| 1 | use crate::cell::UnsafeCell; |
| 2 | use crate::fmt; |
| 3 | use crate::marker::PhantomData; |
| 4 | use crate::mem::{self, ManuallyDrop}; |
| 5 | use crate::ops::{Deref, DerefMut}; |
| 6 | use crate::ptr::NonNull; |
| 7 | use crate::sync::{LockResult, PoisonError, TryLockError, TryLockResult, poison}; |
| 8 | use crate::sys::sync as sys; |
| 9 | |
| 10 | /// A mutual exclusion primitive useful for protecting shared data |
| 11 | /// |
| 12 | /// This mutex will block threads waiting for the lock to become available. The |
| 13 | /// mutex can be created via a [`new`] constructor. Each mutex has a type parameter |
| 14 | /// which represents the data that it is protecting. The data can only be accessed |
| 15 | /// through the RAII guards returned from [`lock`] and [`try_lock`], which |
| 16 | /// guarantees that the data is only ever accessed when the mutex is locked. |
| 17 | /// |
| 18 | /// # Poisoning |
| 19 | /// |
| 20 | /// The mutexes in this module implement a strategy called "poisoning" where a |
| 21 | /// mutex becomes poisoned if it recognizes that the thread holding it has |
| 22 | /// panicked. |
| 23 | /// |
| 24 | /// Once a mutex is poisoned, all other threads are unable to access the data by |
| 25 | /// default as it is likely tainted (some invariant is not being upheld). For a |
| 26 | /// mutex, this means that the [`lock`] and [`try_lock`] methods return a |
| 27 | /// [`Result`] which indicates whether a mutex has been poisoned or not. Most |
| 28 | /// usage of a mutex will simply [`unwrap()`] these results, propagating panics |
| 29 | /// among threads to ensure that a possibly invalid invariant is not witnessed. |
| 30 | /// |
| 31 | /// Poisoning is only advisory: the [`PoisonError`] type has an [`into_inner`] |
| 32 | /// method which will return the guard that would have otherwise been returned |
| 33 | /// on a successful lock. This allows access to the data, despite the lock being |
| 34 | /// poisoned. |
| 35 | /// |
| 36 | /// In addition, the panic detection is not ideal, so even unpoisoned mutexes |
| 37 | /// need to be handled with care, since certain panics may have been skipped. |
| 38 | /// Here is a non-exhaustive list of situations where this might occur: |
| 39 | /// |
| 40 | /// - If a mutex is locked while a panic is underway, e.g. within a [`Drop`] |
| 41 | /// implementation or a [panic hook], panicking for the second time while the |
| 42 | /// lock is held will leave the mutex unpoisoned. Note that while double panic |
| 43 | /// usually aborts the program, [`catch_unwind`] can prevent this. |
| 44 | /// |
| 45 | /// - Locking and unlocking the mutex across different panic contexts, e.g. by |
| 46 | /// storing the guard to a [`Cell`] within [`Drop::drop`] and accessing it |
| 47 | /// outside, or vice versa, can affect poisoning status in an unexpected way. |
| 48 | /// |
| 49 | /// - Foreign exceptions do not currently trigger poisoning even in absence of |
| 50 | /// other panics. |
| 51 | /// |
| 52 | /// While this rarely happens in realistic code, `unsafe` code cannot rely on |
| 53 | /// poisoning for soundness, since the behavior of poisoning can depend on |
| 54 | /// outside context. Here's an example of **incorrect** use of poisoning: |
| 55 | /// |
| 56 | /// ```rust |
| 57 | /// use std::sync::Mutex; |
| 58 | /// |
| 59 | /// struct MutexBox<T> { |
| 60 | /// data: Mutex<*mut T>, |
| 61 | /// } |
| 62 | /// |
| 63 | /// impl<T> MutexBox<T> { |
| 64 | /// pub fn new(value: T) -> Self { |
| 65 | /// Self { |
| 66 | /// data: Mutex::new(Box::into_raw(Box::new(value))), |
| 67 | /// } |
| 68 | /// } |
| 69 | /// |
| 70 | /// pub fn replace_with(&self, f: impl FnOnce(T) -> T) { |
| 71 | /// let ptr = self.data.lock().expect("poisoned" ); |
| 72 | /// // While `f` is running, the data is moved out of `*ptr`. If `f` |
| 73 | /// // panics, `*ptr` keeps pointing at a dropped value. The intention |
| 74 | /// // is that this will poison the mutex, so the following calls to |
| 75 | /// // `replace_with` will panic without reading `*ptr`. But since |
| 76 | /// // poisoning is not guaranteed to occur if this is run from a panic |
| 77 | /// // hook, this can lead to use-after-free. |
| 78 | /// unsafe { |
| 79 | /// (*ptr).write(f((*ptr).read())); |
| 80 | /// } |
| 81 | /// } |
| 82 | /// } |
| 83 | /// ``` |
| 84 | /// |
| 85 | /// [`new`]: Self::new |
| 86 | /// [`lock`]: Self::lock |
| 87 | /// [`try_lock`]: Self::try_lock |
| 88 | /// [`unwrap()`]: Result::unwrap |
| 89 | /// [`PoisonError`]: super::PoisonError |
| 90 | /// [`into_inner`]: super::PoisonError::into_inner |
| 91 | /// [panic hook]: crate::panic::set_hook |
| 92 | /// [`catch_unwind`]: crate::panic::catch_unwind |
| 93 | /// [`Cell`]: crate::cell::Cell |
| 94 | /// |
| 95 | /// # Examples |
| 96 | /// |
| 97 | /// ``` |
| 98 | /// use std::sync::{Arc, Mutex}; |
| 99 | /// use std::thread; |
| 100 | /// use std::sync::mpsc::channel; |
| 101 | /// |
| 102 | /// const N: usize = 10; |
| 103 | /// |
| 104 | /// // Spawn a few threads to increment a shared variable (non-atomically), and |
| 105 | /// // let the main thread know once all increments are done. |
| 106 | /// // |
| 107 | /// // Here we're using an Arc to share memory among threads, and the data inside |
| 108 | /// // the Arc is protected with a mutex. |
| 109 | /// let data = Arc::new(Mutex::new(0)); |
| 110 | /// |
| 111 | /// let (tx, rx) = channel(); |
| 112 | /// for _ in 0..N { |
| 113 | /// let (data, tx) = (Arc::clone(&data), tx.clone()); |
| 114 | /// thread::spawn(move || { |
| 115 | /// // The shared state can only be accessed once the lock is held. |
| 116 | /// // Our non-atomic increment is safe because we're the only thread |
| 117 | /// // which can access the shared state when the lock is held. |
| 118 | /// // |
| 119 | /// // We unwrap() the return value to assert that we are not expecting |
| 120 | /// // threads to ever fail while holding the lock. |
| 121 | /// let mut data = data.lock().unwrap(); |
| 122 | /// *data += 1; |
| 123 | /// if *data == N { |
| 124 | /// tx.send(()).unwrap(); |
| 125 | /// } |
| 126 | /// // the lock is unlocked here when `data` goes out of scope. |
| 127 | /// }); |
| 128 | /// } |
| 129 | /// |
| 130 | /// rx.recv().unwrap(); |
| 131 | /// ``` |
| 132 | /// |
| 133 | /// To recover from a poisoned mutex: |
| 134 | /// |
| 135 | /// ``` |
| 136 | /// use std::sync::{Arc, Mutex}; |
| 137 | /// use std::thread; |
| 138 | /// |
| 139 | /// let lock = Arc::new(Mutex::new(0_u32)); |
| 140 | /// let lock2 = Arc::clone(&lock); |
| 141 | /// |
| 142 | /// let _ = thread::spawn(move || -> () { |
| 143 | /// // This thread will acquire the mutex first, unwrapping the result of |
| 144 | /// // `lock` because the lock has not been poisoned. |
| 145 | /// let _guard = lock2.lock().unwrap(); |
| 146 | /// |
| 147 | /// // This panic while holding the lock (`_guard` is in scope) will poison |
| 148 | /// // the mutex. |
| 149 | /// panic!(); |
| 150 | /// }).join(); |
| 151 | /// |
| 152 | /// // The lock is poisoned by this point, but the returned result can be |
| 153 | /// // pattern matched on to return the underlying guard on both branches. |
| 154 | /// let mut guard = match lock.lock() { |
| 155 | /// Ok(guard) => guard, |
| 156 | /// Err(poisoned) => poisoned.into_inner(), |
| 157 | /// }; |
| 158 | /// |
| 159 | /// *guard += 1; |
| 160 | /// ``` |
| 161 | /// |
| 162 | /// To unlock a mutex guard sooner than the end of the enclosing scope, |
| 163 | /// either create an inner scope or drop the guard manually. |
| 164 | /// |
| 165 | /// ``` |
| 166 | /// use std::sync::{Arc, Mutex}; |
| 167 | /// use std::thread; |
| 168 | /// |
| 169 | /// const N: usize = 3; |
| 170 | /// |
| 171 | /// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4])); |
| 172 | /// let res_mutex = Arc::new(Mutex::new(0)); |
| 173 | /// |
| 174 | /// let mut threads = Vec::with_capacity(N); |
| 175 | /// (0..N).for_each(|_| { |
| 176 | /// let data_mutex_clone = Arc::clone(&data_mutex); |
| 177 | /// let res_mutex_clone = Arc::clone(&res_mutex); |
| 178 | /// |
| 179 | /// threads.push(thread::spawn(move || { |
| 180 | /// // Here we use a block to limit the lifetime of the lock guard. |
| 181 | /// let result = { |
| 182 | /// let mut data = data_mutex_clone.lock().unwrap(); |
| 183 | /// // This is the result of some important and long-ish work. |
| 184 | /// let result = data.iter().fold(0, |acc, x| acc + x * 2); |
| 185 | /// data.push(result); |
| 186 | /// result |
| 187 | /// // The mutex guard gets dropped here, together with any other values |
| 188 | /// // created in the critical section. |
| 189 | /// }; |
| 190 | /// // The guard created here is a temporary dropped at the end of the statement, i.e. |
| 191 | /// // the lock would not remain being held even if the thread did some additional work. |
| 192 | /// *res_mutex_clone.lock().unwrap() += result; |
| 193 | /// })); |
| 194 | /// }); |
| 195 | /// |
| 196 | /// let mut data = data_mutex.lock().unwrap(); |
| 197 | /// // This is the result of some important and long-ish work. |
| 198 | /// let result = data.iter().fold(0, |acc, x| acc + x * 2); |
| 199 | /// data.push(result); |
| 200 | /// // We drop the `data` explicitly because it's not necessary anymore and the |
| 201 | /// // thread still has work to do. This allows other threads to start working on |
| 202 | /// // the data immediately, without waiting for the rest of the unrelated work |
| 203 | /// // to be done here. |
| 204 | /// // |
| 205 | /// // It's even more important here than in the threads because we `.join` the |
| 206 | /// // threads after that. If we had not dropped the mutex guard, a thread could |
| 207 | /// // be waiting forever for it, causing a deadlock. |
| 208 | /// // As in the threads, a block could have been used instead of calling the |
| 209 | /// // `drop` function. |
| 210 | /// drop(data); |
| 211 | /// // Here the mutex guard is not assigned to a variable and so, even if the |
| 212 | /// // scope does not end after this line, the mutex is still released: there is |
| 213 | /// // no deadlock. |
| 214 | /// *res_mutex.lock().unwrap() += result; |
| 215 | /// |
| 216 | /// threads.into_iter().for_each(|thread| { |
| 217 | /// thread |
| 218 | /// .join() |
| 219 | /// .expect("The thread creating or execution failed !" ) |
| 220 | /// }); |
| 221 | /// |
| 222 | /// assert_eq!(*res_mutex.lock().unwrap(), 800); |
| 223 | /// ``` |
| 224 | /// |
| 225 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 226 | #[cfg_attr (not(test), rustc_diagnostic_item = "Mutex" )] |
| 227 | pub struct Mutex<T: ?Sized> { |
| 228 | inner: sys::Mutex, |
| 229 | poison: poison::Flag, |
| 230 | data: UnsafeCell<T>, |
| 231 | } |
| 232 | |
| 233 | /// `T` must be `Send` for a [`Mutex`] to be `Send` because it is possible to acquire |
| 234 | /// the owned `T` from the `Mutex` via [`into_inner`]. |
| 235 | /// |
| 236 | /// [`into_inner`]: Mutex::into_inner |
| 237 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 238 | unsafe impl<T: ?Sized + Send> Send for Mutex<T> {} |
| 239 | |
| 240 | /// `T` must be `Send` for [`Mutex`] to be `Sync`. |
| 241 | /// This ensures that the protected data can be accessed safely from multiple threads |
| 242 | /// without causing data races or other unsafe behavior. |
| 243 | /// |
| 244 | /// [`Mutex<T>`] provides mutable access to `T` to one thread at a time. However, it's essential |
| 245 | /// for `T` to be `Send` because it's not safe for non-`Send` structures to be accessed in |
| 246 | /// this manner. For instance, consider [`Rc`], a non-atomic reference counted smart pointer, |
| 247 | /// which is not `Send`. With `Rc`, we can have multiple copies pointing to the same heap |
| 248 | /// allocation with a non-atomic reference count. If we were to use `Mutex<Rc<_>>`, it would |
| 249 | /// only protect one instance of `Rc` from shared access, leaving other copies vulnerable |
| 250 | /// to potential data races. |
| 251 | /// |
| 252 | /// Also note that it is not necessary for `T` to be `Sync` as `&T` is only made available |
| 253 | /// to one thread at a time if `T` is not `Sync`. |
| 254 | /// |
| 255 | /// [`Rc`]: crate::rc::Rc |
| 256 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 257 | unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {} |
| 258 | |
| 259 | /// An RAII implementation of a "scoped lock" of a mutex. When this structure is |
| 260 | /// dropped (falls out of scope), the lock will be unlocked. |
| 261 | /// |
| 262 | /// The data protected by the mutex can be accessed through this guard via its |
| 263 | /// [`Deref`] and [`DerefMut`] implementations. |
| 264 | /// |
| 265 | /// This structure is created by the [`lock`] and [`try_lock`] methods on |
| 266 | /// [`Mutex`]. |
| 267 | /// |
| 268 | /// [`lock`]: Mutex::lock |
| 269 | /// [`try_lock`]: Mutex::try_lock |
| 270 | #[must_use = "if unused the Mutex will immediately unlock" ] |
| 271 | #[must_not_suspend = "holding a MutexGuard across suspend \ |
| 272 | points can cause deadlocks, delays, \ |
| 273 | and cause Futures to not implement `Send`" ] |
| 274 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 275 | #[clippy::has_significant_drop] |
| 276 | #[cfg_attr (not(test), rustc_diagnostic_item = "MutexGuard" )] |
| 277 | pub struct MutexGuard<'a, T: ?Sized + 'a> { |
| 278 | lock: &'a Mutex<T>, |
| 279 | poison: poison::Guard, |
| 280 | } |
| 281 | |
| 282 | /// A [`MutexGuard`] is not `Send` to maximize platform portability. |
| 283 | /// |
| 284 | /// On platforms that use POSIX threads (commonly referred to as pthreads) there is a requirement to |
| 285 | /// release mutex locks on the same thread they were acquired. |
| 286 | /// For this reason, [`MutexGuard`] must not implement `Send` to prevent it being dropped from |
| 287 | /// another thread. |
| 288 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 289 | impl<T: ?Sized> !Send for MutexGuard<'_, T> {} |
| 290 | |
| 291 | /// `T` must be `Sync` for a [`MutexGuard<T>`] to be `Sync` |
| 292 | /// because it is possible to get a `&T` from `&MutexGuard` (via `Deref`). |
| 293 | #[stable (feature = "mutexguard" , since = "1.19.0" )] |
| 294 | unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {} |
| 295 | |
| 296 | /// An RAII mutex guard returned by `MutexGuard::map`, which can point to a |
| 297 | /// subfield of the protected data. When this structure is dropped (falls out |
| 298 | /// of scope), the lock will be unlocked. |
| 299 | /// |
| 300 | /// The main difference between `MappedMutexGuard` and [`MutexGuard`] is that the |
| 301 | /// former cannot be used with [`Condvar`], since that |
| 302 | /// could introduce soundness issues if the locked object is modified by another |
| 303 | /// thread while the `Mutex` is unlocked. |
| 304 | /// |
| 305 | /// The data protected by the mutex can be accessed through this guard via its |
| 306 | /// [`Deref`] and [`DerefMut`] implementations. |
| 307 | /// |
| 308 | /// This structure is created by the [`map`] and [`filter_map`] methods on |
| 309 | /// [`MutexGuard`]. |
| 310 | /// |
| 311 | /// [`map`]: MutexGuard::map |
| 312 | /// [`filter_map`]: MutexGuard::filter_map |
| 313 | /// [`Condvar`]: crate::sync::Condvar |
| 314 | #[must_use = "if unused the Mutex will immediately unlock" ] |
| 315 | #[must_not_suspend = "holding a MappedMutexGuard across suspend \ |
| 316 | points can cause deadlocks, delays, \ |
| 317 | and cause Futures to not implement `Send`" ] |
| 318 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 319 | #[clippy::has_significant_drop] |
| 320 | pub struct MappedMutexGuard<'a, T: ?Sized + 'a> { |
| 321 | // NB: we use a pointer instead of `&'a mut T` to avoid `noalias` violations, because a |
| 322 | // `MappedMutexGuard` argument doesn't hold uniqueness for its whole scope, only until it drops. |
| 323 | // `NonNull` is covariant over `T`, so we add a `PhantomData<&'a mut T>` field |
| 324 | // below for the correct variance over `T` (invariance). |
| 325 | data: NonNull<T>, |
| 326 | inner: &'a sys::Mutex, |
| 327 | poison_flag: &'a poison::Flag, |
| 328 | poison: poison::Guard, |
| 329 | _variance: PhantomData<&'a mut T>, |
| 330 | } |
| 331 | |
| 332 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 333 | impl<T: ?Sized> !Send for MappedMutexGuard<'_, T> {} |
| 334 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 335 | unsafe impl<T: ?Sized + Sync> Sync for MappedMutexGuard<'_, T> {} |
| 336 | |
| 337 | impl<T> Mutex<T> { |
| 338 | /// Creates a new mutex in an unlocked state ready for use. |
| 339 | /// |
| 340 | /// # Examples |
| 341 | /// |
| 342 | /// ``` |
| 343 | /// use std::sync::Mutex; |
| 344 | /// |
| 345 | /// let mutex = Mutex::new(0); |
| 346 | /// ``` |
| 347 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 348 | #[rustc_const_stable (feature = "const_locks" , since = "1.63.0" )] |
| 349 | #[inline ] |
| 350 | pub const fn new(t: T) -> Mutex<T> { |
| 351 | Mutex { inner: sys::Mutex::new(), poison: poison::Flag::new(), data: UnsafeCell::new(t) } |
| 352 | } |
| 353 | |
| 354 | /// Returns the contained value by cloning it. |
| 355 | /// |
| 356 | /// # Errors |
| 357 | /// |
| 358 | /// If another user of this mutex panicked while holding the mutex, then |
| 359 | /// this call will return an error instead. |
| 360 | /// |
| 361 | /// # Examples |
| 362 | /// |
| 363 | /// ``` |
| 364 | /// #![feature(lock_value_accessors)] |
| 365 | /// |
| 366 | /// use std::sync::Mutex; |
| 367 | /// |
| 368 | /// let mut mutex = Mutex::new(7); |
| 369 | /// |
| 370 | /// assert_eq!(mutex.get_cloned().unwrap(), 7); |
| 371 | /// ``` |
| 372 | #[unstable (feature = "lock_value_accessors" , issue = "133407" )] |
| 373 | pub fn get_cloned(&self) -> Result<T, PoisonError<()>> |
| 374 | where |
| 375 | T: Clone, |
| 376 | { |
| 377 | match self.lock() { |
| 378 | Ok(guard) => Ok((*guard).clone()), |
| 379 | Err(_) => Err(PoisonError::new(())), |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | /// Sets the contained value. |
| 384 | /// |
| 385 | /// # Errors |
| 386 | /// |
| 387 | /// If another user of this mutex panicked while holding the mutex, then |
| 388 | /// this call will return an error containing the provided `value` instead. |
| 389 | /// |
| 390 | /// # Examples |
| 391 | /// |
| 392 | /// ``` |
| 393 | /// #![feature(lock_value_accessors)] |
| 394 | /// |
| 395 | /// use std::sync::Mutex; |
| 396 | /// |
| 397 | /// let mut mutex = Mutex::new(7); |
| 398 | /// |
| 399 | /// assert_eq!(mutex.get_cloned().unwrap(), 7); |
| 400 | /// mutex.set(11).unwrap(); |
| 401 | /// assert_eq!(mutex.get_cloned().unwrap(), 11); |
| 402 | /// ``` |
| 403 | #[unstable (feature = "lock_value_accessors" , issue = "133407" )] |
| 404 | #[rustc_should_not_be_called_on_const_items] |
| 405 | pub fn set(&self, value: T) -> Result<(), PoisonError<T>> { |
| 406 | if mem::needs_drop::<T>() { |
| 407 | // If the contained value has non-trivial destructor, we |
| 408 | // call that destructor after the lock being released. |
| 409 | self.replace(value).map(drop) |
| 410 | } else { |
| 411 | match self.lock() { |
| 412 | Ok(mut guard) => { |
| 413 | *guard = value; |
| 414 | |
| 415 | Ok(()) |
| 416 | } |
| 417 | Err(_) => Err(PoisonError::new(value)), |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | /// Replaces the contained value with `value`, and returns the old contained value. |
| 423 | /// |
| 424 | /// # Errors |
| 425 | /// |
| 426 | /// If another user of this mutex panicked while holding the mutex, then |
| 427 | /// this call will return an error containing the provided `value` instead. |
| 428 | /// |
| 429 | /// # Examples |
| 430 | /// |
| 431 | /// ``` |
| 432 | /// #![feature(lock_value_accessors)] |
| 433 | /// |
| 434 | /// use std::sync::Mutex; |
| 435 | /// |
| 436 | /// let mut mutex = Mutex::new(7); |
| 437 | /// |
| 438 | /// assert_eq!(mutex.replace(11).unwrap(), 7); |
| 439 | /// assert_eq!(mutex.get_cloned().unwrap(), 11); |
| 440 | /// ``` |
| 441 | #[unstable (feature = "lock_value_accessors" , issue = "133407" )] |
| 442 | #[rustc_should_not_be_called_on_const_items] |
| 443 | pub fn replace(&self, value: T) -> LockResult<T> { |
| 444 | match self.lock() { |
| 445 | Ok(mut guard) => Ok(mem::replace(&mut *guard, value)), |
| 446 | Err(_) => Err(PoisonError::new(value)), |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | impl<T: ?Sized> Mutex<T> { |
| 452 | /// Acquires a mutex, blocking the current thread until it is able to do so. |
| 453 | /// |
| 454 | /// This function will block the local thread until it is available to acquire |
| 455 | /// the mutex. Upon returning, the thread is the only thread with the lock |
| 456 | /// held. An RAII guard is returned to allow scoped unlock of the lock. When |
| 457 | /// the guard goes out of scope, the mutex will be unlocked. |
| 458 | /// |
| 459 | /// The exact behavior on locking a mutex in the thread which already holds |
| 460 | /// the lock is left unspecified. However, this function will not return on |
| 461 | /// the second call (it might panic or deadlock, for example). |
| 462 | /// |
| 463 | /// # Errors |
| 464 | /// |
| 465 | /// If another user of this mutex panicked while holding the mutex, then |
| 466 | /// this call will return an error once the mutex is acquired. The acquired |
| 467 | /// mutex guard will be contained in the returned error. |
| 468 | /// |
| 469 | /// # Panics |
| 470 | /// |
| 471 | /// This function might panic when called if the lock is already held by |
| 472 | /// the current thread. |
| 473 | /// |
| 474 | /// # Examples |
| 475 | /// |
| 476 | /// ``` |
| 477 | /// use std::sync::{Arc, Mutex}; |
| 478 | /// use std::thread; |
| 479 | /// |
| 480 | /// let mutex = Arc::new(Mutex::new(0)); |
| 481 | /// let c_mutex = Arc::clone(&mutex); |
| 482 | /// |
| 483 | /// thread::spawn(move || { |
| 484 | /// *c_mutex.lock().unwrap() = 10; |
| 485 | /// }).join().expect("thread::spawn failed" ); |
| 486 | /// assert_eq!(*mutex.lock().unwrap(), 10); |
| 487 | /// ``` |
| 488 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 489 | #[rustc_should_not_be_called_on_const_items] |
| 490 | pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> { |
| 491 | unsafe { |
| 492 | self.inner.lock(); |
| 493 | MutexGuard::new(self) |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | /// Attempts to acquire this lock. |
| 498 | /// |
| 499 | /// If the lock could not be acquired at this time, then [`Err`] is returned. |
| 500 | /// Otherwise, an RAII guard is returned. The lock will be unlocked when the |
| 501 | /// guard is dropped. |
| 502 | /// |
| 503 | /// This function does not block. |
| 504 | /// |
| 505 | /// # Errors |
| 506 | /// |
| 507 | /// If another user of this mutex panicked while holding the mutex, then |
| 508 | /// this call will return the [`Poisoned`] error if the mutex would |
| 509 | /// otherwise be acquired. An acquired lock guard will be contained |
| 510 | /// in the returned error. |
| 511 | /// |
| 512 | /// If the mutex could not be acquired because it is already locked, then |
| 513 | /// this call will return the [`WouldBlock`] error. |
| 514 | /// |
| 515 | /// [`Poisoned`]: TryLockError::Poisoned |
| 516 | /// [`WouldBlock`]: TryLockError::WouldBlock |
| 517 | /// |
| 518 | /// # Examples |
| 519 | /// |
| 520 | /// ``` |
| 521 | /// use std::sync::{Arc, Mutex}; |
| 522 | /// use std::thread; |
| 523 | /// |
| 524 | /// let mutex = Arc::new(Mutex::new(0)); |
| 525 | /// let c_mutex = Arc::clone(&mutex); |
| 526 | /// |
| 527 | /// thread::spawn(move || { |
| 528 | /// let mut lock = c_mutex.try_lock(); |
| 529 | /// if let Ok(ref mut mutex) = lock { |
| 530 | /// **mutex = 10; |
| 531 | /// } else { |
| 532 | /// println!("try_lock failed" ); |
| 533 | /// } |
| 534 | /// }).join().expect("thread::spawn failed" ); |
| 535 | /// assert_eq!(*mutex.lock().unwrap(), 10); |
| 536 | /// ``` |
| 537 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 538 | #[rustc_should_not_be_called_on_const_items] |
| 539 | pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> { |
| 540 | unsafe { |
| 541 | if self.inner.try_lock() { |
| 542 | Ok(MutexGuard::new(self)?) |
| 543 | } else { |
| 544 | Err(TryLockError::WouldBlock) |
| 545 | } |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | /// Determines whether the mutex is poisoned. |
| 550 | /// |
| 551 | /// If another thread is active, the mutex can still become poisoned at any |
| 552 | /// time. You should not trust a `false` value for program correctness |
| 553 | /// without additional synchronization. |
| 554 | /// |
| 555 | /// # Examples |
| 556 | /// |
| 557 | /// ``` |
| 558 | /// use std::sync::{Arc, Mutex}; |
| 559 | /// use std::thread; |
| 560 | /// |
| 561 | /// let mutex = Arc::new(Mutex::new(0)); |
| 562 | /// let c_mutex = Arc::clone(&mutex); |
| 563 | /// |
| 564 | /// let _ = thread::spawn(move || { |
| 565 | /// let _lock = c_mutex.lock().unwrap(); |
| 566 | /// panic!(); // the mutex gets poisoned |
| 567 | /// }).join(); |
| 568 | /// assert_eq!(mutex.is_poisoned(), true); |
| 569 | /// ``` |
| 570 | #[inline ] |
| 571 | #[stable (feature = "sync_poison" , since = "1.2.0" )] |
| 572 | pub fn is_poisoned(&self) -> bool { |
| 573 | self.poison.get() |
| 574 | } |
| 575 | |
| 576 | /// Clear the poisoned state from a mutex. |
| 577 | /// |
| 578 | /// If the mutex is poisoned, it will remain poisoned until this function is called. This |
| 579 | /// allows recovering from a poisoned state and marking that it has recovered. For example, if |
| 580 | /// the value is overwritten by a known-good value, then the mutex can be marked as |
| 581 | /// un-poisoned. Or possibly, the value could be inspected to determine if it is in a |
| 582 | /// consistent state, and if so the poison is removed. |
| 583 | /// |
| 584 | /// # Examples |
| 585 | /// |
| 586 | /// ``` |
| 587 | /// use std::sync::{Arc, Mutex}; |
| 588 | /// use std::thread; |
| 589 | /// |
| 590 | /// let mutex = Arc::new(Mutex::new(0)); |
| 591 | /// let c_mutex = Arc::clone(&mutex); |
| 592 | /// |
| 593 | /// let _ = thread::spawn(move || { |
| 594 | /// let _lock = c_mutex.lock().unwrap(); |
| 595 | /// panic!(); // the mutex gets poisoned |
| 596 | /// }).join(); |
| 597 | /// |
| 598 | /// assert_eq!(mutex.is_poisoned(), true); |
| 599 | /// let x = mutex.lock().unwrap_or_else(|mut e| { |
| 600 | /// **e.get_mut() = 1; |
| 601 | /// mutex.clear_poison(); |
| 602 | /// e.into_inner() |
| 603 | /// }); |
| 604 | /// assert_eq!(mutex.is_poisoned(), false); |
| 605 | /// assert_eq!(*x, 1); |
| 606 | /// ``` |
| 607 | #[inline ] |
| 608 | #[stable (feature = "mutex_unpoison" , since = "1.77.0" )] |
| 609 | #[rustc_should_not_be_called_on_const_items] |
| 610 | pub fn clear_poison(&self) { |
| 611 | self.poison.clear(); |
| 612 | } |
| 613 | |
| 614 | /// Consumes this mutex, returning the underlying data. |
| 615 | /// |
| 616 | /// # Errors |
| 617 | /// |
| 618 | /// If another user of this mutex panicked while holding the mutex, then |
| 619 | /// this call will return an error containing the underlying data |
| 620 | /// instead. |
| 621 | /// |
| 622 | /// # Examples |
| 623 | /// |
| 624 | /// ``` |
| 625 | /// use std::sync::Mutex; |
| 626 | /// |
| 627 | /// let mutex = Mutex::new(0); |
| 628 | /// assert_eq!(mutex.into_inner().unwrap(), 0); |
| 629 | /// ``` |
| 630 | #[stable (feature = "mutex_into_inner" , since = "1.6.0" )] |
| 631 | pub fn into_inner(self) -> LockResult<T> |
| 632 | where |
| 633 | T: Sized, |
| 634 | { |
| 635 | let data = self.data.into_inner(); |
| 636 | poison::map_result(self.poison.borrow(), |()| data) |
| 637 | } |
| 638 | |
| 639 | /// Returns a mutable reference to the underlying data. |
| 640 | /// |
| 641 | /// Since this call borrows the `Mutex` mutably, no actual locking needs to |
| 642 | /// take place -- the mutable borrow statically guarantees no new locks can be acquired |
| 643 | /// while this reference exists. Note that this method does not clear any previous abandoned locks |
| 644 | /// (e.g., via [`forget()`] on a [`MutexGuard`]). |
| 645 | /// |
| 646 | /// # Errors |
| 647 | /// |
| 648 | /// If another user of this mutex panicked while holding the mutex, then |
| 649 | /// this call will return an error containing a mutable reference to the |
| 650 | /// underlying data instead. |
| 651 | /// |
| 652 | /// # Examples |
| 653 | /// |
| 654 | /// ``` |
| 655 | /// use std::sync::Mutex; |
| 656 | /// |
| 657 | /// let mut mutex = Mutex::new(0); |
| 658 | /// *mutex.get_mut().unwrap() = 10; |
| 659 | /// assert_eq!(*mutex.lock().unwrap(), 10); |
| 660 | /// ``` |
| 661 | /// |
| 662 | /// [`forget()`]: mem::forget |
| 663 | #[stable (feature = "mutex_get_mut" , since = "1.6.0" )] |
| 664 | pub fn get_mut(&mut self) -> LockResult<&mut T> { |
| 665 | let data = self.data.get_mut(); |
| 666 | poison::map_result(self.poison.borrow(), |()| data) |
| 667 | } |
| 668 | |
| 669 | /// Returns a raw pointer to the underlying data. |
| 670 | /// |
| 671 | /// The returned pointer is always non-null and properly aligned, but it is |
| 672 | /// the user's responsibility to ensure that any reads and writes through it |
| 673 | /// are properly synchronized to avoid data races, and that it is not read |
| 674 | /// or written through after the mutex is dropped. |
| 675 | #[unstable (feature = "mutex_data_ptr" , issue = "140368" )] |
| 676 | pub const fn data_ptr(&self) -> *mut T { |
| 677 | self.data.get() |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | #[stable (feature = "mutex_from" , since = "1.24.0" )] |
| 682 | impl<T> From<T> for Mutex<T> { |
| 683 | /// Creates a new mutex in an unlocked state ready for use. |
| 684 | /// This is equivalent to [`Mutex::new`]. |
| 685 | fn from(t: T) -> Self { |
| 686 | Mutex::new(t) |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | #[stable (feature = "mutex_default" , since = "1.10.0" )] |
| 691 | impl<T: Default> Default for Mutex<T> { |
| 692 | /// Creates a `Mutex<T>`, with the `Default` value for T. |
| 693 | fn default() -> Mutex<T> { |
| 694 | Mutex::new(Default::default()) |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 699 | impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> { |
| 700 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 701 | let mut d = f.debug_struct("Mutex" ); |
| 702 | match self.try_lock() { |
| 703 | Ok(guard) => { |
| 704 | d.field("data" , &&*guard); |
| 705 | } |
| 706 | Err(TryLockError::Poisoned(err: PoisonError<{unknown}>)) => { |
| 707 | d.field("data" , &&**err.get_ref()); |
| 708 | } |
| 709 | Err(TryLockError::WouldBlock) => { |
| 710 | d.field("data" , &"<locked>" ); |
| 711 | } |
| 712 | } |
| 713 | d.field("poisoned" , &self.poison.get()); |
| 714 | d.finish_non_exhaustive() |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> { |
| 719 | unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> { |
| 720 | poison::map_result(result:lock.poison.guard(), |guard: Guard| MutexGuard { lock, poison: guard }) |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 725 | impl<T: ?Sized> Deref for MutexGuard<'_, T> { |
| 726 | type Target = T; |
| 727 | |
| 728 | fn deref(&self) -> &T { |
| 729 | unsafe { &*self.lock.data.get() } |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 734 | impl<T: ?Sized> DerefMut for MutexGuard<'_, T> { |
| 735 | fn deref_mut(&mut self) -> &mut T { |
| 736 | unsafe { &mut *self.lock.data.get() } |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 741 | impl<T: ?Sized> Drop for MutexGuard<'_, T> { |
| 742 | #[inline ] |
| 743 | fn drop(&mut self) { |
| 744 | unsafe { |
| 745 | self.lock.poison.done(&self.poison); |
| 746 | self.lock.inner.unlock(); |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | #[stable (feature = "std_debug" , since = "1.16.0" )] |
| 752 | impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> { |
| 753 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 754 | fmt::Debug::fmt(&**self, f) |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | #[stable (feature = "std_guard_impls" , since = "1.20.0" )] |
| 759 | impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> { |
| 760 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 761 | (**self).fmt(f) |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /// For use in [`nonpoison::condvar`](super::condvar). |
| 766 | pub(super) fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex { |
| 767 | &guard.lock.inner |
| 768 | } |
| 769 | |
| 770 | /// For use in [`nonpoison::condvar`](super::condvar). |
| 771 | pub(super) fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag { |
| 772 | &guard.lock.poison |
| 773 | } |
| 774 | |
| 775 | impl<'a, T: ?Sized> MutexGuard<'a, T> { |
| 776 | /// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g. |
| 777 | /// an enum variant. |
| 778 | /// |
| 779 | /// The `Mutex` is already locked, so this cannot fail. |
| 780 | /// |
| 781 | /// This is an associated function that needs to be used as |
| 782 | /// `MutexGuard::map(...)`. A method would interfere with methods of the |
| 783 | /// same name on the contents of the `MutexGuard` used through `Deref`. |
| 784 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 785 | pub fn map<U, F>(orig: Self, f: F) -> MappedMutexGuard<'a, U> |
| 786 | where |
| 787 | F: FnOnce(&mut T) -> &mut U, |
| 788 | U: ?Sized, |
| 789 | { |
| 790 | // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard |
| 791 | // was created, and have been upheld throughout `map` and/or `filter_map`. |
| 792 | // The signature of the closure guarantees that it will not "leak" the lifetime of the reference |
| 793 | // passed to it. If the closure panics, the guard will be dropped. |
| 794 | let data = NonNull::from(f(unsafe { &mut *orig.lock.data.get() })); |
| 795 | let orig = ManuallyDrop::new(orig); |
| 796 | MappedMutexGuard { |
| 797 | data, |
| 798 | inner: &orig.lock.inner, |
| 799 | poison_flag: &orig.lock.poison, |
| 800 | poison: orig.poison.clone(), |
| 801 | _variance: PhantomData, |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | /// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The |
| 806 | /// original guard is returned as an `Err(...)` if the closure returns |
| 807 | /// `None`. |
| 808 | /// |
| 809 | /// The `Mutex` is already locked, so this cannot fail. |
| 810 | /// |
| 811 | /// This is an associated function that needs to be used as |
| 812 | /// `MutexGuard::filter_map(...)`. A method would interfere with methods of the |
| 813 | /// same name on the contents of the `MutexGuard` used through `Deref`. |
| 814 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 815 | pub fn filter_map<U, F>(orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self> |
| 816 | where |
| 817 | F: FnOnce(&mut T) -> Option<&mut U>, |
| 818 | U: ?Sized, |
| 819 | { |
| 820 | // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard |
| 821 | // was created, and have been upheld throughout `map` and/or `filter_map`. |
| 822 | // The signature of the closure guarantees that it will not "leak" the lifetime of the reference |
| 823 | // passed to it. If the closure panics, the guard will be dropped. |
| 824 | match f(unsafe { &mut *orig.lock.data.get() }) { |
| 825 | Some(data) => { |
| 826 | let data = NonNull::from(data); |
| 827 | let orig = ManuallyDrop::new(orig); |
| 828 | Ok(MappedMutexGuard { |
| 829 | data, |
| 830 | inner: &orig.lock.inner, |
| 831 | poison_flag: &orig.lock.poison, |
| 832 | poison: orig.poison.clone(), |
| 833 | _variance: PhantomData, |
| 834 | }) |
| 835 | } |
| 836 | None => Err(orig), |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 842 | impl<T: ?Sized> Deref for MappedMutexGuard<'_, T> { |
| 843 | type Target = T; |
| 844 | |
| 845 | fn deref(&self) -> &T { |
| 846 | unsafe { self.data.as_ref() } |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 851 | impl<T: ?Sized> DerefMut for MappedMutexGuard<'_, T> { |
| 852 | fn deref_mut(&mut self) -> &mut T { |
| 853 | unsafe { self.data.as_mut() } |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 858 | impl<T: ?Sized> Drop for MappedMutexGuard<'_, T> { |
| 859 | #[inline ] |
| 860 | fn drop(&mut self) { |
| 861 | unsafe { |
| 862 | self.poison_flag.done(&self.poison); |
| 863 | self.inner.unlock(); |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 869 | impl<T: ?Sized + fmt::Debug> fmt::Debug for MappedMutexGuard<'_, T> { |
| 870 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 871 | fmt::Debug::fmt(&**self, f) |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 876 | impl<T: ?Sized + fmt::Display> fmt::Display for MappedMutexGuard<'_, T> { |
| 877 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 878 | (**self).fmt(f) |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | impl<'a, T: ?Sized> MappedMutexGuard<'a, T> { |
| 883 | /// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g. |
| 884 | /// an enum variant. |
| 885 | /// |
| 886 | /// The `Mutex` is already locked, so this cannot fail. |
| 887 | /// |
| 888 | /// This is an associated function that needs to be used as |
| 889 | /// `MappedMutexGuard::map(...)`. A method would interfere with methods of the |
| 890 | /// same name on the contents of the `MutexGuard` used through `Deref`. |
| 891 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 892 | pub fn map<U, F>(mut orig: Self, f: F) -> MappedMutexGuard<'a, U> |
| 893 | where |
| 894 | F: FnOnce(&mut T) -> &mut U, |
| 895 | U: ?Sized, |
| 896 | { |
| 897 | // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard |
| 898 | // was created, and have been upheld throughout `map` and/or `filter_map`. |
| 899 | // The signature of the closure guarantees that it will not "leak" the lifetime of the reference |
| 900 | // passed to it. If the closure panics, the guard will be dropped. |
| 901 | let data = NonNull::from(f(unsafe { orig.data.as_mut() })); |
| 902 | let orig = ManuallyDrop::new(orig); |
| 903 | MappedMutexGuard { |
| 904 | data, |
| 905 | inner: orig.inner, |
| 906 | poison_flag: orig.poison_flag, |
| 907 | poison: orig.poison.clone(), |
| 908 | _variance: PhantomData, |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | /// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The |
| 913 | /// original guard is returned as an `Err(...)` if the closure returns |
| 914 | /// `None`. |
| 915 | /// |
| 916 | /// The `Mutex` is already locked, so this cannot fail. |
| 917 | /// |
| 918 | /// This is an associated function that needs to be used as |
| 919 | /// `MappedMutexGuard::filter_map(...)`. A method would interfere with methods of the |
| 920 | /// same name on the contents of the `MutexGuard` used through `Deref`. |
| 921 | #[unstable (feature = "mapped_lock_guards" , issue = "117108" )] |
| 922 | pub fn filter_map<U, F>(mut orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self> |
| 923 | where |
| 924 | F: FnOnce(&mut T) -> Option<&mut U>, |
| 925 | U: ?Sized, |
| 926 | { |
| 927 | // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard |
| 928 | // was created, and have been upheld throughout `map` and/or `filter_map`. |
| 929 | // The signature of the closure guarantees that it will not "leak" the lifetime of the reference |
| 930 | // passed to it. If the closure panics, the guard will be dropped. |
| 931 | match f(unsafe { orig.data.as_mut() }) { |
| 932 | Some(data) => { |
| 933 | let data = NonNull::from(data); |
| 934 | let orig = ManuallyDrop::new(orig); |
| 935 | Ok(MappedMutexGuard { |
| 936 | data, |
| 937 | inner: orig.inner, |
| 938 | poison_flag: orig.poison_flag, |
| 939 | poison: orig.poison.clone(), |
| 940 | _variance: PhantomData, |
| 941 | }) |
| 942 | } |
| 943 | None => Err(orig), |
| 944 | } |
| 945 | } |
| 946 | } |
| 947 | |