| 1 | //! Constants for the `f64` double-precision floating point type. |
| 2 | //! |
| 3 | //! *[See also the `f64` primitive type](primitive@f64).* |
| 4 | //! |
| 5 | //! Mathematically significant numbers are provided in the `consts` sub-module. |
| 6 | //! |
| 7 | //! For the constants defined directly in this module |
| 8 | //! (as distinct from those defined in the `consts` sub-module), |
| 9 | //! new code should instead use the associated constants |
| 10 | //! defined directly on the `f64` type. |
| 11 | |
| 12 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 13 | #![allow (missing_docs)] |
| 14 | |
| 15 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 16 | #[allow (deprecated, deprecated_in_future)] |
| 17 | pub use core::f64::{ |
| 18 | DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP, MIN_EXP, |
| 19 | MIN_POSITIVE, NAN, NEG_INFINITY, RADIX, consts, |
| 20 | }; |
| 21 | |
| 22 | #[cfg (not(test))] |
| 23 | use crate::intrinsics; |
| 24 | #[cfg (not(test))] |
| 25 | use crate::sys::cmath; |
| 26 | |
| 27 | #[cfg (not(test))] |
| 28 | impl f64 { |
| 29 | /// Returns the largest integer less than or equal to `self`. |
| 30 | /// |
| 31 | /// This function always returns the precise result. |
| 32 | /// |
| 33 | /// # Examples |
| 34 | /// |
| 35 | /// ``` |
| 36 | /// let f = 3.7_f64; |
| 37 | /// let g = 3.0_f64; |
| 38 | /// let h = -3.7_f64; |
| 39 | /// |
| 40 | /// assert_eq!(f.floor(), 3.0); |
| 41 | /// assert_eq!(g.floor(), 3.0); |
| 42 | /// assert_eq!(h.floor(), -4.0); |
| 43 | /// ``` |
| 44 | #[rustc_allow_incoherent_impl ] |
| 45 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 46 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 47 | #[rustc_const_unstable (feature = "const_float_round_methods" , issue = "141555" )] |
| 48 | #[inline ] |
| 49 | pub const fn floor(self) -> f64 { |
| 50 | core::f64::math::floor(self) |
| 51 | } |
| 52 | |
| 53 | /// Returns the smallest integer greater than or equal to `self`. |
| 54 | /// |
| 55 | /// This function always returns the precise result. |
| 56 | /// |
| 57 | /// # Examples |
| 58 | /// |
| 59 | /// ``` |
| 60 | /// let f = 3.01_f64; |
| 61 | /// let g = 4.0_f64; |
| 62 | /// |
| 63 | /// assert_eq!(f.ceil(), 4.0); |
| 64 | /// assert_eq!(g.ceil(), 4.0); |
| 65 | /// ``` |
| 66 | #[doc (alias = "ceiling" )] |
| 67 | #[rustc_allow_incoherent_impl ] |
| 68 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 69 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 70 | #[rustc_const_unstable (feature = "const_float_round_methods" , issue = "141555" )] |
| 71 | #[inline ] |
| 72 | pub const fn ceil(self) -> f64 { |
| 73 | core::f64::math::ceil(self) |
| 74 | } |
| 75 | |
| 76 | /// Returns the nearest integer to `self`. If a value is half-way between two |
| 77 | /// integers, round away from `0.0`. |
| 78 | /// |
| 79 | /// This function always returns the precise result. |
| 80 | /// |
| 81 | /// # Examples |
| 82 | /// |
| 83 | /// ``` |
| 84 | /// let f = 3.3_f64; |
| 85 | /// let g = -3.3_f64; |
| 86 | /// let h = -3.7_f64; |
| 87 | /// let i = 3.5_f64; |
| 88 | /// let j = 4.5_f64; |
| 89 | /// |
| 90 | /// assert_eq!(f.round(), 3.0); |
| 91 | /// assert_eq!(g.round(), -3.0); |
| 92 | /// assert_eq!(h.round(), -4.0); |
| 93 | /// assert_eq!(i.round(), 4.0); |
| 94 | /// assert_eq!(j.round(), 5.0); |
| 95 | /// ``` |
| 96 | #[rustc_allow_incoherent_impl ] |
| 97 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 98 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 99 | #[rustc_const_unstable (feature = "const_float_round_methods" , issue = "141555" )] |
| 100 | #[inline ] |
| 101 | pub const fn round(self) -> f64 { |
| 102 | core::f64::math::round(self) |
| 103 | } |
| 104 | |
| 105 | /// Returns the nearest integer to a number. Rounds half-way cases to the number |
| 106 | /// with an even least significant digit. |
| 107 | /// |
| 108 | /// This function always returns the precise result. |
| 109 | /// |
| 110 | /// # Examples |
| 111 | /// |
| 112 | /// ``` |
| 113 | /// let f = 3.3_f64; |
| 114 | /// let g = -3.3_f64; |
| 115 | /// let h = 3.5_f64; |
| 116 | /// let i = 4.5_f64; |
| 117 | /// |
| 118 | /// assert_eq!(f.round_ties_even(), 3.0); |
| 119 | /// assert_eq!(g.round_ties_even(), -3.0); |
| 120 | /// assert_eq!(h.round_ties_even(), 4.0); |
| 121 | /// assert_eq!(i.round_ties_even(), 4.0); |
| 122 | /// ``` |
| 123 | #[rustc_allow_incoherent_impl ] |
| 124 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 125 | #[stable (feature = "round_ties_even" , since = "1.77.0" )] |
| 126 | #[rustc_const_unstable (feature = "const_float_round_methods" , issue = "141555" )] |
| 127 | #[inline ] |
| 128 | pub const fn round_ties_even(self) -> f64 { |
| 129 | core::f64::math::round_ties_even(self) |
| 130 | } |
| 131 | |
| 132 | /// Returns the integer part of `self`. |
| 133 | /// This means that non-integer numbers are always truncated towards zero. |
| 134 | /// |
| 135 | /// This function always returns the precise result. |
| 136 | /// |
| 137 | /// # Examples |
| 138 | /// |
| 139 | /// ``` |
| 140 | /// let f = 3.7_f64; |
| 141 | /// let g = 3.0_f64; |
| 142 | /// let h = -3.7_f64; |
| 143 | /// |
| 144 | /// assert_eq!(f.trunc(), 3.0); |
| 145 | /// assert_eq!(g.trunc(), 3.0); |
| 146 | /// assert_eq!(h.trunc(), -3.0); |
| 147 | /// ``` |
| 148 | #[doc (alias = "truncate" )] |
| 149 | #[rustc_allow_incoherent_impl ] |
| 150 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 151 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 152 | #[rustc_const_unstable (feature = "const_float_round_methods" , issue = "141555" )] |
| 153 | #[inline ] |
| 154 | pub const fn trunc(self) -> f64 { |
| 155 | core::f64::math::trunc(self) |
| 156 | } |
| 157 | |
| 158 | /// Returns the fractional part of `self`. |
| 159 | /// |
| 160 | /// This function always returns the precise result. |
| 161 | /// |
| 162 | /// # Examples |
| 163 | /// |
| 164 | /// ``` |
| 165 | /// let x = 3.6_f64; |
| 166 | /// let y = -3.6_f64; |
| 167 | /// let abs_difference_x = (x.fract() - 0.6).abs(); |
| 168 | /// let abs_difference_y = (y.fract() - (-0.6)).abs(); |
| 169 | /// |
| 170 | /// assert!(abs_difference_x < 1e-10); |
| 171 | /// assert!(abs_difference_y < 1e-10); |
| 172 | /// ``` |
| 173 | #[rustc_allow_incoherent_impl ] |
| 174 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 175 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 176 | #[rustc_const_unstable (feature = "const_float_round_methods" , issue = "141555" )] |
| 177 | #[inline ] |
| 178 | pub const fn fract(self) -> f64 { |
| 179 | core::f64::math::fract(self) |
| 180 | } |
| 181 | |
| 182 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
| 183 | /// error, yielding a more accurate result than an unfused multiply-add. |
| 184 | /// |
| 185 | /// Using `mul_add` *may* be more performant than an unfused multiply-add if |
| 186 | /// the target architecture has a dedicated `fma` CPU instruction. However, |
| 187 | /// this is not always true, and will be heavily dependant on designing |
| 188 | /// algorithms with specific target hardware in mind. |
| 189 | /// |
| 190 | /// # Precision |
| 191 | /// |
| 192 | /// The result of this operation is guaranteed to be the rounded |
| 193 | /// infinite-precision result. It is specified by IEEE 754 as |
| 194 | /// `fusedMultiplyAdd` and guaranteed not to change. |
| 195 | /// |
| 196 | /// # Examples |
| 197 | /// |
| 198 | /// ``` |
| 199 | /// let m = 10.0_f64; |
| 200 | /// let x = 4.0_f64; |
| 201 | /// let b = 60.0_f64; |
| 202 | /// |
| 203 | /// assert_eq!(m.mul_add(x, b), 100.0); |
| 204 | /// assert_eq!(m * x + b, 100.0); |
| 205 | /// |
| 206 | /// let one_plus_eps = 1.0_f64 + f64::EPSILON; |
| 207 | /// let one_minus_eps = 1.0_f64 - f64::EPSILON; |
| 208 | /// let minus_one = -1.0_f64; |
| 209 | /// |
| 210 | /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. |
| 211 | /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f64::EPSILON * f64::EPSILON); |
| 212 | /// // Different rounding with the non-fused multiply and add. |
| 213 | /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); |
| 214 | /// ``` |
| 215 | #[rustc_allow_incoherent_impl ] |
| 216 | #[doc (alias = "fma" , alias = "fusedMultiplyAdd" )] |
| 217 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 218 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 219 | #[inline ] |
| 220 | pub fn mul_add(self, a: f64, b: f64) -> f64 { |
| 221 | core::f64::math::mul_add(self, a, b) |
| 222 | } |
| 223 | |
| 224 | /// Calculates Euclidean division, the matching method for `rem_euclid`. |
| 225 | /// |
| 226 | /// This computes the integer `n` such that |
| 227 | /// `self = n * rhs + self.rem_euclid(rhs)`. |
| 228 | /// In other words, the result is `self / rhs` rounded to the integer `n` |
| 229 | /// such that `self >= n * rhs`. |
| 230 | /// |
| 231 | /// # Precision |
| 232 | /// |
| 233 | /// The result of this operation is guaranteed to be the rounded |
| 234 | /// infinite-precision result. |
| 235 | /// |
| 236 | /// # Examples |
| 237 | /// |
| 238 | /// ``` |
| 239 | /// let a: f64 = 7.0; |
| 240 | /// let b = 4.0; |
| 241 | /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 |
| 242 | /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 |
| 243 | /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 |
| 244 | /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 |
| 245 | /// ``` |
| 246 | #[rustc_allow_incoherent_impl ] |
| 247 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 248 | #[inline ] |
| 249 | #[stable (feature = "euclidean_division" , since = "1.38.0" )] |
| 250 | pub fn div_euclid(self, rhs: f64) -> f64 { |
| 251 | core::f64::math::div_euclid(self, rhs) |
| 252 | } |
| 253 | |
| 254 | /// Calculates the least nonnegative remainder of `self (mod rhs)`. |
| 255 | /// |
| 256 | /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in |
| 257 | /// most cases. However, due to a floating point round-off error it can |
| 258 | /// result in `r == rhs.abs()`, violating the mathematical definition, if |
| 259 | /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. |
| 260 | /// This result is not an element of the function's codomain, but it is the |
| 261 | /// closest floating point number in the real numbers and thus fulfills the |
| 262 | /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` |
| 263 | /// approximately. |
| 264 | /// |
| 265 | /// # Precision |
| 266 | /// |
| 267 | /// The result of this operation is guaranteed to be the rounded |
| 268 | /// infinite-precision result. |
| 269 | /// |
| 270 | /// # Examples |
| 271 | /// |
| 272 | /// ``` |
| 273 | /// let a: f64 = 7.0; |
| 274 | /// let b = 4.0; |
| 275 | /// assert_eq!(a.rem_euclid(b), 3.0); |
| 276 | /// assert_eq!((-a).rem_euclid(b), 1.0); |
| 277 | /// assert_eq!(a.rem_euclid(-b), 3.0); |
| 278 | /// assert_eq!((-a).rem_euclid(-b), 1.0); |
| 279 | /// // limitation due to round-off error |
| 280 | /// assert!((-f64::EPSILON).rem_euclid(3.0) != 0.0); |
| 281 | /// ``` |
| 282 | #[doc (alias = "modulo" , alias = "mod" )] |
| 283 | #[rustc_allow_incoherent_impl ] |
| 284 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 285 | #[inline ] |
| 286 | #[stable (feature = "euclidean_division" , since = "1.38.0" )] |
| 287 | pub fn rem_euclid(self, rhs: f64) -> f64 { |
| 288 | core::f64::math::rem_euclid(self, rhs) |
| 289 | } |
| 290 | |
| 291 | /// Raises a number to an integer power. |
| 292 | /// |
| 293 | /// Using this function is generally faster than using `powf`. |
| 294 | /// It might have a different sequence of rounding operations than `powf`, |
| 295 | /// so the results are not guaranteed to agree. |
| 296 | /// |
| 297 | /// # Unspecified precision |
| 298 | /// |
| 299 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 300 | /// can even differ within the same execution from one invocation to the next. |
| 301 | /// |
| 302 | /// # Examples |
| 303 | /// |
| 304 | /// ``` |
| 305 | /// let x = 2.0_f64; |
| 306 | /// let abs_difference = (x.powi(2) - (x * x)).abs(); |
| 307 | /// assert!(abs_difference <= 1e-14); |
| 308 | /// |
| 309 | /// assert_eq!(f64::powi(f64::NAN, 0), 1.0); |
| 310 | /// ``` |
| 311 | #[rustc_allow_incoherent_impl ] |
| 312 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 313 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 314 | #[inline ] |
| 315 | pub fn powi(self, n: i32) -> f64 { |
| 316 | core::f64::math::powi(self, n) |
| 317 | } |
| 318 | |
| 319 | /// Raises a number to a floating point power. |
| 320 | /// |
| 321 | /// # Unspecified precision |
| 322 | /// |
| 323 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 324 | /// can even differ within the same execution from one invocation to the next. |
| 325 | /// |
| 326 | /// # Examples |
| 327 | /// |
| 328 | /// ``` |
| 329 | /// let x = 2.0_f64; |
| 330 | /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); |
| 331 | /// assert!(abs_difference <= 1e-14); |
| 332 | /// |
| 333 | /// assert_eq!(f64::powf(1.0, f64::NAN), 1.0); |
| 334 | /// assert_eq!(f64::powf(f64::NAN, 0.0), 1.0); |
| 335 | /// ``` |
| 336 | #[rustc_allow_incoherent_impl ] |
| 337 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 338 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 339 | #[inline ] |
| 340 | pub fn powf(self, n: f64) -> f64 { |
| 341 | unsafe { intrinsics::powf64(self, n) } |
| 342 | } |
| 343 | |
| 344 | /// Returns the square root of a number. |
| 345 | /// |
| 346 | /// Returns NaN if `self` is a negative number other than `-0.0`. |
| 347 | /// |
| 348 | /// # Precision |
| 349 | /// |
| 350 | /// The result of this operation is guaranteed to be the rounded |
| 351 | /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` |
| 352 | /// and guaranteed not to change. |
| 353 | /// |
| 354 | /// # Examples |
| 355 | /// |
| 356 | /// ``` |
| 357 | /// let positive = 4.0_f64; |
| 358 | /// let negative = -4.0_f64; |
| 359 | /// let negative_zero = -0.0_f64; |
| 360 | /// |
| 361 | /// assert_eq!(positive.sqrt(), 2.0); |
| 362 | /// assert!(negative.sqrt().is_nan()); |
| 363 | /// assert!(negative_zero.sqrt() == negative_zero); |
| 364 | /// ``` |
| 365 | #[doc (alias = "squareRoot" )] |
| 366 | #[rustc_allow_incoherent_impl ] |
| 367 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 368 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 369 | #[inline ] |
| 370 | pub fn sqrt(self) -> f64 { |
| 371 | core::f64::math::sqrt(self) |
| 372 | } |
| 373 | |
| 374 | /// Returns `e^(self)`, (the exponential function). |
| 375 | /// |
| 376 | /// # Unspecified precision |
| 377 | /// |
| 378 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 379 | /// can even differ within the same execution from one invocation to the next. |
| 380 | /// |
| 381 | /// # Examples |
| 382 | /// |
| 383 | /// ``` |
| 384 | /// let one = 1.0_f64; |
| 385 | /// // e^1 |
| 386 | /// let e = one.exp(); |
| 387 | /// |
| 388 | /// // ln(e) - 1 == 0 |
| 389 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 390 | /// |
| 391 | /// assert!(abs_difference < 1e-10); |
| 392 | /// ``` |
| 393 | #[rustc_allow_incoherent_impl ] |
| 394 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 395 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 396 | #[inline ] |
| 397 | pub fn exp(self) -> f64 { |
| 398 | unsafe { intrinsics::expf64(self) } |
| 399 | } |
| 400 | |
| 401 | /// Returns `2^(self)`. |
| 402 | /// |
| 403 | /// # Unspecified precision |
| 404 | /// |
| 405 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 406 | /// can even differ within the same execution from one invocation to the next. |
| 407 | /// |
| 408 | /// # Examples |
| 409 | /// |
| 410 | /// ``` |
| 411 | /// let f = 2.0_f64; |
| 412 | /// |
| 413 | /// // 2^2 - 4 == 0 |
| 414 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
| 415 | /// |
| 416 | /// assert!(abs_difference < 1e-10); |
| 417 | /// ``` |
| 418 | #[rustc_allow_incoherent_impl ] |
| 419 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 420 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 421 | #[inline ] |
| 422 | pub fn exp2(self) -> f64 { |
| 423 | unsafe { intrinsics::exp2f64(self) } |
| 424 | } |
| 425 | |
| 426 | /// Returns the natural logarithm of the number. |
| 427 | /// |
| 428 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 429 | /// |
| 430 | /// # Unspecified precision |
| 431 | /// |
| 432 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 433 | /// can even differ within the same execution from one invocation to the next. |
| 434 | /// |
| 435 | /// # Examples |
| 436 | /// |
| 437 | /// ``` |
| 438 | /// let one = 1.0_f64; |
| 439 | /// // e^1 |
| 440 | /// let e = one.exp(); |
| 441 | /// |
| 442 | /// // ln(e) - 1 == 0 |
| 443 | /// let abs_difference = (e.ln() - 1.0).abs(); |
| 444 | /// |
| 445 | /// assert!(abs_difference < 1e-10); |
| 446 | /// ``` |
| 447 | /// |
| 448 | /// Non-positive values: |
| 449 | /// ``` |
| 450 | /// assert_eq!(0_f64.ln(), f64::NEG_INFINITY); |
| 451 | /// assert!((-42_f64).ln().is_nan()); |
| 452 | /// ``` |
| 453 | #[rustc_allow_incoherent_impl ] |
| 454 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 455 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 456 | #[inline ] |
| 457 | pub fn ln(self) -> f64 { |
| 458 | unsafe { intrinsics::logf64(self) } |
| 459 | } |
| 460 | |
| 461 | /// Returns the logarithm of the number with respect to an arbitrary base. |
| 462 | /// |
| 463 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 464 | /// |
| 465 | /// The result might not be correctly rounded owing to implementation details; |
| 466 | /// `self.log2()` can produce more accurate results for base 2, and |
| 467 | /// `self.log10()` can produce more accurate results for base 10. |
| 468 | /// |
| 469 | /// # Unspecified precision |
| 470 | /// |
| 471 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 472 | /// can even differ within the same execution from one invocation to the next. |
| 473 | /// |
| 474 | /// # Examples |
| 475 | /// |
| 476 | /// ``` |
| 477 | /// let twenty_five = 25.0_f64; |
| 478 | /// |
| 479 | /// // log5(25) - 2 == 0 |
| 480 | /// let abs_difference = (twenty_five.log(5.0) - 2.0).abs(); |
| 481 | /// |
| 482 | /// assert!(abs_difference < 1e-10); |
| 483 | /// ``` |
| 484 | /// |
| 485 | /// Non-positive values: |
| 486 | /// ``` |
| 487 | /// assert_eq!(0_f64.log(10.0), f64::NEG_INFINITY); |
| 488 | /// assert!((-42_f64).log(10.0).is_nan()); |
| 489 | /// ``` |
| 490 | #[rustc_allow_incoherent_impl ] |
| 491 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 492 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 493 | #[inline ] |
| 494 | pub fn log(self, base: f64) -> f64 { |
| 495 | self.ln() / base.ln() |
| 496 | } |
| 497 | |
| 498 | /// Returns the base 2 logarithm of the number. |
| 499 | /// |
| 500 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 501 | /// |
| 502 | /// # Unspecified precision |
| 503 | /// |
| 504 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 505 | /// can even differ within the same execution from one invocation to the next. |
| 506 | /// |
| 507 | /// # Examples |
| 508 | /// |
| 509 | /// ``` |
| 510 | /// let four = 4.0_f64; |
| 511 | /// |
| 512 | /// // log2(4) - 2 == 0 |
| 513 | /// let abs_difference = (four.log2() - 2.0).abs(); |
| 514 | /// |
| 515 | /// assert!(abs_difference < 1e-10); |
| 516 | /// ``` |
| 517 | /// |
| 518 | /// Non-positive values: |
| 519 | /// ``` |
| 520 | /// assert_eq!(0_f64.log2(), f64::NEG_INFINITY); |
| 521 | /// assert!((-42_f64).log2().is_nan()); |
| 522 | /// ``` |
| 523 | #[rustc_allow_incoherent_impl ] |
| 524 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 525 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 526 | #[inline ] |
| 527 | pub fn log2(self) -> f64 { |
| 528 | unsafe { intrinsics::log2f64(self) } |
| 529 | } |
| 530 | |
| 531 | /// Returns the base 10 logarithm of the number. |
| 532 | /// |
| 533 | /// This returns NaN when the number is negative, and negative infinity when number is zero. |
| 534 | /// |
| 535 | /// # Unspecified precision |
| 536 | /// |
| 537 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 538 | /// can even differ within the same execution from one invocation to the next. |
| 539 | /// |
| 540 | /// # Examples |
| 541 | /// |
| 542 | /// ``` |
| 543 | /// let hundred = 100.0_f64; |
| 544 | /// |
| 545 | /// // log10(100) - 2 == 0 |
| 546 | /// let abs_difference = (hundred.log10() - 2.0).abs(); |
| 547 | /// |
| 548 | /// assert!(abs_difference < 1e-10); |
| 549 | /// ``` |
| 550 | /// |
| 551 | /// Non-positive values: |
| 552 | /// ``` |
| 553 | /// assert_eq!(0_f64.log10(), f64::NEG_INFINITY); |
| 554 | /// assert!((-42_f64).log10().is_nan()); |
| 555 | /// ``` |
| 556 | #[rustc_allow_incoherent_impl ] |
| 557 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 558 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 559 | #[inline ] |
| 560 | pub fn log10(self) -> f64 { |
| 561 | unsafe { intrinsics::log10f64(self) } |
| 562 | } |
| 563 | |
| 564 | /// The positive difference of two numbers. |
| 565 | /// |
| 566 | /// * If `self <= other`: `0.0` |
| 567 | /// * Else: `self - other` |
| 568 | /// |
| 569 | /// # Unspecified precision |
| 570 | /// |
| 571 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 572 | /// can even differ within the same execution from one invocation to the next. |
| 573 | /// This function currently corresponds to the `fdim` from libc on Unix and |
| 574 | /// Windows. Note that this might change in the future. |
| 575 | /// |
| 576 | /// # Examples |
| 577 | /// |
| 578 | /// ``` |
| 579 | /// let x = 3.0_f64; |
| 580 | /// let y = -3.0_f64; |
| 581 | /// |
| 582 | /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); |
| 583 | /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); |
| 584 | /// |
| 585 | /// assert!(abs_difference_x < 1e-10); |
| 586 | /// assert!(abs_difference_y < 1e-10); |
| 587 | /// ``` |
| 588 | #[rustc_allow_incoherent_impl ] |
| 589 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 590 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 591 | #[inline ] |
| 592 | #[deprecated ( |
| 593 | since = "1.10.0" , |
| 594 | note = "you probably meant `(self - other).abs()`: \ |
| 595 | this operation is `(self - other).max(0.0)` \ |
| 596 | except that `abs_sub` also propagates NaNs (also \ |
| 597 | known as `fdim` in C). If you truly need the positive \ |
| 598 | difference, consider using that expression or the C function \ |
| 599 | `fdim`, depending on how you wish to handle NaN (please consider \ |
| 600 | filing an issue describing your use-case too)." |
| 601 | )] |
| 602 | pub fn abs_sub(self, other: f64) -> f64 { |
| 603 | #[allow (deprecated)] |
| 604 | core::f64::math::abs_sub(self, other) |
| 605 | } |
| 606 | |
| 607 | /// Returns the cube root of a number. |
| 608 | /// |
| 609 | /// # Unspecified precision |
| 610 | /// |
| 611 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 612 | /// can even differ within the same execution from one invocation to the next. |
| 613 | /// This function currently corresponds to the `cbrt` from libc on Unix and |
| 614 | /// Windows. Note that this might change in the future. |
| 615 | /// |
| 616 | /// # Examples |
| 617 | /// |
| 618 | /// ``` |
| 619 | /// let x = 8.0_f64; |
| 620 | /// |
| 621 | /// // x^(1/3) - 2 == 0 |
| 622 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
| 623 | /// |
| 624 | /// assert!(abs_difference < 1e-10); |
| 625 | /// ``` |
| 626 | #[rustc_allow_incoherent_impl ] |
| 627 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 628 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 629 | #[inline ] |
| 630 | pub fn cbrt(self) -> f64 { |
| 631 | core::f64::math::cbrt(self) |
| 632 | } |
| 633 | |
| 634 | /// Compute the distance between the origin and a point (`x`, `y`) on the |
| 635 | /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a |
| 636 | /// right-angle triangle with other sides having length `x.abs()` and |
| 637 | /// `y.abs()`. |
| 638 | /// |
| 639 | /// # Unspecified precision |
| 640 | /// |
| 641 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 642 | /// can even differ within the same execution from one invocation to the next. |
| 643 | /// This function currently corresponds to the `hypot` from libc on Unix |
| 644 | /// and Windows. Note that this might change in the future. |
| 645 | /// |
| 646 | /// # Examples |
| 647 | /// |
| 648 | /// ``` |
| 649 | /// let x = 2.0_f64; |
| 650 | /// let y = 3.0_f64; |
| 651 | /// |
| 652 | /// // sqrt(x^2 + y^2) |
| 653 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
| 654 | /// |
| 655 | /// assert!(abs_difference < 1e-10); |
| 656 | /// ``` |
| 657 | #[rustc_allow_incoherent_impl ] |
| 658 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 659 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 660 | #[inline ] |
| 661 | pub fn hypot(self, other: f64) -> f64 { |
| 662 | cmath::hypot(self, other) |
| 663 | } |
| 664 | |
| 665 | /// Computes the sine of a number (in radians). |
| 666 | /// |
| 667 | /// # Unspecified precision |
| 668 | /// |
| 669 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 670 | /// can even differ within the same execution from one invocation to the next. |
| 671 | /// |
| 672 | /// # Examples |
| 673 | /// |
| 674 | /// ``` |
| 675 | /// let x = std::f64::consts::FRAC_PI_2; |
| 676 | /// |
| 677 | /// let abs_difference = (x.sin() - 1.0).abs(); |
| 678 | /// |
| 679 | /// assert!(abs_difference < 1e-10); |
| 680 | /// ``` |
| 681 | #[rustc_allow_incoherent_impl ] |
| 682 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 683 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 684 | #[inline ] |
| 685 | pub fn sin(self) -> f64 { |
| 686 | unsafe { intrinsics::sinf64(self) } |
| 687 | } |
| 688 | |
| 689 | /// Computes the cosine of a number (in radians). |
| 690 | /// |
| 691 | /// # Unspecified precision |
| 692 | /// |
| 693 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 694 | /// can even differ within the same execution from one invocation to the next. |
| 695 | /// |
| 696 | /// # Examples |
| 697 | /// |
| 698 | /// ``` |
| 699 | /// let x = 2.0 * std::f64::consts::PI; |
| 700 | /// |
| 701 | /// let abs_difference = (x.cos() - 1.0).abs(); |
| 702 | /// |
| 703 | /// assert!(abs_difference < 1e-10); |
| 704 | /// ``` |
| 705 | #[rustc_allow_incoherent_impl ] |
| 706 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 707 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 708 | #[inline ] |
| 709 | pub fn cos(self) -> f64 { |
| 710 | unsafe { intrinsics::cosf64(self) } |
| 711 | } |
| 712 | |
| 713 | /// Computes the tangent of a number (in radians). |
| 714 | /// |
| 715 | /// # Unspecified precision |
| 716 | /// |
| 717 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 718 | /// can even differ within the same execution from one invocation to the next. |
| 719 | /// This function currently corresponds to the `tan` from libc on Unix and |
| 720 | /// Windows. Note that this might change in the future. |
| 721 | /// |
| 722 | /// # Examples |
| 723 | /// |
| 724 | /// ``` |
| 725 | /// let x = std::f64::consts::FRAC_PI_4; |
| 726 | /// let abs_difference = (x.tan() - 1.0).abs(); |
| 727 | /// |
| 728 | /// assert!(abs_difference < 1e-14); |
| 729 | /// ``` |
| 730 | #[rustc_allow_incoherent_impl ] |
| 731 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 732 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 733 | #[inline ] |
| 734 | pub fn tan(self) -> f64 { |
| 735 | cmath::tan(self) |
| 736 | } |
| 737 | |
| 738 | /// Computes the arcsine of a number. Return value is in radians in |
| 739 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
| 740 | /// [-1, 1]. |
| 741 | /// |
| 742 | /// # Unspecified precision |
| 743 | /// |
| 744 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 745 | /// can even differ within the same execution from one invocation to the next. |
| 746 | /// This function currently corresponds to the `asin` from libc on Unix and |
| 747 | /// Windows. Note that this might change in the future. |
| 748 | /// |
| 749 | /// # Examples |
| 750 | /// |
| 751 | /// ``` |
| 752 | /// let f = std::f64::consts::FRAC_PI_2; |
| 753 | /// |
| 754 | /// // asin(sin(pi/2)) |
| 755 | /// let abs_difference = (f.sin().asin() - std::f64::consts::FRAC_PI_2).abs(); |
| 756 | /// |
| 757 | /// assert!(abs_difference < 1e-7); |
| 758 | /// ``` |
| 759 | #[doc (alias = "arcsin" )] |
| 760 | #[rustc_allow_incoherent_impl ] |
| 761 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 762 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 763 | #[inline ] |
| 764 | pub fn asin(self) -> f64 { |
| 765 | cmath::asin(self) |
| 766 | } |
| 767 | |
| 768 | /// Computes the arccosine of a number. Return value is in radians in |
| 769 | /// the range [0, pi] or NaN if the number is outside the range |
| 770 | /// [-1, 1]. |
| 771 | /// |
| 772 | /// # Unspecified precision |
| 773 | /// |
| 774 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 775 | /// can even differ within the same execution from one invocation to the next. |
| 776 | /// This function currently corresponds to the `acos` from libc on Unix and |
| 777 | /// Windows. Note that this might change in the future. |
| 778 | /// |
| 779 | /// # Examples |
| 780 | /// |
| 781 | /// ``` |
| 782 | /// let f = std::f64::consts::FRAC_PI_4; |
| 783 | /// |
| 784 | /// // acos(cos(pi/4)) |
| 785 | /// let abs_difference = (f.cos().acos() - std::f64::consts::FRAC_PI_4).abs(); |
| 786 | /// |
| 787 | /// assert!(abs_difference < 1e-10); |
| 788 | /// ``` |
| 789 | #[doc (alias = "arccos" )] |
| 790 | #[rustc_allow_incoherent_impl ] |
| 791 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 792 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 793 | #[inline ] |
| 794 | pub fn acos(self) -> f64 { |
| 795 | cmath::acos(self) |
| 796 | } |
| 797 | |
| 798 | /// Computes the arctangent of a number. Return value is in radians in the |
| 799 | /// range [-pi/2, pi/2]; |
| 800 | /// |
| 801 | /// # Unspecified precision |
| 802 | /// |
| 803 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 804 | /// can even differ within the same execution from one invocation to the next. |
| 805 | /// This function currently corresponds to the `atan` from libc on Unix and |
| 806 | /// Windows. Note that this might change in the future. |
| 807 | /// |
| 808 | /// # Examples |
| 809 | /// |
| 810 | /// ``` |
| 811 | /// let f = 1.0_f64; |
| 812 | /// |
| 813 | /// // atan(tan(1)) |
| 814 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
| 815 | /// |
| 816 | /// assert!(abs_difference < 1e-10); |
| 817 | /// ``` |
| 818 | #[doc (alias = "arctan" )] |
| 819 | #[rustc_allow_incoherent_impl ] |
| 820 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 821 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 822 | #[inline ] |
| 823 | pub fn atan(self) -> f64 { |
| 824 | cmath::atan(self) |
| 825 | } |
| 826 | |
| 827 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. |
| 828 | /// |
| 829 | /// * `x = 0`, `y = 0`: `0` |
| 830 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
| 831 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
| 832 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
| 833 | /// |
| 834 | /// # Unspecified precision |
| 835 | /// |
| 836 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 837 | /// can even differ within the same execution from one invocation to the next. |
| 838 | /// This function currently corresponds to the `atan2` from libc on Unix |
| 839 | /// and Windows. Note that this might change in the future. |
| 840 | /// |
| 841 | /// # Examples |
| 842 | /// |
| 843 | /// ``` |
| 844 | /// // Positive angles measured counter-clockwise |
| 845 | /// // from positive x axis |
| 846 | /// // -pi/4 radians (45 deg clockwise) |
| 847 | /// let x1 = 3.0_f64; |
| 848 | /// let y1 = -3.0_f64; |
| 849 | /// |
| 850 | /// // 3pi/4 radians (135 deg counter-clockwise) |
| 851 | /// let x2 = -3.0_f64; |
| 852 | /// let y2 = 3.0_f64; |
| 853 | /// |
| 854 | /// let abs_difference_1 = (y1.atan2(x1) - (-std::f64::consts::FRAC_PI_4)).abs(); |
| 855 | /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f64::consts::FRAC_PI_4)).abs(); |
| 856 | /// |
| 857 | /// assert!(abs_difference_1 < 1e-10); |
| 858 | /// assert!(abs_difference_2 < 1e-10); |
| 859 | /// ``` |
| 860 | #[rustc_allow_incoherent_impl ] |
| 861 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 862 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 863 | #[inline ] |
| 864 | pub fn atan2(self, other: f64) -> f64 { |
| 865 | cmath::atan2(self, other) |
| 866 | } |
| 867 | |
| 868 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
| 869 | /// `(sin(x), cos(x))`. |
| 870 | /// |
| 871 | /// # Unspecified precision |
| 872 | /// |
| 873 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 874 | /// can even differ within the same execution from one invocation to the next. |
| 875 | /// This function currently corresponds to the `(f64::sin(x), |
| 876 | /// f64::cos(x))`. Note that this might change in the future. |
| 877 | /// |
| 878 | /// # Examples |
| 879 | /// |
| 880 | /// ``` |
| 881 | /// let x = std::f64::consts::FRAC_PI_4; |
| 882 | /// let f = x.sin_cos(); |
| 883 | /// |
| 884 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
| 885 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
| 886 | /// |
| 887 | /// assert!(abs_difference_0 < 1e-10); |
| 888 | /// assert!(abs_difference_1 < 1e-10); |
| 889 | /// ``` |
| 890 | #[doc (alias = "sincos" )] |
| 891 | #[rustc_allow_incoherent_impl ] |
| 892 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 893 | #[inline ] |
| 894 | pub fn sin_cos(self) -> (f64, f64) { |
| 895 | (self.sin(), self.cos()) |
| 896 | } |
| 897 | |
| 898 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
| 899 | /// number is close to zero. |
| 900 | /// |
| 901 | /// # Unspecified precision |
| 902 | /// |
| 903 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 904 | /// can even differ within the same execution from one invocation to the next. |
| 905 | /// This function currently corresponds to the `expm1` from libc on Unix |
| 906 | /// and Windows. Note that this might change in the future. |
| 907 | /// |
| 908 | /// # Examples |
| 909 | /// |
| 910 | /// ``` |
| 911 | /// let x = 1e-16_f64; |
| 912 | /// |
| 913 | /// // for very small x, e^x is approximately 1 + x + x^2 / 2 |
| 914 | /// let approx = x + x * x / 2.0; |
| 915 | /// let abs_difference = (x.exp_m1() - approx).abs(); |
| 916 | /// |
| 917 | /// assert!(abs_difference < 1e-20); |
| 918 | /// ``` |
| 919 | #[rustc_allow_incoherent_impl ] |
| 920 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 921 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 922 | #[inline ] |
| 923 | pub fn exp_m1(self) -> f64 { |
| 924 | cmath::expm1(self) |
| 925 | } |
| 926 | |
| 927 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
| 928 | /// the operations were performed separately. |
| 929 | /// |
| 930 | /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`. |
| 931 | /// |
| 932 | /// # Unspecified precision |
| 933 | /// |
| 934 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 935 | /// can even differ within the same execution from one invocation to the next. |
| 936 | /// This function currently corresponds to the `log1p` from libc on Unix |
| 937 | /// and Windows. Note that this might change in the future. |
| 938 | /// |
| 939 | /// # Examples |
| 940 | /// |
| 941 | /// ``` |
| 942 | /// let x = 1e-16_f64; |
| 943 | /// |
| 944 | /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 |
| 945 | /// let approx = x - x * x / 2.0; |
| 946 | /// let abs_difference = (x.ln_1p() - approx).abs(); |
| 947 | /// |
| 948 | /// assert!(abs_difference < 1e-20); |
| 949 | /// ``` |
| 950 | /// |
| 951 | /// Out-of-range values: |
| 952 | /// ``` |
| 953 | /// assert_eq!((-1.0_f64).ln_1p(), f64::NEG_INFINITY); |
| 954 | /// assert!((-2.0_f64).ln_1p().is_nan()); |
| 955 | /// ``` |
| 956 | #[doc (alias = "log1p" )] |
| 957 | #[rustc_allow_incoherent_impl ] |
| 958 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 959 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 960 | #[inline ] |
| 961 | pub fn ln_1p(self) -> f64 { |
| 962 | cmath::log1p(self) |
| 963 | } |
| 964 | |
| 965 | /// Hyperbolic sine function. |
| 966 | /// |
| 967 | /// # Unspecified precision |
| 968 | /// |
| 969 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 970 | /// can even differ within the same execution from one invocation to the next. |
| 971 | /// This function currently corresponds to the `sinh` from libc on Unix |
| 972 | /// and Windows. Note that this might change in the future. |
| 973 | /// |
| 974 | /// # Examples |
| 975 | /// |
| 976 | /// ``` |
| 977 | /// let e = std::f64::consts::E; |
| 978 | /// let x = 1.0_f64; |
| 979 | /// |
| 980 | /// let f = x.sinh(); |
| 981 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
| 982 | /// let g = ((e * e) - 1.0) / (2.0 * e); |
| 983 | /// let abs_difference = (f - g).abs(); |
| 984 | /// |
| 985 | /// assert!(abs_difference < 1e-10); |
| 986 | /// ``` |
| 987 | #[rustc_allow_incoherent_impl ] |
| 988 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 989 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 990 | #[inline ] |
| 991 | pub fn sinh(self) -> f64 { |
| 992 | cmath::sinh(self) |
| 993 | } |
| 994 | |
| 995 | /// Hyperbolic cosine function. |
| 996 | /// |
| 997 | /// # Unspecified precision |
| 998 | /// |
| 999 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 1000 | /// can even differ within the same execution from one invocation to the next. |
| 1001 | /// This function currently corresponds to the `cosh` from libc on Unix |
| 1002 | /// and Windows. Note that this might change in the future. |
| 1003 | /// |
| 1004 | /// # Examples |
| 1005 | /// |
| 1006 | /// ``` |
| 1007 | /// let e = std::f64::consts::E; |
| 1008 | /// let x = 1.0_f64; |
| 1009 | /// let f = x.cosh(); |
| 1010 | /// // Solving cosh() at 1 gives this result |
| 1011 | /// let g = ((e * e) + 1.0) / (2.0 * e); |
| 1012 | /// let abs_difference = (f - g).abs(); |
| 1013 | /// |
| 1014 | /// // Same result |
| 1015 | /// assert!(abs_difference < 1.0e-10); |
| 1016 | /// ``` |
| 1017 | #[rustc_allow_incoherent_impl ] |
| 1018 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1019 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1020 | #[inline ] |
| 1021 | pub fn cosh(self) -> f64 { |
| 1022 | cmath::cosh(self) |
| 1023 | } |
| 1024 | |
| 1025 | /// Hyperbolic tangent function. |
| 1026 | /// |
| 1027 | /// # Unspecified precision |
| 1028 | /// |
| 1029 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 1030 | /// can even differ within the same execution from one invocation to the next. |
| 1031 | /// This function currently corresponds to the `tanh` from libc on Unix |
| 1032 | /// and Windows. Note that this might change in the future. |
| 1033 | /// |
| 1034 | /// # Examples |
| 1035 | /// |
| 1036 | /// ``` |
| 1037 | /// let e = std::f64::consts::E; |
| 1038 | /// let x = 1.0_f64; |
| 1039 | /// |
| 1040 | /// let f = x.tanh(); |
| 1041 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
| 1042 | /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); |
| 1043 | /// let abs_difference = (f - g).abs(); |
| 1044 | /// |
| 1045 | /// assert!(abs_difference < 1.0e-10); |
| 1046 | /// ``` |
| 1047 | #[rustc_allow_incoherent_impl ] |
| 1048 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1049 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1050 | #[inline ] |
| 1051 | pub fn tanh(self) -> f64 { |
| 1052 | cmath::tanh(self) |
| 1053 | } |
| 1054 | |
| 1055 | /// Inverse hyperbolic sine function. |
| 1056 | /// |
| 1057 | /// # Unspecified precision |
| 1058 | /// |
| 1059 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 1060 | /// can even differ within the same execution from one invocation to the next. |
| 1061 | /// |
| 1062 | /// # Examples |
| 1063 | /// |
| 1064 | /// ``` |
| 1065 | /// let x = 1.0_f64; |
| 1066 | /// let f = x.sinh().asinh(); |
| 1067 | /// |
| 1068 | /// let abs_difference = (f - x).abs(); |
| 1069 | /// |
| 1070 | /// assert!(abs_difference < 1.0e-10); |
| 1071 | /// ``` |
| 1072 | #[doc (alias = "arcsinh" )] |
| 1073 | #[rustc_allow_incoherent_impl ] |
| 1074 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1075 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1076 | #[inline ] |
| 1077 | pub fn asinh(self) -> f64 { |
| 1078 | let ax = self.abs(); |
| 1079 | let ix = 1.0 / ax; |
| 1080 | (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) |
| 1081 | } |
| 1082 | |
| 1083 | /// Inverse hyperbolic cosine function. |
| 1084 | /// |
| 1085 | /// # Unspecified precision |
| 1086 | /// |
| 1087 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 1088 | /// can even differ within the same execution from one invocation to the next. |
| 1089 | /// |
| 1090 | /// # Examples |
| 1091 | /// |
| 1092 | /// ``` |
| 1093 | /// let x = 1.0_f64; |
| 1094 | /// let f = x.cosh().acosh(); |
| 1095 | /// |
| 1096 | /// let abs_difference = (f - x).abs(); |
| 1097 | /// |
| 1098 | /// assert!(abs_difference < 1.0e-10); |
| 1099 | /// ``` |
| 1100 | #[doc (alias = "arccosh" )] |
| 1101 | #[rustc_allow_incoherent_impl ] |
| 1102 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1103 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1104 | #[inline ] |
| 1105 | pub fn acosh(self) -> f64 { |
| 1106 | if self < 1.0 { |
| 1107 | Self::NAN |
| 1108 | } else { |
| 1109 | (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | /// Inverse hyperbolic tangent function. |
| 1114 | /// |
| 1115 | /// # Unspecified precision |
| 1116 | /// |
| 1117 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 1118 | /// can even differ within the same execution from one invocation to the next. |
| 1119 | /// |
| 1120 | /// # Examples |
| 1121 | /// |
| 1122 | /// ``` |
| 1123 | /// let e = std::f64::consts::E; |
| 1124 | /// let f = e.tanh().atanh(); |
| 1125 | /// |
| 1126 | /// let abs_difference = (f - e).abs(); |
| 1127 | /// |
| 1128 | /// assert!(abs_difference < 1.0e-10); |
| 1129 | /// ``` |
| 1130 | #[doc (alias = "arctanh" )] |
| 1131 | #[rustc_allow_incoherent_impl ] |
| 1132 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1133 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1134 | #[inline ] |
| 1135 | pub fn atanh(self) -> f64 { |
| 1136 | 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() |
| 1137 | } |
| 1138 | |
| 1139 | /// Gamma function. |
| 1140 | /// |
| 1141 | /// # Unspecified precision |
| 1142 | /// |
| 1143 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 1144 | /// can even differ within the same execution from one invocation to the next. |
| 1145 | /// This function currently corresponds to the `tgamma` from libc on Unix |
| 1146 | /// and Windows. Note that this might change in the future. |
| 1147 | /// |
| 1148 | /// # Examples |
| 1149 | /// |
| 1150 | /// ``` |
| 1151 | /// #![feature(float_gamma)] |
| 1152 | /// let x = 5.0f64; |
| 1153 | /// |
| 1154 | /// let abs_difference = (x.gamma() - 24.0).abs(); |
| 1155 | /// |
| 1156 | /// assert!(abs_difference <= f64::EPSILON); |
| 1157 | /// ``` |
| 1158 | #[rustc_allow_incoherent_impl ] |
| 1159 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1160 | #[unstable (feature = "float_gamma" , issue = "99842" )] |
| 1161 | #[inline ] |
| 1162 | pub fn gamma(self) -> f64 { |
| 1163 | cmath::tgamma(self) |
| 1164 | } |
| 1165 | |
| 1166 | /// Natural logarithm of the absolute value of the gamma function |
| 1167 | /// |
| 1168 | /// The integer part of the tuple indicates the sign of the gamma function. |
| 1169 | /// |
| 1170 | /// # Unspecified precision |
| 1171 | /// |
| 1172 | /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and |
| 1173 | /// can even differ within the same execution from one invocation to the next. |
| 1174 | /// This function currently corresponds to the `lgamma_r` from libc on Unix |
| 1175 | /// and Windows. Note that this might change in the future. |
| 1176 | /// |
| 1177 | /// # Examples |
| 1178 | /// |
| 1179 | /// ``` |
| 1180 | /// #![feature(float_gamma)] |
| 1181 | /// let x = 2.0f64; |
| 1182 | /// |
| 1183 | /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); |
| 1184 | /// |
| 1185 | /// assert!(abs_difference <= f64::EPSILON); |
| 1186 | /// ``` |
| 1187 | #[rustc_allow_incoherent_impl ] |
| 1188 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1189 | #[unstable (feature = "float_gamma" , issue = "99842" )] |
| 1190 | #[inline ] |
| 1191 | pub fn ln_gamma(self) -> (f64, i32) { |
| 1192 | let mut signgamp: i32 = 0; |
| 1193 | let x = cmath::lgamma_r(self, &mut signgamp); |
| 1194 | (x, signgamp) |
| 1195 | } |
| 1196 | |
| 1197 | /// Error function. |
| 1198 | /// |
| 1199 | /// # Unspecified precision |
| 1200 | /// |
| 1201 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 1202 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 1203 | /// |
| 1204 | /// This function currently corresponds to the `erf` from libc on Unix |
| 1205 | /// and Windows. Note that this might change in the future. |
| 1206 | /// |
| 1207 | /// # Examples |
| 1208 | /// |
| 1209 | /// ``` |
| 1210 | /// #![feature(float_erf)] |
| 1211 | /// /// The error function relates what percent of a normal distribution lies |
| 1212 | /// /// within `x` standard deviations (scaled by `1/sqrt(2)`). |
| 1213 | /// fn within_standard_deviations(x: f64) -> f64 { |
| 1214 | /// (x * std::f64::consts::FRAC_1_SQRT_2).erf() * 100.0 |
| 1215 | /// } |
| 1216 | /// |
| 1217 | /// // 68% of a normal distribution is within one standard deviation |
| 1218 | /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.01); |
| 1219 | /// // 95% of a normal distribution is within two standard deviations |
| 1220 | /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.01); |
| 1221 | /// // 99.7% of a normal distribution is within three standard deviations |
| 1222 | /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.01); |
| 1223 | /// ``` |
| 1224 | #[rustc_allow_incoherent_impl ] |
| 1225 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1226 | #[unstable (feature = "float_erf" , issue = "136321" )] |
| 1227 | #[inline ] |
| 1228 | pub fn erf(self) -> f64 { |
| 1229 | cmath::erf(self) |
| 1230 | } |
| 1231 | |
| 1232 | /// Complementary error function. |
| 1233 | /// |
| 1234 | /// # Unspecified precision |
| 1235 | /// |
| 1236 | /// The precision of this function is non-deterministic. This means it varies by platform, |
| 1237 | /// Rust version, and can even differ within the same execution from one invocation to the next. |
| 1238 | /// |
| 1239 | /// This function currently corresponds to the `erfc` from libc on Unix |
| 1240 | /// and Windows. Note that this might change in the future. |
| 1241 | /// |
| 1242 | /// # Examples |
| 1243 | /// |
| 1244 | /// ``` |
| 1245 | /// #![feature(float_erf)] |
| 1246 | /// let x: f64 = 0.123; |
| 1247 | /// |
| 1248 | /// let one = x.erf() + x.erfc(); |
| 1249 | /// let abs_difference = (one - 1.0).abs(); |
| 1250 | /// |
| 1251 | /// assert!(abs_difference <= f64::EPSILON); |
| 1252 | /// ``` |
| 1253 | #[rustc_allow_incoherent_impl ] |
| 1254 | #[must_use = "method returns a new number and does not mutate the original value" ] |
| 1255 | #[unstable (feature = "float_erf" , issue = "136321" )] |
| 1256 | #[inline ] |
| 1257 | pub fn erfc(self) -> f64 { |
| 1258 | cmath::erfc(self) |
| 1259 | } |
| 1260 | } |
| 1261 | |