| 1 | // Copyright 2018 Developers of the Rand project. |
| 2 | // Copyright 2017-2018 The Rust Project Developers. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 7 | // option. This file may not be copied, modified, or distributed |
| 8 | // except according to those terms. |
| 9 | |
| 10 | //! Random number generation traits |
| 11 | //! |
| 12 | //! This crate is mainly of interest to crates publishing implementations of |
| 13 | //! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead |
| 14 | //! which re-exports the main traits and error types. |
| 15 | //! |
| 16 | //! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number |
| 17 | //! generators and external random-number sources. |
| 18 | //! |
| 19 | //! [`SeedableRng`] is an extension trait for construction from fixed seeds and |
| 20 | //! other random number generators. |
| 21 | //! |
| 22 | //! The [`impls`] and [`le`] sub-modules include a few small functions to assist |
| 23 | //! implementation of [`RngCore`]. |
| 24 | //! |
| 25 | //! [`rand`]: https://docs.rs/rand |
| 26 | |
| 27 | #![doc ( |
| 28 | html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png" , |
| 29 | html_favicon_url = "https://www.rust-lang.org/favicon.ico" , |
| 30 | html_root_url = "https://rust-random.github.io/rand/" |
| 31 | )] |
| 32 | #![deny (missing_docs)] |
| 33 | #![deny (missing_debug_implementations)] |
| 34 | #![doc (test(attr(allow(unused_variables), deny(warnings))))] |
| 35 | #![cfg_attr (docsrs, feature(doc_auto_cfg))] |
| 36 | #![no_std ] |
| 37 | |
| 38 | #[cfg (feature = "std" )] |
| 39 | extern crate std; |
| 40 | |
| 41 | use core::{fmt, ops::DerefMut}; |
| 42 | |
| 43 | pub mod block; |
| 44 | pub mod impls; |
| 45 | pub mod le; |
| 46 | #[cfg (feature = "os_rng" )] |
| 47 | mod os; |
| 48 | |
| 49 | #[cfg (feature = "os_rng" )] |
| 50 | pub use os::{OsError, OsRng}; |
| 51 | |
| 52 | /// Implementation-level interface for RNGs |
| 53 | /// |
| 54 | /// This trait encapsulates the low-level functionality common to all |
| 55 | /// generators, and is the "back end", to be implemented by generators. |
| 56 | /// End users should normally use the [`rand::Rng`] trait |
| 57 | /// which is automatically implemented for every type implementing `RngCore`. |
| 58 | /// |
| 59 | /// Three different methods for generating random data are provided since the |
| 60 | /// optimal implementation of each is dependent on the type of generator. There |
| 61 | /// is no required relationship between the output of each; e.g. many |
| 62 | /// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64` |
| 63 | /// values and drop any remaining unused bytes. The same can happen with the |
| 64 | /// [`next_u32`] and [`next_u64`] methods, implementations may discard some |
| 65 | /// random bits for efficiency. |
| 66 | /// |
| 67 | /// Implementers should produce bits uniformly. Pathological RNGs (e.g. always |
| 68 | /// returning the same value, or never setting certain bits) can break rejection |
| 69 | /// sampling used by random distributions, and also break other RNGs when |
| 70 | /// seeding them via [`SeedableRng::from_rng`]. |
| 71 | /// |
| 72 | /// Algorithmic generators implementing [`SeedableRng`] should normally have |
| 73 | /// *portable, reproducible* output, i.e. fix Endianness when converting values |
| 74 | /// to avoid platform differences, and avoid making any changes which affect |
| 75 | /// output (except by communicating that the release has breaking changes). |
| 76 | /// |
| 77 | /// Typically an RNG will implement only one of the methods available |
| 78 | /// in this trait directly, then use the helper functions from the |
| 79 | /// [`impls`] module to implement the other methods. |
| 80 | /// |
| 81 | /// Note that implementors of [`RngCore`] also automatically implement |
| 82 | /// the [`TryRngCore`] trait with the `Error` associated type being |
| 83 | /// equal to [`Infallible`]. |
| 84 | /// |
| 85 | /// It is recommended that implementations also implement: |
| 86 | /// |
| 87 | /// - `Debug` with a custom implementation which *does not* print any internal |
| 88 | /// state (at least, [`CryptoRng`]s should not risk leaking state through |
| 89 | /// `Debug`). |
| 90 | /// - `Serialize` and `Deserialize` (from Serde), preferably making Serde |
| 91 | /// support optional at the crate level in PRNG libs. |
| 92 | /// - `Clone`, if possible. |
| 93 | /// - *never* implement `Copy` (accidental copies may cause repeated values). |
| 94 | /// - *do not* implement `Default` for pseudorandom generators, but instead |
| 95 | /// implement [`SeedableRng`], to guide users towards proper seeding. |
| 96 | /// External / hardware RNGs can choose to implement `Default`. |
| 97 | /// - `Eq` and `PartialEq` could be implemented, but are probably not useful. |
| 98 | /// |
| 99 | /// # Example |
| 100 | /// |
| 101 | /// A simple example, obviously not generating very *random* output: |
| 102 | /// |
| 103 | /// ``` |
| 104 | /// #![allow(dead_code)] |
| 105 | /// use rand_core::{RngCore, impls}; |
| 106 | /// |
| 107 | /// struct CountingRng(u64); |
| 108 | /// |
| 109 | /// impl RngCore for CountingRng { |
| 110 | /// fn next_u32(&mut self) -> u32 { |
| 111 | /// self.next_u64() as u32 |
| 112 | /// } |
| 113 | /// |
| 114 | /// fn next_u64(&mut self) -> u64 { |
| 115 | /// self.0 += 1; |
| 116 | /// self.0 |
| 117 | /// } |
| 118 | /// |
| 119 | /// fn fill_bytes(&mut self, dst: &mut [u8]) { |
| 120 | /// impls::fill_bytes_via_next(self, dst) |
| 121 | /// } |
| 122 | /// } |
| 123 | /// ``` |
| 124 | /// |
| 125 | /// [`rand::Rng`]: https://docs.rs/rand/latest/rand/trait.Rng.html |
| 126 | /// [`fill_bytes`]: RngCore::fill_bytes |
| 127 | /// [`next_u32`]: RngCore::next_u32 |
| 128 | /// [`next_u64`]: RngCore::next_u64 |
| 129 | /// [`Infallible`]: core::convert::Infallible |
| 130 | pub trait RngCore { |
| 131 | /// Return the next random `u32`. |
| 132 | /// |
| 133 | /// RNGs must implement at least one method from this trait directly. In |
| 134 | /// the case this method is not implemented directly, it can be implemented |
| 135 | /// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`]. |
| 136 | fn next_u32(&mut self) -> u32; |
| 137 | |
| 138 | /// Return the next random `u64`. |
| 139 | /// |
| 140 | /// RNGs must implement at least one method from this trait directly. In |
| 141 | /// the case this method is not implemented directly, it can be implemented |
| 142 | /// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`]. |
| 143 | fn next_u64(&mut self) -> u64; |
| 144 | |
| 145 | /// Fill `dest` with random data. |
| 146 | /// |
| 147 | /// RNGs must implement at least one method from this trait directly. In |
| 148 | /// the case this method is not implemented directly, it can be implemented |
| 149 | /// via [`impls::fill_bytes_via_next`]. |
| 150 | /// |
| 151 | /// This method should guarantee that `dest` is entirely filled |
| 152 | /// with new data, and may panic if this is impossible |
| 153 | /// (e.g. reading past the end of a file that is being used as the |
| 154 | /// source of randomness). |
| 155 | fn fill_bytes(&mut self, dst: &mut [u8]); |
| 156 | } |
| 157 | |
| 158 | impl<T: DerefMut> RngCore for T |
| 159 | where |
| 160 | T::Target: RngCore, |
| 161 | { |
| 162 | #[inline ] |
| 163 | fn next_u32(&mut self) -> u32 { |
| 164 | self.deref_mut().next_u32() |
| 165 | } |
| 166 | |
| 167 | #[inline ] |
| 168 | fn next_u64(&mut self) -> u64 { |
| 169 | self.deref_mut().next_u64() |
| 170 | } |
| 171 | |
| 172 | #[inline ] |
| 173 | fn fill_bytes(&mut self, dst: &mut [u8]) { |
| 174 | self.deref_mut().fill_bytes(dst); |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | /// A marker trait over [`RngCore`] for securely unpredictable RNGs |
| 179 | /// |
| 180 | /// This marker trait indicates that the implementing generator is intended, |
| 181 | /// when correctly seeded and protected from side-channel attacks such as a |
| 182 | /// leaking of state, to be a cryptographically secure generator. This trait is |
| 183 | /// provided as a tool to aid review of cryptographic code, but does not by |
| 184 | /// itself guarantee suitability for cryptographic applications. |
| 185 | /// |
| 186 | /// Implementors of `CryptoRng` automatically implement the [`TryCryptoRng`] |
| 187 | /// trait. |
| 188 | /// |
| 189 | /// Implementors of `CryptoRng` should only implement [`Default`] if the |
| 190 | /// `default()` instances are themselves secure generators: for example if the |
| 191 | /// implementing type is a stateless interface over a secure external generator |
| 192 | /// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed. |
| 193 | /// |
| 194 | /// Formally, a CSPRNG (Cryptographically Secure Pseudo-Random Number Generator) |
| 195 | /// should satisfy an additional property over other generators: assuming that |
| 196 | /// the generator has been appropriately seeded and has unknown state, then |
| 197 | /// given the first *k* bits of an algorithm's output |
| 198 | /// sequence, it should not be possible using polynomial-time algorithms to |
| 199 | /// predict the next bit with probability significantly greater than 50%. |
| 200 | /// |
| 201 | /// An optional property of CSPRNGs is backtracking resistance: if the CSPRNG's |
| 202 | /// state is revealed, it will not be computationally-feasible to reconstruct |
| 203 | /// prior output values. This property is not required by `CryptoRng`. |
| 204 | pub trait CryptoRng: RngCore {} |
| 205 | |
| 206 | impl<T: DerefMut> CryptoRng for T where T::Target: CryptoRng {} |
| 207 | |
| 208 | /// A potentially fallible variant of [`RngCore`] |
| 209 | /// |
| 210 | /// This trait is a generalization of [`RngCore`] to support potentially- |
| 211 | /// fallible IO-based generators such as [`OsRng`]. |
| 212 | /// |
| 213 | /// All implementations of [`RngCore`] automatically support this `TryRngCore` |
| 214 | /// trait, using [`Infallible`][core::convert::Infallible] as the associated |
| 215 | /// `Error` type. |
| 216 | /// |
| 217 | /// An implementation of this trait may be made compatible with code requiring |
| 218 | /// an [`RngCore`] through [`TryRngCore::unwrap_err`]. The resulting RNG will |
| 219 | /// panic in case the underlying fallible RNG yields an error. |
| 220 | pub trait TryRngCore { |
| 221 | /// The type returned in the event of a RNG error. |
| 222 | type Error: fmt::Debug + fmt::Display; |
| 223 | |
| 224 | /// Return the next random `u32`. |
| 225 | fn try_next_u32(&mut self) -> Result<u32, Self::Error>; |
| 226 | /// Return the next random `u64`. |
| 227 | fn try_next_u64(&mut self) -> Result<u64, Self::Error>; |
| 228 | /// Fill `dest` entirely with random data. |
| 229 | fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error>; |
| 230 | |
| 231 | /// Wrap RNG with the [`UnwrapErr`] wrapper. |
| 232 | fn unwrap_err(self) -> UnwrapErr<Self> |
| 233 | where |
| 234 | Self: Sized, |
| 235 | { |
| 236 | UnwrapErr(self) |
| 237 | } |
| 238 | |
| 239 | /// Wrap RNG with the [`UnwrapMut`] wrapper. |
| 240 | fn unwrap_mut(&mut self) -> UnwrapMut<'_, Self> { |
| 241 | UnwrapMut(self) |
| 242 | } |
| 243 | |
| 244 | /// Convert an [`RngCore`] to a [`RngReadAdapter`]. |
| 245 | #[cfg (feature = "std" )] |
| 246 | fn read_adapter(&mut self) -> RngReadAdapter<'_, Self> |
| 247 | where |
| 248 | Self: Sized, |
| 249 | { |
| 250 | RngReadAdapter { inner: self } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | // Note that, unfortunately, this blanket impl prevents us from implementing |
| 255 | // `TryRngCore` for types which can be dereferenced to `TryRngCore`, i.e. `TryRngCore` |
| 256 | // will not be automatically implemented for `&mut R`, `Box<R>`, etc. |
| 257 | impl<R: RngCore + ?Sized> TryRngCore for R { |
| 258 | type Error = core::convert::Infallible; |
| 259 | |
| 260 | #[inline ] |
| 261 | fn try_next_u32(&mut self) -> Result<u32, Self::Error> { |
| 262 | Ok(self.next_u32()) |
| 263 | } |
| 264 | |
| 265 | #[inline ] |
| 266 | fn try_next_u64(&mut self) -> Result<u64, Self::Error> { |
| 267 | Ok(self.next_u64()) |
| 268 | } |
| 269 | |
| 270 | #[inline ] |
| 271 | fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error> { |
| 272 | self.fill_bytes(dst); |
| 273 | Ok(()) |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | /// A marker trait over [`TryRngCore`] for securely unpredictable RNGs |
| 278 | /// |
| 279 | /// This trait is like [`CryptoRng`] but for the trait [`TryRngCore`]. |
| 280 | /// |
| 281 | /// This marker trait indicates that the implementing generator is intended, |
| 282 | /// when correctly seeded and protected from side-channel attacks such as a |
| 283 | /// leaking of state, to be a cryptographically secure generator. This trait is |
| 284 | /// provided as a tool to aid review of cryptographic code, but does not by |
| 285 | /// itself guarantee suitability for cryptographic applications. |
| 286 | /// |
| 287 | /// Implementors of `TryCryptoRng` should only implement [`Default`] if the |
| 288 | /// `default()` instances are themselves secure generators: for example if the |
| 289 | /// implementing type is a stateless interface over a secure external generator |
| 290 | /// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed. |
| 291 | pub trait TryCryptoRng: TryRngCore {} |
| 292 | |
| 293 | impl<R: CryptoRng + ?Sized> TryCryptoRng for R {} |
| 294 | |
| 295 | /// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`] |
| 296 | /// by panicking on potential errors. |
| 297 | #[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)] |
| 298 | pub struct UnwrapErr<R: TryRngCore>(pub R); |
| 299 | |
| 300 | impl<R: TryRngCore> RngCore for UnwrapErr<R> { |
| 301 | #[inline ] |
| 302 | fn next_u32(&mut self) -> u32 { |
| 303 | self.0.try_next_u32().unwrap() |
| 304 | } |
| 305 | |
| 306 | #[inline ] |
| 307 | fn next_u64(&mut self) -> u64 { |
| 308 | self.0.try_next_u64().unwrap() |
| 309 | } |
| 310 | |
| 311 | #[inline ] |
| 312 | fn fill_bytes(&mut self, dst: &mut [u8]) { |
| 313 | self.0.try_fill_bytes(dst).unwrap() |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | impl<R: TryCryptoRng> CryptoRng for UnwrapErr<R> {} |
| 318 | |
| 319 | /// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`] |
| 320 | /// by panicking on potential errors. |
| 321 | #[derive(Debug, Eq, PartialEq, Hash)] |
| 322 | pub struct UnwrapMut<'r, R: TryRngCore + ?Sized>(pub &'r mut R); |
| 323 | |
| 324 | impl<'r, R: TryRngCore + ?Sized> UnwrapMut<'r, R> { |
| 325 | /// Reborrow with a new lifetime |
| 326 | /// |
| 327 | /// Rust allows references like `&T` or `&mut T` to be "reborrowed" through |
| 328 | /// coercion: essentially, the pointer is copied under a new, shorter, lifetime. |
| 329 | /// Until rfcs#1403 lands, reborrows on user types require a method call. |
| 330 | #[inline (always)] |
| 331 | pub fn re<'b>(&'b mut self) -> UnwrapMut<'b, R> |
| 332 | where |
| 333 | 'r: 'b, |
| 334 | { |
| 335 | UnwrapMut(self.0) |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | impl<R: TryRngCore + ?Sized> RngCore for UnwrapMut<'_, R> { |
| 340 | #[inline ] |
| 341 | fn next_u32(&mut self) -> u32 { |
| 342 | self.0.try_next_u32().unwrap() |
| 343 | } |
| 344 | |
| 345 | #[inline ] |
| 346 | fn next_u64(&mut self) -> u64 { |
| 347 | self.0.try_next_u64().unwrap() |
| 348 | } |
| 349 | |
| 350 | #[inline ] |
| 351 | fn fill_bytes(&mut self, dst: &mut [u8]) { |
| 352 | self.0.try_fill_bytes(dst).unwrap() |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | impl<R: TryCryptoRng + ?Sized> CryptoRng for UnwrapMut<'_, R> {} |
| 357 | |
| 358 | /// A random number generator that can be explicitly seeded. |
| 359 | /// |
| 360 | /// This trait encapsulates the low-level functionality common to all |
| 361 | /// pseudo-random number generators (PRNGs, or algorithmic generators). |
| 362 | /// |
| 363 | /// A generator implementing `SeedableRng` will usually be deterministic, but |
| 364 | /// beware that portability and reproducibility of results **is not implied**. |
| 365 | /// Refer to documentation of the generator, noting that generators named after |
| 366 | /// a specific algorithm are usually tested for reproducibility against a |
| 367 | /// reference vector, while `SmallRng` and `StdRng` specifically opt out of |
| 368 | /// reproducibility guarantees. |
| 369 | /// |
| 370 | /// [`rand`]: https://docs.rs/rand |
| 371 | pub trait SeedableRng: Sized { |
| 372 | /// Seed type, which is restricted to types mutably-dereferenceable as `u8` |
| 373 | /// arrays (we recommend `[u8; N]` for some `N`). |
| 374 | /// |
| 375 | /// It is recommended to seed PRNGs with a seed of at least circa 100 bits, |
| 376 | /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with |
| 377 | /// partially overlapping periods. |
| 378 | /// |
| 379 | /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`. |
| 380 | /// |
| 381 | /// |
| 382 | /// # Implementing `SeedableRng` for RNGs with large seeds |
| 383 | /// |
| 384 | /// Note that [`Default`] is not implemented for large arrays `[u8; N]` with |
| 385 | /// `N` > 32. To be able to implement the traits required by `SeedableRng` |
| 386 | /// for RNGs with such large seeds, the newtype pattern can be used: |
| 387 | /// |
| 388 | /// ``` |
| 389 | /// use rand_core::SeedableRng; |
| 390 | /// |
| 391 | /// const N: usize = 64; |
| 392 | /// #[derive(Clone)] |
| 393 | /// pub struct MyRngSeed(pub [u8; N]); |
| 394 | /// # #[allow (dead_code)] |
| 395 | /// pub struct MyRng(MyRngSeed); |
| 396 | /// |
| 397 | /// impl Default for MyRngSeed { |
| 398 | /// fn default() -> MyRngSeed { |
| 399 | /// MyRngSeed([0; N]) |
| 400 | /// } |
| 401 | /// } |
| 402 | /// |
| 403 | /// impl AsRef<[u8]> for MyRngSeed { |
| 404 | /// fn as_ref(&self) -> &[u8] { |
| 405 | /// &self.0 |
| 406 | /// } |
| 407 | /// } |
| 408 | /// |
| 409 | /// impl AsMut<[u8]> for MyRngSeed { |
| 410 | /// fn as_mut(&mut self) -> &mut [u8] { |
| 411 | /// &mut self.0 |
| 412 | /// } |
| 413 | /// } |
| 414 | /// |
| 415 | /// impl SeedableRng for MyRng { |
| 416 | /// type Seed = MyRngSeed; |
| 417 | /// |
| 418 | /// fn from_seed(seed: MyRngSeed) -> MyRng { |
| 419 | /// MyRng(seed) |
| 420 | /// } |
| 421 | /// } |
| 422 | /// ``` |
| 423 | type Seed: Clone + Default + AsRef<[u8]> + AsMut<[u8]>; |
| 424 | |
| 425 | /// Create a new PRNG using the given seed. |
| 426 | /// |
| 427 | /// PRNG implementations are allowed to assume that bits in the seed are |
| 428 | /// well distributed. That means usually that the number of one and zero |
| 429 | /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely. |
| 430 | /// Note that many non-cryptographic PRNGs will show poor quality output |
| 431 | /// if this is not adhered to. If you wish to seed from simple numbers, use |
| 432 | /// `seed_from_u64` instead. |
| 433 | /// |
| 434 | /// All PRNG implementations should be reproducible unless otherwise noted: |
| 435 | /// given a fixed `seed`, the same sequence of output should be produced |
| 436 | /// on all runs, library versions and architectures (e.g. check endianness). |
| 437 | /// Any "value-breaking" changes to the generator should require bumping at |
| 438 | /// least the minor version and documentation of the change. |
| 439 | /// |
| 440 | /// It is not required that this function yield the same state as a |
| 441 | /// reference implementation of the PRNG given equivalent seed; if necessary |
| 442 | /// another constructor replicating behaviour from a reference |
| 443 | /// implementation can be added. |
| 444 | /// |
| 445 | /// PRNG implementations should make sure `from_seed` never panics. In the |
| 446 | /// case that some special values (like an all zero seed) are not viable |
| 447 | /// seeds it is preferable to map these to alternative constant value(s), |
| 448 | /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad |
| 449 | /// seed"). This is assuming only a small number of values must be rejected. |
| 450 | fn from_seed(seed: Self::Seed) -> Self; |
| 451 | |
| 452 | /// Create a new PRNG using a `u64` seed. |
| 453 | /// |
| 454 | /// This is a convenience-wrapper around `from_seed` to allow construction |
| 455 | /// of any `SeedableRng` from a simple `u64` value. It is designed such that |
| 456 | /// low Hamming Weight numbers like 0 and 1 can be used and should still |
| 457 | /// result in good, independent seeds to the PRNG which is returned. |
| 458 | /// |
| 459 | /// This **is not suitable for cryptography**, as should be clear given that |
| 460 | /// the input size is only 64 bits. |
| 461 | /// |
| 462 | /// Implementations for PRNGs *may* provide their own implementations of |
| 463 | /// this function, but the default implementation should be good enough for |
| 464 | /// all purposes. *Changing* the implementation of this function should be |
| 465 | /// considered a value-breaking change. |
| 466 | fn seed_from_u64(mut state: u64) -> Self { |
| 467 | // We use PCG32 to generate a u32 sequence, and copy to the seed |
| 468 | fn pcg32(state: &mut u64) -> [u8; 4] { |
| 469 | const MUL: u64 = 6364136223846793005; |
| 470 | const INC: u64 = 11634580027462260723; |
| 471 | |
| 472 | // We advance the state first (to get away from the input value, |
| 473 | // in case it has low Hamming Weight). |
| 474 | *state = state.wrapping_mul(MUL).wrapping_add(INC); |
| 475 | let state = *state; |
| 476 | |
| 477 | // Use PCG output function with to_le to generate x: |
| 478 | let xorshifted = (((state >> 18) ^ state) >> 27) as u32; |
| 479 | let rot = (state >> 59) as u32; |
| 480 | let x = xorshifted.rotate_right(rot); |
| 481 | x.to_le_bytes() |
| 482 | } |
| 483 | |
| 484 | let mut seed = Self::Seed::default(); |
| 485 | let mut iter = seed.as_mut().chunks_exact_mut(4); |
| 486 | for chunk in &mut iter { |
| 487 | chunk.copy_from_slice(&pcg32(&mut state)); |
| 488 | } |
| 489 | let rem = iter.into_remainder(); |
| 490 | if !rem.is_empty() { |
| 491 | rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]); |
| 492 | } |
| 493 | |
| 494 | Self::from_seed(seed) |
| 495 | } |
| 496 | |
| 497 | /// Create a new PRNG seeded from an infallible `Rng`. |
| 498 | /// |
| 499 | /// This may be useful when needing to rapidly seed many PRNGs from a master |
| 500 | /// PRNG, and to allow forking of PRNGs. It may be considered deterministic. |
| 501 | /// |
| 502 | /// The master PRNG should be at least as high quality as the child PRNGs. |
| 503 | /// When seeding non-cryptographic child PRNGs, we recommend using a |
| 504 | /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid |
| 505 | /// correlations between the child PRNGs. If this is not possible (e.g. |
| 506 | /// forking using small non-crypto PRNGs) ensure that your PRNG has a good |
| 507 | /// mixing function on the output or consider use of a hash function with |
| 508 | /// `from_seed`. |
| 509 | /// |
| 510 | /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an |
| 511 | /// extreme example of what can go wrong: the new PRNG will be a clone |
| 512 | /// of the parent. |
| 513 | /// |
| 514 | /// PRNG implementations are allowed to assume that a good RNG is provided |
| 515 | /// for seeding, and that it is cryptographically secure when appropriate. |
| 516 | /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this |
| 517 | /// method should ensure the implementation satisfies reproducibility |
| 518 | /// (in prior versions this was not required). |
| 519 | /// |
| 520 | /// [`rand`]: https://docs.rs/rand |
| 521 | fn from_rng(rng: &mut impl RngCore) -> Self { |
| 522 | let mut seed = Self::Seed::default(); |
| 523 | rng.fill_bytes(seed.as_mut()); |
| 524 | Self::from_seed(seed) |
| 525 | } |
| 526 | |
| 527 | /// Create a new PRNG seeded from a potentially fallible `Rng`. |
| 528 | /// |
| 529 | /// See [`from_rng`][SeedableRng::from_rng] docs for more information. |
| 530 | fn try_from_rng<R: TryRngCore>(rng: &mut R) -> Result<Self, R::Error> { |
| 531 | let mut seed = Self::Seed::default(); |
| 532 | rng.try_fill_bytes(seed.as_mut())?; |
| 533 | Ok(Self::from_seed(seed)) |
| 534 | } |
| 535 | |
| 536 | /// Creates a new instance of the RNG seeded via [`getrandom`]. |
| 537 | /// |
| 538 | /// This method is the recommended way to construct non-deterministic PRNGs |
| 539 | /// since it is convenient and secure. |
| 540 | /// |
| 541 | /// Note that this method may panic on (extremely unlikely) [`getrandom`] errors. |
| 542 | /// If it's not desirable, use the [`try_from_os_rng`] method instead. |
| 543 | /// |
| 544 | /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an |
| 545 | /// issue, one may prefer to seed from a local PRNG, e.g. |
| 546 | /// `from_rng(rand::rng()).unwrap()`. |
| 547 | /// |
| 548 | /// # Panics |
| 549 | /// |
| 550 | /// If [`getrandom`] is unable to provide secure entropy this method will panic. |
| 551 | /// |
| 552 | /// [`getrandom`]: https://docs.rs/getrandom |
| 553 | /// [`try_from_os_rng`]: SeedableRng::try_from_os_rng |
| 554 | #[cfg (feature = "os_rng" )] |
| 555 | fn from_os_rng() -> Self { |
| 556 | match Self::try_from_os_rng() { |
| 557 | Ok(res) => res, |
| 558 | Err(err) => panic!("from_os_rng failed: {}" , err), |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | /// Creates a new instance of the RNG seeded via [`getrandom`] without unwrapping |
| 563 | /// potential [`getrandom`] errors. |
| 564 | /// |
| 565 | /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an |
| 566 | /// issue, one may prefer to seed from a local PRNG, e.g. |
| 567 | /// `from_rng(&mut rand::rng()).unwrap()`. |
| 568 | /// |
| 569 | /// [`getrandom`]: https://docs.rs/getrandom |
| 570 | #[cfg (feature = "os_rng" )] |
| 571 | fn try_from_os_rng() -> Result<Self, getrandom::Error> { |
| 572 | let mut seed = Self::Seed::default(); |
| 573 | getrandom::fill(seed.as_mut())?; |
| 574 | let res = Self::from_seed(seed); |
| 575 | Ok(res) |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | /// Adapter that enables reading through a [`io::Read`](std::io::Read) from a [`RngCore`]. |
| 580 | /// |
| 581 | /// # Examples |
| 582 | /// |
| 583 | /// ```no_run |
| 584 | /// # use std::{io, io::Read}; |
| 585 | /// # use std::fs::File; |
| 586 | /// # use rand_core::{OsRng, TryRngCore}; |
| 587 | /// |
| 588 | /// io::copy(&mut OsRng.read_adapter().take(100), &mut File::create("/tmp/random.bytes").unwrap()).unwrap(); |
| 589 | /// ``` |
| 590 | #[cfg (feature = "std" )] |
| 591 | pub struct RngReadAdapter<'a, R: TryRngCore + ?Sized> { |
| 592 | inner: &'a mut R, |
| 593 | } |
| 594 | |
| 595 | #[cfg (feature = "std" )] |
| 596 | impl<R: TryRngCore + ?Sized> std::io::Read for RngReadAdapter<'_, R> { |
| 597 | #[inline ] |
| 598 | fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> { |
| 599 | self.inner.try_fill_bytes(buf).map_err(|err| { |
| 600 | std::io::Error::new(std::io::ErrorKind::Other, std::format!("RNG error: {err}" )) |
| 601 | })?; |
| 602 | Ok(buf.len()) |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | #[cfg (feature = "std" )] |
| 607 | impl<R: TryRngCore + ?Sized> std::fmt::Debug for RngReadAdapter<'_, R> { |
| 608 | fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| 609 | f.debug_struct("ReadAdapter" ).finish() |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | #[cfg (test)] |
| 614 | mod test { |
| 615 | use super::*; |
| 616 | |
| 617 | #[test] |
| 618 | fn test_seed_from_u64() { |
| 619 | struct SeedableNum(u64); |
| 620 | impl SeedableRng for SeedableNum { |
| 621 | type Seed = [u8; 8]; |
| 622 | |
| 623 | fn from_seed(seed: Self::Seed) -> Self { |
| 624 | let mut x = [0u64; 1]; |
| 625 | le::read_u64_into(&seed, &mut x); |
| 626 | SeedableNum(x[0]) |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | const N: usize = 8; |
| 631 | const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64]; |
| 632 | let mut results = [0u64; N]; |
| 633 | for (i, seed) in SEEDS.iter().enumerate() { |
| 634 | let SeedableNum(x) = SeedableNum::seed_from_u64(*seed); |
| 635 | results[i] = x; |
| 636 | } |
| 637 | |
| 638 | for (i1, r1) in results.iter().enumerate() { |
| 639 | let weight = r1.count_ones(); |
| 640 | // This is the binomial distribution B(64, 0.5), so chance of |
| 641 | // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for |
| 642 | // weight > 44. |
| 643 | assert!((20..=44).contains(&weight)); |
| 644 | |
| 645 | for (i2, r2) in results.iter().enumerate() { |
| 646 | if i1 == i2 { |
| 647 | continue; |
| 648 | } |
| 649 | let diff_weight = (r1 ^ r2).count_ones(); |
| 650 | assert!(diff_weight >= 20); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | // value-breakage test: |
| 655 | assert_eq!(results[0], 5029875928683246316); |
| 656 | } |
| 657 | |
| 658 | // A stub RNG. |
| 659 | struct SomeRng; |
| 660 | |
| 661 | impl RngCore for SomeRng { |
| 662 | fn next_u32(&mut self) -> u32 { |
| 663 | unimplemented!() |
| 664 | } |
| 665 | fn next_u64(&mut self) -> u64 { |
| 666 | unimplemented!() |
| 667 | } |
| 668 | fn fill_bytes(&mut self, _: &mut [u8]) { |
| 669 | unimplemented!() |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | impl CryptoRng for SomeRng {} |
| 674 | |
| 675 | #[test] |
| 676 | fn dyn_rngcore_to_tryrngcore() { |
| 677 | // Illustrates the need for `+ ?Sized` bound in `impl<R: RngCore> TryRngCore for R`. |
| 678 | |
| 679 | // A method in another crate taking a fallible RNG |
| 680 | fn third_party_api(_rng: &mut (impl TryRngCore + ?Sized)) -> bool { |
| 681 | true |
| 682 | } |
| 683 | |
| 684 | // A method in our crate requiring an infallible RNG |
| 685 | fn my_api(rng: &mut dyn RngCore) -> bool { |
| 686 | // We want to call the method above |
| 687 | third_party_api(rng) |
| 688 | } |
| 689 | |
| 690 | assert!(my_api(&mut SomeRng)); |
| 691 | } |
| 692 | |
| 693 | #[test] |
| 694 | fn dyn_cryptorng_to_trycryptorng() { |
| 695 | // Illustrates the need for `+ ?Sized` bound in `impl<R: CryptoRng> TryCryptoRng for R`. |
| 696 | |
| 697 | // A method in another crate taking a fallible RNG |
| 698 | fn third_party_api(_rng: &mut (impl TryCryptoRng + ?Sized)) -> bool { |
| 699 | true |
| 700 | } |
| 701 | |
| 702 | // A method in our crate requiring an infallible RNG |
| 703 | fn my_api(rng: &mut dyn CryptoRng) -> bool { |
| 704 | // We want to call the method above |
| 705 | third_party_api(rng) |
| 706 | } |
| 707 | |
| 708 | assert!(my_api(&mut SomeRng)); |
| 709 | } |
| 710 | |
| 711 | #[test] |
| 712 | fn dyn_unwrap_mut_tryrngcore() { |
| 713 | // Illustrates the need for `+ ?Sized` bound in |
| 714 | // `impl<R: TryRngCore> RngCore for UnwrapMut<'_, R>`. |
| 715 | |
| 716 | fn third_party_api(_rng: &mut impl RngCore) -> bool { |
| 717 | true |
| 718 | } |
| 719 | |
| 720 | fn my_api(rng: &mut (impl TryRngCore + ?Sized)) -> bool { |
| 721 | let mut infallible_rng = rng.unwrap_mut(); |
| 722 | third_party_api(&mut infallible_rng) |
| 723 | } |
| 724 | |
| 725 | assert!(my_api(&mut SomeRng)); |
| 726 | } |
| 727 | |
| 728 | #[test] |
| 729 | fn dyn_unwrap_mut_trycryptorng() { |
| 730 | // Illustrates the need for `+ ?Sized` bound in |
| 731 | // `impl<R: TryCryptoRng> CryptoRng for UnwrapMut<'_, R>`. |
| 732 | |
| 733 | fn third_party_api(_rng: &mut impl CryptoRng) -> bool { |
| 734 | true |
| 735 | } |
| 736 | |
| 737 | fn my_api(rng: &mut (impl TryCryptoRng + ?Sized)) -> bool { |
| 738 | let mut infallible_rng = rng.unwrap_mut(); |
| 739 | third_party_api(&mut infallible_rng) |
| 740 | } |
| 741 | |
| 742 | assert!(my_api(&mut SomeRng)); |
| 743 | } |
| 744 | |
| 745 | #[test] |
| 746 | fn reborrow_unwrap_mut() { |
| 747 | struct FourRng; |
| 748 | |
| 749 | impl TryRngCore for FourRng { |
| 750 | type Error = core::convert::Infallible; |
| 751 | fn try_next_u32(&mut self) -> Result<u32, Self::Error> { |
| 752 | Ok(4) |
| 753 | } |
| 754 | fn try_next_u64(&mut self) -> Result<u64, Self::Error> { |
| 755 | unimplemented!() |
| 756 | } |
| 757 | fn try_fill_bytes(&mut self, _: &mut [u8]) -> Result<(), Self::Error> { |
| 758 | unimplemented!() |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | let mut rng = FourRng; |
| 763 | let mut rng = rng.unwrap_mut(); |
| 764 | |
| 765 | assert_eq!(rng.next_u32(), 4); |
| 766 | let mut rng2 = rng.re(); |
| 767 | assert_eq!(rng2.next_u32(), 4); |
| 768 | drop(rng2); |
| 769 | assert_eq!(rng.next_u32(), 4); |
| 770 | } |
| 771 | } |
| 772 | |