg (not(no_global_oom_handling))] |
| 1042 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1043 | #[must_use ] |
| 1044 | pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> { |
| 1045 | unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) } |
| 1046 | } |
| 1047 | |
| 1048 | /// Constructs a new reference-counted slice with uninitialized contents, with the memory being |
| 1049 | /// filled with `0` bytes. |
| 1050 | /// |
| 1051 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 1052 | /// incorrect usage of this method. |
| 1053 | /// |
| 1054 | /// # Examples |
| 1055 | /// |
| 1056 | /// ``` |
| 1057 | /// #![feature(new_zeroed_alloc)] |
| 1058 | /// |
| 1059 | /// use std::rc::Rc; |
| 1060 | /// |
| 1061 | /// let values = Rc::<[u32]>::new_zeroed_slice(3); |
| 1062 | /// let values = unsafe { values.assume_init() }; |
| 1063 | /// |
| 1064 | /// assert_eq!(*values, [0, 0, 0]) |
| 1065 | /// ``` |
| 1066 | /// |
| 1067 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 1068 | #[cfg (not(no_global_oom_handling))] |
| 1069 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
| 1070 | #[must_use ] |
| 1071 | pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> { |
| 1072 | unsafe { |
| 1073 | Rc::from_ptr(Rc::allocate_for_layout( |
| 1074 | Layout::array::<T>(len).unwrap(), |
| 1075 | |layout| Global.allocate_zeroed(layout), |
| 1076 | |mem| { |
| 1077 | ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) |
| 1078 | as *mut RcInner<[mem::MaybeUninit<T>]> |
| 1079 | }, |
| 1080 | )) |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | /// Converts the reference-counted slice into a reference-counted array. |
| 1085 | /// |
| 1086 | /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type. |
| 1087 | /// |
| 1088 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
| 1089 | #[unstable (feature = "slice_as_array" , issue = "133508" )] |
| 1090 | #[inline ] |
| 1091 | #[must_use ] |
| 1092 | pub fn into_array<const N: usize>(self) -> Option<Rc<[T; N]>> { |
| 1093 | if self.len() == N { |
| 1094 | let ptr = Self::into_raw(self) as *const [T; N]; |
| 1095 | |
| 1096 | // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length. |
| 1097 | let me = unsafe { Rc::from_raw(ptr) }; |
| 1098 | Some(me) |
| 1099 | } else { |
| 1100 | None |
| 1101 | } |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | impl<T, A: Allocator> Rc<[T], A> { |
| 1106 | /// Constructs a new reference-counted slice with uninitialized contents. |
| 1107 | /// |
| 1108 | /// # Examples |
| 1109 | /// |
| 1110 | /// ``` |
| 1111 | /// #![feature(get_mut_unchecked)] |
| 1112 | /// #![feature(allocator_api)] |
| 1113 | /// |
| 1114 | /// use std::rc::Rc; |
| 1115 | /// use std::alloc::System; |
| 1116 | /// |
| 1117 | /// let mut values = Rc::<[u32], _>::new_uninit_slice_in(3, System); |
| 1118 | /// |
| 1119 | /// let values = unsafe { |
| 1120 | /// // Deferred initialization: |
| 1121 | /// Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1); |
| 1122 | /// Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2); |
| 1123 | /// Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3); |
| 1124 | /// |
| 1125 | /// values.assume_init() |
| 1126 | /// }; |
| 1127 | /// |
| 1128 | /// assert_eq!(*values, [1, 2, 3]) |
| 1129 | /// ``` |
| 1130 | #[cfg (not(no_global_oom_handling))] |
| 1131 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1132 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 1133 | #[inline ] |
| 1134 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> { |
| 1135 | unsafe { Rc::from_ptr_in(Rc::allocate_for_slice_in(len, &alloc), alloc) } |
| 1136 | } |
| 1137 | |
| 1138 | /// Constructs a new reference-counted slice with uninitialized contents, with the memory being |
| 1139 | /// filled with `0` bytes. |
| 1140 | /// |
| 1141 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 1142 | /// incorrect usage of this method. |
| 1143 | /// |
| 1144 | /// # Examples |
| 1145 | /// |
| 1146 | /// ``` |
| 1147 | /// #![feature(allocator_api)] |
| 1148 | /// |
| 1149 | /// use std::rc::Rc; |
| 1150 | /// use std::alloc::System; |
| 1151 | /// |
| 1152 | /// let values = Rc::<[u32], _>::new_zeroed_slice_in(3, System); |
| 1153 | /// let values = unsafe { values.assume_init() }; |
| 1154 | /// |
| 1155 | /// assert_eq!(*values, [0, 0, 0]) |
| 1156 | /// ``` |
| 1157 | /// |
| 1158 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 1159 | #[cfg (not(no_global_oom_handling))] |
| 1160 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1161 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 1162 | #[inline ] |
| 1163 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> { |
| 1164 | unsafe { |
| 1165 | Rc::from_ptr_in( |
| 1166 | Rc::allocate_for_layout( |
| 1167 | Layout::array::<T>(len).unwrap(), |
| 1168 | |layout| alloc.allocate_zeroed(layout), |
| 1169 | |mem| { |
| 1170 | ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) |
| 1171 | as *mut RcInner<[mem::MaybeUninit<T>]> |
| 1172 | }, |
| 1173 | ), |
| 1174 | alloc, |
| 1175 | ) |
| 1176 | } |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | impl<T, A: Allocator> Rc<mem::MaybeUninit<T>, A> { |
| 1181 | /// Converts to `Rc<T>`. |
| 1182 | /// |
| 1183 | /// # Safety |
| 1184 | /// |
| 1185 | /// As with [`MaybeUninit::assume_init`], |
| 1186 | /// it is up to the caller to guarantee that the inner value |
| 1187 | /// really is in an initialized state. |
| 1188 | /// Calling this when the content is not yet fully initialized |
| 1189 | /// causes immediate undefined behavior. |
| 1190 | /// |
| 1191 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 1192 | /// |
| 1193 | /// # Examples |
| 1194 | /// |
| 1195 | /// ``` |
| 1196 | /// #![feature(get_mut_unchecked)] |
| 1197 | /// |
| 1198 | /// use std::rc::Rc; |
| 1199 | /// |
| 1200 | /// let mut five = Rc::<u32>::new_uninit(); |
| 1201 | /// |
| 1202 | /// // Deferred initialization: |
| 1203 | /// Rc::get_mut(&mut five).unwrap().write(5); |
| 1204 | /// |
| 1205 | /// let five = unsafe { five.assume_init() }; |
| 1206 | /// |
| 1207 | /// assert_eq!(*five, 5) |
| 1208 | /// ``` |
| 1209 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1210 | #[inline ] |
| 1211 | pub unsafe fn assume_init(self) -> Rc<T, A> { |
| 1212 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
| 1213 | unsafe { Rc::from_inner_in(ptr.cast(), alloc) } |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | impl<T, A: Allocator> Rc<[mem::MaybeUninit<T>], A> { |
| 1218 | /// Converts to `Rc<[T]>`. |
| 1219 | /// |
| 1220 | /// # Safety |
| 1221 | /// |
| 1222 | /// As with [`MaybeUninit::assume_init`], |
| 1223 | /// it is up to the caller to guarantee that the inner value |
| 1224 | /// really is in an initialized state. |
| 1225 | /// Calling this when the content is not yet fully initialized |
| 1226 | /// causes immediate undefined behavior. |
| 1227 | /// |
| 1228 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 1229 | /// |
| 1230 | /// # Examples |
| 1231 | /// |
| 1232 | /// ``` |
| 1233 | /// #![feature(get_mut_unchecked)] |
| 1234 | /// |
| 1235 | /// use std::rc::Rc; |
| 1236 | /// |
| 1237 | /// let mut values = Rc::<[u32]>::new_uninit_slice(3); |
| 1238 | /// |
| 1239 | /// // Deferred initialization: |
| 1240 | /// let data = Rc::get_mut(&mut values).unwrap(); |
| 1241 | /// data[0].write(1); |
| 1242 | /// data[1].write(2); |
| 1243 | /// data[2].write(3); |
| 1244 | /// |
| 1245 | /// let values = unsafe { values.assume_init() }; |
| 1246 | /// |
| 1247 | /// assert_eq!(*values, [1, 2, 3]) |
| 1248 | /// ``` |
| 1249 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1250 | #[inline ] |
| 1251 | pub unsafe fn assume_init(self) -> Rc<[T], A> { |
| 1252 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
| 1253 | unsafe { Rc::from_ptr_in(ptr.as_ptr() as _, alloc) } |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | impl<T: ?Sized> Rc<T> { |
| 1258 | /// Constructs an `Rc<T>` from a raw pointer. |
| 1259 | /// |
| 1260 | /// The raw pointer must have been previously returned by a call to |
| 1261 | /// [`Rc<U>::into_raw`][into_raw] with the following requirements: |
| 1262 | /// |
| 1263 | /// * If `U` is sized, it must have the same size and alignment as `T`. This |
| 1264 | /// is trivially true if `U` is `T`. |
| 1265 | /// * If `U` is unsized, its data pointer must have the same size and |
| 1266 | /// alignment as `T`. This is trivially true if `Rc<U>` was constructed |
| 1267 | /// through `Rc<T>` and then converted to `Rc<U>` through an [unsized |
| 1268 | /// coercion]. |
| 1269 | /// |
| 1270 | /// Note that if `U` or `U`'s data pointer is not `T` but has the same size |
| 1271 | /// and alignment, this is basically like transmuting references of |
| 1272 | /// different types. See [`mem::transmute`][transmute] for more information |
| 1273 | /// on what restrictions apply in this case. |
| 1274 | /// |
| 1275 | /// The raw pointer must point to a block of memory allocated by the global allocator |
| 1276 | /// |
| 1277 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
| 1278 | /// dropped once. |
| 1279 | /// |
| 1280 | /// This function is unsafe because improper use may lead to memory unsafety, |
| 1281 | /// even if the returned `Rc<T>` is never accessed. |
| 1282 | /// |
| 1283 | /// [into_raw]: Rc::into_raw |
| 1284 | /// [transmute]: core::mem::transmute |
| 1285 | /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions |
| 1286 | /// |
| 1287 | /// # Examples |
| 1288 | /// |
| 1289 | /// ``` |
| 1290 | /// use std::rc::Rc; |
| 1291 | /// |
| 1292 | /// let x = Rc::new("hello" .to_owned()); |
| 1293 | /// let x_ptr = Rc::into_raw(x); |
| 1294 | /// |
| 1295 | /// unsafe { |
| 1296 | /// // Convert back to an `Rc` to prevent leak. |
| 1297 | /// let x = Rc::from_raw(x_ptr); |
| 1298 | /// assert_eq!(&*x, "hello" ); |
| 1299 | /// |
| 1300 | /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe. |
| 1301 | /// } |
| 1302 | /// |
| 1303 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
| 1304 | /// ``` |
| 1305 | /// |
| 1306 | /// Convert a slice back into its original array: |
| 1307 | /// |
| 1308 | /// ``` |
| 1309 | /// use std::rc::Rc; |
| 1310 | /// |
| 1311 | /// let x: Rc<[u32]> = Rc::new([1, 2, 3]); |
| 1312 | /// let x_ptr: *const [u32] = Rc::into_raw(x); |
| 1313 | /// |
| 1314 | /// unsafe { |
| 1315 | /// let x: Rc<[u32; 3]> = Rc::from_raw(x_ptr.cast::<[u32; 3]>()); |
| 1316 | /// assert_eq!(&*x, &[1, 2, 3]); |
| 1317 | /// } |
| 1318 | /// ``` |
| 1319 | #[inline ] |
| 1320 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
| 1321 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
| 1322 | unsafe { Self::from_raw_in(ptr, Global) } |
| 1323 | } |
| 1324 | |
| 1325 | /// Increments the strong reference count on the `Rc<T>` associated with the |
| 1326 | /// provided pointer by one. |
| 1327 | /// |
| 1328 | /// # Safety |
| 1329 | /// |
| 1330 | /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the |
| 1331 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
| 1332 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
| 1333 | /// least 1) for the duration of this method, and `ptr` must point to a block of memory |
| 1334 | /// allocated by the global allocator. |
| 1335 | /// |
| 1336 | /// [from_raw_in]: Rc::from_raw_in |
| 1337 | /// |
| 1338 | /// # Examples |
| 1339 | /// |
| 1340 | /// ``` |
| 1341 | /// use std::rc::Rc; |
| 1342 | /// |
| 1343 | /// let five = Rc::new(5); |
| 1344 | /// |
| 1345 | /// unsafe { |
| 1346 | /// let ptr = Rc::into_raw(five); |
| 1347 | /// Rc::increment_strong_count(ptr); |
| 1348 | /// |
| 1349 | /// let five = Rc::from_raw(ptr); |
| 1350 | /// assert_eq!(2, Rc::strong_count(&five)); |
| 1351 | /// # // Prevent leaks for Miri. |
| 1352 | /// # Rc::decrement_strong_count(ptr); |
| 1353 | /// } |
| 1354 | /// ``` |
| 1355 | #[inline ] |
| 1356 | #[stable (feature = "rc_mutate_strong_count" , since = "1.53.0" )] |
| 1357 | pub unsafe fn increment_strong_count(ptr: *const T) { |
| 1358 | unsafe { Self::increment_strong_count_in(ptr, Global) } |
| 1359 | } |
| 1360 | |
| 1361 | /// Decrements the strong reference count on the `Rc<T>` associated with the |
| 1362 | /// provided pointer by one. |
| 1363 | /// |
| 1364 | /// # Safety |
| 1365 | /// |
| 1366 | /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the |
| 1367 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
| 1368 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
| 1369 | /// least 1) when invoking this method, and `ptr` must point to a block of memory |
| 1370 | /// allocated by the global allocator. This method can be used to release the final `Rc` and |
| 1371 | /// backing storage, but **should not** be called after the final `Rc` has been released. |
| 1372 | /// |
| 1373 | /// [from_raw_in]: Rc::from_raw_in |
| 1374 | /// |
| 1375 | /// # Examples |
| 1376 | /// |
| 1377 | /// ``` |
| 1378 | /// use std::rc::Rc; |
| 1379 | /// |
| 1380 | /// let five = Rc::new(5); |
| 1381 | /// |
| 1382 | /// unsafe { |
| 1383 | /// let ptr = Rc::into_raw(five); |
| 1384 | /// Rc::increment_strong_count(ptr); |
| 1385 | /// |
| 1386 | /// let five = Rc::from_raw(ptr); |
| 1387 | /// assert_eq!(2, Rc::strong_count(&five)); |
| 1388 | /// Rc::decrement_strong_count(ptr); |
| 1389 | /// assert_eq!(1, Rc::strong_count(&five)); |
| 1390 | /// } |
| 1391 | /// ``` |
| 1392 | #[inline ] |
| 1393 | #[stable (feature = "rc_mutate_strong_count" , since = "1.53.0" )] |
| 1394 | pub unsafe fn decrement_strong_count(ptr: *const T) { |
| 1395 | unsafe { Self::decrement_strong_count_in(ptr, Global) } |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | impl<T: ?Sized, A: Allocator> Rc<T, A> { |
| 1400 | /// Returns a reference to the underlying allocator. |
| 1401 | /// |
| 1402 | /// Note: this is an associated function, which means that you have |
| 1403 | /// to call it as `Rc::allocator(&r)` instead of `r.allocator()`. This |
| 1404 | /// is so that there is no conflict with a method on the inner type. |
| 1405 | #[inline ] |
| 1406 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1407 | pub fn allocator(this: &Self) -> &A { |
| 1408 | &this.alloc |
| 1409 | } |
| 1410 | |
| 1411 | /// Consumes the `Rc`, returning the wrapped pointer. |
| 1412 | /// |
| 1413 | /// To avoid a memory leak the pointer must be converted back to an `Rc` using |
| 1414 | /// [`Rc::from_raw`]. |
| 1415 | /// |
| 1416 | /// # Examples |
| 1417 | /// |
| 1418 | /// ``` |
| 1419 | /// use std::rc::Rc; |
| 1420 | /// |
| 1421 | /// let x = Rc::new("hello" .to_owned()); |
| 1422 | /// let x_ptr = Rc::into_raw(x); |
| 1423 | /// assert_eq!(unsafe { &*x_ptr }, "hello" ); |
| 1424 | /// # // Prevent leaks for Miri. |
| 1425 | /// # drop(unsafe { Rc::from_raw(x_ptr) }); |
| 1426 | /// ``` |
| 1427 | #[must_use = "losing the pointer will leak memory" ] |
| 1428 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
| 1429 | #[rustc_never_returns_null_ptr ] |
| 1430 | pub fn into_raw(this: Self) -> *const T { |
| 1431 | let this = ManuallyDrop::new(this); |
| 1432 | Self::as_ptr(&*this) |
| 1433 | } |
| 1434 | |
| 1435 | /// Consumes the `Rc`, returning the wrapped pointer and allocator. |
| 1436 | /// |
| 1437 | /// To avoid a memory leak the pointer must be converted back to an `Rc` using |
| 1438 | /// [`Rc::from_raw_in`]. |
| 1439 | /// |
| 1440 | /// # Examples |
| 1441 | /// |
| 1442 | /// ``` |
| 1443 | /// #![feature(allocator_api)] |
| 1444 | /// use std::rc::Rc; |
| 1445 | /// use std::alloc::System; |
| 1446 | /// |
| 1447 | /// let x = Rc::new_in("hello" .to_owned(), System); |
| 1448 | /// let (ptr, alloc) = Rc::into_raw_with_allocator(x); |
| 1449 | /// assert_eq!(unsafe { &*ptr }, "hello" ); |
| 1450 | /// let x = unsafe { Rc::from_raw_in(ptr, alloc) }; |
| 1451 | /// assert_eq!(&*x, "hello" ); |
| 1452 | /// ``` |
| 1453 | #[must_use = "losing the pointer will leak memory" ] |
| 1454 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1455 | pub fn into_raw_with_allocator(this: Self) -> (*const T, A) { |
| 1456 | let this = mem::ManuallyDrop::new(this); |
| 1457 | let ptr = Self::as_ptr(&this); |
| 1458 | // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped |
| 1459 | let alloc = unsafe { ptr::read(&this.alloc) }; |
| 1460 | (ptr, alloc) |
| 1461 | } |
| 1462 | |
| 1463 | /// Provides a raw pointer to the data. |
| 1464 | /// |
| 1465 | /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid |
| 1466 | /// for as long as there are strong counts in the `Rc`. |
| 1467 | /// |
| 1468 | /// # Examples |
| 1469 | /// |
| 1470 | /// ``` |
| 1471 | /// use std::rc::Rc; |
| 1472 | /// |
| 1473 | /// let x = Rc::new(0); |
| 1474 | /// let y = Rc::clone(&x); |
| 1475 | /// let x_ptr = Rc::as_ptr(&x); |
| 1476 | /// assert_eq!(x_ptr, Rc::as_ptr(&y)); |
| 1477 | /// assert_eq!(unsafe { *x_ptr }, 0); |
| 1478 | /// ``` |
| 1479 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
| 1480 | #[rustc_never_returns_null_ptr ] |
| 1481 | pub fn as_ptr(this: &Self) -> *const T { |
| 1482 | let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr); |
| 1483 | |
| 1484 | // SAFETY: This cannot go through Deref::deref or Rc::inner because |
| 1485 | // this is required to retain raw/mut provenance such that e.g. `get_mut` can |
| 1486 | // write through the pointer after the Rc is recovered through `from_raw`. |
| 1487 | unsafe { &raw mut (*ptr).value } |
| 1488 | } |
| 1489 | |
| 1490 | /// Constructs an `Rc<T, A>` from a raw pointer in the provided allocator. |
| 1491 | /// |
| 1492 | /// The raw pointer must have been previously returned by a call to [`Rc<U, |
| 1493 | /// A>::into_raw`][into_raw] with the following requirements: |
| 1494 | /// |
| 1495 | /// * If `U` is sized, it must have the same size and alignment as `T`. This |
| 1496 | /// is trivially true if `U` is `T`. |
| 1497 | /// * If `U` is unsized, its data pointer must have the same size and |
| 1498 | /// alignment as `T`. This is trivially true if `Rc<U>` was constructed |
| 1499 | /// through `Rc<T>` and then converted to `Rc<U>` through an [unsized |
| 1500 | /// coercion]. |
| 1501 | /// |
| 1502 | /// Note that if `U` or `U`'s data pointer is not `T` but has the same size |
| 1503 | /// and alignment, this is basically like transmuting references of |
| 1504 | /// different types. See [`mem::transmute`][transmute] for more information |
| 1505 | /// on what restrictions apply in this case. |
| 1506 | /// |
| 1507 | /// The raw pointer must point to a block of memory allocated by `alloc` |
| 1508 | /// |
| 1509 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
| 1510 | /// dropped once. |
| 1511 | /// |
| 1512 | /// This function is unsafe because improper use may lead to memory unsafety, |
| 1513 | /// even if the returned `Rc<T>` is never accessed. |
| 1514 | /// |
| 1515 | /// [into_raw]: Rc::into_raw |
| 1516 | /// [transmute]: core::mem::transmute |
| 1517 | /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions |
| 1518 | /// |
| 1519 | /// # Examples |
| 1520 | /// |
| 1521 | /// ``` |
| 1522 | /// #![feature(allocator_api)] |
| 1523 | /// |
| 1524 | /// use std::rc::Rc; |
| 1525 | /// use std::alloc::System; |
| 1526 | /// |
| 1527 | /// let x = Rc::new_in("hello" .to_owned(), System); |
| 1528 | /// let x_ptr = Rc::into_raw(x); |
| 1529 | /// |
| 1530 | /// unsafe { |
| 1531 | /// // Convert back to an `Rc` to prevent leak. |
| 1532 | /// let x = Rc::from_raw_in(x_ptr, System); |
| 1533 | /// assert_eq!(&*x, "hello" ); |
| 1534 | /// |
| 1535 | /// // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe. |
| 1536 | /// } |
| 1537 | /// |
| 1538 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
| 1539 | /// ``` |
| 1540 | /// |
| 1541 | /// Convert a slice back into its original array: |
| 1542 | /// |
| 1543 | /// ``` |
| 1544 | /// #![feature(allocator_api)] |
| 1545 | /// |
| 1546 | /// use std::rc::Rc; |
| 1547 | /// use std::alloc::System; |
| 1548 | /// |
| 1549 | /// let x: Rc<[u32], _> = Rc::new_in([1, 2, 3], System); |
| 1550 | /// let x_ptr: *const [u32] = Rc::into_raw(x); |
| 1551 | /// |
| 1552 | /// unsafe { |
| 1553 | /// let x: Rc<[u32; 3], _> = Rc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System); |
| 1554 | /// assert_eq!(&*x, &[1, 2, 3]); |
| 1555 | /// } |
| 1556 | /// ``` |
| 1557 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1558 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
| 1559 | let offset = unsafe { data_offset(ptr) }; |
| 1560 | |
| 1561 | // Reverse the offset to find the original RcInner. |
| 1562 | let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> }; |
| 1563 | |
| 1564 | unsafe { Self::from_ptr_in(rc_ptr, alloc) } |
| 1565 | } |
| 1566 | |
| 1567 | /// Creates a new [`Weak`] pointer to this allocation. |
| 1568 | /// |
| 1569 | /// # Examples |
| 1570 | /// |
| 1571 | /// ``` |
| 1572 | /// use std::rc::Rc; |
| 1573 | /// |
| 1574 | /// let five = Rc::new(5); |
| 1575 | /// |
| 1576 | /// let weak_five = Rc::downgrade(&five); |
| 1577 | /// ``` |
| 1578 | #[must_use = "this returns a new `Weak` pointer, \ |
| 1579 | without modifying the original `Rc`" ] |
| 1580 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 1581 | pub fn downgrade(this: &Self) -> Weak<T, A> |
| 1582 | where |
| 1583 | A: Clone, |
| 1584 | { |
| 1585 | this.inner().inc_weak(); |
| 1586 | // Make sure we do not create a dangling Weak |
| 1587 | debug_assert!(!is_dangling(this.ptr.as_ptr())); |
| 1588 | Weak { ptr: this.ptr, alloc: this.alloc.clone() } |
| 1589 | } |
| 1590 | |
| 1591 | /// Gets the number of [`Weak`] pointers to this allocation. |
| 1592 | /// |
| 1593 | /// # Examples |
| 1594 | /// |
| 1595 | /// ``` |
| 1596 | /// use std::rc::Rc; |
| 1597 | /// |
| 1598 | /// let five = Rc::new(5); |
| 1599 | /// let _weak_five = Rc::downgrade(&five); |
| 1600 | /// |
| 1601 | /// assert_eq!(1, Rc::weak_count(&five)); |
| 1602 | /// ``` |
| 1603 | #[inline ] |
| 1604 | #[stable (feature = "rc_counts" , since = "1.15.0" )] |
| 1605 | pub fn weak_count(this: &Self) -> usize { |
| 1606 | this.inner().weak() - 1 |
| 1607 | } |
| 1608 | |
| 1609 | /// Gets the number of strong (`Rc`) pointers to this allocation. |
| 1610 | /// |
| 1611 | /// # Examples |
| 1612 | /// |
| 1613 | /// ``` |
| 1614 | /// use std::rc::Rc; |
| 1615 | /// |
| 1616 | /// let five = Rc::new(5); |
| 1617 | /// let _also_five = Rc::clone(&five); |
| 1618 | /// |
| 1619 | /// assert_eq!(2, Rc::strong_count(&five)); |
| 1620 | /// ``` |
| 1621 | #[inline ] |
| 1622 | #[stable (feature = "rc_counts" , since = "1.15.0" )] |
| 1623 | pub fn strong_count(this: &Self) -> usize { |
| 1624 | this.inner().strong() |
| 1625 | } |
| 1626 | |
| 1627 | /// Increments the strong reference count on the `Rc<T>` associated with the |
| 1628 | /// provided pointer by one. |
| 1629 | /// |
| 1630 | /// # Safety |
| 1631 | /// |
| 1632 | /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the |
| 1633 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
| 1634 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
| 1635 | /// least 1) for the duration of this method, and `ptr` must point to a block of memory |
| 1636 | /// allocated by `alloc`. |
| 1637 | /// |
| 1638 | /// [from_raw_in]: Rc::from_raw_in |
| 1639 | /// |
| 1640 | /// # Examples |
| 1641 | /// |
| 1642 | /// ``` |
| 1643 | /// #![feature(allocator_api)] |
| 1644 | /// |
| 1645 | /// use std::rc::Rc; |
| 1646 | /// use std::alloc::System; |
| 1647 | /// |
| 1648 | /// let five = Rc::new_in(5, System); |
| 1649 | /// |
| 1650 | /// unsafe { |
| 1651 | /// let ptr = Rc::into_raw(five); |
| 1652 | /// Rc::increment_strong_count_in(ptr, System); |
| 1653 | /// |
| 1654 | /// let five = Rc::from_raw_in(ptr, System); |
| 1655 | /// assert_eq!(2, Rc::strong_count(&five)); |
| 1656 | /// # // Prevent leaks for Miri. |
| 1657 | /// # Rc::decrement_strong_count_in(ptr, System); |
| 1658 | /// } |
| 1659 | /// ``` |
| 1660 | #[inline ] |
| 1661 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1662 | pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A) |
| 1663 | where |
| 1664 | A: Clone, |
| 1665 | { |
| 1666 | // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop |
| 1667 | let rc = unsafe { mem::ManuallyDrop::new(Rc::<T, A>::from_raw_in(ptr, alloc)) }; |
| 1668 | // Now increase refcount, but don't drop new refcount either |
| 1669 | let _rc_clone: mem::ManuallyDrop<_> = rc.clone(); |
| 1670 | } |
| 1671 | |
| 1672 | /// Decrements the strong reference count on the `Rc<T>` associated with the |
| 1673 | /// provided pointer by one. |
| 1674 | /// |
| 1675 | /// # Safety |
| 1676 | /// |
| 1677 | /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the |
| 1678 | /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in]. |
| 1679 | /// The associated `Rc` instance must be valid (i.e. the strong count must be at |
| 1680 | /// least 1) when invoking this method, and `ptr` must point to a block of memory |
| 1681 | /// allocated by `alloc`. This method can be used to release the final `Rc` and |
| 1682 | /// backing storage, but **should not** be called after the final `Rc` has been released. |
| 1683 | /// |
| 1684 | /// [from_raw_in]: Rc::from_raw_in |
| 1685 | /// |
| 1686 | /// # Examples |
| 1687 | /// |
| 1688 | /// ``` |
| 1689 | /// #![feature(allocator_api)] |
| 1690 | /// |
| 1691 | /// use std::rc::Rc; |
| 1692 | /// use std::alloc::System; |
| 1693 | /// |
| 1694 | /// let five = Rc::new_in(5, System); |
| 1695 | /// |
| 1696 | /// unsafe { |
| 1697 | /// let ptr = Rc::into_raw(five); |
| 1698 | /// Rc::increment_strong_count_in(ptr, System); |
| 1699 | /// |
| 1700 | /// let five = Rc::from_raw_in(ptr, System); |
| 1701 | /// assert_eq!(2, Rc::strong_count(&five)); |
| 1702 | /// Rc::decrement_strong_count_in(ptr, System); |
| 1703 | /// assert_eq!(1, Rc::strong_count(&five)); |
| 1704 | /// } |
| 1705 | /// ``` |
| 1706 | #[inline ] |
| 1707 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1708 | pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) { |
| 1709 | unsafe { drop(Rc::from_raw_in(ptr, alloc)) }; |
| 1710 | } |
| 1711 | |
| 1712 | /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to |
| 1713 | /// this allocation. |
| 1714 | #[inline ] |
| 1715 | fn is_unique(this: &Self) -> bool { |
| 1716 | Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1 |
| 1717 | } |
| 1718 | |
| 1719 | /// Returns a mutable reference into the given `Rc`, if there are |
| 1720 | /// no other `Rc` or [`Weak`] pointers to the same allocation. |
| 1721 | /// |
| 1722 | /// Returns [`None`] otherwise, because it is not safe to |
| 1723 | /// mutate a shared value. |
| 1724 | /// |
| 1725 | /// See also [`make_mut`][make_mut], which will [`clone`][clone] |
| 1726 | /// the inner value when there are other `Rc` pointers. |
| 1727 | /// |
| 1728 | /// [make_mut]: Rc::make_mut |
| 1729 | /// [clone]: Clone::clone |
| 1730 | /// |
| 1731 | /// # Examples |
| 1732 | /// |
| 1733 | /// ``` |
| 1734 | /// use std::rc::Rc; |
| 1735 | /// |
| 1736 | /// let mut x = Rc::new(3); |
| 1737 | /// *Rc::get_mut(&mut x).unwrap() = 4; |
| 1738 | /// assert_eq!(*x, 4); |
| 1739 | /// |
| 1740 | /// let _y = Rc::clone(&x); |
| 1741 | /// assert!(Rc::get_mut(&mut x).is_none()); |
| 1742 | /// ``` |
| 1743 | #[inline ] |
| 1744 | #[stable (feature = "rc_unique" , since = "1.4.0" )] |
| 1745 | pub fn get_mut(this: &mut Self) -> Option<&mut T> { |
| 1746 | if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None } |
| 1747 | } |
| 1748 | |
| 1749 | /// Returns a mutable reference into the given `Rc`, |
| 1750 | /// without any check. |
| 1751 | /// |
| 1752 | /// See also [`get_mut`], which is safe and does appropriate checks. |
| 1753 | /// |
| 1754 | /// [`get_mut`]: Rc::get_mut |
| 1755 | /// |
| 1756 | /// # Safety |
| 1757 | /// |
| 1758 | /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then |
| 1759 | /// they must not be dereferenced or have active borrows for the duration |
| 1760 | /// of the returned borrow, and their inner type must be exactly the same as the |
| 1761 | /// inner type of this Rc (including lifetimes). This is trivially the case if no |
| 1762 | /// such pointers exist, for example immediately after `Rc::new`. |
| 1763 | /// |
| 1764 | /// # Examples |
| 1765 | /// |
| 1766 | /// ``` |
| 1767 | /// #![feature(get_mut_unchecked)] |
| 1768 | /// |
| 1769 | /// use std::rc::Rc; |
| 1770 | /// |
| 1771 | /// let mut x = Rc::new(String::new()); |
| 1772 | /// unsafe { |
| 1773 | /// Rc::get_mut_unchecked(&mut x).push_str("foo" ) |
| 1774 | /// } |
| 1775 | /// assert_eq!(*x, "foo" ); |
| 1776 | /// ``` |
| 1777 | /// Other `Rc` pointers to the same allocation must be to the same type. |
| 1778 | /// ```no_run |
| 1779 | /// #![feature(get_mut_unchecked)] |
| 1780 | /// |
| 1781 | /// use std::rc::Rc; |
| 1782 | /// |
| 1783 | /// let x: Rc<str> = Rc::from("Hello, world!" ); |
| 1784 | /// let mut y: Rc<[u8]> = x.clone().into(); |
| 1785 | /// unsafe { |
| 1786 | /// // this is Undefined Behavior, because x's inner type is str, not [u8] |
| 1787 | /// Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8 |
| 1788 | /// } |
| 1789 | /// println!("{}" , &*x); // Invalid UTF-8 in a str |
| 1790 | /// ``` |
| 1791 | /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes. |
| 1792 | /// ```no_run |
| 1793 | /// #![feature(get_mut_unchecked)] |
| 1794 | /// |
| 1795 | /// use std::rc::Rc; |
| 1796 | /// |
| 1797 | /// let x: Rc<&str> = Rc::new("Hello, world!" ); |
| 1798 | /// { |
| 1799 | /// let s = String::from("Oh, no!" ); |
| 1800 | /// let mut y: Rc<&str> = x.clone(); |
| 1801 | /// unsafe { |
| 1802 | /// // this is Undefined Behavior, because x's inner type |
| 1803 | /// // is &'long str, not &'short str |
| 1804 | /// *Rc::get_mut_unchecked(&mut y) = &s; |
| 1805 | /// } |
| 1806 | /// } |
| 1807 | /// println!("{}" , &*x); // Use-after-free |
| 1808 | /// ``` |
| 1809 | #[inline ] |
| 1810 | #[unstable (feature = "get_mut_unchecked" , issue = "63292" )] |
| 1811 | pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T { |
| 1812 | // We are careful to *not* create a reference covering the "count" fields, as |
| 1813 | // this would conflict with accesses to the reference counts (e.g. by `Weak`). |
| 1814 | unsafe { &mut (*this.ptr.as_ptr()).value } |
| 1815 | } |
| 1816 | |
| 1817 | #[inline ] |
| 1818 | #[stable (feature = "ptr_eq" , since = "1.17.0" )] |
| 1819 | /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to |
| 1820 | /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers. |
| 1821 | /// |
| 1822 | /// # Examples |
| 1823 | /// |
| 1824 | /// ``` |
| 1825 | /// use std::rc::Rc; |
| 1826 | /// |
| 1827 | /// let five = Rc::new(5); |
| 1828 | /// let same_five = Rc::clone(&five); |
| 1829 | /// let other_five = Rc::new(5); |
| 1830 | /// |
| 1831 | /// assert!(Rc::ptr_eq(&five, &same_five)); |
| 1832 | /// assert!(!Rc::ptr_eq(&five, &other_five)); |
| 1833 | /// ``` |
| 1834 | pub fn ptr_eq(this: &Self, other: &Self) -> bool { |
| 1835 | ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr()) |
| 1836 | } |
| 1837 | } |
| 1838 | |
| 1839 | #[cfg (not(no_global_oom_handling))] |
| 1840 | impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Rc<T, A> { |
| 1841 | /// Makes a mutable reference into the given `Rc`. |
| 1842 | /// |
| 1843 | /// If there are other `Rc` pointers to the same allocation, then `make_mut` will |
| 1844 | /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also |
| 1845 | /// referred to as clone-on-write. |
| 1846 | /// |
| 1847 | /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`] |
| 1848 | /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not |
| 1849 | /// be cloned. |
| 1850 | /// |
| 1851 | /// See also [`get_mut`], which will fail rather than cloning the inner value |
| 1852 | /// or disassociating [`Weak`] pointers. |
| 1853 | /// |
| 1854 | /// [`clone`]: Clone::clone |
| 1855 | /// [`get_mut`]: Rc::get_mut |
| 1856 | /// |
| 1857 | /// # Examples |
| 1858 | /// |
| 1859 | /// ``` |
| 1860 | /// use std::rc::Rc; |
| 1861 | /// |
| 1862 | /// let mut data = Rc::new(5); |
| 1863 | /// |
| 1864 | /// *Rc::make_mut(&mut data) += 1; // Won't clone anything |
| 1865 | /// let mut other_data = Rc::clone(&data); // Won't clone inner data |
| 1866 | /// *Rc::make_mut(&mut data) += 1; // Clones inner data |
| 1867 | /// *Rc::make_mut(&mut data) += 1; // Won't clone anything |
| 1868 | /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything |
| 1869 | /// |
| 1870 | /// // Now `data` and `other_data` point to different allocations. |
| 1871 | /// assert_eq!(*data, 8); |
| 1872 | /// assert_eq!(*other_data, 12); |
| 1873 | /// ``` |
| 1874 | /// |
| 1875 | /// [`Weak`] pointers will be disassociated: |
| 1876 | /// |
| 1877 | /// ``` |
| 1878 | /// use std::rc::Rc; |
| 1879 | /// |
| 1880 | /// let mut data = Rc::new(75); |
| 1881 | /// let weak = Rc::downgrade(&data); |
| 1882 | /// |
| 1883 | /// assert!(75 == *data); |
| 1884 | /// assert!(75 == *weak.upgrade().unwrap()); |
| 1885 | /// |
| 1886 | /// *Rc::make_mut(&mut data) += 1; |
| 1887 | /// |
| 1888 | /// assert!(76 == *data); |
| 1889 | /// assert!(weak.upgrade().is_none()); |
| 1890 | /// ``` |
| 1891 | #[inline ] |
| 1892 | #[stable (feature = "rc_unique" , since = "1.4.0" )] |
| 1893 | pub fn make_mut(this: &mut Self) -> &mut T { |
| 1894 | let size_of_val = size_of_val::<T>(&**this); |
| 1895 | |
| 1896 | if Rc::strong_count(this) != 1 { |
| 1897 | // Gotta clone the data, there are other Rcs. |
| 1898 | |
| 1899 | let this_data_ref: &T = &**this; |
| 1900 | // `in_progress` drops the allocation if we panic before finishing initializing it. |
| 1901 | let mut in_progress: UniqueRcUninit<T, A> = |
| 1902 | UniqueRcUninit::new(this_data_ref, this.alloc.clone()); |
| 1903 | |
| 1904 | // Initialize with clone of this. |
| 1905 | let initialized_clone = unsafe { |
| 1906 | // Clone. If the clone panics, `in_progress` will be dropped and clean up. |
| 1907 | this_data_ref.clone_to_uninit(in_progress.data_ptr().cast()); |
| 1908 | // Cast type of pointer, now that it is initialized. |
| 1909 | in_progress.into_rc() |
| 1910 | }; |
| 1911 | |
| 1912 | // Replace `this` with newly constructed Rc. |
| 1913 | *this = initialized_clone; |
| 1914 | } else if Rc::weak_count(this) != 0 { |
| 1915 | // Can just steal the data, all that's left is Weaks |
| 1916 | |
| 1917 | // We don't need panic-protection like the above branch does, but we might as well |
| 1918 | // use the same mechanism. |
| 1919 | let mut in_progress: UniqueRcUninit<T, A> = |
| 1920 | UniqueRcUninit::new(&**this, this.alloc.clone()); |
| 1921 | unsafe { |
| 1922 | // Initialize `in_progress` with move of **this. |
| 1923 | // We have to express this in terms of bytes because `T: ?Sized`; there is no |
| 1924 | // operation that just copies a value based on its `size_of_val()`. |
| 1925 | ptr::copy_nonoverlapping( |
| 1926 | ptr::from_ref(&**this).cast::<u8>(), |
| 1927 | in_progress.data_ptr().cast::<u8>(), |
| 1928 | size_of_val, |
| 1929 | ); |
| 1930 | |
| 1931 | this.inner().dec_strong(); |
| 1932 | // Remove implicit strong-weak ref (no need to craft a fake |
| 1933 | // Weak here -- we know other Weaks can clean up for us) |
| 1934 | this.inner().dec_weak(); |
| 1935 | // Replace `this` with newly constructed Rc that has the moved data. |
| 1936 | ptr::write(this, in_progress.into_rc()); |
| 1937 | } |
| 1938 | } |
| 1939 | // This unsafety is ok because we're guaranteed that the pointer |
| 1940 | // returned is the *only* pointer that will ever be returned to T. Our |
| 1941 | // reference count is guaranteed to be 1 at this point, and we required |
| 1942 | // the `Rc<T>` itself to be `mut`, so we're returning the only possible |
| 1943 | // reference to the allocation. |
| 1944 | unsafe { &mut this.ptr.as_mut().value } |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | impl<T: Clone, A: Allocator> Rc<T, A> { |
| 1949 | /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the |
| 1950 | /// clone. |
| 1951 | /// |
| 1952 | /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to |
| 1953 | /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible. |
| 1954 | /// |
| 1955 | /// # Examples |
| 1956 | /// |
| 1957 | /// ``` |
| 1958 | /// # use std::{ptr, rc::Rc}; |
| 1959 | /// let inner = String::from("test" ); |
| 1960 | /// let ptr = inner.as_ptr(); |
| 1961 | /// |
| 1962 | /// let rc = Rc::new(inner); |
| 1963 | /// let inner = Rc::unwrap_or_clone(rc); |
| 1964 | /// // The inner value was not cloned |
| 1965 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
| 1966 | /// |
| 1967 | /// let rc = Rc::new(inner); |
| 1968 | /// let rc2 = rc.clone(); |
| 1969 | /// let inner = Rc::unwrap_or_clone(rc); |
| 1970 | /// // Because there were 2 references, we had to clone the inner value. |
| 1971 | /// assert!(!ptr::eq(ptr, inner.as_ptr())); |
| 1972 | /// // `rc2` is the last reference, so when we unwrap it we get back |
| 1973 | /// // the original `String`. |
| 1974 | /// let inner = Rc::unwrap_or_clone(rc2); |
| 1975 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
| 1976 | /// ``` |
| 1977 | #[inline ] |
| 1978 | #[stable (feature = "arc_unwrap_or_clone" , since = "1.76.0" )] |
| 1979 | pub fn unwrap_or_clone(this: Self) -> T { |
| 1980 | Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone()) |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | impl<A: Allocator> Rc<dyn Any, A> { |
| 1985 | /// Attempts to downcast the `Rc<dyn Any>` to a concrete type. |
| 1986 | /// |
| 1987 | /// # Examples |
| 1988 | /// |
| 1989 | /// ``` |
| 1990 | /// use std::any::Any; |
| 1991 | /// use std::rc::Rc; |
| 1992 | /// |
| 1993 | /// fn print_if_string(value: Rc<dyn Any>) { |
| 1994 | /// if let Ok(string) = value.downcast::<String>() { |
| 1995 | /// println!("String ({}): {}" , string.len(), string); |
| 1996 | /// } |
| 1997 | /// } |
| 1998 | /// |
| 1999 | /// let my_string = "Hello World" .to_string(); |
| 2000 | /// print_if_string(Rc::new(my_string)); |
| 2001 | /// print_if_string(Rc::new(0i8)); |
| 2002 | /// ``` |
| 2003 | #[inline ] |
| 2004 | #[stable (feature = "rc_downcast" , since = "1.29.0" )] |
| 2005 | pub fn downcast<T: Any>(self) -> Result<Rc<T, A>, Self> { |
| 2006 | if (*self).is::<T>() { |
| 2007 | unsafe { |
| 2008 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
| 2009 | Ok(Rc::from_inner_in(ptr.cast(), alloc)) |
| 2010 | } |
| 2011 | } else { |
| 2012 | Err(self) |
| 2013 | } |
| 2014 | } |
| 2015 | |
| 2016 | /// Downcasts the `Rc<dyn Any>` to a concrete type. |
| 2017 | /// |
| 2018 | /// For a safe alternative see [`downcast`]. |
| 2019 | /// |
| 2020 | /// # Examples |
| 2021 | /// |
| 2022 | /// ``` |
| 2023 | /// #![feature(downcast_unchecked)] |
| 2024 | /// |
| 2025 | /// use std::any::Any; |
| 2026 | /// use std::rc::Rc; |
| 2027 | /// |
| 2028 | /// let x: Rc<dyn Any> = Rc::new(1_usize); |
| 2029 | /// |
| 2030 | /// unsafe { |
| 2031 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); |
| 2032 | /// } |
| 2033 | /// ``` |
| 2034 | /// |
| 2035 | /// # Safety |
| 2036 | /// |
| 2037 | /// The contained value must be of type `T`. Calling this method |
| 2038 | /// with the incorrect type is *undefined behavior*. |
| 2039 | /// |
| 2040 | /// |
| 2041 | /// [`downcast`]: Self::downcast |
| 2042 | #[inline ] |
| 2043 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 2044 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T, A> { |
| 2045 | unsafe { |
| 2046 | let (ptr, alloc) = Rc::into_inner_with_allocator(self); |
| 2047 | Rc::from_inner_in(ptr.cast(), alloc) |
| 2048 | } |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | impl<T: ?Sized> Rc<T> { |
| 2053 | /// Allocates an `RcInner<T>` with sufficient space for |
| 2054 | /// a possibly-unsized inner value where the value has the layout provided. |
| 2055 | /// |
| 2056 | /// The function `mem_to_rc_inner` is called with the data pointer |
| 2057 | /// and must return back a (potentially fat)-pointer for the `RcInner<T>`. |
| 2058 | #[cfg (not(no_global_oom_handling))] |
| 2059 | unsafe fn allocate_for_layout( |
| 2060 | value_layout: Layout, |
| 2061 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
| 2062 | mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>, |
| 2063 | ) -> *mut RcInner<T> { |
| 2064 | let layout = rc_inner_layout_for_value_layout(value_layout); |
| 2065 | unsafe { |
| 2066 | Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rc_inner) |
| 2067 | .unwrap_or_else(|_| handle_alloc_error(layout)) |
| 2068 | } |
| 2069 | } |
| 2070 | |
| 2071 | /// Allocates an `RcInner<T>` with sufficient space for |
| 2072 | /// a possibly-unsized inner value where the value has the layout provided, |
| 2073 | /// returning an error if allocation fails. |
| 2074 | /// |
| 2075 | /// The function `mem_to_rc_inner` is called with the data pointer |
| 2076 | /// and must return back a (potentially fat)-pointer for the `RcInner<T>`. |
| 2077 | #[inline ] |
| 2078 | unsafe fn try_allocate_for_layout( |
| 2079 | value_layout: Layout, |
| 2080 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
| 2081 | mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>, |
| 2082 | ) -> Result<*mut RcInner<T>, AllocError> { |
| 2083 | let layout = rc_inner_layout_for_value_layout(value_layout); |
| 2084 | |
| 2085 | // Allocate for the layout. |
| 2086 | let ptr = allocate(layout)?; |
| 2087 | |
| 2088 | // Initialize the RcInner |
| 2089 | let inner = mem_to_rc_inner(ptr.as_non_null_ptr().as_ptr()); |
| 2090 | unsafe { |
| 2091 | debug_assert_eq!(Layout::for_value_raw(inner), layout); |
| 2092 | |
| 2093 | (&raw mut (*inner).strong).write(Cell::new(1)); |
| 2094 | (&raw mut (*inner).weak).write(Cell::new(1)); |
| 2095 | } |
| 2096 | |
| 2097 | Ok(inner) |
| 2098 | } |
| 2099 | } |
| 2100 | |
| 2101 | impl<T: ?Sized, A: Allocator> Rc<T, A> { |
| 2102 | /// Allocates an `RcInner<T>` with sufficient space for an unsized inner value |
| 2103 | #[cfg (not(no_global_oom_handling))] |
| 2104 | unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut RcInner<T> { |
| 2105 | // Allocate for the `RcInner<T>` using the given value. |
| 2106 | unsafe { |
| 2107 | Rc::<T>::allocate_for_layout( |
| 2108 | Layout::for_value_raw(ptr), |
| 2109 | |layout| alloc.allocate(layout), |
| 2110 | |mem| mem.with_metadata_of(ptr as *const RcInner<T>), |
| 2111 | ) |
| 2112 | } |
| 2113 | } |
| 2114 | |
| 2115 | #[cfg (not(no_global_oom_handling))] |
| 2116 | fn from_box_in(src: Box<T, A>) -> Rc<T, A> { |
| 2117 | unsafe { |
| 2118 | let value_size = size_of_val(&*src); |
| 2119 | let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src)); |
| 2120 | |
| 2121 | // Copy value as bytes |
| 2122 | ptr::copy_nonoverlapping( |
| 2123 | (&raw const *src) as *const u8, |
| 2124 | (&raw mut (*ptr).value) as *mut u8, |
| 2125 | value_size, |
| 2126 | ); |
| 2127 | |
| 2128 | // Free the allocation without dropping its contents |
| 2129 | let (bptr, alloc) = Box::into_raw_with_allocator(src); |
| 2130 | let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref()); |
| 2131 | drop(src); |
| 2132 | |
| 2133 | Self::from_ptr_in(ptr, alloc) |
| 2134 | } |
| 2135 | } |
| 2136 | } |
| 2137 | |
| 2138 | impl<T> Rc<[T]> { |
| 2139 | /// Allocates an `RcInner<[T]>` with the given length. |
| 2140 | #[cfg (not(no_global_oom_handling))] |
| 2141 | unsafe fn allocate_for_slice(len: usize) -> *mut RcInner<[T]> { |
| 2142 | unsafe { |
| 2143 | Self::allocate_for_layout( |
| 2144 | Layout::array::<T>(len).unwrap(), |
| 2145 | |layout| Global.allocate(layout), |
| 2146 | |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>, |
| 2147 | ) |
| 2148 | } |
| 2149 | } |
| 2150 | |
| 2151 | /// Copy elements from slice into newly allocated `Rc<[T]>` |
| 2152 | /// |
| 2153 | /// Unsafe because the caller must either take ownership or bind `T: Copy` |
| 2154 | #[cfg (not(no_global_oom_handling))] |
| 2155 | unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> { |
| 2156 | unsafe { |
| 2157 | let ptr = Self::allocate_for_slice(v.len()); |
| 2158 | ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).value) as *mut T, v.len()); |
| 2159 | Self::from_ptr(ptr) |
| 2160 | } |
| 2161 | } |
| 2162 | |
| 2163 | /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size. |
| 2164 | /// |
| 2165 | /// Behavior is undefined should the size be wrong. |
| 2166 | #[cfg (not(no_global_oom_handling))] |
| 2167 | unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> { |
| 2168 | // Panic guard while cloning T elements. |
| 2169 | // In the event of a panic, elements that have been written |
| 2170 | // into the new RcInner will be dropped, then the memory freed. |
| 2171 | struct Guard<T> { |
| 2172 | mem: NonNull<u8>, |
| 2173 | elems: *mut T, |
| 2174 | layout: Layout, |
| 2175 | n_elems: usize, |
| 2176 | } |
| 2177 | |
| 2178 | impl<T> Drop for Guard<T> { |
| 2179 | fn drop(&mut self) { |
| 2180 | unsafe { |
| 2181 | let slice = from_raw_parts_mut(self.elems, self.n_elems); |
| 2182 | ptr::drop_in_place(slice); |
| 2183 | |
| 2184 | Global.deallocate(self.mem, self.layout); |
| 2185 | } |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | unsafe { |
| 2190 | let ptr = Self::allocate_for_slice(len); |
| 2191 | |
| 2192 | let mem = ptr as *mut _ as *mut u8; |
| 2193 | let layout = Layout::for_value_raw(ptr); |
| 2194 | |
| 2195 | // Pointer to first element |
| 2196 | let elems = (&raw mut (*ptr).value) as *mut T; |
| 2197 | |
| 2198 | let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 }; |
| 2199 | |
| 2200 | for (i, item) in iter.enumerate() { |
| 2201 | ptr::write(elems.add(i), item); |
| 2202 | guard.n_elems += 1; |
| 2203 | } |
| 2204 | |
| 2205 | // All clear. Forget the guard so it doesn't free the new RcInner. |
| 2206 | mem::forget(guard); |
| 2207 | |
| 2208 | Self::from_ptr(ptr) |
| 2209 | } |
| 2210 | } |
| 2211 | } |
| 2212 | |
| 2213 | impl<T, A: Allocator> Rc<[T], A> { |
| 2214 | /// Allocates an `RcInner<[T]>` with the given length. |
| 2215 | #[inline ] |
| 2216 | #[cfg (not(no_global_oom_handling))] |
| 2217 | unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut RcInner<[T]> { |
| 2218 | unsafe { |
| 2219 | Rc::<[T]>::allocate_for_layout( |
| 2220 | value_layout:Layout::array::<T>(len).unwrap(), |
| 2221 | |layout| alloc.allocate(layout), |
| 2222 | |mem: *mut u8| ptr::slice_from_raw_parts_mut(data:mem.cast::<T>(), len) as *mut RcInner<[T]>, |
| 2223 | ) |
| 2224 | } |
| 2225 | } |
| 2226 | } |
| 2227 | |
| 2228 | #[cfg (not(no_global_oom_handling))] |
| 2229 | /// Specialization trait used for `From<&[T]>`. |
| 2230 | trait RcFromSlice<T> { |
| 2231 | fn from_slice(slice: &[T]) -> Self; |
| 2232 | } |
| 2233 | |
| 2234 | #[cfg (not(no_global_oom_handling))] |
| 2235 | impl<T: Clone> RcFromSlice<T> for Rc<[T]> { |
| 2236 | #[inline ] |
| 2237 | default fn from_slice(v: &[T]) -> Self { |
| 2238 | unsafe { Self::from_iter_exact(iter:v.iter().cloned(), v.len()) } |
| 2239 | } |
| 2240 | } |
| 2241 | |
| 2242 | #[cfg (not(no_global_oom_handling))] |
| 2243 | impl<T: Copy> RcFromSlice<T> for Rc<[T]> { |
| 2244 | #[inline ] |
| 2245 | fn from_slice(v: &[T]) -> Self { |
| 2246 | unsafe { Rc::copy_from_slice(v) } |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2251 | impl<T: ?Sized, A: Allocator> Deref for Rc<T, A> { |
| 2252 | type Target = T; |
| 2253 | |
| 2254 | #[inline (always)] |
| 2255 | fn deref(&self) -> &T { |
| 2256 | &self.inner().value |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2261 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Rc<T, A> {} |
| 2262 | |
| 2263 | //#[unstable(feature = "unique_rc_arc", issue = "112566")] |
| 2264 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2265 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for UniqueRc<T, A> {} |
| 2266 | |
| 2267 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2268 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {} |
| 2269 | |
| 2270 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 2271 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for Rc<T, A> {} |
| 2272 | |
| 2273 | //#[unstable(feature = "unique_rc_arc", issue = "112566")] |
| 2274 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 2275 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueRc<T, A> {} |
| 2276 | |
| 2277 | #[unstable (feature = "legacy_receiver_trait" , issue = "none" )] |
| 2278 | impl<T: ?Sized> LegacyReceiver for Rc<T> {} |
| 2279 | |
| 2280 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2281 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Rc<T, A> { |
| 2282 | /// Drops the `Rc`. |
| 2283 | /// |
| 2284 | /// This will decrement the strong reference count. If the strong reference |
| 2285 | /// count reaches zero then the only other references (if any) are |
| 2286 | /// [`Weak`], so we `drop` the inner value. |
| 2287 | /// |
| 2288 | /// # Examples |
| 2289 | /// |
| 2290 | /// ``` |
| 2291 | /// use std::rc::Rc; |
| 2292 | /// |
| 2293 | /// struct Foo; |
| 2294 | /// |
| 2295 | /// impl Drop for Foo { |
| 2296 | /// fn drop(&mut self) { |
| 2297 | /// println!("dropped!" ); |
| 2298 | /// } |
| 2299 | /// } |
| 2300 | /// |
| 2301 | /// let foo = Rc::new(Foo); |
| 2302 | /// let foo2 = Rc::clone(&foo); |
| 2303 | /// |
| 2304 | /// drop(foo); // Doesn't print anything |
| 2305 | /// drop(foo2); // Prints "dropped!" |
| 2306 | /// ``` |
| 2307 | #[inline ] |
| 2308 | fn drop(&mut self) { |
| 2309 | unsafe { |
| 2310 | self.inner().dec_strong(); |
| 2311 | if self.inner().strong() == 0 { |
| 2312 | self.drop_slow(); |
| 2313 | } |
| 2314 | } |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2319 | impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> { |
| 2320 | /// Makes a clone of the `Rc` pointer. |
| 2321 | /// |
| 2322 | /// This creates another pointer to the same allocation, increasing the |
| 2323 | /// strong reference count. |
| 2324 | /// |
| 2325 | /// # Examples |
| 2326 | /// |
| 2327 | /// ``` |
| 2328 | /// use std::rc::Rc; |
| 2329 | /// |
| 2330 | /// let five = Rc::new(5); |
| 2331 | /// |
| 2332 | /// let _ = Rc::clone(&five); |
| 2333 | /// ``` |
| 2334 | #[inline ] |
| 2335 | fn clone(&self) -> Self { |
| 2336 | unsafe { |
| 2337 | self.inner().inc_strong(); |
| 2338 | Self::from_inner_in(self.ptr, self.alloc.clone()) |
| 2339 | } |
| 2340 | } |
| 2341 | } |
| 2342 | |
| 2343 | #[unstable (feature = "ergonomic_clones" , issue = "132290" )] |
| 2344 | impl<T: ?Sized, A: Allocator + Clone> UseCloned for Rc<T, A> {} |
| 2345 | |
| 2346 | #[cfg (not(no_global_oom_handling))] |
| 2347 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2348 | impl<T: Default> Default for Rc<T> { |
| 2349 | /// Creates a new `Rc<T>`, with the `Default` value for `T`. |
| 2350 | /// |
| 2351 | /// # Examples |
| 2352 | /// |
| 2353 | /// ``` |
| 2354 | /// use std::rc::Rc; |
| 2355 | /// |
| 2356 | /// let x: Rc<i32> = Default::default(); |
| 2357 | /// assert_eq!(*x, 0); |
| 2358 | /// ``` |
| 2359 | #[inline ] |
| 2360 | fn default() -> Rc<T> { |
| 2361 | unsafe { |
| 2362 | Self::from_inner( |
| 2363 | ptr:Box::leak(Box::write( |
| 2364 | boxed:Box::new_uninit(), |
| 2365 | value:RcInner { strong: Cell::new(1), weak: Cell::new(1), value: T::default() }, |
| 2366 | )) |
| 2367 | .into(), |
| 2368 | ) |
| 2369 | } |
| 2370 | } |
| 2371 | } |
| 2372 | |
| 2373 | #[cfg (not(no_global_oom_handling))] |
| 2374 | #[stable (feature = "more_rc_default_impls" , since = "1.80.0" )] |
| 2375 | impl Default for Rc<str> { |
| 2376 | /// Creates an empty str inside an Rc |
| 2377 | /// |
| 2378 | /// This may or may not share an allocation with other Rcs on the same thread. |
| 2379 | #[inline ] |
| 2380 | fn default() -> Self { |
| 2381 | let rc: Rc<[u8]> = Rc::<[u8]>::default(); |
| 2382 | // `[u8]` has the same layout as `str`. |
| 2383 | unsafe { Rc::from_raw(ptr:Rc::into_raw(this:rc) as *const str) } |
| 2384 | } |
| 2385 | } |
| 2386 | |
| 2387 | #[cfg (not(no_global_oom_handling))] |
| 2388 | #[stable (feature = "more_rc_default_impls" , since = "1.80.0" )] |
| 2389 | impl<T> Default for Rc<[T]> { |
| 2390 | /// Creates an empty `[T]` inside an Rc |
| 2391 | /// |
| 2392 | /// This may or may not share an allocation with other Rcs on the same thread. |
| 2393 | #[inline ] |
| 2394 | fn default() -> Self { |
| 2395 | let arr: [T; 0] = []; |
| 2396 | Rc::from(arr) |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2401 | trait RcEqIdent<T: ?Sized + PartialEq, A: Allocator> { |
| 2402 | fn eq(&self, other: &Rc<T, A>) -> bool; |
| 2403 | fn ne(&self, other: &Rc<T, A>) -> bool; |
| 2404 | } |
| 2405 | |
| 2406 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2407 | impl<T: ?Sized + PartialEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> { |
| 2408 | #[inline ] |
| 2409 | default fn eq(&self, other: &Rc<T, A>) -> bool { |
| 2410 | **self == **other |
| 2411 | } |
| 2412 | |
| 2413 | #[inline ] |
| 2414 | default fn ne(&self, other: &Rc<T, A>) -> bool { |
| 2415 | **self != **other |
| 2416 | } |
| 2417 | } |
| 2418 | |
| 2419 | // Hack to allow specializing on `Eq` even though `Eq` has a method. |
| 2420 | #[rustc_unsafe_specialization_marker ] |
| 2421 | pub(crate) trait MarkerEq: PartialEq<Self> {} |
| 2422 | |
| 2423 | impl<T: Eq> MarkerEq for T {} |
| 2424 | |
| 2425 | /// We're doing this specialization here, and not as a more general optimization on `&T`, because it |
| 2426 | /// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to |
| 2427 | /// store large values, that are slow to clone, but also heavy to check for equality, causing this |
| 2428 | /// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to |
| 2429 | /// the same value, than two `&T`s. |
| 2430 | /// |
| 2431 | /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive. |
| 2432 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2433 | impl<T: ?Sized + MarkerEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> { |
| 2434 | #[inline ] |
| 2435 | fn eq(&self, other: &Rc<T, A>) -> bool { |
| 2436 | Rc::ptr_eq(self, other) || **self == **other |
| 2437 | } |
| 2438 | |
| 2439 | #[inline ] |
| 2440 | fn ne(&self, other: &Rc<T, A>) -> bool { |
| 2441 | !Rc::ptr_eq(self, other) && **self != **other |
| 2442 | } |
| 2443 | } |
| 2444 | |
| 2445 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2446 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Rc<T, A> { |
| 2447 | /// Equality for two `Rc`s. |
| 2448 | /// |
| 2449 | /// Two `Rc`s are equal if their inner values are equal, even if they are |
| 2450 | /// stored in different allocation. |
| 2451 | /// |
| 2452 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
| 2453 | /// two `Rc`s that point to the same allocation are |
| 2454 | /// always equal. |
| 2455 | /// |
| 2456 | /// # Examples |
| 2457 | /// |
| 2458 | /// ``` |
| 2459 | /// use std::rc::Rc; |
| 2460 | /// |
| 2461 | /// let five = Rc::new(5); |
| 2462 | /// |
| 2463 | /// assert!(five == Rc::new(5)); |
| 2464 | /// ``` |
| 2465 | #[inline ] |
| 2466 | fn eq(&self, other: &Rc<T, A>) -> bool { |
| 2467 | RcEqIdent::eq(self, other) |
| 2468 | } |
| 2469 | |
| 2470 | /// Inequality for two `Rc`s. |
| 2471 | /// |
| 2472 | /// Two `Rc`s are not equal if their inner values are not equal. |
| 2473 | /// |
| 2474 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
| 2475 | /// two `Rc`s that point to the same allocation are |
| 2476 | /// always equal. |
| 2477 | /// |
| 2478 | /// # Examples |
| 2479 | /// |
| 2480 | /// ``` |
| 2481 | /// use std::rc::Rc; |
| 2482 | /// |
| 2483 | /// let five = Rc::new(5); |
| 2484 | /// |
| 2485 | /// assert!(five != Rc::new(6)); |
| 2486 | /// ``` |
| 2487 | #[inline ] |
| 2488 | fn ne(&self, other: &Rc<T, A>) -> bool { |
| 2489 | RcEqIdent::ne(self, other) |
| 2490 | } |
| 2491 | } |
| 2492 | |
| 2493 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2494 | impl<T: ?Sized + Eq, A: Allocator> Eq for Rc<T, A> {} |
| 2495 | |
| 2496 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2497 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Rc<T, A> { |
| 2498 | /// Partial comparison for two `Rc`s. |
| 2499 | /// |
| 2500 | /// The two are compared by calling `partial_cmp()` on their inner values. |
| 2501 | /// |
| 2502 | /// # Examples |
| 2503 | /// |
| 2504 | /// ``` |
| 2505 | /// use std::rc::Rc; |
| 2506 | /// use std::cmp::Ordering; |
| 2507 | /// |
| 2508 | /// let five = Rc::new(5); |
| 2509 | /// |
| 2510 | /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6))); |
| 2511 | /// ``` |
| 2512 | #[inline (always)] |
| 2513 | fn partial_cmp(&self, other: &Rc<T, A>) -> Option<Ordering> { |
| 2514 | (**self).partial_cmp(&**other) |
| 2515 | } |
| 2516 | |
| 2517 | /// Less-than comparison for two `Rc`s. |
| 2518 | /// |
| 2519 | /// The two are compared by calling `<` on their inner values. |
| 2520 | /// |
| 2521 | /// # Examples |
| 2522 | /// |
| 2523 | /// ``` |
| 2524 | /// use std::rc::Rc; |
| 2525 | /// |
| 2526 | /// let five = Rc::new(5); |
| 2527 | /// |
| 2528 | /// assert!(five < Rc::new(6)); |
| 2529 | /// ``` |
| 2530 | #[inline (always)] |
| 2531 | fn lt(&self, other: &Rc<T, A>) -> bool { |
| 2532 | **self < **other |
| 2533 | } |
| 2534 | |
| 2535 | /// 'Less than or equal to' comparison for two `Rc`s. |
| 2536 | /// |
| 2537 | /// The two are compared by calling `<=` on their inner values. |
| 2538 | /// |
| 2539 | /// # Examples |
| 2540 | /// |
| 2541 | /// ``` |
| 2542 | /// use std::rc::Rc; |
| 2543 | /// |
| 2544 | /// let five = Rc::new(5); |
| 2545 | /// |
| 2546 | /// assert!(five <= Rc::new(5)); |
| 2547 | /// ``` |
| 2548 | #[inline (always)] |
| 2549 | fn le(&self, other: &Rc<T, A>) -> bool { |
| 2550 | **self <= **other |
| 2551 | } |
| 2552 | |
| 2553 | /// Greater-than comparison for two `Rc`s. |
| 2554 | /// |
| 2555 | /// The two are compared by calling `>` on their inner values. |
| 2556 | /// |
| 2557 | /// # Examples |
| 2558 | /// |
| 2559 | /// ``` |
| 2560 | /// use std::rc::Rc; |
| 2561 | /// |
| 2562 | /// let five = Rc::new(5); |
| 2563 | /// |
| 2564 | /// assert!(five > Rc::new(4)); |
| 2565 | /// ``` |
| 2566 | #[inline (always)] |
| 2567 | fn gt(&self, other: &Rc<T, A>) -> bool { |
| 2568 | **self > **other |
| 2569 | } |
| 2570 | |
| 2571 | /// 'Greater than or equal to' comparison for two `Rc`s. |
| 2572 | /// |
| 2573 | /// The two are compared by calling `>=` on their inner values. |
| 2574 | /// |
| 2575 | /// # Examples |
| 2576 | /// |
| 2577 | /// ``` |
| 2578 | /// use std::rc::Rc; |
| 2579 | /// |
| 2580 | /// let five = Rc::new(5); |
| 2581 | /// |
| 2582 | /// assert!(five >= Rc::new(5)); |
| 2583 | /// ``` |
| 2584 | #[inline (always)] |
| 2585 | fn ge(&self, other: &Rc<T, A>) -> bool { |
| 2586 | **self >= **other |
| 2587 | } |
| 2588 | } |
| 2589 | |
| 2590 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2591 | impl<T: ?Sized + Ord, A: Allocator> Ord for Rc<T, A> { |
| 2592 | /// Comparison for two `Rc`s. |
| 2593 | /// |
| 2594 | /// The two are compared by calling `cmp()` on their inner values. |
| 2595 | /// |
| 2596 | /// # Examples |
| 2597 | /// |
| 2598 | /// ``` |
| 2599 | /// use std::rc::Rc; |
| 2600 | /// use std::cmp::Ordering; |
| 2601 | /// |
| 2602 | /// let five = Rc::new(5); |
| 2603 | /// |
| 2604 | /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6))); |
| 2605 | /// ``` |
| 2606 | #[inline ] |
| 2607 | fn cmp(&self, other: &Rc<T, A>) -> Ordering { |
| 2608 | (**self).cmp(&**other) |
| 2609 | } |
| 2610 | } |
| 2611 | |
| 2612 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2613 | impl<T: ?Sized + Hash, A: Allocator> Hash for Rc<T, A> { |
| 2614 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 2615 | (**self).hash(state); |
| 2616 | } |
| 2617 | } |
| 2618 | |
| 2619 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2620 | impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Rc<T, A> { |
| 2621 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2622 | fmt::Display::fmt(&**self, f) |
| 2623 | } |
| 2624 | } |
| 2625 | |
| 2626 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2627 | impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Rc<T, A> { |
| 2628 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2629 | fmt::Debug::fmt(&**self, f) |
| 2630 | } |
| 2631 | } |
| 2632 | |
| 2633 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2634 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Rc<T, A> { |
| 2635 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2636 | fmt::Pointer::fmt(&(&raw const **self), f) |
| 2637 | } |
| 2638 | } |
| 2639 | |
| 2640 | #[cfg (not(no_global_oom_handling))] |
| 2641 | #[stable (feature = "from_for_ptrs" , since = "1.6.0" )] |
| 2642 | impl<T> From<T> for Rc<T> { |
| 2643 | /// Converts a generic type `T` into an `Rc<T>` |
| 2644 | /// |
| 2645 | /// The conversion allocates on the heap and moves `t` |
| 2646 | /// from the stack into it. |
| 2647 | /// |
| 2648 | /// # Example |
| 2649 | /// ```rust |
| 2650 | /// # use std::rc::Rc; |
| 2651 | /// let x = 5; |
| 2652 | /// let rc = Rc::new(5); |
| 2653 | /// |
| 2654 | /// assert_eq!(Rc::from(x), rc); |
| 2655 | /// ``` |
| 2656 | fn from(t: T) -> Self { |
| 2657 | Rc::new(t) |
| 2658 | } |
| 2659 | } |
| 2660 | |
| 2661 | #[cfg (not(no_global_oom_handling))] |
| 2662 | #[stable (feature = "shared_from_array" , since = "1.74.0" )] |
| 2663 | impl<T, const N: usize> From<[T; N]> for Rc<[T]> { |
| 2664 | /// Converts a [`[T; N]`](prim@array) into an `Rc<[T]>`. |
| 2665 | /// |
| 2666 | /// The conversion moves the array into a newly allocated `Rc`. |
| 2667 | /// |
| 2668 | /// # Example |
| 2669 | /// |
| 2670 | /// ``` |
| 2671 | /// # use std::rc::Rc; |
| 2672 | /// let original: [i32; 3] = [1, 2, 3]; |
| 2673 | /// let shared: Rc<[i32]> = Rc::from(original); |
| 2674 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 2675 | /// ``` |
| 2676 | #[inline ] |
| 2677 | fn from(v: [T; N]) -> Rc<[T]> { |
| 2678 | Rc::<[T; N]>::from(v) |
| 2679 | } |
| 2680 | } |
| 2681 | |
| 2682 | #[cfg (not(no_global_oom_handling))] |
| 2683 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 2684 | impl<T: Clone> From<&[T]> for Rc<[T]> { |
| 2685 | /// Allocates a reference-counted slice and fills it by cloning `v`'s items. |
| 2686 | /// |
| 2687 | /// # Example |
| 2688 | /// |
| 2689 | /// ``` |
| 2690 | /// # use std::rc::Rc; |
| 2691 | /// let original: &[i32] = &[1, 2, 3]; |
| 2692 | /// let shared: Rc<[i32]> = Rc::from(original); |
| 2693 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 2694 | /// ``` |
| 2695 | #[inline ] |
| 2696 | fn from(v: &[T]) -> Rc<[T]> { |
| 2697 | <Self as RcFromSlice<T>>::from_slice(v) |
| 2698 | } |
| 2699 | } |
| 2700 | |
| 2701 | #[cfg (not(no_global_oom_handling))] |
| 2702 | #[stable (feature = "shared_from_mut_slice" , since = "1.84.0" )] |
| 2703 | impl<T: Clone> From<&mut [T]> for Rc<[T]> { |
| 2704 | /// Allocates a reference-counted slice and fills it by cloning `v`'s items. |
| 2705 | /// |
| 2706 | /// # Example |
| 2707 | /// |
| 2708 | /// ``` |
| 2709 | /// # use std::rc::Rc; |
| 2710 | /// let mut original = [1, 2, 3]; |
| 2711 | /// let original: &mut [i32] = &mut original; |
| 2712 | /// let shared: Rc<[i32]> = Rc::from(original); |
| 2713 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 2714 | /// ``` |
| 2715 | #[inline ] |
| 2716 | fn from(v: &mut [T]) -> Rc<[T]> { |
| 2717 | Rc::from(&*v) |
| 2718 | } |
| 2719 | } |
| 2720 | |
| 2721 | #[cfg (not(no_global_oom_handling))] |
| 2722 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 2723 | impl From<&str> for Rc<str> { |
| 2724 | /// Allocates a reference-counted string slice and copies `v` into it. |
| 2725 | /// |
| 2726 | /// # Example |
| 2727 | /// |
| 2728 | /// ``` |
| 2729 | /// # use std::rc::Rc; |
| 2730 | /// let shared: Rc<str> = Rc::from("statue" ); |
| 2731 | /// assert_eq!("statue" , &shared[..]); |
| 2732 | /// ``` |
| 2733 | #[inline ] |
| 2734 | fn from(v: &str) -> Rc<str> { |
| 2735 | let rc: Rc<[u8]> = Rc::<[u8]>::from(v.as_bytes()); |
| 2736 | unsafe { Rc::from_raw(ptr:Rc::into_raw(this:rc) as *const str) } |
| 2737 | } |
| 2738 | } |
| 2739 | |
| 2740 | #[cfg (not(no_global_oom_handling))] |
| 2741 | #[stable (feature = "shared_from_mut_slice" , since = "1.84.0" )] |
| 2742 | impl From<&mut str> for Rc<str> { |
| 2743 | /// Allocates a reference-counted string slice and copies `v` into it. |
| 2744 | /// |
| 2745 | /// # Example |
| 2746 | /// |
| 2747 | /// ``` |
| 2748 | /// # use std::rc::Rc; |
| 2749 | /// let mut original = String::from("statue" ); |
| 2750 | /// let original: &mut str = &mut original; |
| 2751 | /// let shared: Rc<str> = Rc::from(original); |
| 2752 | /// assert_eq!("statue" , &shared[..]); |
| 2753 | /// ``` |
| 2754 | #[inline ] |
| 2755 | fn from(v: &mut str) -> Rc<str> { |
| 2756 | Rc::from(&*v) |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | #[cfg (not(no_global_oom_handling))] |
| 2761 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 2762 | impl From<String> for Rc<str> { |
| 2763 | /// Allocates a reference-counted string slice and copies `v` into it. |
| 2764 | /// |
| 2765 | /// # Example |
| 2766 | /// |
| 2767 | /// ``` |
| 2768 | /// # use std::rc::Rc; |
| 2769 | /// let original: String = "statue" .to_owned(); |
| 2770 | /// let shared: Rc<str> = Rc::from(original); |
| 2771 | /// assert_eq!("statue" , &shared[..]); |
| 2772 | /// ``` |
| 2773 | #[inline ] |
| 2774 | fn from(v: String) -> Rc<str> { |
| 2775 | Rc::from(&v[..]) |
| 2776 | } |
| 2777 | } |
| 2778 | |
| 2779 | #[cfg (not(no_global_oom_handling))] |
| 2780 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 2781 | impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Rc<T, A> { |
| 2782 | /// Move a boxed object to a new, reference counted, allocation. |
| 2783 | /// |
| 2784 | /// # Example |
| 2785 | /// |
| 2786 | /// ``` |
| 2787 | /// # use std::rc::Rc; |
| 2788 | /// let original: Box<i32> = Box::new(1); |
| 2789 | /// let shared: Rc<i32> = Rc::from(original); |
| 2790 | /// assert_eq!(1, *shared); |
| 2791 | /// ``` |
| 2792 | #[inline ] |
| 2793 | fn from(v: Box<T, A>) -> Rc<T, A> { |
| 2794 | Rc::from_box_in(src:v) |
| 2795 | } |
| 2796 | } |
| 2797 | |
| 2798 | #[cfg (not(no_global_oom_handling))] |
| 2799 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 2800 | impl<T, A: Allocator> From<Vec<T, A>> for Rc<[T], A> { |
| 2801 | /// Allocates a reference-counted slice and moves `v`'s items into it. |
| 2802 | /// |
| 2803 | /// # Example |
| 2804 | /// |
| 2805 | /// ``` |
| 2806 | /// # use std::rc::Rc; |
| 2807 | /// let unique: Vec<i32> = vec![1, 2, 3]; |
| 2808 | /// let shared: Rc<[i32]> = Rc::from(unique); |
| 2809 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 2810 | /// ``` |
| 2811 | #[inline ] |
| 2812 | fn from(v: Vec<T, A>) -> Rc<[T], A> { |
| 2813 | unsafe { |
| 2814 | let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); |
| 2815 | |
| 2816 | let rc_ptr = Self::allocate_for_slice_in(len, &alloc); |
| 2817 | ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).value) as *mut T, len); |
| 2818 | |
| 2819 | // Create a `Vec<T, &A>` with length 0, to deallocate the buffer |
| 2820 | // without dropping its contents or the allocator |
| 2821 | let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc); |
| 2822 | |
| 2823 | Self::from_ptr_in(rc_ptr, alloc) |
| 2824 | } |
| 2825 | } |
| 2826 | } |
| 2827 | |
| 2828 | #[stable (feature = "shared_from_cow" , since = "1.45.0" )] |
| 2829 | impl<'a, B> From<Cow<'a, B>> for Rc<B> |
| 2830 | where |
| 2831 | B: ToOwned + ?Sized, |
| 2832 | Rc<B>: From<&'a B> + From<B::Owned>, |
| 2833 | { |
| 2834 | /// Creates a reference-counted pointer from a clone-on-write pointer by |
| 2835 | /// copying its content. |
| 2836 | /// |
| 2837 | /// # Example |
| 2838 | /// |
| 2839 | /// ```rust |
| 2840 | /// # use std::rc::Rc; |
| 2841 | /// # use std::borrow::Cow; |
| 2842 | /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant" ); |
| 2843 | /// let shared: Rc<str> = Rc::from(cow); |
| 2844 | /// assert_eq!("eggplant" , &shared[..]); |
| 2845 | /// ``` |
| 2846 | #[inline ] |
| 2847 | fn from(cow: Cow<'a, B>) -> Rc<B> { |
| 2848 | match cow { |
| 2849 | Cow::Borrowed(s: &B) => Rc::from(s), |
| 2850 | Cow::Owned(s: ::Owned) => Rc::from(s), |
| 2851 | } |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | #[stable (feature = "shared_from_str" , since = "1.62.0" )] |
| 2856 | impl From<Rc<str>> for Rc<[u8]> { |
| 2857 | /// Converts a reference-counted string slice into a byte slice. |
| 2858 | /// |
| 2859 | /// # Example |
| 2860 | /// |
| 2861 | /// ``` |
| 2862 | /// # use std::rc::Rc; |
| 2863 | /// let string: Rc<str> = Rc::from("eggplant" ); |
| 2864 | /// let bytes: Rc<[u8]> = Rc::from(string); |
| 2865 | /// assert_eq!("eggplant" .as_bytes(), bytes.as_ref()); |
| 2866 | /// ``` |
| 2867 | #[inline ] |
| 2868 | fn from(rc: Rc<str>) -> Self { |
| 2869 | // SAFETY: `str` has the same layout as `[u8]`. |
| 2870 | unsafe { Rc::from_raw(ptr:Rc::into_raw(this:rc) as *const [u8]) } |
| 2871 | } |
| 2872 | } |
| 2873 | |
| 2874 | #[stable (feature = "boxed_slice_try_from" , since = "1.43.0" )] |
| 2875 | impl<T, A: Allocator, const N: usize> TryFrom<Rc<[T], A>> for Rc<[T; N], A> { |
| 2876 | type Error = Rc<[T], A>; |
| 2877 | |
| 2878 | fn try_from(boxed_slice: Rc<[T], A>) -> Result<Self, Self::Error> { |
| 2879 | if boxed_slice.len() == N { |
| 2880 | let (ptr: NonNull>, alloc: A) = Rc::into_inner_with_allocator(this:boxed_slice); |
| 2881 | Ok(unsafe { Rc::from_inner_in(ptr.cast(), alloc) }) |
| 2882 | } else { |
| 2883 | Err(boxed_slice) |
| 2884 | } |
| 2885 | } |
| 2886 | } |
| 2887 | |
| 2888 | #[cfg (not(no_global_oom_handling))] |
| 2889 | #[stable (feature = "shared_from_iter" , since = "1.37.0" )] |
| 2890 | impl<T> FromIterator<T> for Rc<[T]> { |
| 2891 | /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`. |
| 2892 | /// |
| 2893 | /// # Performance characteristics |
| 2894 | /// |
| 2895 | /// ## The general case |
| 2896 | /// |
| 2897 | /// In the general case, collecting into `Rc<[T]>` is done by first |
| 2898 | /// collecting into a `Vec<T>`. That is, when writing the following: |
| 2899 | /// |
| 2900 | /// ```rust |
| 2901 | /// # use std::rc::Rc; |
| 2902 | /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect(); |
| 2903 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
| 2904 | /// ``` |
| 2905 | /// |
| 2906 | /// this behaves as if we wrote: |
| 2907 | /// |
| 2908 | /// ```rust |
| 2909 | /// # use std::rc::Rc; |
| 2910 | /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0) |
| 2911 | /// .collect::<Vec<_>>() // The first set of allocations happens here. |
| 2912 | /// .into(); // A second allocation for `Rc<[T]>` happens here. |
| 2913 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
| 2914 | /// ``` |
| 2915 | /// |
| 2916 | /// This will allocate as many times as needed for constructing the `Vec<T>` |
| 2917 | /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`. |
| 2918 | /// |
| 2919 | /// ## Iterators of known length |
| 2920 | /// |
| 2921 | /// When your `Iterator` implements `TrustedLen` and is of an exact size, |
| 2922 | /// a single allocation will be made for the `Rc<[T]>`. For example: |
| 2923 | /// |
| 2924 | /// ```rust |
| 2925 | /// # use std::rc::Rc; |
| 2926 | /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here. |
| 2927 | /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>()); |
| 2928 | /// ``` |
| 2929 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { |
| 2930 | ToRcSlice::to_rc_slice(iter.into_iter()) |
| 2931 | } |
| 2932 | } |
| 2933 | |
| 2934 | /// Specialization trait used for collecting into `Rc<[T]>`. |
| 2935 | #[cfg (not(no_global_oom_handling))] |
| 2936 | trait ToRcSlice<T>: Iterator<Item = T> + Sized { |
| 2937 | fn to_rc_slice(self) -> Rc<[T]>; |
| 2938 | } |
| 2939 | |
| 2940 | #[cfg (not(no_global_oom_handling))] |
| 2941 | impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I { |
| 2942 | default fn to_rc_slice(self) -> Rc<[T]> { |
| 2943 | self.collect::<Vec<T>>().into() |
| 2944 | } |
| 2945 | } |
| 2946 | |
| 2947 | #[cfg (not(no_global_oom_handling))] |
| 2948 | impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I { |
| 2949 | fn to_rc_slice(self) -> Rc<[T]> { |
| 2950 | // This is the case for a `TrustedLen` iterator. |
| 2951 | let (low, high) = self.size_hint(); |
| 2952 | if let Some(high) = high { |
| 2953 | debug_assert_eq!( |
| 2954 | low, |
| 2955 | high, |
| 2956 | "TrustedLen iterator's size hint is not exact: {:?}" , |
| 2957 | (low, high) |
| 2958 | ); |
| 2959 | |
| 2960 | unsafe { |
| 2961 | // SAFETY: We need to ensure that the iterator has an exact length and we have. |
| 2962 | Rc::from_iter_exact(self, low) |
| 2963 | } |
| 2964 | } else { |
| 2965 | // TrustedLen contract guarantees that `upper_bound == None` implies an iterator |
| 2966 | // length exceeding `usize::MAX`. |
| 2967 | // The default implementation would collect into a vec which would panic. |
| 2968 | // Thus we panic here immediately without invoking `Vec` code. |
| 2969 | panic!("capacity overflow" ); |
| 2970 | } |
| 2971 | } |
| 2972 | } |
| 2973 | |
| 2974 | /// `Weak` is a version of [`Rc`] that holds a non-owning reference to the |
| 2975 | /// managed allocation. |
| 2976 | /// |
| 2977 | /// The allocation is accessed by calling [`upgrade`] on the `Weak` |
| 2978 | /// pointer, which returns an <code>[Option]<[Rc]\<T>></code>. |
| 2979 | /// |
| 2980 | /// Since a `Weak` reference does not count towards ownership, it will not |
| 2981 | /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no |
| 2982 | /// guarantees about the value still being present. Thus it may return [`None`] |
| 2983 | /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation |
| 2984 | /// itself (the backing store) from being deallocated. |
| 2985 | /// |
| 2986 | /// A `Weak` pointer is useful for keeping a temporary reference to the allocation |
| 2987 | /// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to |
| 2988 | /// prevent circular references between [`Rc`] pointers, since mutual owning references |
| 2989 | /// would never allow either [`Rc`] to be dropped. For example, a tree could |
| 2990 | /// have strong [`Rc`] pointers from parent nodes to children, and `Weak` |
| 2991 | /// pointers from children back to their parents. |
| 2992 | /// |
| 2993 | /// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`]. |
| 2994 | /// |
| 2995 | /// [`upgrade`]: Weak::upgrade |
| 2996 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 2997 | #[rustc_diagnostic_item = "RcWeak" ] |
| 2998 | pub struct Weak< |
| 2999 | T: ?Sized, |
| 3000 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 3001 | > { |
| 3002 | // This is a `NonNull` to allow optimizing the size of this type in enums, |
| 3003 | // but it is not necessarily a valid pointer. |
| 3004 | // `Weak::new` sets this to `usize::MAX` so that it doesn’t need |
| 3005 | // to allocate space on the heap. That's not a value a real pointer |
| 3006 | // will ever have because RcInner has alignment at least 2. |
| 3007 | // This is only possible when `T: Sized`; unsized `T` never dangle. |
| 3008 | ptr: NonNull<RcInner<T>>, |
| 3009 | alloc: A, |
| 3010 | } |
| 3011 | |
| 3012 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 3013 | impl<T: ?Sized, A: Allocator> !Send for Weak<T, A> {} |
| 3014 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 3015 | impl<T: ?Sized, A: Allocator> !Sync for Weak<T, A> {} |
| 3016 | |
| 3017 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 3018 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {} |
| 3019 | |
| 3020 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 3021 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {} |
| 3022 | |
| 3023 | impl<T> Weak<T> { |
| 3024 | /// Constructs a new `Weak<T>`, without allocating any memory. |
| 3025 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
| 3026 | /// |
| 3027 | /// [`upgrade`]: Weak::upgrade |
| 3028 | /// |
| 3029 | /// # Examples |
| 3030 | /// |
| 3031 | /// ``` |
| 3032 | /// use std::rc::Weak; |
| 3033 | /// |
| 3034 | /// let empty: Weak<i64> = Weak::new(); |
| 3035 | /// assert!(empty.upgrade().is_none()); |
| 3036 | /// ``` |
| 3037 | #[inline ] |
| 3038 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
| 3039 | #[rustc_const_stable (feature = "const_weak_new" , since = "1.73.0" )] |
| 3040 | #[must_use ] |
| 3041 | pub const fn new() -> Weak<T> { |
| 3042 | Weak { ptr: NonNull::without_provenance(addr:NonZeroUsize::MAX), alloc: Global } |
| 3043 | } |
| 3044 | } |
| 3045 | |
| 3046 | impl<T, A: Allocator> Weak<T, A> { |
| 3047 | /// Constructs a new `Weak<T>`, without allocating any memory, technically in the provided |
| 3048 | /// allocator. |
| 3049 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
| 3050 | /// |
| 3051 | /// [`upgrade`]: Weak::upgrade |
| 3052 | /// |
| 3053 | /// # Examples |
| 3054 | /// |
| 3055 | /// ``` |
| 3056 | /// use std::rc::Weak; |
| 3057 | /// |
| 3058 | /// let empty: Weak<i64> = Weak::new(); |
| 3059 | /// assert!(empty.upgrade().is_none()); |
| 3060 | /// ``` |
| 3061 | #[inline ] |
| 3062 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 3063 | pub fn new_in(alloc: A) -> Weak<T, A> { |
| 3064 | Weak { ptr: NonNull::without_provenance(addr:NonZeroUsize::MAX), alloc } |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | pub(crate) fn is_dangling<T: ?Sized>(ptr: *const T) -> bool { |
| 3069 | (ptr.cast::<()>()).addr() == usize::MAX |
| 3070 | } |
| 3071 | |
| 3072 | /// Helper type to allow accessing the reference counts without |
| 3073 | /// making any assertions about the data field. |
| 3074 | struct WeakInner<'a> { |
| 3075 | weak: &'a Cell<usize>, |
| 3076 | strong: &'a Cell<usize>, |
| 3077 | } |
| 3078 | |
| 3079 | impl<T: ?Sized> Weak<T> { |
| 3080 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`. |
| 3081 | /// |
| 3082 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
| 3083 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
| 3084 | /// |
| 3085 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
| 3086 | /// as these don't own anything; the method still works on them). |
| 3087 | /// |
| 3088 | /// # Safety |
| 3089 | /// |
| 3090 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
| 3091 | /// weak reference, and `ptr` must point to a block of memory allocated by the global allocator. |
| 3092 | /// |
| 3093 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
| 3094 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
| 3095 | /// count is not modified by this operation) and therefore it must be paired with a previous |
| 3096 | /// call to [`into_raw`]. |
| 3097 | /// |
| 3098 | /// # Examples |
| 3099 | /// |
| 3100 | /// ``` |
| 3101 | /// use std::rc::{Rc, Weak}; |
| 3102 | /// |
| 3103 | /// let strong = Rc::new("hello" .to_owned()); |
| 3104 | /// |
| 3105 | /// let raw_1 = Rc::downgrade(&strong).into_raw(); |
| 3106 | /// let raw_2 = Rc::downgrade(&strong).into_raw(); |
| 3107 | /// |
| 3108 | /// assert_eq!(2, Rc::weak_count(&strong)); |
| 3109 | /// |
| 3110 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
| 3111 | /// assert_eq!(1, Rc::weak_count(&strong)); |
| 3112 | /// |
| 3113 | /// drop(strong); |
| 3114 | /// |
| 3115 | /// // Decrement the last weak count. |
| 3116 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
| 3117 | /// ``` |
| 3118 | /// |
| 3119 | /// [`into_raw`]: Weak::into_raw |
| 3120 | /// [`upgrade`]: Weak::upgrade |
| 3121 | /// [`new`]: Weak::new |
| 3122 | #[inline ] |
| 3123 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
| 3124 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
| 3125 | unsafe { Self::from_raw_in(ptr, Global) } |
| 3126 | } |
| 3127 | } |
| 3128 | |
| 3129 | impl<T: ?Sized, A: Allocator> Weak<T, A> { |
| 3130 | /// Returns a reference to the underlying allocator. |
| 3131 | #[inline ] |
| 3132 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 3133 | pub fn allocator(&self) -> &A { |
| 3134 | &self.alloc |
| 3135 | } |
| 3136 | |
| 3137 | /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`. |
| 3138 | /// |
| 3139 | /// The pointer is valid only if there are some strong references. The pointer may be dangling, |
| 3140 | /// unaligned or even [`null`] otherwise. |
| 3141 | /// |
| 3142 | /// # Examples |
| 3143 | /// |
| 3144 | /// ``` |
| 3145 | /// use std::rc::Rc; |
| 3146 | /// use std::ptr; |
| 3147 | /// |
| 3148 | /// let strong = Rc::new("hello" .to_owned()); |
| 3149 | /// let weak = Rc::downgrade(&strong); |
| 3150 | /// // Both point to the same object |
| 3151 | /// assert!(ptr::eq(&*strong, weak.as_ptr())); |
| 3152 | /// // The strong here keeps it alive, so we can still access the object. |
| 3153 | /// assert_eq!("hello" , unsafe { &*weak.as_ptr() }); |
| 3154 | /// |
| 3155 | /// drop(strong); |
| 3156 | /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to |
| 3157 | /// // undefined behavior. |
| 3158 | /// // assert_eq!("hello", unsafe { &*weak.as_ptr() }); |
| 3159 | /// ``` |
| 3160 | /// |
| 3161 | /// [`null`]: ptr::null |
| 3162 | #[must_use ] |
| 3163 | #[stable (feature = "rc_as_ptr" , since = "1.45.0" )] |
| 3164 | pub fn as_ptr(&self) -> *const T { |
| 3165 | let ptr: *mut RcInner<T> = NonNull::as_ptr(self.ptr); |
| 3166 | |
| 3167 | if is_dangling(ptr) { |
| 3168 | // If the pointer is dangling, we return the sentinel directly. This cannot be |
| 3169 | // a valid payload address, as the payload is at least as aligned as RcInner (usize). |
| 3170 | ptr as *const T |
| 3171 | } else { |
| 3172 | // SAFETY: if is_dangling returns false, then the pointer is dereferenceable. |
| 3173 | // The payload may be dropped at this point, and we have to maintain provenance, |
| 3174 | // so use raw pointer manipulation. |
| 3175 | unsafe { &raw mut (*ptr).value } |
| 3176 | } |
| 3177 | } |
| 3178 | |
| 3179 | /// Consumes the `Weak<T>` and turns it into a raw pointer. |
| 3180 | /// |
| 3181 | /// This converts the weak pointer into a raw pointer, while still preserving the ownership of |
| 3182 | /// one weak reference (the weak count is not modified by this operation). It can be turned |
| 3183 | /// back into the `Weak<T>` with [`from_raw`]. |
| 3184 | /// |
| 3185 | /// The same restrictions of accessing the target of the pointer as with |
| 3186 | /// [`as_ptr`] apply. |
| 3187 | /// |
| 3188 | /// # Examples |
| 3189 | /// |
| 3190 | /// ``` |
| 3191 | /// use std::rc::{Rc, Weak}; |
| 3192 | /// |
| 3193 | /// let strong = Rc::new("hello" .to_owned()); |
| 3194 | /// let weak = Rc::downgrade(&strong); |
| 3195 | /// let raw = weak.into_raw(); |
| 3196 | /// |
| 3197 | /// assert_eq!(1, Rc::weak_count(&strong)); |
| 3198 | /// assert_eq!("hello" , unsafe { &*raw }); |
| 3199 | /// |
| 3200 | /// drop(unsafe { Weak::from_raw(raw) }); |
| 3201 | /// assert_eq!(0, Rc::weak_count(&strong)); |
| 3202 | /// ``` |
| 3203 | /// |
| 3204 | /// [`from_raw`]: Weak::from_raw |
| 3205 | /// [`as_ptr`]: Weak::as_ptr |
| 3206 | #[must_use = "losing the pointer will leak memory" ] |
| 3207 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
| 3208 | pub fn into_raw(self) -> *const T { |
| 3209 | mem::ManuallyDrop::new(self).as_ptr() |
| 3210 | } |
| 3211 | |
| 3212 | /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator. |
| 3213 | /// |
| 3214 | /// This converts the weak pointer into a raw pointer, while still preserving the ownership of |
| 3215 | /// one weak reference (the weak count is not modified by this operation). It can be turned |
| 3216 | /// back into the `Weak<T>` with [`from_raw_in`]. |
| 3217 | /// |
| 3218 | /// The same restrictions of accessing the target of the pointer as with |
| 3219 | /// [`as_ptr`] apply. |
| 3220 | /// |
| 3221 | /// # Examples |
| 3222 | /// |
| 3223 | /// ``` |
| 3224 | /// #![feature(allocator_api)] |
| 3225 | /// use std::rc::{Rc, Weak}; |
| 3226 | /// use std::alloc::System; |
| 3227 | /// |
| 3228 | /// let strong = Rc::new_in("hello" .to_owned(), System); |
| 3229 | /// let weak = Rc::downgrade(&strong); |
| 3230 | /// let (raw, alloc) = weak.into_raw_with_allocator(); |
| 3231 | /// |
| 3232 | /// assert_eq!(1, Rc::weak_count(&strong)); |
| 3233 | /// assert_eq!("hello" , unsafe { &*raw }); |
| 3234 | /// |
| 3235 | /// drop(unsafe { Weak::from_raw_in(raw, alloc) }); |
| 3236 | /// assert_eq!(0, Rc::weak_count(&strong)); |
| 3237 | /// ``` |
| 3238 | /// |
| 3239 | /// [`from_raw_in`]: Weak::from_raw_in |
| 3240 | /// [`as_ptr`]: Weak::as_ptr |
| 3241 | #[must_use = "losing the pointer will leak memory" ] |
| 3242 | #[inline ] |
| 3243 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 3244 | pub fn into_raw_with_allocator(self) -> (*const T, A) { |
| 3245 | let this = mem::ManuallyDrop::new(self); |
| 3246 | let result = this.as_ptr(); |
| 3247 | // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped |
| 3248 | let alloc = unsafe { ptr::read(&this.alloc) }; |
| 3249 | (result, alloc) |
| 3250 | } |
| 3251 | |
| 3252 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`. |
| 3253 | /// |
| 3254 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
| 3255 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
| 3256 | /// |
| 3257 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
| 3258 | /// as these don't own anything; the method still works on them). |
| 3259 | /// |
| 3260 | /// # Safety |
| 3261 | /// |
| 3262 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
| 3263 | /// weak reference, and `ptr` must point to a block of memory allocated by `alloc`. |
| 3264 | /// |
| 3265 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
| 3266 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
| 3267 | /// count is not modified by this operation) and therefore it must be paired with a previous |
| 3268 | /// call to [`into_raw`]. |
| 3269 | /// |
| 3270 | /// # Examples |
| 3271 | /// |
| 3272 | /// ``` |
| 3273 | /// use std::rc::{Rc, Weak}; |
| 3274 | /// |
| 3275 | /// let strong = Rc::new("hello" .to_owned()); |
| 3276 | /// |
| 3277 | /// let raw_1 = Rc::downgrade(&strong).into_raw(); |
| 3278 | /// let raw_2 = Rc::downgrade(&strong).into_raw(); |
| 3279 | /// |
| 3280 | /// assert_eq!(2, Rc::weak_count(&strong)); |
| 3281 | /// |
| 3282 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
| 3283 | /// assert_eq!(1, Rc::weak_count(&strong)); |
| 3284 | /// |
| 3285 | /// drop(strong); |
| 3286 | /// |
| 3287 | /// // Decrement the last weak count. |
| 3288 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
| 3289 | /// ``` |
| 3290 | /// |
| 3291 | /// [`into_raw`]: Weak::into_raw |
| 3292 | /// [`upgrade`]: Weak::upgrade |
| 3293 | /// [`new`]: Weak::new |
| 3294 | #[inline ] |
| 3295 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 3296 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
| 3297 | // See Weak::as_ptr for context on how the input pointer is derived. |
| 3298 | |
| 3299 | let ptr = if is_dangling(ptr) { |
| 3300 | // This is a dangling Weak. |
| 3301 | ptr as *mut RcInner<T> |
| 3302 | } else { |
| 3303 | // Otherwise, we're guaranteed the pointer came from a nondangling Weak. |
| 3304 | // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T. |
| 3305 | let offset = unsafe { data_offset(ptr) }; |
| 3306 | // Thus, we reverse the offset to get the whole RcInner. |
| 3307 | // SAFETY: the pointer originated from a Weak, so this offset is safe. |
| 3308 | unsafe { ptr.byte_sub(offset) as *mut RcInner<T> } |
| 3309 | }; |
| 3310 | |
| 3311 | // SAFETY: we now have recovered the original Weak pointer, so can create the Weak. |
| 3312 | Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc } |
| 3313 | } |
| 3314 | |
| 3315 | /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying |
| 3316 | /// dropping of the inner value if successful. |
| 3317 | /// |
| 3318 | /// Returns [`None`] if the inner value has since been dropped. |
| 3319 | /// |
| 3320 | /// # Examples |
| 3321 | /// |
| 3322 | /// ``` |
| 3323 | /// use std::rc::Rc; |
| 3324 | /// |
| 3325 | /// let five = Rc::new(5); |
| 3326 | /// |
| 3327 | /// let weak_five = Rc::downgrade(&five); |
| 3328 | /// |
| 3329 | /// let strong_five: Option<Rc<_>> = weak_five.upgrade(); |
| 3330 | /// assert!(strong_five.is_some()); |
| 3331 | /// |
| 3332 | /// // Destroy all strong pointers. |
| 3333 | /// drop(strong_five); |
| 3334 | /// drop(five); |
| 3335 | /// |
| 3336 | /// assert!(weak_five.upgrade().is_none()); |
| 3337 | /// ``` |
| 3338 | #[must_use = "this returns a new `Rc`, \ |
| 3339 | without modifying the original weak pointer" ] |
| 3340 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 3341 | pub fn upgrade(&self) -> Option<Rc<T, A>> |
| 3342 | where |
| 3343 | A: Clone, |
| 3344 | { |
| 3345 | let inner = self.inner()?; |
| 3346 | |
| 3347 | if inner.strong() == 0 { |
| 3348 | None |
| 3349 | } else { |
| 3350 | unsafe { |
| 3351 | inner.inc_strong(); |
| 3352 | Some(Rc::from_inner_in(self.ptr, self.alloc.clone())) |
| 3353 | } |
| 3354 | } |
| 3355 | } |
| 3356 | |
| 3357 | /// Gets the number of strong (`Rc`) pointers pointing to this allocation. |
| 3358 | /// |
| 3359 | /// If `self` was created using [`Weak::new`], this will return 0. |
| 3360 | #[must_use ] |
| 3361 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
| 3362 | pub fn strong_count(&self) -> usize { |
| 3363 | if let Some(inner) = self.inner() { inner.strong() } else { 0 } |
| 3364 | } |
| 3365 | |
| 3366 | /// Gets the number of `Weak` pointers pointing to this allocation. |
| 3367 | /// |
| 3368 | /// If no strong pointers remain, this will return zero. |
| 3369 | #[must_use ] |
| 3370 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
| 3371 | pub fn weak_count(&self) -> usize { |
| 3372 | if let Some(inner) = self.inner() { |
| 3373 | if inner.strong() > 0 { |
| 3374 | inner.weak() - 1 // subtract the implicit weak ptr |
| 3375 | } else { |
| 3376 | 0 |
| 3377 | } |
| 3378 | } else { |
| 3379 | 0 |
| 3380 | } |
| 3381 | } |
| 3382 | |
| 3383 | /// Returns `None` when the pointer is dangling and there is no allocated `RcInner`, |
| 3384 | /// (i.e., when this `Weak` was created by `Weak::new`). |
| 3385 | #[inline ] |
| 3386 | fn inner(&self) -> Option<WeakInner<'_>> { |
| 3387 | if is_dangling(self.ptr.as_ptr()) { |
| 3388 | None |
| 3389 | } else { |
| 3390 | // We are careful to *not* create a reference covering the "data" field, as |
| 3391 | // the field may be mutated concurrently (for example, if the last `Rc` |
| 3392 | // is dropped, the data field will be dropped in-place). |
| 3393 | Some(unsafe { |
| 3394 | let ptr = self.ptr.as_ptr(); |
| 3395 | WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } |
| 3396 | }) |
| 3397 | } |
| 3398 | } |
| 3399 | |
| 3400 | /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if |
| 3401 | /// both don't point to any allocation (because they were created with `Weak::new()`). However, |
| 3402 | /// this function ignores the metadata of `dyn Trait` pointers. |
| 3403 | /// |
| 3404 | /// # Notes |
| 3405 | /// |
| 3406 | /// Since this compares pointers it means that `Weak::new()` will equal each |
| 3407 | /// other, even though they don't point to any allocation. |
| 3408 | /// |
| 3409 | /// # Examples |
| 3410 | /// |
| 3411 | /// ``` |
| 3412 | /// use std::rc::Rc; |
| 3413 | /// |
| 3414 | /// let first_rc = Rc::new(5); |
| 3415 | /// let first = Rc::downgrade(&first_rc); |
| 3416 | /// let second = Rc::downgrade(&first_rc); |
| 3417 | /// |
| 3418 | /// assert!(first.ptr_eq(&second)); |
| 3419 | /// |
| 3420 | /// let third_rc = Rc::new(5); |
| 3421 | /// let third = Rc::downgrade(&third_rc); |
| 3422 | /// |
| 3423 | /// assert!(!first.ptr_eq(&third)); |
| 3424 | /// ``` |
| 3425 | /// |
| 3426 | /// Comparing `Weak::new`. |
| 3427 | /// |
| 3428 | /// ``` |
| 3429 | /// use std::rc::{Rc, Weak}; |
| 3430 | /// |
| 3431 | /// let first = Weak::new(); |
| 3432 | /// let second = Weak::new(); |
| 3433 | /// assert!(first.ptr_eq(&second)); |
| 3434 | /// |
| 3435 | /// let third_rc = Rc::new(()); |
| 3436 | /// let third = Rc::downgrade(&third_rc); |
| 3437 | /// assert!(!first.ptr_eq(&third)); |
| 3438 | /// ``` |
| 3439 | #[inline ] |
| 3440 | #[must_use ] |
| 3441 | #[stable (feature = "weak_ptr_eq" , since = "1.39.0" )] |
| 3442 | pub fn ptr_eq(&self, other: &Self) -> bool { |
| 3443 | ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr()) |
| 3444 | } |
| 3445 | } |
| 3446 | |
| 3447 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 3448 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Weak<T, A> { |
| 3449 | /// Drops the `Weak` pointer. |
| 3450 | /// |
| 3451 | /// # Examples |
| 3452 | /// |
| 3453 | /// ``` |
| 3454 | /// use std::rc::{Rc, Weak}; |
| 3455 | /// |
| 3456 | /// struct Foo; |
| 3457 | /// |
| 3458 | /// impl Drop for Foo { |
| 3459 | /// fn drop(&mut self) { |
| 3460 | /// println!("dropped!" ); |
| 3461 | /// } |
| 3462 | /// } |
| 3463 | /// |
| 3464 | /// let foo = Rc::new(Foo); |
| 3465 | /// let weak_foo = Rc::downgrade(&foo); |
| 3466 | /// let other_weak_foo = Weak::clone(&weak_foo); |
| 3467 | /// |
| 3468 | /// drop(weak_foo); // Doesn't print anything |
| 3469 | /// drop(foo); // Prints "dropped!" |
| 3470 | /// |
| 3471 | /// assert!(other_weak_foo.upgrade().is_none()); |
| 3472 | /// ``` |
| 3473 | fn drop(&mut self) { |
| 3474 | let inner = if let Some(inner) = self.inner() { inner } else { return }; |
| 3475 | |
| 3476 | inner.dec_weak(); |
| 3477 | // the weak count starts at 1, and will only go to zero if all |
| 3478 | // the strong pointers have disappeared. |
| 3479 | if inner.weak() == 0 { |
| 3480 | unsafe { |
| 3481 | self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())); |
| 3482 | } |
| 3483 | } |
| 3484 | } |
| 3485 | } |
| 3486 | |
| 3487 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 3488 | impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> { |
| 3489 | /// Makes a clone of the `Weak` pointer that points to the same allocation. |
| 3490 | /// |
| 3491 | /// # Examples |
| 3492 | /// |
| 3493 | /// ``` |
| 3494 | /// use std::rc::{Rc, Weak}; |
| 3495 | /// |
| 3496 | /// let weak_five = Rc::downgrade(&Rc::new(5)); |
| 3497 | /// |
| 3498 | /// let _ = Weak::clone(&weak_five); |
| 3499 | /// ``` |
| 3500 | #[inline ] |
| 3501 | fn clone(&self) -> Weak<T, A> { |
| 3502 | if let Some(inner: WeakInner<'_>) = self.inner() { |
| 3503 | inner.inc_weak() |
| 3504 | } |
| 3505 | Weak { ptr: self.ptr, alloc: self.alloc.clone() } |
| 3506 | } |
| 3507 | } |
| 3508 | |
| 3509 | #[unstable (feature = "ergonomic_clones" , issue = "132290" )] |
| 3510 | impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {} |
| 3511 | |
| 3512 | #[stable (feature = "rc_weak" , since = "1.4.0" )] |
| 3513 | impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> { |
| 3514 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3515 | write!(f, "(Weak)" ) |
| 3516 | } |
| 3517 | } |
| 3518 | |
| 3519 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
| 3520 | impl<T> Default for Weak<T> { |
| 3521 | /// Constructs a new `Weak<T>`, without allocating any memory. |
| 3522 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
| 3523 | /// |
| 3524 | /// [`upgrade`]: Weak::upgrade |
| 3525 | /// |
| 3526 | /// # Examples |
| 3527 | /// |
| 3528 | /// ``` |
| 3529 | /// use std::rc::Weak; |
| 3530 | /// |
| 3531 | /// let empty: Weak<i64> = Default::default(); |
| 3532 | /// assert!(empty.upgrade().is_none()); |
| 3533 | /// ``` |
| 3534 | fn default() -> Weak<T> { |
| 3535 | Weak::new() |
| 3536 | } |
| 3537 | } |
| 3538 | |
| 3539 | // NOTE: If you mem::forget Rcs (or Weaks), drop is skipped and the ref-count |
| 3540 | // is not decremented, meaning the ref-count can overflow, and then you can |
| 3541 | // free the allocation while outstanding Rcs (or Weaks) exist, which would be |
| 3542 | // unsound. We abort because this is such a degenerate scenario that we don't |
| 3543 | // care about what happens -- no real program should ever experience this. |
| 3544 | // |
| 3545 | // This should have negligible overhead since you don't actually need to |
| 3546 | // clone these much in Rust thanks to ownership and move-semantics. |
| 3547 | |
| 3548 | #[doc (hidden)] |
| 3549 | trait RcInnerPtr { |
| 3550 | fn weak_ref(&self) -> &Cell<usize>; |
| 3551 | fn strong_ref(&self) -> &Cell<usize>; |
| 3552 | |
| 3553 | #[inline ] |
| 3554 | fn strong(&self) -> usize { |
| 3555 | self.strong_ref().get() |
| 3556 | } |
| 3557 | |
| 3558 | #[inline ] |
| 3559 | fn inc_strong(&self) { |
| 3560 | let strong = self.strong(); |
| 3561 | |
| 3562 | // We insert an `assume` here to hint LLVM at an otherwise |
| 3563 | // missed optimization. |
| 3564 | // SAFETY: The reference count will never be zero when this is |
| 3565 | // called. |
| 3566 | unsafe { |
| 3567 | hint::assert_unchecked(strong != 0); |
| 3568 | } |
| 3569 | |
| 3570 | let strong = strong.wrapping_add(1); |
| 3571 | self.strong_ref().set(strong); |
| 3572 | |
| 3573 | // We want to abort on overflow instead of dropping the value. |
| 3574 | // Checking for overflow after the store instead of before |
| 3575 | // allows for slightly better code generation. |
| 3576 | if core::intrinsics::unlikely(strong == 0) { |
| 3577 | abort(); |
| 3578 | } |
| 3579 | } |
| 3580 | |
| 3581 | #[inline ] |
| 3582 | fn dec_strong(&self) { |
| 3583 | self.strong_ref().set(self.strong() - 1); |
| 3584 | } |
| 3585 | |
| 3586 | #[inline ] |
| 3587 | fn weak(&self) -> usize { |
| 3588 | self.weak_ref().get() |
| 3589 | } |
| 3590 | |
| 3591 | #[inline ] |
| 3592 | fn inc_weak(&self) { |
| 3593 | let weak = self.weak(); |
| 3594 | |
| 3595 | // We insert an `assume` here to hint LLVM at an otherwise |
| 3596 | // missed optimization. |
| 3597 | // SAFETY: The reference count will never be zero when this is |
| 3598 | // called. |
| 3599 | unsafe { |
| 3600 | hint::assert_unchecked(weak != 0); |
| 3601 | } |
| 3602 | |
| 3603 | let weak = weak.wrapping_add(1); |
| 3604 | self.weak_ref().set(weak); |
| 3605 | |
| 3606 | // We want to abort on overflow instead of dropping the value. |
| 3607 | // Checking for overflow after the store instead of before |
| 3608 | // allows for slightly better code generation. |
| 3609 | if core::intrinsics::unlikely(weak == 0) { |
| 3610 | abort(); |
| 3611 | } |
| 3612 | } |
| 3613 | |
| 3614 | #[inline ] |
| 3615 | fn dec_weak(&self) { |
| 3616 | self.weak_ref().set(self.weak() - 1); |
| 3617 | } |
| 3618 | } |
| 3619 | |
| 3620 | impl<T: ?Sized> RcInnerPtr for RcInner<T> { |
| 3621 | #[inline (always)] |
| 3622 | fn weak_ref(&self) -> &Cell<usize> { |
| 3623 | &self.weak |
| 3624 | } |
| 3625 | |
| 3626 | #[inline (always)] |
| 3627 | fn strong_ref(&self) -> &Cell<usize> { |
| 3628 | &self.strong |
| 3629 | } |
| 3630 | } |
| 3631 | |
| 3632 | impl<'a> RcInnerPtr for WeakInner<'a> { |
| 3633 | #[inline (always)] |
| 3634 | fn weak_ref(&self) -> &Cell<usize> { |
| 3635 | self.weak |
| 3636 | } |
| 3637 | |
| 3638 | #[inline (always)] |
| 3639 | fn strong_ref(&self) -> &Cell<usize> { |
| 3640 | self.strong |
| 3641 | } |
| 3642 | } |
| 3643 | |
| 3644 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3645 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Rc<T, A> { |
| 3646 | fn borrow(&self) -> &T { |
| 3647 | &**self |
| 3648 | } |
| 3649 | } |
| 3650 | |
| 3651 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
| 3652 | impl<T: ?Sized, A: Allocator> AsRef<T> for Rc<T, A> { |
| 3653 | fn as_ref(&self) -> &T { |
| 3654 | &**self |
| 3655 | } |
| 3656 | } |
| 3657 | |
| 3658 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 3659 | impl<T: ?Sized, A: Allocator> Unpin for Rc<T, A> {} |
| 3660 | |
| 3661 | /// Gets the offset within an `RcInner` for the payload behind a pointer. |
| 3662 | /// |
| 3663 | /// # Safety |
| 3664 | /// |
| 3665 | /// The pointer must point to (and have valid metadata for) a previously |
| 3666 | /// valid instance of T, but the T is allowed to be dropped. |
| 3667 | unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize { |
| 3668 | // Align the unsized value to the end of the RcInner. |
| 3669 | // Because RcInner is repr(C), it will always be the last field in memory. |
| 3670 | // SAFETY: since the only unsized types possible are slices, trait objects, |
| 3671 | // and extern types, the input safety requirement is currently enough to |
| 3672 | // satisfy the requirements of align_of_val_raw; this is an implementation |
| 3673 | // detail of the language that must not be relied upon outside of std. |
| 3674 | unsafe { data_offset_align(align_of_val_raw(val:ptr)) } |
| 3675 | } |
| 3676 | |
| 3677 | #[inline ] |
| 3678 | fn data_offset_align(align: usize) -> usize { |
| 3679 | let layout: Layout = Layout::new::<RcInner<()>>(); |
| 3680 | layout.size() + layout.padding_needed_for(align) |
| 3681 | } |
| 3682 | |
| 3683 | /// A uniquely owned [`Rc`]. |
| 3684 | /// |
| 3685 | /// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong |
| 3686 | /// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong |
| 3687 | /// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`. |
| 3688 | /// |
| 3689 | /// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common |
| 3690 | /// use case is to have an object be mutable during its initialization phase but then have it become |
| 3691 | /// immutable and converted to a normal `Rc`. |
| 3692 | /// |
| 3693 | /// This can be used as a flexible way to create cyclic data structures, as in the example below. |
| 3694 | /// |
| 3695 | /// ``` |
| 3696 | /// #![feature(unique_rc_arc)] |
| 3697 | /// use std::rc::{Rc, Weak, UniqueRc}; |
| 3698 | /// |
| 3699 | /// struct Gadget { |
| 3700 | /// #[allow (dead_code)] |
| 3701 | /// me: Weak<Gadget>, |
| 3702 | /// } |
| 3703 | /// |
| 3704 | /// fn create_gadget() -> Option<Rc<Gadget>> { |
| 3705 | /// let mut rc = UniqueRc::new(Gadget { |
| 3706 | /// me: Weak::new(), |
| 3707 | /// }); |
| 3708 | /// rc.me = UniqueRc::downgrade(&rc); |
| 3709 | /// Some(UniqueRc::into_rc(rc)) |
| 3710 | /// } |
| 3711 | /// |
| 3712 | /// create_gadget().unwrap(); |
| 3713 | /// ``` |
| 3714 | /// |
| 3715 | /// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that |
| 3716 | /// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the |
| 3717 | /// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data, |
| 3718 | /// including fallible or async constructors. |
| 3719 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3720 | pub struct UniqueRc< |
| 3721 | T: ?Sized, |
| 3722 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 3723 | > { |
| 3724 | ptr: NonNull<RcInner<T>>, |
| 3725 | // Define the ownership of `RcInner<T>` for drop-check |
| 3726 | _marker: PhantomData<RcInner<T>>, |
| 3727 | // Invariance is necessary for soundness: once other `Weak` |
| 3728 | // references exist, we already have a form of shared mutability! |
| 3729 | _marker2: PhantomData<*mut T>, |
| 3730 | alloc: A, |
| 3731 | } |
| 3732 | |
| 3733 | // Not necessary for correctness since `UniqueRc` contains `NonNull`, |
| 3734 | // but having an explicit negative impl is nice for documentation purposes |
| 3735 | // and results in nicer error messages. |
| 3736 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3737 | impl<T: ?Sized, A: Allocator> !Send for UniqueRc<T, A> {} |
| 3738 | |
| 3739 | // Not necessary for correctness since `UniqueRc` contains `NonNull`, |
| 3740 | // but having an explicit negative impl is nice for documentation purposes |
| 3741 | // and results in nicer error messages. |
| 3742 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3743 | impl<T: ?Sized, A: Allocator> !Sync for UniqueRc<T, A> {} |
| 3744 | |
| 3745 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3746 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueRc<U, A>> |
| 3747 | for UniqueRc<T, A> |
| 3748 | { |
| 3749 | } |
| 3750 | |
| 3751 | //#[unstable(feature = "unique_rc_arc", issue = "112566")] |
| 3752 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 3753 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueRc<U>> for UniqueRc<T> {} |
| 3754 | |
| 3755 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3756 | impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueRc<T, A> { |
| 3757 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3758 | fmt::Display::fmt(&**self, f) |
| 3759 | } |
| 3760 | } |
| 3761 | |
| 3762 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3763 | impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueRc<T, A> { |
| 3764 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3765 | fmt::Debug::fmt(&**self, f) |
| 3766 | } |
| 3767 | } |
| 3768 | |
| 3769 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3770 | impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueRc<T, A> { |
| 3771 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3772 | fmt::Pointer::fmt(&(&raw const **self), f) |
| 3773 | } |
| 3774 | } |
| 3775 | |
| 3776 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3777 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueRc<T, A> { |
| 3778 | fn borrow(&self) -> &T { |
| 3779 | &**self |
| 3780 | } |
| 3781 | } |
| 3782 | |
| 3783 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3784 | impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueRc<T, A> { |
| 3785 | fn borrow_mut(&mut self) -> &mut T { |
| 3786 | &mut **self |
| 3787 | } |
| 3788 | } |
| 3789 | |
| 3790 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3791 | impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueRc<T, A> { |
| 3792 | fn as_ref(&self) -> &T { |
| 3793 | &**self |
| 3794 | } |
| 3795 | } |
| 3796 | |
| 3797 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3798 | impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueRc<T, A> { |
| 3799 | fn as_mut(&mut self) -> &mut T { |
| 3800 | &mut **self |
| 3801 | } |
| 3802 | } |
| 3803 | |
| 3804 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3805 | impl<T: ?Sized, A: Allocator> Unpin for UniqueRc<T, A> {} |
| 3806 | |
| 3807 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3808 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueRc<T, A> { |
| 3809 | /// Equality for two `UniqueRc`s. |
| 3810 | /// |
| 3811 | /// Two `UniqueRc`s are equal if their inner values are equal. |
| 3812 | /// |
| 3813 | /// # Examples |
| 3814 | /// |
| 3815 | /// ``` |
| 3816 | /// #![feature(unique_rc_arc)] |
| 3817 | /// use std::rc::UniqueRc; |
| 3818 | /// |
| 3819 | /// let five = UniqueRc::new(5); |
| 3820 | /// |
| 3821 | /// assert!(five == UniqueRc::new(5)); |
| 3822 | /// ``` |
| 3823 | #[inline ] |
| 3824 | fn eq(&self, other: &Self) -> bool { |
| 3825 | PartialEq::eq(&**self, &**other) |
| 3826 | } |
| 3827 | |
| 3828 | /// Inequality for two `UniqueRc`s. |
| 3829 | /// |
| 3830 | /// Two `UniqueRc`s are not equal if their inner values are not equal. |
| 3831 | /// |
| 3832 | /// # Examples |
| 3833 | /// |
| 3834 | /// ``` |
| 3835 | /// #![feature(unique_rc_arc)] |
| 3836 | /// use std::rc::UniqueRc; |
| 3837 | /// |
| 3838 | /// let five = UniqueRc::new(5); |
| 3839 | /// |
| 3840 | /// assert!(five != UniqueRc::new(6)); |
| 3841 | /// ``` |
| 3842 | #[inline ] |
| 3843 | fn ne(&self, other: &Self) -> bool { |
| 3844 | PartialEq::ne(&**self, &**other) |
| 3845 | } |
| 3846 | } |
| 3847 | |
| 3848 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3849 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueRc<T, A> { |
| 3850 | /// Partial comparison for two `UniqueRc`s. |
| 3851 | /// |
| 3852 | /// The two are compared by calling `partial_cmp()` on their inner values. |
| 3853 | /// |
| 3854 | /// # Examples |
| 3855 | /// |
| 3856 | /// ``` |
| 3857 | /// #![feature(unique_rc_arc)] |
| 3858 | /// use std::rc::UniqueRc; |
| 3859 | /// use std::cmp::Ordering; |
| 3860 | /// |
| 3861 | /// let five = UniqueRc::new(5); |
| 3862 | /// |
| 3863 | /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueRc::new(6))); |
| 3864 | /// ``` |
| 3865 | #[inline (always)] |
| 3866 | fn partial_cmp(&self, other: &UniqueRc<T, A>) -> Option<Ordering> { |
| 3867 | (**self).partial_cmp(&**other) |
| 3868 | } |
| 3869 | |
| 3870 | /// Less-than comparison for two `UniqueRc`s. |
| 3871 | /// |
| 3872 | /// The two are compared by calling `<` on their inner values. |
| 3873 | /// |
| 3874 | /// # Examples |
| 3875 | /// |
| 3876 | /// ``` |
| 3877 | /// #![feature(unique_rc_arc)] |
| 3878 | /// use std::rc::UniqueRc; |
| 3879 | /// |
| 3880 | /// let five = UniqueRc::new(5); |
| 3881 | /// |
| 3882 | /// assert!(five < UniqueRc::new(6)); |
| 3883 | /// ``` |
| 3884 | #[inline (always)] |
| 3885 | fn lt(&self, other: &UniqueRc<T, A>) -> bool { |
| 3886 | **self < **other |
| 3887 | } |
| 3888 | |
| 3889 | /// 'Less than or equal to' comparison for two `UniqueRc`s. |
| 3890 | /// |
| 3891 | /// The two are compared by calling `<=` on their inner values. |
| 3892 | /// |
| 3893 | /// # Examples |
| 3894 | /// |
| 3895 | /// ``` |
| 3896 | /// #![feature(unique_rc_arc)] |
| 3897 | /// use std::rc::UniqueRc; |
| 3898 | /// |
| 3899 | /// let five = UniqueRc::new(5); |
| 3900 | /// |
| 3901 | /// assert!(five <= UniqueRc::new(5)); |
| 3902 | /// ``` |
| 3903 | #[inline (always)] |
| 3904 | fn le(&self, other: &UniqueRc<T, A>) -> bool { |
| 3905 | **self <= **other |
| 3906 | } |
| 3907 | |
| 3908 | /// Greater-than comparison for two `UniqueRc`s. |
| 3909 | /// |
| 3910 | /// The two are compared by calling `>` on their inner values. |
| 3911 | /// |
| 3912 | /// # Examples |
| 3913 | /// |
| 3914 | /// ``` |
| 3915 | /// #![feature(unique_rc_arc)] |
| 3916 | /// use std::rc::UniqueRc; |
| 3917 | /// |
| 3918 | /// let five = UniqueRc::new(5); |
| 3919 | /// |
| 3920 | /// assert!(five > UniqueRc::new(4)); |
| 3921 | /// ``` |
| 3922 | #[inline (always)] |
| 3923 | fn gt(&self, other: &UniqueRc<T, A>) -> bool { |
| 3924 | **self > **other |
| 3925 | } |
| 3926 | |
| 3927 | /// 'Greater than or equal to' comparison for two `UniqueRc`s. |
| 3928 | /// |
| 3929 | /// The two are compared by calling `>=` on their inner values. |
| 3930 | /// |
| 3931 | /// # Examples |
| 3932 | /// |
| 3933 | /// ``` |
| 3934 | /// #![feature(unique_rc_arc)] |
| 3935 | /// use std::rc::UniqueRc; |
| 3936 | /// |
| 3937 | /// let five = UniqueRc::new(5); |
| 3938 | /// |
| 3939 | /// assert!(five >= UniqueRc::new(5)); |
| 3940 | /// ``` |
| 3941 | #[inline (always)] |
| 3942 | fn ge(&self, other: &UniqueRc<T, A>) -> bool { |
| 3943 | **self >= **other |
| 3944 | } |
| 3945 | } |
| 3946 | |
| 3947 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3948 | impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueRc<T, A> { |
| 3949 | /// Comparison for two `UniqueRc`s. |
| 3950 | /// |
| 3951 | /// The two are compared by calling `cmp()` on their inner values. |
| 3952 | /// |
| 3953 | /// # Examples |
| 3954 | /// |
| 3955 | /// ``` |
| 3956 | /// #![feature(unique_rc_arc)] |
| 3957 | /// use std::rc::UniqueRc; |
| 3958 | /// use std::cmp::Ordering; |
| 3959 | /// |
| 3960 | /// let five = UniqueRc::new(5); |
| 3961 | /// |
| 3962 | /// assert_eq!(Ordering::Less, five.cmp(&UniqueRc::new(6))); |
| 3963 | /// ``` |
| 3964 | #[inline ] |
| 3965 | fn cmp(&self, other: &UniqueRc<T, A>) -> Ordering { |
| 3966 | (**self).cmp(&**other) |
| 3967 | } |
| 3968 | } |
| 3969 | |
| 3970 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3971 | impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueRc<T, A> {} |
| 3972 | |
| 3973 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3974 | impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueRc<T, A> { |
| 3975 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 3976 | (**self).hash(state); |
| 3977 | } |
| 3978 | } |
| 3979 | |
| 3980 | // Depends on A = Global |
| 3981 | impl<T> UniqueRc<T> { |
| 3982 | /// Creates a new `UniqueRc`. |
| 3983 | /// |
| 3984 | /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading |
| 3985 | /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`]. |
| 3986 | /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will |
| 3987 | /// point to the new [`Rc`]. |
| 3988 | #[cfg (not(no_global_oom_handling))] |
| 3989 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 3990 | pub fn new(value: T) -> Self { |
| 3991 | Self::new_in(value, alloc:Global) |
| 3992 | } |
| 3993 | } |
| 3994 | |
| 3995 | impl<T, A: Allocator> UniqueRc<T, A> { |
| 3996 | /// Creates a new `UniqueRc` in the provided allocator. |
| 3997 | /// |
| 3998 | /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading |
| 3999 | /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`]. |
| 4000 | /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will |
| 4001 | /// point to the new [`Rc`]. |
| 4002 | #[cfg (not(no_global_oom_handling))] |
| 4003 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4004 | pub fn new_in(value: T, alloc: A) -> Self { |
| 4005 | let (ptr: Unique>, alloc: A) = Box::into_unique(Box::new_in( |
| 4006 | x:RcInner { |
| 4007 | strong: Cell::new(0), |
| 4008 | // keep one weak reference so if all the weak pointers that are created are dropped |
| 4009 | // the UniqueRc still stays valid. |
| 4010 | weak: Cell::new(1), |
| 4011 | value, |
| 4012 | }, |
| 4013 | alloc, |
| 4014 | )); |
| 4015 | Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc } |
| 4016 | } |
| 4017 | } |
| 4018 | |
| 4019 | impl<T: ?Sized, A: Allocator> UniqueRc<T, A> { |
| 4020 | /// Converts the `UniqueRc` into a regular [`Rc`]. |
| 4021 | /// |
| 4022 | /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that |
| 4023 | /// is passed to `into_rc`. |
| 4024 | /// |
| 4025 | /// Any weak references created before this method is called can now be upgraded to strong |
| 4026 | /// references. |
| 4027 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4028 | pub fn into_rc(this: Self) -> Rc<T, A> { |
| 4029 | let mut this = ManuallyDrop::new(this); |
| 4030 | |
| 4031 | // Move the allocator out. |
| 4032 | // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in |
| 4033 | // a `ManuallyDrop`. |
| 4034 | let alloc: A = unsafe { ptr::read(&this.alloc) }; |
| 4035 | |
| 4036 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
| 4037 | unsafe { |
| 4038 | // Convert our weak reference into a strong reference |
| 4039 | this.ptr.as_mut().strong.set(1); |
| 4040 | Rc::from_inner_in(this.ptr, alloc) |
| 4041 | } |
| 4042 | } |
| 4043 | } |
| 4044 | |
| 4045 | impl<T: ?Sized, A: Allocator + Clone> UniqueRc<T, A> { |
| 4046 | /// Creates a new weak reference to the `UniqueRc`. |
| 4047 | /// |
| 4048 | /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted |
| 4049 | /// to a [`Rc`] using [`UniqueRc::into_rc`]. |
| 4050 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4051 | pub fn downgrade(this: &Self) -> Weak<T, A> { |
| 4052 | // SAFETY: This pointer was allocated at creation time and we guarantee that we only have |
| 4053 | // one strong reference before converting to a regular Rc. |
| 4054 | unsafe { |
| 4055 | this.ptr.as_ref().inc_weak(); |
| 4056 | } |
| 4057 | Weak { ptr: this.ptr, alloc: this.alloc.clone() } |
| 4058 | } |
| 4059 | } |
| 4060 | |
| 4061 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4062 | impl<T: ?Sized, A: Allocator> Deref for UniqueRc<T, A> { |
| 4063 | type Target = T; |
| 4064 | |
| 4065 | fn deref(&self) -> &T { |
| 4066 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
| 4067 | unsafe { &self.ptr.as_ref().value } |
| 4068 | } |
| 4069 | } |
| 4070 | |
| 4071 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4072 | impl<T: ?Sized, A: Allocator> DerefMut for UniqueRc<T, A> { |
| 4073 | fn deref_mut(&mut self) -> &mut T { |
| 4074 | // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we |
| 4075 | // have unique ownership and therefore it's safe to make a mutable reference because |
| 4076 | // `UniqueRc` owns the only strong reference to itself. |
| 4077 | unsafe { &mut (*self.ptr.as_ptr()).value } |
| 4078 | } |
| 4079 | } |
| 4080 | |
| 4081 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4082 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for UniqueRc<T, A> { |
| 4083 | fn drop(&mut self) { |
| 4084 | unsafe { |
| 4085 | // destroy the contained object |
| 4086 | drop_in_place(to_drop:DerefMut::deref_mut(self)); |
| 4087 | |
| 4088 | // remove the implicit "strong weak" pointer now that we've destroyed the contents. |
| 4089 | self.ptr.as_ref().dec_weak(); |
| 4090 | |
| 4091 | if self.ptr.as_ref().weak() == 0 { |
| 4092 | self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())); |
| 4093 | } |
| 4094 | } |
| 4095 | } |
| 4096 | } |
| 4097 | |
| 4098 | /// A unique owning pointer to a [`RcInner`] **that does not imply the contents are initialized,** |
| 4099 | /// but will deallocate it (without dropping the value) when dropped. |
| 4100 | /// |
| 4101 | /// This is a helper for [`Rc::make_mut()`] to ensure correct cleanup on panic. |
| 4102 | /// It is nearly a duplicate of `UniqueRc<MaybeUninit<T>, A>` except that it allows `T: !Sized`, |
| 4103 | /// which `MaybeUninit` does not. |
| 4104 | #[cfg (not(no_global_oom_handling))] |
| 4105 | struct UniqueRcUninit<T: ?Sized, A: Allocator> { |
| 4106 | ptr: NonNull<RcInner<T>>, |
| 4107 | layout_for_value: Layout, |
| 4108 | alloc: Option<A>, |
| 4109 | } |
| 4110 | |
| 4111 | #[cfg (not(no_global_oom_handling))] |
| 4112 | impl<T: ?Sized, A: Allocator> UniqueRcUninit<T, A> { |
| 4113 | /// Allocates a RcInner with layout suitable to contain `for_value` or a clone of it. |
| 4114 | fn new(for_value: &T, alloc: A) -> UniqueRcUninit<T, A> { |
| 4115 | let layout = Layout::for_value(for_value); |
| 4116 | let ptr = unsafe { |
| 4117 | Rc::allocate_for_layout( |
| 4118 | layout, |
| 4119 | |layout_for_rc_inner| alloc.allocate(layout_for_rc_inner), |
| 4120 | |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const RcInner<T>), |
| 4121 | ) |
| 4122 | }; |
| 4123 | Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) } |
| 4124 | } |
| 4125 | |
| 4126 | /// Returns the pointer to be written into to initialize the [`Rc`]. |
| 4127 | fn data_ptr(&mut self) -> *mut T { |
| 4128 | let offset = data_offset_align(self.layout_for_value.align()); |
| 4129 | unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T } |
| 4130 | } |
| 4131 | |
| 4132 | /// Upgrade this into a normal [`Rc`]. |
| 4133 | /// |
| 4134 | /// # Safety |
| 4135 | /// |
| 4136 | /// The data must have been initialized (by writing to [`Self::data_ptr()`]). |
| 4137 | unsafe fn into_rc(self) -> Rc<T, A> { |
| 4138 | let mut this = ManuallyDrop::new(self); |
| 4139 | let ptr = this.ptr; |
| 4140 | let alloc = this.alloc.take().unwrap(); |
| 4141 | |
| 4142 | // SAFETY: The pointer is valid as per `UniqueRcUninit::new`, and the caller is responsible |
| 4143 | // for having initialized the data. |
| 4144 | unsafe { Rc::from_ptr_in(ptr.as_ptr(), alloc) } |
| 4145 | } |
| 4146 | } |
| 4147 | |
| 4148 | #[cfg (not(no_global_oom_handling))] |
| 4149 | impl<T: ?Sized, A: Allocator> Drop for UniqueRcUninit<T, A> { |
| 4150 | fn drop(&mut self) { |
| 4151 | // SAFETY: |
| 4152 | // * new() produced a pointer safe to deallocate. |
| 4153 | // * We own the pointer unless into_rc() was called, which forgets us. |
| 4154 | unsafe { |
| 4155 | self.alloc.take().unwrap().deallocate( |
| 4156 | self.ptr.cast(), |
| 4157 | rc_inner_layout_for_value_layout(self.layout_for_value), |
| 4158 | ); |
| 4159 | } |
| 4160 | } |
| 4161 | } |
| 4162 | |