1 | // Copyright 2018 Developers of the Rand project. |
2 | // Copyright 2013-2017 The Rust Project Developers. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | //! Utilities for random number generation |
11 | //! |
12 | //! Rand provides utilities to generate random numbers, to convert them to |
13 | //! useful types and distributions, and some randomness-related algorithms. |
14 | //! |
15 | //! # Quick Start |
16 | //! |
17 | //! To get you started quickly, the easiest and highest-level way to get |
18 | //! a random value is to use [`random()`]; alternatively you can use |
19 | //! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while |
20 | //! the [`distributions`] and [`seq`] modules provide further |
21 | //! functionality on top of RNGs. |
22 | //! |
23 | //! ``` |
24 | //! use rand::prelude::*; |
25 | //! |
26 | //! if rand::random() { // generates a boolean |
27 | //! // Try printing a random unicode code point (probably a bad idea)! |
28 | //! println!("char: {}" , rand::random::<char>()); |
29 | //! } |
30 | //! |
31 | //! let mut rng = rand::thread_rng(); |
32 | //! let y: f64 = rng.gen(); // generates a float between 0 and 1 |
33 | //! |
34 | //! let mut nums: Vec<i32> = (1..100).collect(); |
35 | //! nums.shuffle(&mut rng); |
36 | //! ``` |
37 | //! |
38 | //! # The Book |
39 | //! |
40 | //! For the user guide and further documentation, please read |
41 | //! [The Rust Rand Book](https://rust-random.github.io/book). |
42 | |
43 | #![doc ( |
44 | html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png" , |
45 | html_favicon_url = "https://www.rust-lang.org/favicon.ico" , |
46 | html_root_url = "https://rust-random.github.io/rand/" |
47 | )] |
48 | #![deny (missing_docs)] |
49 | #![deny (missing_debug_implementations)] |
50 | #![doc (test(attr(allow(unused_variables), deny(warnings))))] |
51 | #![no_std ] |
52 | #![cfg_attr (feature = "simd_support" , feature(stdsimd))] |
53 | #![cfg_attr (doc_cfg, feature(doc_cfg))] |
54 | #![allow ( |
55 | clippy::float_cmp, |
56 | clippy::neg_cmp_op_on_partial_ord, |
57 | )] |
58 | |
59 | #[cfg (feature = "std" )] extern crate std; |
60 | #[cfg (feature = "alloc" )] extern crate alloc; |
61 | |
62 | #[allow (unused)] |
63 | macro_rules! trace { ($($x:tt)*) => ( |
64 | #[cfg(feature = "log" )] { |
65 | log::trace!($($x)*) |
66 | } |
67 | ) } |
68 | #[allow (unused)] |
69 | macro_rules! debug { ($($x:tt)*) => ( |
70 | #[cfg(feature = "log" )] { |
71 | log::debug!($($x)*) |
72 | } |
73 | ) } |
74 | #[allow (unused)] |
75 | macro_rules! info { ($($x:tt)*) => ( |
76 | #[cfg(feature = "log" )] { |
77 | log::info!($($x)*) |
78 | } |
79 | ) } |
80 | #[allow (unused)] |
81 | macro_rules! warn { ($($x:tt)*) => ( |
82 | #[cfg(feature = "log" )] { |
83 | log::warn!($($x)*) |
84 | } |
85 | ) } |
86 | #[allow (unused)] |
87 | macro_rules! error { ($($x:tt)*) => ( |
88 | #[cfg(feature = "log" )] { |
89 | log::error!($($x)*) |
90 | } |
91 | ) } |
92 | |
93 | // Re-exports from rand_core |
94 | pub use rand_core::{CryptoRng, Error, RngCore, SeedableRng}; |
95 | |
96 | // Public modules |
97 | pub mod distributions; |
98 | pub mod prelude; |
99 | mod rng; |
100 | pub mod rngs; |
101 | pub mod seq; |
102 | |
103 | // Public exports |
104 | #[cfg (all(feature = "std" , feature = "std_rng" ))] |
105 | pub use crate::rngs::thread::thread_rng; |
106 | pub use rng::{Fill, Rng}; |
107 | |
108 | #[cfg (all(feature = "std" , feature = "std_rng" ))] |
109 | use crate::distributions::{Distribution, Standard}; |
110 | |
111 | /// Generates a random value using the thread-local random number generator. |
112 | /// |
113 | /// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for |
114 | /// documentation of the entropy source and [`Standard`] for documentation of |
115 | /// distributions and type-specific generation. |
116 | /// |
117 | /// # Provided implementations |
118 | /// |
119 | /// The following types have provided implementations that |
120 | /// generate values with the following ranges and distributions: |
121 | /// |
122 | /// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed |
123 | /// over all values of the type. |
124 | /// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all |
125 | /// code points in the range `0...0x10_FFFF`, except for the range |
126 | /// `0xD800...0xDFFF` (the surrogate code points). This includes |
127 | /// unassigned/reserved code points. |
128 | /// * `bool`: Generates `false` or `true`, each with probability 0.5. |
129 | /// * Floating point types (`f32` and `f64`): Uniformly distributed in the |
130 | /// half-open range `[0, 1)`. See notes below. |
131 | /// * Wrapping integers (`Wrapping<T>`), besides the type identical to their |
132 | /// normal integer variants. |
133 | /// |
134 | /// Also supported is the generation of the following |
135 | /// compound types where all component types are supported: |
136 | /// |
137 | /// * Tuples (up to 12 elements): each element is generated sequentially. |
138 | /// * Arrays (up to 32 elements): each element is generated sequentially; |
139 | /// see also [`Rng::fill`] which supports arbitrary array length for integer |
140 | /// types and tends to be faster for `u32` and smaller types. |
141 | /// * `Option<T>` first generates a `bool`, and if true generates and returns |
142 | /// `Some(value)` where `value: T`, otherwise returning `None`. |
143 | /// |
144 | /// # Examples |
145 | /// |
146 | /// ``` |
147 | /// let x = rand::random::<u8>(); |
148 | /// println!("{}" , x); |
149 | /// |
150 | /// let y = rand::random::<f64>(); |
151 | /// println!("{}" , y); |
152 | /// |
153 | /// if rand::random() { // generates a boolean |
154 | /// println!("Better lucky than good!" ); |
155 | /// } |
156 | /// ``` |
157 | /// |
158 | /// If you're calling `random()` in a loop, caching the generator as in the |
159 | /// following example can increase performance. |
160 | /// |
161 | /// ``` |
162 | /// use rand::Rng; |
163 | /// |
164 | /// let mut v = vec![1, 2, 3]; |
165 | /// |
166 | /// for x in v.iter_mut() { |
167 | /// *x = rand::random() |
168 | /// } |
169 | /// |
170 | /// // can be made faster by caching thread_rng |
171 | /// |
172 | /// let mut rng = rand::thread_rng(); |
173 | /// |
174 | /// for x in v.iter_mut() { |
175 | /// *x = rng.gen(); |
176 | /// } |
177 | /// ``` |
178 | /// |
179 | /// [`Standard`]: distributions::Standard |
180 | #[cfg (all(feature = "std" , feature = "std_rng" ))] |
181 | #[cfg_attr (doc_cfg, doc(cfg(all(feature = "std" , feature = "std_rng" ))))] |
182 | #[inline ] |
183 | pub fn random<T>() -> T |
184 | where Standard: Distribution<T> { |
185 | thread_rng().gen() |
186 | } |
187 | |
188 | #[cfg (test)] |
189 | mod test { |
190 | use super::*; |
191 | |
192 | /// Construct a deterministic RNG with the given seed |
193 | pub fn rng(seed: u64) -> impl RngCore { |
194 | // For tests, we want a statistically good, fast, reproducible RNG. |
195 | // PCG32 will do fine, and will be easy to embed if we ever need to. |
196 | const INC: u64 = 11634580027462260723; |
197 | rand_pcg::Pcg32::new(seed, INC) |
198 | } |
199 | |
200 | #[test ] |
201 | #[cfg (all(feature = "std" , feature = "std_rng" ))] |
202 | fn test_random() { |
203 | let _n: usize = random(); |
204 | let _f: f32 = random(); |
205 | let _o: Option<Option<i8>> = random(); |
206 | #[allow (clippy::type_complexity)] |
207 | let _many: ( |
208 | (), |
209 | (usize, isize, Option<(u32, (bool,))>), |
210 | (u8, i8, u16, i16, u32, i32, u64, i64), |
211 | (f32, (f64, (f64,))), |
212 | ) = random(); |
213 | } |
214 | } |
215 | |