| 1 | // Copyright 2018 Developers of the Rand project. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 6 | // option. This file may not be copied, modified, or distributed |
| 7 | // except according to those terms. |
| 8 | |
| 9 | //! The Bernoulli distribution `Bernoulli(p)`. |
| 10 | |
| 11 | use crate::distr::Distribution; |
| 12 | use crate::Rng; |
| 13 | use core::fmt; |
| 14 | |
| 15 | #[cfg (feature = "serde" )] |
| 16 | use serde::{Deserialize, Serialize}; |
| 17 | |
| 18 | /// The [Bernoulli distribution](https://en.wikipedia.org/wiki/Bernoulli_distribution) `Bernoulli(p)`. |
| 19 | /// |
| 20 | /// This distribution describes a single boolean random variable, which is true |
| 21 | /// with probability `p` and false with probability `1 - p`. |
| 22 | /// It is a special case of the Binomial distribution with `n = 1`. |
| 23 | /// |
| 24 | /// # Plot |
| 25 | /// |
| 26 | /// The following plot shows the Bernoulli distribution with `p = 0.1`, |
| 27 | /// `p = 0.5`, and `p = 0.9`. |
| 28 | /// |
| 29 | ///  |
| 30 | /// |
| 31 | /// # Example |
| 32 | /// |
| 33 | /// ```rust |
| 34 | /// use rand::distr::{Bernoulli, Distribution}; |
| 35 | /// |
| 36 | /// let d = Bernoulli::new(0.3).unwrap(); |
| 37 | /// let v = d.sample(&mut rand::rng()); |
| 38 | /// println!("{} is from a Bernoulli distribution" , v); |
| 39 | /// ``` |
| 40 | /// |
| 41 | /// # Precision |
| 42 | /// |
| 43 | /// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`), |
| 44 | /// so only probabilities that are multiples of 2<sup>-64</sup> can be |
| 45 | /// represented. |
| 46 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 47 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 48 | pub struct Bernoulli { |
| 49 | /// Probability of success, relative to the maximal integer. |
| 50 | p_int: u64, |
| 51 | } |
| 52 | |
| 53 | // To sample from the Bernoulli distribution we use a method that compares a |
| 54 | // random `u64` value `v < (p * 2^64)`. |
| 55 | // |
| 56 | // If `p == 1.0`, the integer `v` to compare against can not represented as a |
| 57 | // `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64). |
| 58 | // Note that value of `p < 1.0` can never result in `u64::MAX`, because an |
| 59 | // `f64` only has 53 bits of precision, and the next largest value of `p` will |
| 60 | // result in `2^64 - 2048`. |
| 61 | // |
| 62 | // Also there is a 100% theoretical concern: if someone consistently wants to |
| 63 | // generate `true` using the Bernoulli distribution (i.e. by using a probability |
| 64 | // of `1.0`), just using `u64::MAX` is not enough. On average it would return |
| 65 | // false once every 2^64 iterations. Some people apparently care about this |
| 66 | // case. |
| 67 | // |
| 68 | // That is why we special-case `u64::MAX` to always return `true`, without using |
| 69 | // the RNG, and pay the performance price for all uses that *are* reasonable. |
| 70 | // Luckily, if `new()` and `sample` are close, the compiler can optimize out the |
| 71 | // extra check. |
| 72 | const ALWAYS_TRUE: u64 = u64::MAX; |
| 73 | |
| 74 | // This is just `2.0.powi(64)`, but written this way because it is not available |
| 75 | // in `no_std` mode. |
| 76 | const SCALE: f64 = 2.0 * (1u64 << 63) as f64; |
| 77 | |
| 78 | /// Error type returned from [`Bernoulli::new`]. |
| 79 | #[derive (Clone, Copy, Debug, PartialEq, Eq)] |
| 80 | pub enum BernoulliError { |
| 81 | /// `p < 0` or `p > 1`. |
| 82 | InvalidProbability, |
| 83 | } |
| 84 | |
| 85 | impl fmt::Display for BernoulliError { |
| 86 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 87 | f.write_str(data:match self { |
| 88 | BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution" , |
| 89 | }) |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | #[cfg (feature = "std" )] |
| 94 | impl std::error::Error for BernoulliError {} |
| 95 | |
| 96 | impl Bernoulli { |
| 97 | /// Construct a new `Bernoulli` with the given probability of success `p`. |
| 98 | /// |
| 99 | /// # Precision |
| 100 | /// |
| 101 | /// For `p = 1.0`, the resulting distribution will always generate true. |
| 102 | /// For `p = 0.0`, the resulting distribution will always generate false. |
| 103 | /// |
| 104 | /// This method is accurate for any input `p` in the range `[0, 1]` which is |
| 105 | /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of |
| 106 | /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.) |
| 107 | #[inline ] |
| 108 | pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> { |
| 109 | if !(0.0..1.0).contains(&p) { |
| 110 | if p == 1.0 { |
| 111 | return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
| 112 | } |
| 113 | return Err(BernoulliError::InvalidProbability); |
| 114 | } |
| 115 | Ok(Bernoulli { |
| 116 | p_int: (p * SCALE) as u64, |
| 117 | }) |
| 118 | } |
| 119 | |
| 120 | /// Construct a new `Bernoulli` with the probability of success of |
| 121 | /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return |
| 122 | /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`. |
| 123 | /// |
| 124 | /// return `true`. If `numerator == 0` it will always return `false`. |
| 125 | /// For `numerator > denominator` and `denominator == 0`, this returns an |
| 126 | /// error. Otherwise, for `numerator == denominator`, samples are always |
| 127 | /// true; for `numerator == 0` samples are always false. |
| 128 | #[inline ] |
| 129 | pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> { |
| 130 | if numerator > denominator || denominator == 0 { |
| 131 | return Err(BernoulliError::InvalidProbability); |
| 132 | } |
| 133 | if numerator == denominator { |
| 134 | return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
| 135 | } |
| 136 | let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64; |
| 137 | Ok(Bernoulli { p_int }) |
| 138 | } |
| 139 | |
| 140 | #[inline ] |
| 141 | /// Returns the probability (`p`) of the distribution. |
| 142 | /// |
| 143 | /// This value may differ slightly from the input due to loss of precision. |
| 144 | pub fn p(&self) -> f64 { |
| 145 | if self.p_int == ALWAYS_TRUE { |
| 146 | 1.0 |
| 147 | } else { |
| 148 | (self.p_int as f64) / SCALE |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | impl Distribution<bool> for Bernoulli { |
| 154 | #[inline ] |
| 155 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { |
| 156 | // Make sure to always return true for p = 1.0. |
| 157 | if self.p_int == ALWAYS_TRUE { |
| 158 | return true; |
| 159 | } |
| 160 | let v: u64 = rng.random(); |
| 161 | v < self.p_int |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | #[cfg (test)] |
| 166 | mod test { |
| 167 | use super::Bernoulli; |
| 168 | use crate::distr::Distribution; |
| 169 | use crate::Rng; |
| 170 | |
| 171 | #[test ] |
| 172 | #[cfg (feature = "serde" )] |
| 173 | fn test_serializing_deserializing_bernoulli() { |
| 174 | let coin_flip = Bernoulli::new(0.5).unwrap(); |
| 175 | let de_coin_flip: Bernoulli = |
| 176 | bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap(); |
| 177 | |
| 178 | assert_eq!(coin_flip.p_int, de_coin_flip.p_int); |
| 179 | } |
| 180 | |
| 181 | #[test ] |
| 182 | fn test_trivial() { |
| 183 | // We prefer to be explicit here. |
| 184 | #![allow (clippy::bool_assert_comparison)] |
| 185 | |
| 186 | let mut r = crate::test::rng(1); |
| 187 | let always_false = Bernoulli::new(0.0).unwrap(); |
| 188 | let always_true = Bernoulli::new(1.0).unwrap(); |
| 189 | for _ in 0..5 { |
| 190 | assert_eq!(r.sample::<bool, _>(&always_false), false); |
| 191 | assert_eq!(r.sample::<bool, _>(&always_true), true); |
| 192 | assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false); |
| 193 | assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | #[test ] |
| 198 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 199 | fn test_average() { |
| 200 | const P: f64 = 0.3; |
| 201 | const NUM: u32 = 3; |
| 202 | const DENOM: u32 = 10; |
| 203 | let d1 = Bernoulli::new(P).unwrap(); |
| 204 | let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap(); |
| 205 | const N: u32 = 100_000; |
| 206 | |
| 207 | let mut sum1: u32 = 0; |
| 208 | let mut sum2: u32 = 0; |
| 209 | let mut rng = crate::test::rng(2); |
| 210 | for _ in 0..N { |
| 211 | if d1.sample(&mut rng) { |
| 212 | sum1 += 1; |
| 213 | } |
| 214 | if d2.sample(&mut rng) { |
| 215 | sum2 += 1; |
| 216 | } |
| 217 | } |
| 218 | let avg1 = (sum1 as f64) / (N as f64); |
| 219 | assert!((avg1 - P).abs() < 5e-3); |
| 220 | |
| 221 | let avg2 = (sum2 as f64) / (N as f64); |
| 222 | assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3); |
| 223 | } |
| 224 | |
| 225 | #[test ] |
| 226 | fn value_stability() { |
| 227 | let mut rng = crate::test::rng(3); |
| 228 | let distr = Bernoulli::new(0.4532).unwrap(); |
| 229 | let mut buf = [false; 10]; |
| 230 | for x in &mut buf { |
| 231 | *x = rng.sample(distr); |
| 232 | } |
| 233 | assert_eq!( |
| 234 | buf, |
| 235 | [true, false, false, true, false, false, true, true, true, true] |
| 236 | ); |
| 237 | } |
| 238 | |
| 239 | #[test ] |
| 240 | fn bernoulli_distributions_can_be_compared() { |
| 241 | assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0)); |
| 242 | } |
| 243 | } |
| 244 | |