1 | // Copyright 2018 Developers of the Rand project. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
6 | // option. This file may not be copied, modified, or distributed |
7 | // except according to those terms. |
8 | |
9 | //! Basic floating-point number distributions |
10 | |
11 | use crate::distributions::utils::FloatSIMDUtils; |
12 | use crate::distributions::{Distribution, Standard}; |
13 | use crate::Rng; |
14 | use core::mem; |
15 | #[cfg (feature = "simd_support" )] use packed_simd::*; |
16 | |
17 | #[cfg (feature = "serde1" )] |
18 | use serde::{Serialize, Deserialize}; |
19 | |
20 | /// A distribution to sample floating point numbers uniformly in the half-open |
21 | /// interval `(0, 1]`, i.e. including 1 but not 0. |
22 | /// |
23 | /// All values that can be generated are of the form `n * ε/2`. For `f32` |
24 | /// the 24 most significant random bits of a `u32` are used and for `f64` the |
25 | /// 53 most significant bits of a `u64` are used. The conversion uses the |
26 | /// multiplicative method. |
27 | /// |
28 | /// See also: [`Standard`] which samples from `[0, 1)`, [`Open01`] |
29 | /// which samples from `(0, 1)` and [`Uniform`] which samples from arbitrary |
30 | /// ranges. |
31 | /// |
32 | /// # Example |
33 | /// ``` |
34 | /// use rand::{thread_rng, Rng}; |
35 | /// use rand::distributions::OpenClosed01; |
36 | /// |
37 | /// let val: f32 = thread_rng().sample(OpenClosed01); |
38 | /// println!("f32 from (0, 1): {}" , val); |
39 | /// ``` |
40 | /// |
41 | /// [`Standard`]: crate::distributions::Standard |
42 | /// [`Open01`]: crate::distributions::Open01 |
43 | /// [`Uniform`]: crate::distributions::uniform::Uniform |
44 | #[derive (Clone, Copy, Debug)] |
45 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
46 | pub struct OpenClosed01; |
47 | |
48 | /// A distribution to sample floating point numbers uniformly in the open |
49 | /// interval `(0, 1)`, i.e. not including either endpoint. |
50 | /// |
51 | /// All values that can be generated are of the form `n * ε + ε/2`. For `f32` |
52 | /// the 23 most significant random bits of an `u32` are used, for `f64` 52 from |
53 | /// an `u64`. The conversion uses a transmute-based method. |
54 | /// |
55 | /// See also: [`Standard`] which samples from `[0, 1)`, [`OpenClosed01`] |
56 | /// which samples from `(0, 1]` and [`Uniform`] which samples from arbitrary |
57 | /// ranges. |
58 | /// |
59 | /// # Example |
60 | /// ``` |
61 | /// use rand::{thread_rng, Rng}; |
62 | /// use rand::distributions::Open01; |
63 | /// |
64 | /// let val: f32 = thread_rng().sample(Open01); |
65 | /// println!("f32 from (0, 1): {}" , val); |
66 | /// ``` |
67 | /// |
68 | /// [`Standard`]: crate::distributions::Standard |
69 | /// [`OpenClosed01`]: crate::distributions::OpenClosed01 |
70 | /// [`Uniform`]: crate::distributions::uniform::Uniform |
71 | #[derive (Clone, Copy, Debug)] |
72 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
73 | pub struct Open01; |
74 | |
75 | |
76 | // This trait is needed by both this lib and rand_distr hence is a hidden export |
77 | #[doc (hidden)] |
78 | pub trait IntoFloat { |
79 | type F; |
80 | |
81 | /// Helper method to combine the fraction and a constant exponent into a |
82 | /// float. |
83 | /// |
84 | /// Only the least significant bits of `self` may be set, 23 for `f32` and |
85 | /// 52 for `f64`. |
86 | /// The resulting value will fall in a range that depends on the exponent. |
87 | /// As an example the range with exponent 0 will be |
88 | /// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2). |
89 | fn into_float_with_exponent(self, exponent: i32) -> Self::F; |
90 | } |
91 | |
92 | macro_rules! float_impls { |
93 | ($ty:ident, $uty:ident, $f_scalar:ident, $u_scalar:ty, |
94 | $fraction_bits:expr, $exponent_bias:expr) => { |
95 | impl IntoFloat for $uty { |
96 | type F = $ty; |
97 | #[inline(always)] |
98 | fn into_float_with_exponent(self, exponent: i32) -> $ty { |
99 | // The exponent is encoded using an offset-binary representation |
100 | let exponent_bits: $u_scalar = |
101 | (($exponent_bias + exponent) as $u_scalar) << $fraction_bits; |
102 | $ty::from_bits(self | exponent_bits) |
103 | } |
104 | } |
105 | |
106 | impl Distribution<$ty> for Standard { |
107 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { |
108 | // Multiply-based method; 24/53 random bits; [0, 1) interval. |
109 | // We use the most significant bits because for simple RNGs |
110 | // those are usually more random. |
111 | let float_size = mem::size_of::<$f_scalar>() as u32 * 8; |
112 | let precision = $fraction_bits + 1; |
113 | let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar); |
114 | |
115 | let value: $uty = rng.gen(); |
116 | let value = value >> (float_size - precision); |
117 | scale * $ty::cast_from_int(value) |
118 | } |
119 | } |
120 | |
121 | impl Distribution<$ty> for OpenClosed01 { |
122 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { |
123 | // Multiply-based method; 24/53 random bits; (0, 1] interval. |
124 | // We use the most significant bits because for simple RNGs |
125 | // those are usually more random. |
126 | let float_size = mem::size_of::<$f_scalar>() as u32 * 8; |
127 | let precision = $fraction_bits + 1; |
128 | let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar); |
129 | |
130 | let value: $uty = rng.gen(); |
131 | let value = value >> (float_size - precision); |
132 | // Add 1 to shift up; will not overflow because of right-shift: |
133 | scale * $ty::cast_from_int(value + 1) |
134 | } |
135 | } |
136 | |
137 | impl Distribution<$ty> for Open01 { |
138 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty { |
139 | // Transmute-based method; 23/52 random bits; (0, 1) interval. |
140 | // We use the most significant bits because for simple RNGs |
141 | // those are usually more random. |
142 | use core::$f_scalar::EPSILON; |
143 | let float_size = mem::size_of::<$f_scalar>() as u32 * 8; |
144 | |
145 | let value: $uty = rng.gen(); |
146 | let fraction = value >> (float_size - $fraction_bits); |
147 | fraction.into_float_with_exponent(0) - (1.0 - EPSILON / 2.0) |
148 | } |
149 | } |
150 | } |
151 | } |
152 | |
153 | float_impls! { f32, u32, f32, u32, 23, 127 } |
154 | float_impls! { f64, u64, f64, u64, 52, 1023 } |
155 | |
156 | #[cfg (feature = "simd_support" )] |
157 | float_impls! { f32x2, u32x2, f32, u32, 23, 127 } |
158 | #[cfg (feature = "simd_support" )] |
159 | float_impls! { f32x4, u32x4, f32, u32, 23, 127 } |
160 | #[cfg (feature = "simd_support" )] |
161 | float_impls! { f32x8, u32x8, f32, u32, 23, 127 } |
162 | #[cfg (feature = "simd_support" )] |
163 | float_impls! { f32x16, u32x16, f32, u32, 23, 127 } |
164 | |
165 | #[cfg (feature = "simd_support" )] |
166 | float_impls! { f64x2, u64x2, f64, u64, 52, 1023 } |
167 | #[cfg (feature = "simd_support" )] |
168 | float_impls! { f64x4, u64x4, f64, u64, 52, 1023 } |
169 | #[cfg (feature = "simd_support" )] |
170 | float_impls! { f64x8, u64x8, f64, u64, 52, 1023 } |
171 | |
172 | |
173 | #[cfg (test)] |
174 | mod tests { |
175 | use super::*; |
176 | use crate::rngs::mock::StepRng; |
177 | |
178 | const EPSILON32: f32 = ::core::f32::EPSILON; |
179 | const EPSILON64: f64 = ::core::f64::EPSILON; |
180 | |
181 | macro_rules! test_f32 { |
182 | ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => { |
183 | #[test] |
184 | fn $fnn() { |
185 | // Standard |
186 | let mut zeros = StepRng::new(0, 0); |
187 | assert_eq!(zeros.gen::<$ty>(), $ZERO); |
188 | let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0); |
189 | assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0); |
190 | let mut max = StepRng::new(!0, 0); |
191 | assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0); |
192 | |
193 | // OpenClosed01 |
194 | let mut zeros = StepRng::new(0, 0); |
195 | assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0); |
196 | let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0); |
197 | assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON); |
198 | let mut max = StepRng::new(!0, 0); |
199 | assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0); |
200 | |
201 | // Open01 |
202 | let mut zeros = StepRng::new(0, 0); |
203 | assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0); |
204 | let mut one = StepRng::new(1 << 9 | 1 << (9 + 32), 0); |
205 | assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0); |
206 | let mut max = StepRng::new(!0, 0); |
207 | assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0); |
208 | } |
209 | }; |
210 | } |
211 | test_f32! { f32_edge_cases, f32, 0.0, EPSILON32 } |
212 | #[cfg (feature = "simd_support" )] |
213 | test_f32! { f32x2_edge_cases, f32x2, f32x2::splat(0.0), f32x2::splat(EPSILON32) } |
214 | #[cfg (feature = "simd_support" )] |
215 | test_f32! { f32x4_edge_cases, f32x4, f32x4::splat(0.0), f32x4::splat(EPSILON32) } |
216 | #[cfg (feature = "simd_support" )] |
217 | test_f32! { f32x8_edge_cases, f32x8, f32x8::splat(0.0), f32x8::splat(EPSILON32) } |
218 | #[cfg (feature = "simd_support" )] |
219 | test_f32! { f32x16_edge_cases, f32x16, f32x16::splat(0.0), f32x16::splat(EPSILON32) } |
220 | |
221 | macro_rules! test_f64 { |
222 | ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => { |
223 | #[test] |
224 | fn $fnn() { |
225 | // Standard |
226 | let mut zeros = StepRng::new(0, 0); |
227 | assert_eq!(zeros.gen::<$ty>(), $ZERO); |
228 | let mut one = StepRng::new(1 << 11, 0); |
229 | assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0); |
230 | let mut max = StepRng::new(!0, 0); |
231 | assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0); |
232 | |
233 | // OpenClosed01 |
234 | let mut zeros = StepRng::new(0, 0); |
235 | assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0); |
236 | let mut one = StepRng::new(1 << 11, 0); |
237 | assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON); |
238 | let mut max = StepRng::new(!0, 0); |
239 | assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0); |
240 | |
241 | // Open01 |
242 | let mut zeros = StepRng::new(0, 0); |
243 | assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0); |
244 | let mut one = StepRng::new(1 << 12, 0); |
245 | assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0); |
246 | let mut max = StepRng::new(!0, 0); |
247 | assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0); |
248 | } |
249 | }; |
250 | } |
251 | test_f64! { f64_edge_cases, f64, 0.0, EPSILON64 } |
252 | #[cfg (feature = "simd_support" )] |
253 | test_f64! { f64x2_edge_cases, f64x2, f64x2::splat(0.0), f64x2::splat(EPSILON64) } |
254 | #[cfg (feature = "simd_support" )] |
255 | test_f64! { f64x4_edge_cases, f64x4, f64x4::splat(0.0), f64x4::splat(EPSILON64) } |
256 | #[cfg (feature = "simd_support" )] |
257 | test_f64! { f64x8_edge_cases, f64x8, f64x8::splat(0.0), f64x8::splat(EPSILON64) } |
258 | |
259 | #[test ] |
260 | fn value_stability() { |
261 | fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>( |
262 | distr: &D, zero: T, expected: &[T], |
263 | ) { |
264 | let mut rng = crate::test::rng(0x6f44f5646c2a7334); |
265 | let mut buf = [zero; 3]; |
266 | for x in &mut buf { |
267 | *x = rng.sample(&distr); |
268 | } |
269 | assert_eq!(&buf, expected); |
270 | } |
271 | |
272 | test_samples(&Standard, 0f32, &[0.0035963655, 0.7346052, 0.09778172]); |
273 | test_samples(&Standard, 0f64, &[ |
274 | 0.7346051961657583, |
275 | 0.20298547462974248, |
276 | 0.8166436635290655, |
277 | ]); |
278 | |
279 | test_samples(&OpenClosed01, 0f32, &[0.003596425, 0.73460525, 0.09778178]); |
280 | test_samples(&OpenClosed01, 0f64, &[ |
281 | 0.7346051961657584, |
282 | 0.2029854746297426, |
283 | 0.8166436635290656, |
284 | ]); |
285 | |
286 | test_samples(&Open01, 0f32, &[0.0035963655, 0.73460525, 0.09778172]); |
287 | test_samples(&Open01, 0f64, &[ |
288 | 0.7346051961657584, |
289 | 0.20298547462974248, |
290 | 0.8166436635290656, |
291 | ]); |
292 | |
293 | #[cfg (feature = "simd_support" )] |
294 | { |
295 | // We only test a sub-set of types here. Values are identical to |
296 | // non-SIMD types; we assume this pattern continues across all |
297 | // SIMD types. |
298 | |
299 | test_samples(&Standard, f32x2::new(0.0, 0.0), &[ |
300 | f32x2::new(0.0035963655, 0.7346052), |
301 | f32x2::new(0.09778172, 0.20298547), |
302 | f32x2::new(0.34296435, 0.81664366), |
303 | ]); |
304 | |
305 | test_samples(&Standard, f64x2::new(0.0, 0.0), &[ |
306 | f64x2::new(0.7346051961657583, 0.20298547462974248), |
307 | f64x2::new(0.8166436635290655, 0.7423708925400552), |
308 | f64x2::new(0.16387782224016323, 0.9087068770169618), |
309 | ]); |
310 | } |
311 | } |
312 | } |
313 | |