1 | use core::fmt; |
2 | use core::future::Future; |
3 | use core::marker::PhantomData; |
4 | use core::mem; |
5 | use core::ptr::NonNull; |
6 | use core::sync::atomic::Ordering; |
7 | use core::task::Waker; |
8 | |
9 | use alloc::boxed::Box; |
10 | |
11 | use crate::header::Header; |
12 | use crate::raw::RawTask; |
13 | use crate::state::*; |
14 | use crate::Task; |
15 | |
16 | mod sealed { |
17 | use super::*; |
18 | pub trait Sealed<M> {} |
19 | |
20 | impl<M, F> Sealed<M> for F where F: Fn(Runnable<M>) {} |
21 | |
22 | impl<M, F> Sealed<M> for WithInfo<F> where F: Fn(Runnable<M>, ScheduleInfo) {} |
23 | } |
24 | |
25 | /// A builder that creates a new task. |
26 | #[derive (Debug)] |
27 | pub struct Builder<M> { |
28 | /// The metadata associated with the task. |
29 | pub(crate) metadata: M, |
30 | |
31 | /// Whether or not a panic that occurs in the task should be propagated. |
32 | #[cfg (feature = "std" )] |
33 | pub(crate) propagate_panic: bool, |
34 | } |
35 | |
36 | impl<M: Default> Default for Builder<M> { |
37 | fn default() -> Self { |
38 | Builder::new().metadata(M::default()) |
39 | } |
40 | } |
41 | |
42 | /// Extra scheduling information that can be passed to the scheduling function. |
43 | /// |
44 | /// The data source of this struct is directly from the actual implementation |
45 | /// of the crate itself, different from [`Runnable`]'s metadata, which is |
46 | /// managed by the caller. |
47 | /// |
48 | /// # Examples |
49 | /// |
50 | /// ``` |
51 | /// use async_task::{Runnable, ScheduleInfo, WithInfo}; |
52 | /// use std::sync::{Arc, Mutex}; |
53 | /// |
54 | /// // The future inside the task. |
55 | /// let future = async { |
56 | /// println!("Hello, world!" ); |
57 | /// }; |
58 | /// |
59 | /// // If the task gets woken up while running, it will be sent into this channel. |
60 | /// let (s, r) = flume::unbounded(); |
61 | /// // Otherwise, it will be placed into this slot. |
62 | /// let lifo_slot = Arc::new(Mutex::new(None)); |
63 | /// let schedule = move |runnable: Runnable, info: ScheduleInfo| { |
64 | /// if info.woken_while_running { |
65 | /// s.send(runnable).unwrap() |
66 | /// } else { |
67 | /// let last = lifo_slot.lock().unwrap().replace(runnable); |
68 | /// if let Some(last) = last { |
69 | /// s.send(last).unwrap() |
70 | /// } |
71 | /// } |
72 | /// }; |
73 | /// |
74 | /// // Create the actual scheduler to be spawned with some future. |
75 | /// let scheduler = WithInfo(schedule); |
76 | /// // Create a task with the future and the scheduler. |
77 | /// let (runnable, task) = async_task::spawn(future, scheduler); |
78 | /// ``` |
79 | #[derive (Debug, Copy, Clone)] |
80 | #[non_exhaustive ] |
81 | pub struct ScheduleInfo { |
82 | /// Indicates whether the task gets woken up while running. |
83 | /// |
84 | /// It is set to true usually because the task has yielded itself to the |
85 | /// scheduler. |
86 | pub woken_while_running: bool, |
87 | } |
88 | |
89 | impl ScheduleInfo { |
90 | pub(crate) fn new(woken_while_running: bool) -> Self { |
91 | ScheduleInfo { |
92 | woken_while_running, |
93 | } |
94 | } |
95 | } |
96 | |
97 | /// The trait for scheduling functions. |
98 | pub trait Schedule<M = ()>: sealed::Sealed<M> { |
99 | /// The actual scheduling procedure. |
100 | fn schedule(&self, runnable: Runnable<M>, info: ScheduleInfo); |
101 | } |
102 | |
103 | impl<M, F> Schedule<M> for F |
104 | where |
105 | F: Fn(Runnable<M>), |
106 | { |
107 | fn schedule(&self, runnable: Runnable<M>, _: ScheduleInfo) { |
108 | self(runnable) |
109 | } |
110 | } |
111 | |
112 | /// Pass a scheduling function with more scheduling information - a.k.a. |
113 | /// [`ScheduleInfo`]. |
114 | /// |
115 | /// Sometimes, it's useful to pass the runnable's state directly to the |
116 | /// scheduling function, such as whether it's woken up while running. The |
117 | /// scheduler can thus use the information to determine its scheduling |
118 | /// strategy. |
119 | /// |
120 | /// The data source of [`ScheduleInfo`] is directly from the actual |
121 | /// implementation of the crate itself, different from [`Runnable`]'s metadata, |
122 | /// which is managed by the caller. |
123 | /// |
124 | /// # Examples |
125 | /// |
126 | /// ``` |
127 | /// use async_task::{ScheduleInfo, WithInfo}; |
128 | /// use std::sync::{Arc, Mutex}; |
129 | /// |
130 | /// // The future inside the task. |
131 | /// let future = async { |
132 | /// println!("Hello, world!" ); |
133 | /// }; |
134 | /// |
135 | /// // If the task gets woken up while running, it will be sent into this channel. |
136 | /// let (s, r) = flume::unbounded(); |
137 | /// // Otherwise, it will be placed into this slot. |
138 | /// let lifo_slot = Arc::new(Mutex::new(None)); |
139 | /// let schedule = move |runnable, info: ScheduleInfo| { |
140 | /// if info.woken_while_running { |
141 | /// s.send(runnable).unwrap() |
142 | /// } else { |
143 | /// let last = lifo_slot.lock().unwrap().replace(runnable); |
144 | /// if let Some(last) = last { |
145 | /// s.send(last).unwrap() |
146 | /// } |
147 | /// } |
148 | /// }; |
149 | /// |
150 | /// // Create a task with the future and the schedule function. |
151 | /// let (runnable, task) = async_task::spawn(future, WithInfo(schedule)); |
152 | /// ``` |
153 | #[derive (Debug)] |
154 | pub struct WithInfo<F>(pub F); |
155 | |
156 | impl<F> From<F> for WithInfo<F> { |
157 | fn from(value: F) -> Self { |
158 | WithInfo(value) |
159 | } |
160 | } |
161 | |
162 | impl<M, F> Schedule<M> for WithInfo<F> |
163 | where |
164 | F: Fn(Runnable<M>, ScheduleInfo), |
165 | { |
166 | fn schedule(&self, runnable: Runnable<M>, info: ScheduleInfo) { |
167 | (self.0)(runnable, info) |
168 | } |
169 | } |
170 | |
171 | impl Builder<()> { |
172 | /// Creates a new task builder. |
173 | /// |
174 | /// By default, this task builder has no metadata. Use the [`metadata`] method to |
175 | /// set the metadata. |
176 | /// |
177 | /// # Examples |
178 | /// |
179 | /// ``` |
180 | /// use async_task::Builder; |
181 | /// |
182 | /// let (runnable, task) = Builder::new().spawn(|()| async {}, |_| {}); |
183 | /// ``` |
184 | pub fn new() -> Builder<()> { |
185 | Builder { |
186 | metadata: (), |
187 | #[cfg (feature = "std" )] |
188 | propagate_panic: false, |
189 | } |
190 | } |
191 | |
192 | /// Adds metadata to the task. |
193 | /// |
194 | /// In certain cases, it may be useful to associate some metadata with a task. For instance, |
195 | /// you may want to associate a name with a task, or a priority for a priority queue. This |
196 | /// method allows the user to attach arbitrary metadata to a task that is available through |
197 | /// the [`Runnable`] or the [`Task`]. |
198 | /// |
199 | /// # Examples |
200 | /// |
201 | /// This example creates an executor that associates a "priority" number with each task, and |
202 | /// then runs the tasks in order of priority. |
203 | /// |
204 | /// ``` |
205 | /// use async_task::{Builder, Runnable}; |
206 | /// use once_cell::sync::Lazy; |
207 | /// use std::cmp; |
208 | /// use std::collections::BinaryHeap; |
209 | /// use std::sync::Mutex; |
210 | /// |
211 | /// # smol::future::block_on(async { |
212 | /// /// A wrapper around a `Runnable<usize>` that implements `Ord` so that it can be used in a |
213 | /// /// priority queue. |
214 | /// struct TaskWrapper(Runnable<usize>); |
215 | /// |
216 | /// impl PartialEq for TaskWrapper { |
217 | /// fn eq(&self, other: &Self) -> bool { |
218 | /// self.0.metadata() == other.0.metadata() |
219 | /// } |
220 | /// } |
221 | /// |
222 | /// impl Eq for TaskWrapper {} |
223 | /// |
224 | /// impl PartialOrd for TaskWrapper { |
225 | /// fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
226 | /// Some(self.cmp(other)) |
227 | /// } |
228 | /// } |
229 | /// |
230 | /// impl Ord for TaskWrapper { |
231 | /// fn cmp(&self, other: &Self) -> cmp::Ordering { |
232 | /// self.0.metadata().cmp(other.0.metadata()) |
233 | /// } |
234 | /// } |
235 | /// |
236 | /// static EXECUTOR: Lazy<Mutex<BinaryHeap<TaskWrapper>>> = Lazy::new(|| { |
237 | /// Mutex::new(BinaryHeap::new()) |
238 | /// }); |
239 | /// |
240 | /// let schedule = |runnable| { |
241 | /// EXECUTOR.lock().unwrap().push(TaskWrapper(runnable)); |
242 | /// }; |
243 | /// |
244 | /// // Spawn a few tasks with different priorities. |
245 | /// let spawn_task = move |priority| { |
246 | /// let (runnable, task) = Builder::new().metadata(priority).spawn( |
247 | /// move |_| async move { priority }, |
248 | /// schedule, |
249 | /// ); |
250 | /// runnable.schedule(); |
251 | /// task |
252 | /// }; |
253 | /// |
254 | /// let t1 = spawn_task(1); |
255 | /// let t2 = spawn_task(2); |
256 | /// let t3 = spawn_task(3); |
257 | /// |
258 | /// // Run the tasks in order of priority. |
259 | /// let mut metadata_seen = vec![]; |
260 | /// while let Some(TaskWrapper(runnable)) = EXECUTOR.lock().unwrap().pop() { |
261 | /// metadata_seen.push(*runnable.metadata()); |
262 | /// runnable.run(); |
263 | /// } |
264 | /// |
265 | /// assert_eq!(metadata_seen, vec![3, 2, 1]); |
266 | /// assert_eq!(t1.await, 1); |
267 | /// assert_eq!(t2.await, 2); |
268 | /// assert_eq!(t3.await, 3); |
269 | /// # }); |
270 | /// ``` |
271 | pub fn metadata<M>(self, metadata: M) -> Builder<M> { |
272 | Builder { |
273 | metadata, |
274 | #[cfg (feature = "std" )] |
275 | propagate_panic: self.propagate_panic, |
276 | } |
277 | } |
278 | } |
279 | |
280 | impl<M> Builder<M> { |
281 | /// Propagates panics that occur in the task. |
282 | /// |
283 | /// When this is `true`, panics that occur in the task will be propagated to the caller of |
284 | /// the [`Task`]. When this is false, no special action is taken when a panic occurs in the |
285 | /// task, meaning that the caller of [`Runnable::run`] will observe a panic. |
286 | /// |
287 | /// This is only available when the `std` feature is enabled. By default, this is `false`. |
288 | /// |
289 | /// # Examples |
290 | /// |
291 | /// ``` |
292 | /// use async_task::Builder; |
293 | /// use futures_lite::future::poll_fn; |
294 | /// use std::future::Future; |
295 | /// use std::panic; |
296 | /// use std::pin::Pin; |
297 | /// use std::task::{Context, Poll}; |
298 | /// |
299 | /// fn did_panic<F: FnOnce()>(f: F) -> bool { |
300 | /// panic::catch_unwind(panic::AssertUnwindSafe(f)).is_err() |
301 | /// } |
302 | /// |
303 | /// # smol::future::block_on(async { |
304 | /// let (runnable1, mut task1) = Builder::new() |
305 | /// .propagate_panic(true) |
306 | /// .spawn(|()| async move { panic!() }, |_| {}); |
307 | /// |
308 | /// let (runnable2, mut task2) = Builder::new() |
309 | /// .propagate_panic(false) |
310 | /// .spawn(|()| async move { panic!() }, |_| {}); |
311 | /// |
312 | /// assert!(!did_panic(|| { runnable1.run(); })); |
313 | /// assert!(did_panic(|| { runnable2.run(); })); |
314 | /// |
315 | /// let waker = poll_fn(|cx| Poll::Ready(cx.waker().clone())).await; |
316 | /// let mut cx = Context::from_waker(&waker); |
317 | /// assert!(did_panic(|| { let _ = Pin::new(&mut task1).poll(&mut cx); })); |
318 | /// assert!(did_panic(|| { let _ = Pin::new(&mut task2).poll(&mut cx); })); |
319 | /// # }); |
320 | /// ``` |
321 | #[cfg (feature = "std" )] |
322 | pub fn propagate_panic(self, propagate_panic: bool) -> Builder<M> { |
323 | Builder { |
324 | metadata: self.metadata, |
325 | propagate_panic, |
326 | } |
327 | } |
328 | |
329 | /// Creates a new task. |
330 | /// |
331 | /// The returned [`Runnable`] is used to poll the `future`, and the [`Task`] is used to await its |
332 | /// output. |
333 | /// |
334 | /// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`] |
335 | /// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run |
336 | /// again. |
337 | /// |
338 | /// When the task is woken, its [`Runnable`] is passed to the `schedule` function. |
339 | /// The `schedule` function should not attempt to run the [`Runnable`] nor to drop it. Instead, it |
340 | /// should push it into a task queue so that it can be processed later. |
341 | /// |
342 | /// If you need to spawn a future that does not implement [`Send`] or isn't `'static`, consider |
343 | /// using [`spawn_local()`] or [`spawn_unchecked()`] instead. |
344 | /// |
345 | /// # Examples |
346 | /// |
347 | /// ``` |
348 | /// use async_task::Builder; |
349 | /// |
350 | /// // The future inside the task. |
351 | /// let future = async { |
352 | /// println!("Hello, world!" ); |
353 | /// }; |
354 | /// |
355 | /// // A function that schedules the task when it gets woken up. |
356 | /// let (s, r) = flume::unbounded(); |
357 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
358 | /// |
359 | /// // Create a task with the future and the schedule function. |
360 | /// let (runnable, task) = Builder::new().spawn(|()| future, schedule); |
361 | /// ``` |
362 | pub fn spawn<F, Fut, S>(self, future: F, schedule: S) -> (Runnable<M>, Task<Fut::Output, M>) |
363 | where |
364 | F: FnOnce(&M) -> Fut, |
365 | Fut: Future + Send + 'static, |
366 | Fut::Output: Send + 'static, |
367 | S: Schedule<M> + Send + Sync + 'static, |
368 | { |
369 | unsafe { self.spawn_unchecked(future, schedule) } |
370 | } |
371 | |
372 | /// Creates a new thread-local task. |
373 | /// |
374 | /// This function is same as [`spawn()`], except it does not require [`Send`] on `future`. If the |
375 | /// [`Runnable`] is used or dropped on another thread, a panic will occur. |
376 | /// |
377 | /// This function is only available when the `std` feature for this crate is enabled. |
378 | /// |
379 | /// # Examples |
380 | /// |
381 | /// ``` |
382 | /// use async_task::{Builder, Runnable}; |
383 | /// use flume::{Receiver, Sender}; |
384 | /// use std::rc::Rc; |
385 | /// |
386 | /// thread_local! { |
387 | /// // A queue that holds scheduled tasks. |
388 | /// static QUEUE: (Sender<Runnable>, Receiver<Runnable>) = flume::unbounded(); |
389 | /// } |
390 | /// |
391 | /// // Make a non-Send future. |
392 | /// let msg: Rc<str> = "Hello, world!" .into(); |
393 | /// let future = async move { |
394 | /// println!("{}" , msg); |
395 | /// }; |
396 | /// |
397 | /// // A function that schedules the task when it gets woken up. |
398 | /// let s = QUEUE.with(|(s, _)| s.clone()); |
399 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
400 | /// |
401 | /// // Create a task with the future and the schedule function. |
402 | /// let (runnable, task) = Builder::new().spawn_local(move |()| future, schedule); |
403 | /// ``` |
404 | #[cfg (feature = "std" )] |
405 | pub fn spawn_local<F, Fut, S>( |
406 | self, |
407 | future: F, |
408 | schedule: S, |
409 | ) -> (Runnable<M>, Task<Fut::Output, M>) |
410 | where |
411 | F: FnOnce(&M) -> Fut, |
412 | Fut: Future + 'static, |
413 | Fut::Output: 'static, |
414 | S: Schedule<M> + Send + Sync + 'static, |
415 | { |
416 | use std::mem::ManuallyDrop; |
417 | use std::pin::Pin; |
418 | use std::task::{Context, Poll}; |
419 | use std::thread::{self, ThreadId}; |
420 | |
421 | #[inline ] |
422 | fn thread_id() -> ThreadId { |
423 | std::thread_local! { |
424 | static ID: ThreadId = thread::current().id(); |
425 | } |
426 | ID.try_with(|id| *id) |
427 | .unwrap_or_else(|_| thread::current().id()) |
428 | } |
429 | |
430 | struct Checked<F> { |
431 | id: ThreadId, |
432 | inner: ManuallyDrop<F>, |
433 | } |
434 | |
435 | impl<F> Drop for Checked<F> { |
436 | fn drop(&mut self) { |
437 | assert!( |
438 | self.id == thread_id(), |
439 | "local task dropped by a thread that didn't spawn it" |
440 | ); |
441 | unsafe { |
442 | ManuallyDrop::drop(&mut self.inner); |
443 | } |
444 | } |
445 | } |
446 | |
447 | impl<F: Future> Future for Checked<F> { |
448 | type Output = F::Output; |
449 | |
450 | fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
451 | assert!( |
452 | self.id == thread_id(), |
453 | "local task polled by a thread that didn't spawn it" |
454 | ); |
455 | unsafe { self.map_unchecked_mut(|c| &mut *c.inner).poll(cx) } |
456 | } |
457 | } |
458 | |
459 | // Wrap the future into one that checks which thread it's on. |
460 | let future = move |meta| { |
461 | let future = future(meta); |
462 | |
463 | Checked { |
464 | id: thread_id(), |
465 | inner: ManuallyDrop::new(future), |
466 | } |
467 | }; |
468 | |
469 | unsafe { self.spawn_unchecked(future, schedule) } |
470 | } |
471 | |
472 | /// Creates a new task without [`Send`], [`Sync`], and `'static` bounds. |
473 | /// |
474 | /// This function is same as [`spawn()`], except it does not require [`Send`], [`Sync`], and |
475 | /// `'static` on `future` and `schedule`. |
476 | /// |
477 | /// # Safety |
478 | /// |
479 | /// - If `Fut` is not [`Send`], its [`Runnable`] must be used and dropped on the original |
480 | /// thread. |
481 | /// - If `Fut` is not `'static`, borrowed non-metadata variables must outlive its [`Runnable`]. |
482 | /// - If `schedule` is not [`Send`] and [`Sync`], all instances of the [`Runnable`]'s [`Waker`] |
483 | /// must be used and dropped on the original thread. |
484 | /// - If `schedule` is not `'static`, borrowed variables must outlive all instances of the |
485 | /// [`Runnable`]'s [`Waker`]. |
486 | /// |
487 | /// # Examples |
488 | /// |
489 | /// ``` |
490 | /// use async_task::Builder; |
491 | /// |
492 | /// // The future inside the task. |
493 | /// let future = async { |
494 | /// println!("Hello, world!" ); |
495 | /// }; |
496 | /// |
497 | /// // If the task gets woken up, it will be sent into this channel. |
498 | /// let (s, r) = flume::unbounded(); |
499 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
500 | /// |
501 | /// // Create a task with the future and the schedule function. |
502 | /// let (runnable, task) = unsafe { Builder::new().spawn_unchecked(move |()| future, schedule) }; |
503 | /// ``` |
504 | pub unsafe fn spawn_unchecked<'a, F, Fut, S>( |
505 | self, |
506 | future: F, |
507 | schedule: S, |
508 | ) -> (Runnable<M>, Task<Fut::Output, M>) |
509 | where |
510 | F: FnOnce(&'a M) -> Fut, |
511 | Fut: Future + 'a, |
512 | S: Schedule<M>, |
513 | M: 'a, |
514 | { |
515 | // Allocate large futures on the heap. |
516 | let ptr = if mem::size_of::<Fut>() >= 2048 { |
517 | let future = |meta| { |
518 | let future = future(meta); |
519 | Box::pin(future) |
520 | }; |
521 | |
522 | RawTask::<_, Fut::Output, S, M>::allocate(future, schedule, self) |
523 | } else { |
524 | RawTask::<Fut, Fut::Output, S, M>::allocate(future, schedule, self) |
525 | }; |
526 | |
527 | let runnable = Runnable::from_raw(ptr); |
528 | let task = Task { |
529 | ptr, |
530 | _marker: PhantomData, |
531 | }; |
532 | (runnable, task) |
533 | } |
534 | } |
535 | |
536 | /// Creates a new task. |
537 | /// |
538 | /// The returned [`Runnable`] is used to poll the `future`, and the [`Task`] is used to await its |
539 | /// output. |
540 | /// |
541 | /// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`] |
542 | /// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run |
543 | /// again. |
544 | /// |
545 | /// When the task is woken, its [`Runnable`] is passed to the `schedule` function. |
546 | /// The `schedule` function should not attempt to run the [`Runnable`] nor to drop it. Instead, it |
547 | /// should push it into a task queue so that it can be processed later. |
548 | /// |
549 | /// If you need to spawn a future that does not implement [`Send`] or isn't `'static`, consider |
550 | /// using [`spawn_local()`] or [`spawn_unchecked()`] instead. |
551 | /// |
552 | /// # Examples |
553 | /// |
554 | /// ``` |
555 | /// // The future inside the task. |
556 | /// let future = async { |
557 | /// println!("Hello, world!" ); |
558 | /// }; |
559 | /// |
560 | /// // A function that schedules the task when it gets woken up. |
561 | /// let (s, r) = flume::unbounded(); |
562 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
563 | /// |
564 | /// // Create a task with the future and the schedule function. |
565 | /// let (runnable, task) = async_task::spawn(future, schedule); |
566 | /// ``` |
567 | pub fn spawn<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>) |
568 | where |
569 | F: Future + Send + 'static, |
570 | F::Output: Send + 'static, |
571 | S: Schedule + Send + Sync + 'static, |
572 | { |
573 | unsafe { spawn_unchecked(future, schedule) } |
574 | } |
575 | |
576 | /// Creates a new thread-local task. |
577 | /// |
578 | /// This function is same as [`spawn()`], except it does not require [`Send`] on `future`. If the |
579 | /// [`Runnable`] is used or dropped on another thread, a panic will occur. |
580 | /// |
581 | /// This function is only available when the `std` feature for this crate is enabled. |
582 | /// |
583 | /// # Examples |
584 | /// |
585 | /// ``` |
586 | /// use async_task::Runnable; |
587 | /// use flume::{Receiver, Sender}; |
588 | /// use std::rc::Rc; |
589 | /// |
590 | /// thread_local! { |
591 | /// // A queue that holds scheduled tasks. |
592 | /// static QUEUE: (Sender<Runnable>, Receiver<Runnable>) = flume::unbounded(); |
593 | /// } |
594 | /// |
595 | /// // Make a non-Send future. |
596 | /// let msg: Rc<str> = "Hello, world!" .into(); |
597 | /// let future = async move { |
598 | /// println!("{}" , msg); |
599 | /// }; |
600 | /// |
601 | /// // A function that schedules the task when it gets woken up. |
602 | /// let s = QUEUE.with(|(s, _)| s.clone()); |
603 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
604 | /// |
605 | /// // Create a task with the future and the schedule function. |
606 | /// let (runnable, task) = async_task::spawn_local(future, schedule); |
607 | /// ``` |
608 | #[cfg (feature = "std" )] |
609 | pub fn spawn_local<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>) |
610 | where |
611 | F: Future + 'static, |
612 | F::Output: 'static, |
613 | S: Schedule + Send + Sync + 'static, |
614 | { |
615 | Builder::new().spawn_local(future:move |()| future, schedule) |
616 | } |
617 | |
618 | /// Creates a new task without [`Send`], [`Sync`], and `'static` bounds. |
619 | /// |
620 | /// This function is same as [`spawn()`], except it does not require [`Send`], [`Sync`], and |
621 | /// `'static` on `future` and `schedule`. |
622 | /// |
623 | /// # Safety |
624 | /// |
625 | /// - If `future` is not [`Send`], its [`Runnable`] must be used and dropped on the original |
626 | /// thread. |
627 | /// - If `future` is not `'static`, borrowed variables must outlive its [`Runnable`]. |
628 | /// - If `schedule` is not [`Send`] and [`Sync`], all instances of the [`Runnable`]'s [`Waker`] |
629 | /// must be used and dropped on the original thread. |
630 | /// - If `schedule` is not `'static`, borrowed variables must outlive all instances of the |
631 | /// [`Runnable`]'s [`Waker`]. |
632 | /// |
633 | /// # Examples |
634 | /// |
635 | /// ``` |
636 | /// // The future inside the task. |
637 | /// let future = async { |
638 | /// println!("Hello, world!" ); |
639 | /// }; |
640 | /// |
641 | /// // If the task gets woken up, it will be sent into this channel. |
642 | /// let (s, r) = flume::unbounded(); |
643 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
644 | /// |
645 | /// // Create a task with the future and the schedule function. |
646 | /// let (runnable, task) = unsafe { async_task::spawn_unchecked(future, schedule) }; |
647 | /// ``` |
648 | pub unsafe fn spawn_unchecked<F, S>(future: F, schedule: S) -> (Runnable, Task<F::Output>) |
649 | where |
650 | F: Future, |
651 | S: Schedule, |
652 | { |
653 | Builder::new().spawn_unchecked(future:move |()| future, schedule) |
654 | } |
655 | |
656 | /// A handle to a runnable task. |
657 | /// |
658 | /// Every spawned task has a single [`Runnable`] handle, which only exists when the task is |
659 | /// scheduled for running. |
660 | /// |
661 | /// Method [`run()`][`Runnable::run()`] polls the task's future once. Then, the [`Runnable`] |
662 | /// vanishes and only reappears when its [`Waker`] wakes the task, thus scheduling it to be run |
663 | /// again. |
664 | /// |
665 | /// Dropping a [`Runnable`] cancels the task, which means its future won't be polled again, and |
666 | /// awaiting the [`Task`] after that will result in a panic. |
667 | /// |
668 | /// # Examples |
669 | /// |
670 | /// ``` |
671 | /// use async_task::Runnable; |
672 | /// use once_cell::sync::Lazy; |
673 | /// use std::{panic, thread}; |
674 | /// |
675 | /// // A simple executor. |
676 | /// static QUEUE: Lazy<flume::Sender<Runnable>> = Lazy::new(|| { |
677 | /// let (sender, receiver) = flume::unbounded::<Runnable>(); |
678 | /// thread::spawn(|| { |
679 | /// for runnable in receiver { |
680 | /// let _ignore_panic = panic::catch_unwind(|| runnable.run()); |
681 | /// } |
682 | /// }); |
683 | /// sender |
684 | /// }); |
685 | /// |
686 | /// // Create a task with a simple future. |
687 | /// let schedule = |runnable| QUEUE.send(runnable).unwrap(); |
688 | /// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule); |
689 | /// |
690 | /// // Schedule the task and await its output. |
691 | /// runnable.schedule(); |
692 | /// assert_eq!(smol::future::block_on(task), 3); |
693 | /// ``` |
694 | pub struct Runnable<M = ()> { |
695 | /// A pointer to the heap-allocated task. |
696 | pub(crate) ptr: NonNull<()>, |
697 | |
698 | /// A marker capturing generic type `M`. |
699 | pub(crate) _marker: PhantomData<M>, |
700 | } |
701 | |
702 | unsafe impl<M: Send + Sync> Send for Runnable<M> {} |
703 | unsafe impl<M: Send + Sync> Sync for Runnable<M> {} |
704 | |
705 | #[cfg (feature = "std" )] |
706 | impl<M> std::panic::UnwindSafe for Runnable<M> {} |
707 | #[cfg (feature = "std" )] |
708 | impl<M> std::panic::RefUnwindSafe for Runnable<M> {} |
709 | |
710 | impl<M> Runnable<M> { |
711 | /// Get the metadata associated with this task. |
712 | /// |
713 | /// Tasks can be created with a metadata object associated with them; by default, this |
714 | /// is a `()` value. See the [`Builder::metadata()`] method for more information. |
715 | pub fn metadata(&self) -> &M { |
716 | &self.header().metadata |
717 | } |
718 | |
719 | /// Schedules the task. |
720 | /// |
721 | /// This is a convenience method that passes the [`Runnable`] to the schedule function. |
722 | /// |
723 | /// # Examples |
724 | /// |
725 | /// ``` |
726 | /// // A function that schedules the task when it gets woken up. |
727 | /// let (s, r) = flume::unbounded(); |
728 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
729 | /// |
730 | /// // Create a task with a simple future and the schedule function. |
731 | /// let (runnable, task) = async_task::spawn(async {}, schedule); |
732 | /// |
733 | /// // Schedule the task. |
734 | /// assert_eq!(r.len(), 0); |
735 | /// runnable.schedule(); |
736 | /// assert_eq!(r.len(), 1); |
737 | /// ``` |
738 | pub fn schedule(self) { |
739 | let ptr = self.ptr.as_ptr(); |
740 | let header = ptr as *const Header<M>; |
741 | mem::forget(self); |
742 | |
743 | unsafe { |
744 | ((*header).vtable.schedule)(ptr, ScheduleInfo::new(false)); |
745 | } |
746 | } |
747 | |
748 | /// Runs the task by polling its future. |
749 | /// |
750 | /// Returns `true` if the task was woken while running, in which case the [`Runnable`] gets |
751 | /// rescheduled at the end of this method invocation. Otherwise, returns `false` and the |
752 | /// [`Runnable`] vanishes until the task is woken. |
753 | /// The return value is just a hint: `true` usually indicates that the task has yielded, i.e. |
754 | /// it woke itself and then gave the control back to the executor. |
755 | /// |
756 | /// If the [`Task`] handle was dropped or if [`cancel()`][`Task::cancel()`] was called, then |
757 | /// this method simply destroys the task. |
758 | /// |
759 | /// If the polled future panics, this method propagates the panic, and awaiting the [`Task`] |
760 | /// after that will also result in a panic. |
761 | /// |
762 | /// # Examples |
763 | /// |
764 | /// ``` |
765 | /// // A function that schedules the task when it gets woken up. |
766 | /// let (s, r) = flume::unbounded(); |
767 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
768 | /// |
769 | /// // Create a task with a simple future and the schedule function. |
770 | /// let (runnable, task) = async_task::spawn(async { 1 + 2 }, schedule); |
771 | /// |
772 | /// // Run the task and check its output. |
773 | /// runnable.run(); |
774 | /// assert_eq!(smol::future::block_on(task), 3); |
775 | /// ``` |
776 | pub fn run(self) -> bool { |
777 | let ptr = self.ptr.as_ptr(); |
778 | let header = ptr as *const Header<M>; |
779 | mem::forget(self); |
780 | |
781 | unsafe { ((*header).vtable.run)(ptr) } |
782 | } |
783 | |
784 | /// Returns a waker associated with this task. |
785 | /// |
786 | /// # Examples |
787 | /// |
788 | /// ``` |
789 | /// use smol::future; |
790 | /// |
791 | /// // A function that schedules the task when it gets woken up. |
792 | /// let (s, r) = flume::unbounded(); |
793 | /// let schedule = move |runnable| s.send(runnable).unwrap(); |
794 | /// |
795 | /// // Create a task with a simple future and the schedule function. |
796 | /// let (runnable, task) = async_task::spawn(future::pending::<()>(), schedule); |
797 | /// |
798 | /// // Take a waker and run the task. |
799 | /// let waker = runnable.waker(); |
800 | /// runnable.run(); |
801 | /// |
802 | /// // Reschedule the task by waking it. |
803 | /// assert_eq!(r.len(), 0); |
804 | /// waker.wake(); |
805 | /// assert_eq!(r.len(), 1); |
806 | /// ``` |
807 | pub fn waker(&self) -> Waker { |
808 | let ptr = self.ptr.as_ptr(); |
809 | let header = ptr as *const Header<M>; |
810 | |
811 | unsafe { |
812 | let raw_waker = ((*header).vtable.clone_waker)(ptr); |
813 | Waker::from_raw(raw_waker) |
814 | } |
815 | } |
816 | |
817 | fn header(&self) -> &Header<M> { |
818 | unsafe { &*(self.ptr.as_ptr() as *const Header<M>) } |
819 | } |
820 | |
821 | /// Converts this task into a raw pointer. |
822 | /// |
823 | /// To avoid a memory leak the pointer must be converted back to a Runnable using [`Runnable<M>::from_raw`][from_raw]. |
824 | /// |
825 | /// `into_raw` does not change the state of the [`Task`], but there is no guarantee that it will be in the same state after calling [`Runnable<M>::from_raw`][from_raw], |
826 | /// as the corresponding [`Task`] might have been dropped or cancelled. |
827 | /// |
828 | /// # Examples |
829 | /// |
830 | /// ```rust |
831 | /// use async_task::{Runnable, spawn}; |
832 | |
833 | /// let (runnable, task) = spawn(async {}, |_| {}); |
834 | /// let runnable_pointer = runnable.into_raw(); |
835 | /// |
836 | /// unsafe { |
837 | /// // Convert back to an `Runnable` to prevent leak. |
838 | /// let runnable = Runnable::<()>::from_raw(runnable_pointer); |
839 | /// runnable.run(); |
840 | /// // Further calls to `Runnable::from_raw(runnable_pointer)` would be memory-unsafe. |
841 | /// } |
842 | /// // The memory was freed when `x` went out of scope above, so `runnable_pointer` is now dangling! |
843 | /// ``` |
844 | /// [from_raw]: #method.from_raw |
845 | pub fn into_raw(self) -> NonNull<()> { |
846 | let ptr = self.ptr; |
847 | mem::forget(self); |
848 | ptr |
849 | } |
850 | |
851 | /// Converts a raw pointer into a Runnable. |
852 | /// |
853 | /// # Safety |
854 | /// |
855 | /// This method should only be used with raw pointers returned from [`Runnable<M>::into_raw`][into_raw]. |
856 | /// It is not safe to use the provided pointer once it is passed to `from_raw`. |
857 | /// Crucially, it is unsafe to call `from_raw` multiple times with the same pointer - even if the resulting [`Runnable`] is not used - |
858 | /// as internally `async-task` uses reference counting. |
859 | /// |
860 | /// It is however safe to call [`Runnable<M>::into_raw`][into_raw] on a [`Runnable`] created with `from_raw` or |
861 | /// after the [`Task`] associated with a given Runnable has been dropped or cancelled. |
862 | /// |
863 | /// The state of the [`Runnable`] created with `from_raw` is not specified. |
864 | /// |
865 | /// # Examples |
866 | /// |
867 | /// ```rust |
868 | /// use async_task::{Runnable, spawn}; |
869 | |
870 | /// let (runnable, task) = spawn(async {}, |_| {}); |
871 | /// let runnable_pointer = runnable.into_raw(); |
872 | /// |
873 | /// drop(task); |
874 | /// unsafe { |
875 | /// // Convert back to an `Runnable` to prevent leak. |
876 | /// let runnable = Runnable::<()>::from_raw(runnable_pointer); |
877 | /// let did_poll = runnable.run(); |
878 | /// assert!(!did_poll); |
879 | /// // Further calls to `Runnable::from_raw(runnable_pointer)` would be memory-unsafe. |
880 | /// } |
881 | /// // The memory was freed when `x` went out of scope above, so `runnable_pointer` is now dangling! |
882 | /// ``` |
883 | |
884 | /// [into_raw]: #method.into_raw |
885 | pub unsafe fn from_raw(ptr: NonNull<()>) -> Self { |
886 | Self { |
887 | ptr, |
888 | _marker: Default::default(), |
889 | } |
890 | } |
891 | } |
892 | |
893 | impl<M> Drop for Runnable<M> { |
894 | fn drop(&mut self) { |
895 | let ptr = self.ptr.as_ptr(); |
896 | let header = self.header(); |
897 | |
898 | unsafe { |
899 | let mut state = header.state.load(Ordering::Acquire); |
900 | |
901 | loop { |
902 | // If the task has been completed or closed, it can't be canceled. |
903 | if state & (COMPLETED | CLOSED) != 0 { |
904 | break; |
905 | } |
906 | |
907 | // Mark the task as closed. |
908 | match header.state.compare_exchange_weak( |
909 | state, |
910 | state | CLOSED, |
911 | Ordering::AcqRel, |
912 | Ordering::Acquire, |
913 | ) { |
914 | Ok(_) => break, |
915 | Err(s) => state = s, |
916 | } |
917 | } |
918 | |
919 | // Drop the future. |
920 | (header.vtable.drop_future)(ptr); |
921 | |
922 | // Mark the task as unscheduled. |
923 | let state = header.state.fetch_and(!SCHEDULED, Ordering::AcqRel); |
924 | |
925 | // Notify the awaiter that the future has been dropped. |
926 | if state & AWAITER != 0 { |
927 | (*header).notify(None); |
928 | } |
929 | |
930 | // Drop the task reference. |
931 | (header.vtable.drop_ref)(ptr); |
932 | } |
933 | } |
934 | } |
935 | |
936 | impl<M: fmt::Debug> fmt::Debug for Runnable<M> { |
937 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
938 | let ptr: *mut () = self.ptr.as_ptr(); |
939 | let header: *const Header = ptr as *const Header<M>; |
940 | |
941 | f&mut DebugStruct<'_, '_>.debug_struct("Runnable" ) |
942 | .field(name:"header" , value:unsafe { &(*header) }) |
943 | .finish() |
944 | } |
945 | } |
946 | |