1//! The `Box<T>` type for heap allocation.
2//!
3//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4//! heap allocation in Rust. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope. Boxes also ensure that they
6//! never allocate more than `isize::MAX` bytes.
7//!
8//! # Examples
9//!
10//! Move a value from the stack to the heap by creating a [`Box`]:
11//!
12//! ```
13//! let val: u8 = 5;
14//! let boxed: Box<u8> = Box::new(val);
15//! ```
16//!
17//! Move a value from a [`Box`] back to the stack by [dereferencing]:
18//!
19//! ```
20//! let boxed: Box<u8> = Box::new(5);
21//! let val: u8 = *boxed;
22//! ```
23//!
24//! Creating a recursive data structure:
25//!
26//! ```
27//! ##[allow(dead_code)]
28//! #[derive(Debug)]
29//! enum List<T> {
30//! Cons(T, Box<List<T>>),
31//! Nil,
32//! }
33//!
34//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
35//! println!("{list:?}");
36//! ```
37//!
38//! This will print `Cons(1, Cons(2, Nil))`.
39//!
40//! Recursive structures must be boxed, because if the definition of `Cons`
41//! looked like this:
42//!
43//! ```compile_fail,E0072
44//! # enum List<T> {
45//! Cons(T, List<T>),
46//! # }
47//! ```
48//!
49//! It wouldn't work. This is because the size of a `List` depends on how many
50//! elements are in the list, and so we don't know how much memory to allocate
51//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
52//! big `Cons` needs to be.
53//!
54//! # Memory layout
55//!
56//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
57//! its allocation. It is valid to convert both ways between a [`Box`] and a
58//! raw pointer allocated with the [`Global`] allocator, given that the
59//! [`Layout`] used with the allocator is correct for the type. More precisely,
60//! a `value: *mut T` that has been allocated with the [`Global`] allocator
61//! with `Layout::for_value(&*value)` may be converted into a box using
62//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
63//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
64//! [`Global`] allocator with [`Layout::for_value(&*value)`].
65//!
66//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
67//! and writes and sufficiently aligned. In particular, casting any aligned
68//! non-zero integer literal to a raw pointer produces a valid pointer, but a
69//! pointer pointing into previously allocated memory that since got freed is
70//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
71//! be used is to use [`ptr::NonNull::dangling`].
72//!
73//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
74//! as a single pointer and is also ABI-compatible with C pointers
75//! (i.e. the C type `T*`). This means that if you have extern "C"
76//! Rust functions that will be called from C, you can define those
77//! Rust functions using `Box<T>` types, and use `T*` as corresponding
78//! type on the C side. As an example, consider this C header which
79//! declares functions that create and destroy some kind of `Foo`
80//! value:
81//!
82//! ```c
83//! /* C header */
84//!
85//! /* Returns ownership to the caller */
86//! struct Foo* foo_new(void);
87//!
88//! /* Takes ownership from the caller; no-op when invoked with null */
89//! void foo_delete(struct Foo*);
90//! ```
91//!
92//! These two functions might be implemented in Rust as follows. Here, the
93//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
94//! the ownership constraints. Note also that the nullable argument to
95//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
96//! cannot be null.
97//!
98//! ```
99//! #[repr(C)]
100//! pub struct Foo;
101//!
102//! #[no_mangle]
103//! pub extern "C" fn foo_new() -> Box<Foo> {
104//! Box::new(Foo)
105//! }
106//!
107//! #[no_mangle]
108//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
109//! ```
110//!
111//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
112//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
113//! and expect things to work. `Box<T>` values will always be fully aligned,
114//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
115//! free the value with the global allocator. In general, the best practice
116//! is to only use `Box<T>` for pointers that originated from the global
117//! allocator.
118//!
119//! **Important.** At least at present, you should avoid using
120//! `Box<T>` types for functions that are defined in C but invoked
121//! from Rust. In those cases, you should directly mirror the C types
122//! as closely as possible. Using types like `Box<T>` where the C
123//! definition is just using `T*` can lead to undefined behavior, as
124//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
125//!
126//! # Considerations for unsafe code
127//!
128//! **Warning: This section is not normative and is subject to change, possibly
129//! being relaxed in the future! It is a simplified summary of the rules
130//! currently implemented in the compiler.**
131//!
132//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
133//! asserts uniqueness over its content. Using raw pointers derived from a box
134//! after that box has been mutated through, moved or borrowed as `&mut T`
135//! is not allowed. For more guidance on working with box from unsafe code, see
136//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
137//!
138//!
139//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
140//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
141//! [dereferencing]: core::ops::Deref
142//! [`Box::<T>::from_raw(value)`]: Box::from_raw
143//! [`Global`]: crate::alloc::Global
144//! [`Layout`]: crate::alloc::Layout
145//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
146//! [valid]: ptr#safety
147
148#![stable(feature = "rust1", since = "1.0.0")]
149
150use core::any::Any;
151use core::async_iter::AsyncIterator;
152use core::borrow;
153use core::cmp::Ordering;
154use core::error::Error;
155use core::fmt;
156use core::future::Future;
157use core::hash::{Hash, Hasher};
158use core::iter::FusedIterator;
159use core::marker::Tuple;
160use core::marker::Unsize;
161use core::mem::{self, SizedTypeProperties};
162use core::ops::{
163 CoerceUnsized, Coroutine, CoroutineState, Deref, DerefMut, DispatchFromDyn, Receiver,
164};
165use core::pin::Pin;
166use core::ptr::{self, NonNull, Unique};
167use core::task::{Context, Poll};
168
169#[cfg(not(no_global_oom_handling))]
170use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
171use crate::alloc::{AllocError, Allocator, Global, Layout};
172#[cfg(not(no_global_oom_handling))]
173use crate::borrow::Cow;
174use crate::raw_vec::RawVec;
175#[cfg(not(no_global_oom_handling))]
176use crate::str::from_boxed_utf8_unchecked;
177#[cfg(not(no_global_oom_handling))]
178use crate::string::String;
179#[cfg(not(no_global_oom_handling))]
180use crate::vec::Vec;
181
182#[unstable(feature = "thin_box", issue = "92791")]
183pub use thin::ThinBox;
184
185mod thin;
186
187/// A pointer type that uniquely owns a heap allocation of type `T`.
188///
189/// See the [module-level documentation](../../std/boxed/index.html) for more.
190#[lang = "owned_box"]
191#[fundamental]
192#[stable(feature = "rust1", since = "1.0.0")]
193// The declaration of the `Box` struct must be kept in sync with the
194// compiler or ICEs will happen.
195pub struct Box<
196 T: ?Sized,
197 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
198>(Unique<T>, A);
199
200impl<T> Box<T> {
201 /// Allocates memory on the heap and then places `x` into it.
202 ///
203 /// This doesn't actually allocate if `T` is zero-sized.
204 ///
205 /// # Examples
206 ///
207 /// ```
208 /// let five = Box::new(5);
209 /// ```
210 #[cfg(not(no_global_oom_handling))]
211 #[inline(always)]
212 #[stable(feature = "rust1", since = "1.0.0")]
213 #[must_use]
214 #[rustc_diagnostic_item = "box_new"]
215 pub fn new(x: T) -> Self {
216 #[rustc_box]
217 Box::new(x)
218 }
219
220 /// Constructs a new box with uninitialized contents.
221 ///
222 /// # Examples
223 ///
224 /// ```
225 /// #![feature(new_uninit)]
226 ///
227 /// let mut five = Box::<u32>::new_uninit();
228 ///
229 /// let five = unsafe {
230 /// // Deferred initialization:
231 /// five.as_mut_ptr().write(5);
232 ///
233 /// five.assume_init()
234 /// };
235 ///
236 /// assert_eq!(*five, 5)
237 /// ```
238 #[cfg(not(no_global_oom_handling))]
239 #[unstable(feature = "new_uninit", issue = "63291")]
240 #[must_use]
241 #[inline]
242 pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
243 Self::new_uninit_in(Global)
244 }
245
246 /// Constructs a new `Box` with uninitialized contents, with the memory
247 /// being filled with `0` bytes.
248 ///
249 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
250 /// of this method.
251 ///
252 /// # Examples
253 ///
254 /// ```
255 /// #![feature(new_uninit)]
256 ///
257 /// let zero = Box::<u32>::new_zeroed();
258 /// let zero = unsafe { zero.assume_init() };
259 ///
260 /// assert_eq!(*zero, 0)
261 /// ```
262 ///
263 /// [zeroed]: mem::MaybeUninit::zeroed
264 #[cfg(not(no_global_oom_handling))]
265 #[inline]
266 #[unstable(feature = "new_uninit", issue = "63291")]
267 #[must_use]
268 pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
269 Self::new_zeroed_in(Global)
270 }
271
272 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
273 /// `x` will be pinned in memory and unable to be moved.
274 ///
275 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
276 /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
277 /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
278 /// construct a (pinned) `Box` in a different way than with [`Box::new`].
279 #[cfg(not(no_global_oom_handling))]
280 #[stable(feature = "pin", since = "1.33.0")]
281 #[must_use]
282 #[inline(always)]
283 pub fn pin(x: T) -> Pin<Box<T>> {
284 Box::new(x).into()
285 }
286
287 /// Allocates memory on the heap then places `x` into it,
288 /// returning an error if the allocation fails
289 ///
290 /// This doesn't actually allocate if `T` is zero-sized.
291 ///
292 /// # Examples
293 ///
294 /// ```
295 /// #![feature(allocator_api)]
296 ///
297 /// let five = Box::try_new(5)?;
298 /// # Ok::<(), std::alloc::AllocError>(())
299 /// ```
300 #[unstable(feature = "allocator_api", issue = "32838")]
301 #[inline]
302 pub fn try_new(x: T) -> Result<Self, AllocError> {
303 Self::try_new_in(x, Global)
304 }
305
306 /// Constructs a new box with uninitialized contents on the heap,
307 /// returning an error if the allocation fails
308 ///
309 /// # Examples
310 ///
311 /// ```
312 /// #![feature(allocator_api, new_uninit)]
313 ///
314 /// let mut five = Box::<u32>::try_new_uninit()?;
315 ///
316 /// let five = unsafe {
317 /// // Deferred initialization:
318 /// five.as_mut_ptr().write(5);
319 ///
320 /// five.assume_init()
321 /// };
322 ///
323 /// assert_eq!(*five, 5);
324 /// # Ok::<(), std::alloc::AllocError>(())
325 /// ```
326 #[unstable(feature = "allocator_api", issue = "32838")]
327 // #[unstable(feature = "new_uninit", issue = "63291")]
328 #[inline]
329 pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
330 Box::try_new_uninit_in(Global)
331 }
332
333 /// Constructs a new `Box` with uninitialized contents, with the memory
334 /// being filled with `0` bytes on the heap
335 ///
336 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
337 /// of this method.
338 ///
339 /// # Examples
340 ///
341 /// ```
342 /// #![feature(allocator_api, new_uninit)]
343 ///
344 /// let zero = Box::<u32>::try_new_zeroed()?;
345 /// let zero = unsafe { zero.assume_init() };
346 ///
347 /// assert_eq!(*zero, 0);
348 /// # Ok::<(), std::alloc::AllocError>(())
349 /// ```
350 ///
351 /// [zeroed]: mem::MaybeUninit::zeroed
352 #[unstable(feature = "allocator_api", issue = "32838")]
353 // #[unstable(feature = "new_uninit", issue = "63291")]
354 #[inline]
355 pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
356 Box::try_new_zeroed_in(Global)
357 }
358}
359
360impl<T, A: Allocator> Box<T, A> {
361 /// Allocates memory in the given allocator then places `x` into it.
362 ///
363 /// This doesn't actually allocate if `T` is zero-sized.
364 ///
365 /// # Examples
366 ///
367 /// ```
368 /// #![feature(allocator_api)]
369 ///
370 /// use std::alloc::System;
371 ///
372 /// let five = Box::new_in(5, System);
373 /// ```
374 #[cfg(not(no_global_oom_handling))]
375 #[unstable(feature = "allocator_api", issue = "32838")]
376 #[must_use]
377 #[inline]
378 pub fn new_in(x: T, alloc: A) -> Self
379 where
380 A: Allocator,
381 {
382 let mut boxed = Self::new_uninit_in(alloc);
383 unsafe {
384 boxed.as_mut_ptr().write(x);
385 boxed.assume_init()
386 }
387 }
388
389 /// Allocates memory in the given allocator then places `x` into it,
390 /// returning an error if the allocation fails
391 ///
392 /// This doesn't actually allocate if `T` is zero-sized.
393 ///
394 /// # Examples
395 ///
396 /// ```
397 /// #![feature(allocator_api)]
398 ///
399 /// use std::alloc::System;
400 ///
401 /// let five = Box::try_new_in(5, System)?;
402 /// # Ok::<(), std::alloc::AllocError>(())
403 /// ```
404 #[unstable(feature = "allocator_api", issue = "32838")]
405 #[inline]
406 pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
407 where
408 A: Allocator,
409 {
410 let mut boxed = Self::try_new_uninit_in(alloc)?;
411 unsafe {
412 boxed.as_mut_ptr().write(x);
413 Ok(boxed.assume_init())
414 }
415 }
416
417 /// Constructs a new box with uninitialized contents in the provided allocator.
418 ///
419 /// # Examples
420 ///
421 /// ```
422 /// #![feature(allocator_api, new_uninit)]
423 ///
424 /// use std::alloc::System;
425 ///
426 /// let mut five = Box::<u32, _>::new_uninit_in(System);
427 ///
428 /// let five = unsafe {
429 /// // Deferred initialization:
430 /// five.as_mut_ptr().write(5);
431 ///
432 /// five.assume_init()
433 /// };
434 ///
435 /// assert_eq!(*five, 5)
436 /// ```
437 #[unstable(feature = "allocator_api", issue = "32838")]
438 #[cfg(not(no_global_oom_handling))]
439 #[must_use]
440 // #[unstable(feature = "new_uninit", issue = "63291")]
441 pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
442 where
443 A: Allocator,
444 {
445 let layout = Layout::new::<mem::MaybeUninit<T>>();
446 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
447 // That would make code size bigger.
448 match Box::try_new_uninit_in(alloc) {
449 Ok(m) => m,
450 Err(_) => handle_alloc_error(layout),
451 }
452 }
453
454 /// Constructs a new box with uninitialized contents in the provided allocator,
455 /// returning an error if the allocation fails
456 ///
457 /// # Examples
458 ///
459 /// ```
460 /// #![feature(allocator_api, new_uninit)]
461 ///
462 /// use std::alloc::System;
463 ///
464 /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
465 ///
466 /// let five = unsafe {
467 /// // Deferred initialization:
468 /// five.as_mut_ptr().write(5);
469 ///
470 /// five.assume_init()
471 /// };
472 ///
473 /// assert_eq!(*five, 5);
474 /// # Ok::<(), std::alloc::AllocError>(())
475 /// ```
476 #[unstable(feature = "allocator_api", issue = "32838")]
477 // #[unstable(feature = "new_uninit", issue = "63291")]
478 pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
479 where
480 A: Allocator,
481 {
482 let ptr = if T::IS_ZST {
483 NonNull::dangling()
484 } else {
485 let layout = Layout::new::<mem::MaybeUninit<T>>();
486 alloc.allocate(layout)?.cast()
487 };
488 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
489 }
490
491 /// Constructs a new `Box` with uninitialized contents, with the memory
492 /// being filled with `0` bytes in the provided allocator.
493 ///
494 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
495 /// of this method.
496 ///
497 /// # Examples
498 ///
499 /// ```
500 /// #![feature(allocator_api, new_uninit)]
501 ///
502 /// use std::alloc::System;
503 ///
504 /// let zero = Box::<u32, _>::new_zeroed_in(System);
505 /// let zero = unsafe { zero.assume_init() };
506 ///
507 /// assert_eq!(*zero, 0)
508 /// ```
509 ///
510 /// [zeroed]: mem::MaybeUninit::zeroed
511 #[unstable(feature = "allocator_api", issue = "32838")]
512 #[cfg(not(no_global_oom_handling))]
513 // #[unstable(feature = "new_uninit", issue = "63291")]
514 #[must_use]
515 pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
516 where
517 A: Allocator,
518 {
519 let layout = Layout::new::<mem::MaybeUninit<T>>();
520 // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
521 // That would make code size bigger.
522 match Box::try_new_zeroed_in(alloc) {
523 Ok(m) => m,
524 Err(_) => handle_alloc_error(layout),
525 }
526 }
527
528 /// Constructs a new `Box` with uninitialized contents, with the memory
529 /// being filled with `0` bytes in the provided allocator,
530 /// returning an error if the allocation fails,
531 ///
532 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
533 /// of this method.
534 ///
535 /// # Examples
536 ///
537 /// ```
538 /// #![feature(allocator_api, new_uninit)]
539 ///
540 /// use std::alloc::System;
541 ///
542 /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
543 /// let zero = unsafe { zero.assume_init() };
544 ///
545 /// assert_eq!(*zero, 0);
546 /// # Ok::<(), std::alloc::AllocError>(())
547 /// ```
548 ///
549 /// [zeroed]: mem::MaybeUninit::zeroed
550 #[unstable(feature = "allocator_api", issue = "32838")]
551 // #[unstable(feature = "new_uninit", issue = "63291")]
552 pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
553 where
554 A: Allocator,
555 {
556 let ptr = if T::IS_ZST {
557 NonNull::dangling()
558 } else {
559 let layout = Layout::new::<mem::MaybeUninit<T>>();
560 alloc.allocate_zeroed(layout)?.cast()
561 };
562 unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
563 }
564
565 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
566 /// `x` will be pinned in memory and unable to be moved.
567 ///
568 /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
569 /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
570 /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
571 /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
572 #[cfg(not(no_global_oom_handling))]
573 #[unstable(feature = "allocator_api", issue = "32838")]
574 #[must_use]
575 #[inline(always)]
576 pub fn pin_in(x: T, alloc: A) -> Pin<Self>
577 where
578 A: 'static + Allocator,
579 {
580 Self::into_pin(Self::new_in(x, alloc))
581 }
582
583 /// Converts a `Box<T>` into a `Box<[T]>`
584 ///
585 /// This conversion does not allocate on the heap and happens in place.
586 #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
587 pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
588 let (raw, alloc) = Box::into_raw_with_allocator(boxed);
589 unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
590 }
591
592 /// Consumes the `Box`, returning the wrapped value.
593 ///
594 /// # Examples
595 ///
596 /// ```
597 /// #![feature(box_into_inner)]
598 ///
599 /// let c = Box::new(5);
600 ///
601 /// assert_eq!(Box::into_inner(c), 5);
602 /// ```
603 #[unstable(feature = "box_into_inner", issue = "80437")]
604 #[inline]
605 pub fn into_inner(boxed: Self) -> T {
606 *boxed
607 }
608}
609
610impl<T> Box<[T]> {
611 /// Constructs a new boxed slice with uninitialized contents.
612 ///
613 /// # Examples
614 ///
615 /// ```
616 /// #![feature(new_uninit)]
617 ///
618 /// let mut values = Box::<[u32]>::new_uninit_slice(3);
619 ///
620 /// let values = unsafe {
621 /// // Deferred initialization:
622 /// values[0].as_mut_ptr().write(1);
623 /// values[1].as_mut_ptr().write(2);
624 /// values[2].as_mut_ptr().write(3);
625 ///
626 /// values.assume_init()
627 /// };
628 ///
629 /// assert_eq!(*values, [1, 2, 3])
630 /// ```
631 #[cfg(not(no_global_oom_handling))]
632 #[unstable(feature = "new_uninit", issue = "63291")]
633 #[must_use]
634 pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
635 unsafe { RawVec::with_capacity(len).into_box(len) }
636 }
637
638 /// Constructs a new boxed slice with uninitialized contents, with the memory
639 /// being filled with `0` bytes.
640 ///
641 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
642 /// of this method.
643 ///
644 /// # Examples
645 ///
646 /// ```
647 /// #![feature(new_uninit)]
648 ///
649 /// let values = Box::<[u32]>::new_zeroed_slice(3);
650 /// let values = unsafe { values.assume_init() };
651 ///
652 /// assert_eq!(*values, [0, 0, 0])
653 /// ```
654 ///
655 /// [zeroed]: mem::MaybeUninit::zeroed
656 #[cfg(not(no_global_oom_handling))]
657 #[unstable(feature = "new_uninit", issue = "63291")]
658 #[must_use]
659 pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
660 unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
661 }
662
663 /// Constructs a new boxed slice with uninitialized contents. Returns an error if
664 /// the allocation fails
665 ///
666 /// # Examples
667 ///
668 /// ```
669 /// #![feature(allocator_api, new_uninit)]
670 ///
671 /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
672 /// let values = unsafe {
673 /// // Deferred initialization:
674 /// values[0].as_mut_ptr().write(1);
675 /// values[1].as_mut_ptr().write(2);
676 /// values[2].as_mut_ptr().write(3);
677 /// values.assume_init()
678 /// };
679 ///
680 /// assert_eq!(*values, [1, 2, 3]);
681 /// # Ok::<(), std::alloc::AllocError>(())
682 /// ```
683 #[unstable(feature = "allocator_api", issue = "32838")]
684 #[inline]
685 pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
686 let ptr = if T::IS_ZST || len == 0 {
687 NonNull::dangling()
688 } else {
689 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
690 Ok(l) => l,
691 Err(_) => return Err(AllocError),
692 };
693 Global.allocate(layout)?.cast()
694 };
695 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
696 }
697
698 /// Constructs a new boxed slice with uninitialized contents, with the memory
699 /// being filled with `0` bytes. Returns an error if the allocation fails
700 ///
701 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
702 /// of this method.
703 ///
704 /// # Examples
705 ///
706 /// ```
707 /// #![feature(allocator_api, new_uninit)]
708 ///
709 /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
710 /// let values = unsafe { values.assume_init() };
711 ///
712 /// assert_eq!(*values, [0, 0, 0]);
713 /// # Ok::<(), std::alloc::AllocError>(())
714 /// ```
715 ///
716 /// [zeroed]: mem::MaybeUninit::zeroed
717 #[unstable(feature = "allocator_api", issue = "32838")]
718 #[inline]
719 pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
720 let ptr = if T::IS_ZST || len == 0 {
721 NonNull::dangling()
722 } else {
723 let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
724 Ok(l) => l,
725 Err(_) => return Err(AllocError),
726 };
727 Global.allocate_zeroed(layout)?.cast()
728 };
729 unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, Global).into_box(len)) }
730 }
731}
732
733impl<T, A: Allocator> Box<[T], A> {
734 /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
735 ///
736 /// # Examples
737 ///
738 /// ```
739 /// #![feature(allocator_api, new_uninit)]
740 ///
741 /// use std::alloc::System;
742 ///
743 /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
744 ///
745 /// let values = unsafe {
746 /// // Deferred initialization:
747 /// values[0].as_mut_ptr().write(1);
748 /// values[1].as_mut_ptr().write(2);
749 /// values[2].as_mut_ptr().write(3);
750 ///
751 /// values.assume_init()
752 /// };
753 ///
754 /// assert_eq!(*values, [1, 2, 3])
755 /// ```
756 #[cfg(not(no_global_oom_handling))]
757 #[unstable(feature = "allocator_api", issue = "32838")]
758 // #[unstable(feature = "new_uninit", issue = "63291")]
759 #[must_use]
760 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
761 unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
762 }
763
764 /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
765 /// with the memory being filled with `0` bytes.
766 ///
767 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
768 /// of this method.
769 ///
770 /// # Examples
771 ///
772 /// ```
773 /// #![feature(allocator_api, new_uninit)]
774 ///
775 /// use std::alloc::System;
776 ///
777 /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
778 /// let values = unsafe { values.assume_init() };
779 ///
780 /// assert_eq!(*values, [0, 0, 0])
781 /// ```
782 ///
783 /// [zeroed]: mem::MaybeUninit::zeroed
784 #[cfg(not(no_global_oom_handling))]
785 #[unstable(feature = "allocator_api", issue = "32838")]
786 // #[unstable(feature = "new_uninit", issue = "63291")]
787 #[must_use]
788 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
789 unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
790 }
791}
792
793impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
794 /// Converts to `Box<T, A>`.
795 ///
796 /// # Safety
797 ///
798 /// As with [`MaybeUninit::assume_init`],
799 /// it is up to the caller to guarantee that the value
800 /// really is in an initialized state.
801 /// Calling this when the content is not yet fully initialized
802 /// causes immediate undefined behavior.
803 ///
804 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
805 ///
806 /// # Examples
807 ///
808 /// ```
809 /// #![feature(new_uninit)]
810 ///
811 /// let mut five = Box::<u32>::new_uninit();
812 ///
813 /// let five: Box<u32> = unsafe {
814 /// // Deferred initialization:
815 /// five.as_mut_ptr().write(5);
816 ///
817 /// five.assume_init()
818 /// };
819 ///
820 /// assert_eq!(*five, 5)
821 /// ```
822 #[unstable(feature = "new_uninit", issue = "63291")]
823 #[inline]
824 pub unsafe fn assume_init(self) -> Box<T, A> {
825 let (raw, alloc) = Box::into_raw_with_allocator(self);
826 unsafe { Box::from_raw_in(raw as *mut T, alloc) }
827 }
828
829 /// Writes the value and converts to `Box<T, A>`.
830 ///
831 /// This method converts the box similarly to [`Box::assume_init`] but
832 /// writes `value` into it before conversion thus guaranteeing safety.
833 /// In some scenarios use of this method may improve performance because
834 /// the compiler may be able to optimize copying from stack.
835 ///
836 /// # Examples
837 ///
838 /// ```
839 /// #![feature(new_uninit)]
840 ///
841 /// let big_box = Box::<[usize; 1024]>::new_uninit();
842 ///
843 /// let mut array = [0; 1024];
844 /// for (i, place) in array.iter_mut().enumerate() {
845 /// *place = i;
846 /// }
847 ///
848 /// // The optimizer may be able to elide this copy, so previous code writes
849 /// // to heap directly.
850 /// let big_box = Box::write(big_box, array);
851 ///
852 /// for (i, x) in big_box.iter().enumerate() {
853 /// assert_eq!(*x, i);
854 /// }
855 /// ```
856 #[unstable(feature = "new_uninit", issue = "63291")]
857 #[inline]
858 pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
859 unsafe {
860 (*boxed).write(value);
861 boxed.assume_init()
862 }
863 }
864}
865
866impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
867 /// Converts to `Box<[T], A>`.
868 ///
869 /// # Safety
870 ///
871 /// As with [`MaybeUninit::assume_init`],
872 /// it is up to the caller to guarantee that the values
873 /// really are in an initialized state.
874 /// Calling this when the content is not yet fully initialized
875 /// causes immediate undefined behavior.
876 ///
877 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
878 ///
879 /// # Examples
880 ///
881 /// ```
882 /// #![feature(new_uninit)]
883 ///
884 /// let mut values = Box::<[u32]>::new_uninit_slice(3);
885 ///
886 /// let values = unsafe {
887 /// // Deferred initialization:
888 /// values[0].as_mut_ptr().write(1);
889 /// values[1].as_mut_ptr().write(2);
890 /// values[2].as_mut_ptr().write(3);
891 ///
892 /// values.assume_init()
893 /// };
894 ///
895 /// assert_eq!(*values, [1, 2, 3])
896 /// ```
897 #[unstable(feature = "new_uninit", issue = "63291")]
898 #[inline]
899 pub unsafe fn assume_init(self) -> Box<[T], A> {
900 let (raw, alloc) = Box::into_raw_with_allocator(self);
901 unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
902 }
903}
904
905impl<T: ?Sized> Box<T> {
906 /// Constructs a box from a raw pointer.
907 ///
908 /// After calling this function, the raw pointer is owned by the
909 /// resulting `Box`. Specifically, the `Box` destructor will call
910 /// the destructor of `T` and free the allocated memory. For this
911 /// to be safe, the memory must have been allocated in accordance
912 /// with the [memory layout] used by `Box` .
913 ///
914 /// # Safety
915 ///
916 /// This function is unsafe because improper use may lead to
917 /// memory problems. For example, a double-free may occur if the
918 /// function is called twice on the same raw pointer.
919 ///
920 /// The safety conditions are described in the [memory layout] section.
921 ///
922 /// # Examples
923 ///
924 /// Recreate a `Box` which was previously converted to a raw pointer
925 /// using [`Box::into_raw`]:
926 /// ```
927 /// let x = Box::new(5);
928 /// let ptr = Box::into_raw(x);
929 /// let x = unsafe { Box::from_raw(ptr) };
930 /// ```
931 /// Manually create a `Box` from scratch by using the global allocator:
932 /// ```
933 /// use std::alloc::{alloc, Layout};
934 ///
935 /// unsafe {
936 /// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
937 /// // In general .write is required to avoid attempting to destruct
938 /// // the (uninitialized) previous contents of `ptr`, though for this
939 /// // simple example `*ptr = 5` would have worked as well.
940 /// ptr.write(5);
941 /// let x = Box::from_raw(ptr);
942 /// }
943 /// ```
944 ///
945 /// [memory layout]: self#memory-layout
946 /// [`Layout`]: crate::Layout
947 #[stable(feature = "box_raw", since = "1.4.0")]
948 #[inline]
949 #[must_use = "call `drop(Box::from_raw(ptr))` if you intend to drop the `Box`"]
950 pub unsafe fn from_raw(raw: *mut T) -> Self {
951 unsafe { Self::from_raw_in(raw, Global) }
952 }
953}
954
955impl<T: ?Sized, A: Allocator> Box<T, A> {
956 /// Constructs a box from a raw pointer in the given allocator.
957 ///
958 /// After calling this function, the raw pointer is owned by the
959 /// resulting `Box`. Specifically, the `Box` destructor will call
960 /// the destructor of `T` and free the allocated memory. For this
961 /// to be safe, the memory must have been allocated in accordance
962 /// with the [memory layout] used by `Box` .
963 ///
964 /// # Safety
965 ///
966 /// This function is unsafe because improper use may lead to
967 /// memory problems. For example, a double-free may occur if the
968 /// function is called twice on the same raw pointer.
969 ///
970 ///
971 /// # Examples
972 ///
973 /// Recreate a `Box` which was previously converted to a raw pointer
974 /// using [`Box::into_raw_with_allocator`]:
975 /// ```
976 /// #![feature(allocator_api)]
977 ///
978 /// use std::alloc::System;
979 ///
980 /// let x = Box::new_in(5, System);
981 /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
982 /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
983 /// ```
984 /// Manually create a `Box` from scratch by using the system allocator:
985 /// ```
986 /// #![feature(allocator_api, slice_ptr_get)]
987 ///
988 /// use std::alloc::{Allocator, Layout, System};
989 ///
990 /// unsafe {
991 /// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
992 /// // In general .write is required to avoid attempting to destruct
993 /// // the (uninitialized) previous contents of `ptr`, though for this
994 /// // simple example `*ptr = 5` would have worked as well.
995 /// ptr.write(5);
996 /// let x = Box::from_raw_in(ptr, System);
997 /// }
998 /// # Ok::<(), std::alloc::AllocError>(())
999 /// ```
1000 ///
1001 /// [memory layout]: self#memory-layout
1002 /// [`Layout`]: crate::Layout
1003 #[unstable(feature = "allocator_api", issue = "32838")]
1004 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1005 #[inline]
1006 pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
1007 Box(unsafe { Unique::new_unchecked(raw) }, alloc)
1008 }
1009
1010 /// Consumes the `Box`, returning a wrapped raw pointer.
1011 ///
1012 /// The pointer will be properly aligned and non-null.
1013 ///
1014 /// After calling this function, the caller is responsible for the
1015 /// memory previously managed by the `Box`. In particular, the
1016 /// caller should properly destroy `T` and release the memory, taking
1017 /// into account the [memory layout] used by `Box`. The easiest way to
1018 /// do this is to convert the raw pointer back into a `Box` with the
1019 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1020 /// the cleanup.
1021 ///
1022 /// Note: this is an associated function, which means that you have
1023 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1024 /// is so that there is no conflict with a method on the inner type.
1025 ///
1026 /// # Examples
1027 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1028 /// for automatic cleanup:
1029 /// ```
1030 /// let x = Box::new(String::from("Hello"));
1031 /// let ptr = Box::into_raw(x);
1032 /// let x = unsafe { Box::from_raw(ptr) };
1033 /// ```
1034 /// Manual cleanup by explicitly running the destructor and deallocating
1035 /// the memory:
1036 /// ```
1037 /// use std::alloc::{dealloc, Layout};
1038 /// use std::ptr;
1039 ///
1040 /// let x = Box::new(String::from("Hello"));
1041 /// let ptr = Box::into_raw(x);
1042 /// unsafe {
1043 /// ptr::drop_in_place(ptr);
1044 /// dealloc(ptr as *mut u8, Layout::new::<String>());
1045 /// }
1046 /// ```
1047 /// Note: This is equivalent to the following:
1048 /// ```
1049 /// let x = Box::new(String::from("Hello"));
1050 /// let ptr = Box::into_raw(x);
1051 /// unsafe {
1052 /// drop(Box::from_raw(ptr));
1053 /// }
1054 /// ```
1055 ///
1056 /// [memory layout]: self#memory-layout
1057 #[stable(feature = "box_raw", since = "1.4.0")]
1058 #[inline]
1059 pub fn into_raw(b: Self) -> *mut T {
1060 Self::into_raw_with_allocator(b).0
1061 }
1062
1063 /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1064 ///
1065 /// The pointer will be properly aligned and non-null.
1066 ///
1067 /// After calling this function, the caller is responsible for the
1068 /// memory previously managed by the `Box`. In particular, the
1069 /// caller should properly destroy `T` and release the memory, taking
1070 /// into account the [memory layout] used by `Box`. The easiest way to
1071 /// do this is to convert the raw pointer back into a `Box` with the
1072 /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1073 /// the cleanup.
1074 ///
1075 /// Note: this is an associated function, which means that you have
1076 /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1077 /// is so that there is no conflict with a method on the inner type.
1078 ///
1079 /// # Examples
1080 /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1081 /// for automatic cleanup:
1082 /// ```
1083 /// #![feature(allocator_api)]
1084 ///
1085 /// use std::alloc::System;
1086 ///
1087 /// let x = Box::new_in(String::from("Hello"), System);
1088 /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1089 /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1090 /// ```
1091 /// Manual cleanup by explicitly running the destructor and deallocating
1092 /// the memory:
1093 /// ```
1094 /// #![feature(allocator_api)]
1095 ///
1096 /// use std::alloc::{Allocator, Layout, System};
1097 /// use std::ptr::{self, NonNull};
1098 ///
1099 /// let x = Box::new_in(String::from("Hello"), System);
1100 /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1101 /// unsafe {
1102 /// ptr::drop_in_place(ptr);
1103 /// let non_null = NonNull::new_unchecked(ptr);
1104 /// alloc.deallocate(non_null.cast(), Layout::new::<String>());
1105 /// }
1106 /// ```
1107 ///
1108 /// [memory layout]: self#memory-layout
1109 #[unstable(feature = "allocator_api", issue = "32838")]
1110 #[inline]
1111 pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1112 let (leaked, alloc) = Box::into_unique(b);
1113 (leaked.as_ptr(), alloc)
1114 }
1115
1116 #[unstable(
1117 feature = "ptr_internals",
1118 issue = "none",
1119 reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
1120 )]
1121 #[inline]
1122 #[doc(hidden)]
1123 pub fn into_unique(b: Self) -> (Unique<T>, A) {
1124 // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1125 // raw pointer for the type system. Turning it directly into a raw pointer would not be
1126 // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1127 // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1128 // behaves correctly.
1129 let alloc = unsafe { ptr::read(&b.1) };
1130 (Unique::from(Box::leak(b)), alloc)
1131 }
1132
1133 /// Returns a reference to the underlying allocator.
1134 ///
1135 /// Note: this is an associated function, which means that you have
1136 /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1137 /// is so that there is no conflict with a method on the inner type.
1138 #[unstable(feature = "allocator_api", issue = "32838")]
1139 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1140 #[inline]
1141 pub const fn allocator(b: &Self) -> &A {
1142 &b.1
1143 }
1144
1145 /// Consumes and leaks the `Box`, returning a mutable reference,
1146 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1147 /// `'a`. If the type has only static references, or none at all, then this
1148 /// may be chosen to be `'static`.
1149 ///
1150 /// This function is mainly useful for data that lives for the remainder of
1151 /// the program's life. Dropping the returned reference will cause a memory
1152 /// leak. If this is not acceptable, the reference should first be wrapped
1153 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1154 /// then be dropped which will properly destroy `T` and release the
1155 /// allocated memory.
1156 ///
1157 /// Note: this is an associated function, which means that you have
1158 /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1159 /// is so that there is no conflict with a method on the inner type.
1160 ///
1161 /// # Examples
1162 ///
1163 /// Simple usage:
1164 ///
1165 /// ```
1166 /// let x = Box::new(41);
1167 /// let static_ref: &'static mut usize = Box::leak(x);
1168 /// *static_ref += 1;
1169 /// assert_eq!(*static_ref, 42);
1170 /// ```
1171 ///
1172 /// Unsized data:
1173 ///
1174 /// ```
1175 /// let x = vec![1, 2, 3].into_boxed_slice();
1176 /// let static_ref = Box::leak(x);
1177 /// static_ref[0] = 4;
1178 /// assert_eq!(*static_ref, [4, 2, 3]);
1179 /// ```
1180 #[stable(feature = "box_leak", since = "1.26.0")]
1181 #[inline]
1182 pub fn leak<'a>(b: Self) -> &'a mut T
1183 where
1184 A: 'a,
1185 {
1186 unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1187 }
1188
1189 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1190 /// `*boxed` will be pinned in memory and unable to be moved.
1191 ///
1192 /// This conversion does not allocate on the heap and happens in place.
1193 ///
1194 /// This is also available via [`From`].
1195 ///
1196 /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1197 /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1198 /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1199 /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1200 ///
1201 /// # Notes
1202 ///
1203 /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1204 /// as it'll introduce an ambiguity when calling `Pin::from`.
1205 /// A demonstration of such a poor impl is shown below.
1206 ///
1207 /// ```compile_fail
1208 /// # use std::pin::Pin;
1209 /// struct Foo; // A type defined in this crate.
1210 /// impl From<Box<()>> for Pin<Foo> {
1211 /// fn from(_: Box<()>) -> Pin<Foo> {
1212 /// Pin::new(Foo)
1213 /// }
1214 /// }
1215 ///
1216 /// let foo = Box::new(());
1217 /// let bar = Pin::from(foo);
1218 /// ```
1219 #[stable(feature = "box_into_pin", since = "1.63.0")]
1220 #[rustc_const_unstable(feature = "const_box", issue = "92521")]
1221 pub const fn into_pin(boxed: Self) -> Pin<Self>
1222 where
1223 A: 'static,
1224 {
1225 // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1226 // when `T: !Unpin`, so it's safe to pin it directly without any
1227 // additional requirements.
1228 unsafe { Pin::new_unchecked(boxed) }
1229 }
1230}
1231
1232#[stable(feature = "rust1", since = "1.0.0")]
1233unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
1234 #[inline]
1235 fn drop(&mut self) {
1236 // the T in the Box is dropped by the compiler before the destructor is run
1237
1238 let ptr: Unique = self.0;
1239
1240 unsafe {
1241 let layout: Layout = Layout::for_value_raw(ptr.as_ptr());
1242 if layout.size() != 0 {
1243 self.1.deallocate(ptr:From::from(ptr.cast()), layout);
1244 }
1245 }
1246 }
1247}
1248
1249#[cfg(not(no_global_oom_handling))]
1250#[stable(feature = "rust1", since = "1.0.0")]
1251impl<T: Default> Default for Box<T> {
1252 /// Creates a `Box<T>`, with the `Default` value for T.
1253 #[inline]
1254 fn default() -> Self {
1255 Box::new(T::default())
1256 }
1257}
1258
1259#[cfg(not(no_global_oom_handling))]
1260#[stable(feature = "rust1", since = "1.0.0")]
1261impl<T> Default for Box<[T]> {
1262 #[inline]
1263 fn default() -> Self {
1264 let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
1265 Box(ptr, Global)
1266 }
1267}
1268
1269#[cfg(not(no_global_oom_handling))]
1270#[stable(feature = "default_box_extra", since = "1.17.0")]
1271impl Default for Box<str> {
1272 #[inline]
1273 fn default() -> Self {
1274 // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1275 let ptr: Unique<str> = unsafe {
1276 let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
1277 Unique::new_unchecked(bytes.as_ptr() as *mut str)
1278 };
1279 Box(ptr, Global)
1280 }
1281}
1282
1283#[cfg(not(no_global_oom_handling))]
1284#[stable(feature = "rust1", since = "1.0.0")]
1285impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1286 /// Returns a new box with a `clone()` of this box's contents.
1287 ///
1288 /// # Examples
1289 ///
1290 /// ```
1291 /// let x = Box::new(5);
1292 /// let y = x.clone();
1293 ///
1294 /// // The value is the same
1295 /// assert_eq!(x, y);
1296 ///
1297 /// // But they are unique objects
1298 /// assert_ne!(&*x as *const i32, &*y as *const i32);
1299 /// ```
1300 #[inline]
1301 fn clone(&self) -> Self {
1302 // Pre-allocate memory to allow writing the cloned value directly.
1303 let mut boxed = Self::new_uninit_in(self.1.clone());
1304 unsafe {
1305 (**self).write_clone_into_raw(boxed.as_mut_ptr());
1306 boxed.assume_init()
1307 }
1308 }
1309
1310 /// Copies `source`'s contents into `self` without creating a new allocation.
1311 ///
1312 /// # Examples
1313 ///
1314 /// ```
1315 /// let x = Box::new(5);
1316 /// let mut y = Box::new(10);
1317 /// let yp: *const i32 = &*y;
1318 ///
1319 /// y.clone_from(&x);
1320 ///
1321 /// // The value is the same
1322 /// assert_eq!(x, y);
1323 ///
1324 /// // And no allocation occurred
1325 /// assert_eq!(yp, &*y);
1326 /// ```
1327 #[inline]
1328 fn clone_from(&mut self, source: &Self) {
1329 (**self).clone_from(&(**source));
1330 }
1331}
1332
1333#[cfg(not(no_global_oom_handling))]
1334#[stable(feature = "box_slice_clone", since = "1.3.0")]
1335impl Clone for Box<str> {
1336 fn clone(&self) -> Self {
1337 // this makes a copy of the data
1338 let buf: Box<[u8]> = self.as_bytes().into();
1339 unsafe { from_boxed_utf8_unchecked(buf) }
1340 }
1341}
1342
1343#[stable(feature = "rust1", since = "1.0.0")]
1344impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1345 #[inline]
1346 fn eq(&self, other: &Self) -> bool {
1347 PartialEq::eq(&**self, &**other)
1348 }
1349 #[inline]
1350 fn ne(&self, other: &Self) -> bool {
1351 PartialEq::ne(&**self, &**other)
1352 }
1353}
1354#[stable(feature = "rust1", since = "1.0.0")]
1355impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1356 #[inline]
1357 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1358 PartialOrd::partial_cmp(&**self, &**other)
1359 }
1360 #[inline]
1361 fn lt(&self, other: &Self) -> bool {
1362 PartialOrd::lt(&**self, &**other)
1363 }
1364 #[inline]
1365 fn le(&self, other: &Self) -> bool {
1366 PartialOrd::le(&**self, &**other)
1367 }
1368 #[inline]
1369 fn ge(&self, other: &Self) -> bool {
1370 PartialOrd::ge(&**self, &**other)
1371 }
1372 #[inline]
1373 fn gt(&self, other: &Self) -> bool {
1374 PartialOrd::gt(&**self, &**other)
1375 }
1376}
1377#[stable(feature = "rust1", since = "1.0.0")]
1378impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1379 #[inline]
1380 fn cmp(&self, other: &Self) -> Ordering {
1381 Ord::cmp(&**self, &**other)
1382 }
1383}
1384#[stable(feature = "rust1", since = "1.0.0")]
1385impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1386
1387#[stable(feature = "rust1", since = "1.0.0")]
1388impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1389 fn hash<H: Hasher>(&self, state: &mut H) {
1390 (**self).hash(state);
1391 }
1392}
1393
1394#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
1395impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1396 fn finish(&self) -> u64 {
1397 (**self).finish()
1398 }
1399 fn write(&mut self, bytes: &[u8]) {
1400 (**self).write(bytes)
1401 }
1402 fn write_u8(&mut self, i: u8) {
1403 (**self).write_u8(i)
1404 }
1405 fn write_u16(&mut self, i: u16) {
1406 (**self).write_u16(i)
1407 }
1408 fn write_u32(&mut self, i: u32) {
1409 (**self).write_u32(i)
1410 }
1411 fn write_u64(&mut self, i: u64) {
1412 (**self).write_u64(i)
1413 }
1414 fn write_u128(&mut self, i: u128) {
1415 (**self).write_u128(i)
1416 }
1417 fn write_usize(&mut self, i: usize) {
1418 (**self).write_usize(i)
1419 }
1420 fn write_i8(&mut self, i: i8) {
1421 (**self).write_i8(i)
1422 }
1423 fn write_i16(&mut self, i: i16) {
1424 (**self).write_i16(i)
1425 }
1426 fn write_i32(&mut self, i: i32) {
1427 (**self).write_i32(i)
1428 }
1429 fn write_i64(&mut self, i: i64) {
1430 (**self).write_i64(i)
1431 }
1432 fn write_i128(&mut self, i: i128) {
1433 (**self).write_i128(i)
1434 }
1435 fn write_isize(&mut self, i: isize) {
1436 (**self).write_isize(i)
1437 }
1438 fn write_length_prefix(&mut self, len: usize) {
1439 (**self).write_length_prefix(len)
1440 }
1441 fn write_str(&mut self, s: &str) {
1442 (**self).write_str(s)
1443 }
1444}
1445
1446#[cfg(not(no_global_oom_handling))]
1447#[stable(feature = "from_for_ptrs", since = "1.6.0")]
1448impl<T> From<T> for Box<T> {
1449 /// Converts a `T` into a `Box<T>`
1450 ///
1451 /// The conversion allocates on the heap and moves `t`
1452 /// from the stack into it.
1453 ///
1454 /// # Examples
1455 ///
1456 /// ```rust
1457 /// let x = 5;
1458 /// let boxed = Box::new(5);
1459 ///
1460 /// assert_eq!(Box::from(x), boxed);
1461 /// ```
1462 fn from(t: T) -> Self {
1463 Box::new(t)
1464 }
1465}
1466
1467#[stable(feature = "pin", since = "1.33.0")]
1468impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1469where
1470 A: 'static,
1471{
1472 /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1473 /// `*boxed` will be pinned in memory and unable to be moved.
1474 ///
1475 /// This conversion does not allocate on the heap and happens in place.
1476 ///
1477 /// This is also available via [`Box::into_pin`].
1478 ///
1479 /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1480 /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1481 /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1482 /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1483 fn from(boxed: Box<T, A>) -> Self {
1484 Box::into_pin(boxed)
1485 }
1486}
1487
1488/// Specialization trait used for `From<&[T]>`.
1489#[cfg(not(no_global_oom_handling))]
1490trait BoxFromSlice<T> {
1491 fn from_slice(slice: &[T]) -> Self;
1492}
1493
1494#[cfg(not(no_global_oom_handling))]
1495impl<T: Clone> BoxFromSlice<T> for Box<[T]> {
1496 #[inline]
1497 default fn from_slice(slice: &[T]) -> Self {
1498 slice.to_vec().into_boxed_slice()
1499 }
1500}
1501
1502#[cfg(not(no_global_oom_handling))]
1503impl<T: Copy> BoxFromSlice<T> for Box<[T]> {
1504 #[inline]
1505 fn from_slice(slice: &[T]) -> Self {
1506 let len: usize = slice.len();
1507 let buf: RawVec = RawVec::with_capacity(len);
1508 unsafe {
1509 ptr::copy_nonoverlapping(src:slice.as_ptr(), dst:buf.ptr(), count:len);
1510 buf.into_box(slice.len()).assume_init()
1511 }
1512 }
1513}
1514
1515#[cfg(not(no_global_oom_handling))]
1516#[stable(feature = "box_from_slice", since = "1.17.0")]
1517impl<T: Clone> From<&[T]> for Box<[T]> {
1518 /// Converts a `&[T]` into a `Box<[T]>`
1519 ///
1520 /// This conversion allocates on the heap
1521 /// and performs a copy of `slice` and its contents.
1522 ///
1523 /// # Examples
1524 /// ```rust
1525 /// // create a &[u8] which will be used to create a Box<[u8]>
1526 /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1527 /// let boxed_slice: Box<[u8]> = Box::from(slice);
1528 ///
1529 /// println!("{boxed_slice:?}");
1530 /// ```
1531 #[inline]
1532 fn from(slice: &[T]) -> Box<[T]> {
1533 <Self as BoxFromSlice<T>>::from_slice(slice)
1534 }
1535}
1536
1537#[cfg(not(no_global_oom_handling))]
1538#[stable(feature = "box_from_cow", since = "1.45.0")]
1539impl<T: Clone> From<Cow<'_, [T]>> for Box<[T]> {
1540 /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
1541 ///
1542 /// When `cow` is the `Cow::Borrowed` variant, this
1543 /// conversion allocates on the heap and copies the
1544 /// underlying slice. Otherwise, it will try to reuse the owned
1545 /// `Vec`'s allocation.
1546 #[inline]
1547 fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
1548 match cow {
1549 Cow::Borrowed(slice: &[T]) => Box::from(slice),
1550 Cow::Owned(slice: Vec) => Box::from(slice),
1551 }
1552 }
1553}
1554
1555#[cfg(not(no_global_oom_handling))]
1556#[stable(feature = "box_from_slice", since = "1.17.0")]
1557impl From<&str> for Box<str> {
1558 /// Converts a `&str` into a `Box<str>`
1559 ///
1560 /// This conversion allocates on the heap
1561 /// and performs a copy of `s`.
1562 ///
1563 /// # Examples
1564 ///
1565 /// ```rust
1566 /// let boxed: Box<str> = Box::from("hello");
1567 /// println!("{boxed}");
1568 /// ```
1569 #[inline]
1570 fn from(s: &str) -> Box<str> {
1571 unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
1572 }
1573}
1574
1575#[cfg(not(no_global_oom_handling))]
1576#[stable(feature = "box_from_cow", since = "1.45.0")]
1577impl From<Cow<'_, str>> for Box<str> {
1578 /// Converts a `Cow<'_, str>` into a `Box<str>`
1579 ///
1580 /// When `cow` is the `Cow::Borrowed` variant, this
1581 /// conversion allocates on the heap and copies the
1582 /// underlying `str`. Otherwise, it will try to reuse the owned
1583 /// `String`'s allocation.
1584 ///
1585 /// # Examples
1586 ///
1587 /// ```rust
1588 /// use std::borrow::Cow;
1589 ///
1590 /// let unboxed = Cow::Borrowed("hello");
1591 /// let boxed: Box<str> = Box::from(unboxed);
1592 /// println!("{boxed}");
1593 /// ```
1594 ///
1595 /// ```rust
1596 /// # use std::borrow::Cow;
1597 /// let unboxed = Cow::Owned("hello".to_string());
1598 /// let boxed: Box<str> = Box::from(unboxed);
1599 /// println!("{boxed}");
1600 /// ```
1601 #[inline]
1602 fn from(cow: Cow<'_, str>) -> Box<str> {
1603 match cow {
1604 Cow::Borrowed(s) => Box::from(s),
1605 Cow::Owned(s) => Box::from(s),
1606 }
1607 }
1608}
1609
1610#[stable(feature = "boxed_str_conv", since = "1.19.0")]
1611impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1612 /// Converts a `Box<str>` into a `Box<[u8]>`
1613 ///
1614 /// This conversion does not allocate on the heap and happens in place.
1615 ///
1616 /// # Examples
1617 /// ```rust
1618 /// // create a Box<str> which will be used to create a Box<[u8]>
1619 /// let boxed: Box<str> = Box::from("hello");
1620 /// let boxed_str: Box<[u8]> = Box::from(boxed);
1621 ///
1622 /// // create a &[u8] which will be used to create a Box<[u8]>
1623 /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1624 /// let boxed_slice = Box::from(slice);
1625 ///
1626 /// assert_eq!(boxed_slice, boxed_str);
1627 /// ```
1628 #[inline]
1629 fn from(s: Box<str, A>) -> Self {
1630 let (raw: *mut str, alloc: A) = Box::into_raw_with_allocator(s);
1631 unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1632 }
1633}
1634
1635#[cfg(not(no_global_oom_handling))]
1636#[stable(feature = "box_from_array", since = "1.45.0")]
1637impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1638 /// Converts a `[T; N]` into a `Box<[T]>`
1639 ///
1640 /// This conversion moves the array to newly heap-allocated memory.
1641 ///
1642 /// # Examples
1643 ///
1644 /// ```rust
1645 /// let boxed: Box<[u8]> = Box::from([4, 2]);
1646 /// println!("{boxed:?}");
1647 /// ```
1648 fn from(array: [T; N]) -> Box<[T]> {
1649 Box::new(array)
1650 }
1651}
1652
1653/// Casts a boxed slice to a boxed array.
1654///
1655/// # Safety
1656///
1657/// `boxed_slice.len()` must be exactly `N`.
1658unsafe fn boxed_slice_as_array_unchecked<T, A: Allocator, const N: usize>(
1659 boxed_slice: Box<[T], A>,
1660) -> Box<[T; N], A> {
1661 debug_assert_eq!(boxed_slice.len(), N);
1662
1663 let (ptr: *mut [T], alloc: A) = Box::into_raw_with_allocator(boxed_slice);
1664 // SAFETY: Pointer and allocator came from an existing box,
1665 // and our safety condition requires that the length is exactly `N`
1666 unsafe { Box::from_raw_in(raw:ptr as *mut [T; N], alloc) }
1667}
1668
1669#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
1670impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
1671 type Error = Box<[T]>;
1672
1673 /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1674 ///
1675 /// The conversion occurs in-place and does not require a
1676 /// new memory allocation.
1677 ///
1678 /// # Errors
1679 ///
1680 /// Returns the old `Box<[T]>` in the `Err` variant if
1681 /// `boxed_slice.len()` does not equal `N`.
1682 fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
1683 if boxed_slice.len() == N {
1684 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1685 } else {
1686 Err(boxed_slice)
1687 }
1688 }
1689}
1690
1691#[cfg(not(no_global_oom_handling))]
1692#[stable(feature = "boxed_array_try_from_vec", since = "1.66.0")]
1693impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]> {
1694 type Error = Vec<T>;
1695
1696 /// Attempts to convert a `Vec<T>` into a `Box<[T; N]>`.
1697 ///
1698 /// Like [`Vec::into_boxed_slice`], this is in-place if `vec.capacity() == N`,
1699 /// but will require a reallocation otherwise.
1700 ///
1701 /// # Errors
1702 ///
1703 /// Returns the original `Vec<T>` in the `Err` variant if
1704 /// `boxed_slice.len()` does not equal `N`.
1705 ///
1706 /// # Examples
1707 ///
1708 /// This can be used with [`vec!`] to create an array on the heap:
1709 ///
1710 /// ```
1711 /// let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap();
1712 /// assert_eq!(state.len(), 100);
1713 /// ```
1714 fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> {
1715 if vec.len() == N {
1716 let boxed_slice = vec.into_boxed_slice();
1717 Ok(unsafe { boxed_slice_as_array_unchecked(boxed_slice) })
1718 } else {
1719 Err(vec)
1720 }
1721 }
1722}
1723
1724impl<A: Allocator> Box<dyn Any, A> {
1725 /// Attempt to downcast the box to a concrete type.
1726 ///
1727 /// # Examples
1728 ///
1729 /// ```
1730 /// use std::any::Any;
1731 ///
1732 /// fn print_if_string(value: Box<dyn Any>) {
1733 /// if let Ok(string) = value.downcast::<String>() {
1734 /// println!("String ({}): {}", string.len(), string);
1735 /// }
1736 /// }
1737 ///
1738 /// let my_string = "Hello World".to_string();
1739 /// print_if_string(Box::new(my_string));
1740 /// print_if_string(Box::new(0i8));
1741 /// ```
1742 #[inline]
1743 #[stable(feature = "rust1", since = "1.0.0")]
1744 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1745 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1746 }
1747
1748 /// Downcasts the box to a concrete type.
1749 ///
1750 /// For a safe alternative see [`downcast`].
1751 ///
1752 /// # Examples
1753 ///
1754 /// ```
1755 /// #![feature(downcast_unchecked)]
1756 ///
1757 /// use std::any::Any;
1758 ///
1759 /// let x: Box<dyn Any> = Box::new(1_usize);
1760 ///
1761 /// unsafe {
1762 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1763 /// }
1764 /// ```
1765 ///
1766 /// # Safety
1767 ///
1768 /// The contained value must be of type `T`. Calling this method
1769 /// with the incorrect type is *undefined behavior*.
1770 ///
1771 /// [`downcast`]: Self::downcast
1772 #[inline]
1773 #[unstable(feature = "downcast_unchecked", issue = "90850")]
1774 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1775 debug_assert!(self.is::<T>());
1776 unsafe {
1777 let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
1778 Box::from_raw_in(raw as *mut T, alloc)
1779 }
1780 }
1781}
1782
1783impl<A: Allocator> Box<dyn Any + Send, A> {
1784 /// Attempt to downcast the box to a concrete type.
1785 ///
1786 /// # Examples
1787 ///
1788 /// ```
1789 /// use std::any::Any;
1790 ///
1791 /// fn print_if_string(value: Box<dyn Any + Send>) {
1792 /// if let Ok(string) = value.downcast::<String>() {
1793 /// println!("String ({}): {}", string.len(), string);
1794 /// }
1795 /// }
1796 ///
1797 /// let my_string = "Hello World".to_string();
1798 /// print_if_string(Box::new(my_string));
1799 /// print_if_string(Box::new(0i8));
1800 /// ```
1801 #[inline]
1802 #[stable(feature = "rust1", since = "1.0.0")]
1803 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1804 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1805 }
1806
1807 /// Downcasts the box to a concrete type.
1808 ///
1809 /// For a safe alternative see [`downcast`].
1810 ///
1811 /// # Examples
1812 ///
1813 /// ```
1814 /// #![feature(downcast_unchecked)]
1815 ///
1816 /// use std::any::Any;
1817 ///
1818 /// let x: Box<dyn Any + Send> = Box::new(1_usize);
1819 ///
1820 /// unsafe {
1821 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1822 /// }
1823 /// ```
1824 ///
1825 /// # Safety
1826 ///
1827 /// The contained value must be of type `T`. Calling this method
1828 /// with the incorrect type is *undefined behavior*.
1829 ///
1830 /// [`downcast`]: Self::downcast
1831 #[inline]
1832 #[unstable(feature = "downcast_unchecked", issue = "90850")]
1833 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1834 debug_assert!(self.is::<T>());
1835 unsafe {
1836 let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
1837 Box::from_raw_in(raw as *mut T, alloc)
1838 }
1839 }
1840}
1841
1842impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
1843 /// Attempt to downcast the box to a concrete type.
1844 ///
1845 /// # Examples
1846 ///
1847 /// ```
1848 /// use std::any::Any;
1849 ///
1850 /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
1851 /// if let Ok(string) = value.downcast::<String>() {
1852 /// println!("String ({}): {}", string.len(), string);
1853 /// }
1854 /// }
1855 ///
1856 /// let my_string = "Hello World".to_string();
1857 /// print_if_string(Box::new(my_string));
1858 /// print_if_string(Box::new(0i8));
1859 /// ```
1860 #[inline]
1861 #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
1862 pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1863 if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
1864 }
1865
1866 /// Downcasts the box to a concrete type.
1867 ///
1868 /// For a safe alternative see [`downcast`].
1869 ///
1870 /// # Examples
1871 ///
1872 /// ```
1873 /// #![feature(downcast_unchecked)]
1874 ///
1875 /// use std::any::Any;
1876 ///
1877 /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
1878 ///
1879 /// unsafe {
1880 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1881 /// }
1882 /// ```
1883 ///
1884 /// # Safety
1885 ///
1886 /// The contained value must be of type `T`. Calling this method
1887 /// with the incorrect type is *undefined behavior*.
1888 ///
1889 /// [`downcast`]: Self::downcast
1890 #[inline]
1891 #[unstable(feature = "downcast_unchecked", issue = "90850")]
1892 pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1893 debug_assert!(self.is::<T>());
1894 unsafe {
1895 let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
1896 Box::into_raw_with_allocator(self);
1897 Box::from_raw_in(raw as *mut T, alloc)
1898 }
1899 }
1900}
1901
1902#[stable(feature = "rust1", since = "1.0.0")]
1903impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
1904 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1905 fmt::Display::fmt(&**self, f)
1906 }
1907}
1908
1909#[stable(feature = "rust1", since = "1.0.0")]
1910impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
1911 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1912 fmt::Debug::fmt(&**self, f)
1913 }
1914}
1915
1916#[stable(feature = "rust1", since = "1.0.0")]
1917impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
1918 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1919 // It's not possible to extract the inner Uniq directly from the Box,
1920 // instead we cast it to a *const which aliases the Unique
1921 let ptr: *const T = &**self;
1922 fmt::Pointer::fmt(&ptr, f)
1923 }
1924}
1925
1926#[stable(feature = "rust1", since = "1.0.0")]
1927impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
1928 type Target = T;
1929
1930 fn deref(&self) -> &T {
1931 &**self
1932 }
1933}
1934
1935#[stable(feature = "rust1", since = "1.0.0")]
1936impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
1937 fn deref_mut(&mut self) -> &mut T {
1938 &mut **self
1939 }
1940}
1941
1942#[unstable(feature = "receiver_trait", issue = "none")]
1943impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
1944
1945#[stable(feature = "rust1", since = "1.0.0")]
1946impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
1947 type Item = I::Item;
1948 fn next(&mut self) -> Option<I::Item> {
1949 (**self).next()
1950 }
1951 fn size_hint(&self) -> (usize, Option<usize>) {
1952 (**self).size_hint()
1953 }
1954 fn nth(&mut self, n: usize) -> Option<I::Item> {
1955 (**self).nth(n)
1956 }
1957 fn last(self) -> Option<I::Item> {
1958 BoxIter::last(self)
1959 }
1960}
1961
1962trait BoxIter {
1963 type Item;
1964 fn last(self) -> Option<Self::Item>;
1965}
1966
1967impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
1968 type Item = I::Item;
1969 default fn last(self) -> Option<I::Item> {
1970 #[inline]
1971 fn some<T>(_: Option<T>, x: T) -> Option<T> {
1972 Some(x)
1973 }
1974
1975 self.fold(init:None, f:some)
1976 }
1977}
1978
1979/// Specialization for sized `I`s that uses `I`s implementation of `last()`
1980/// instead of the default.
1981#[stable(feature = "rust1", since = "1.0.0")]
1982impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
1983 fn last(self) -> Option<I::Item> {
1984 (*self).last()
1985 }
1986}
1987
1988#[stable(feature = "rust1", since = "1.0.0")]
1989impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
1990 fn next_back(&mut self) -> Option<I::Item> {
1991 (**self).next_back()
1992 }
1993 fn nth_back(&mut self, n: usize) -> Option<I::Item> {
1994 (**self).nth_back(n)
1995 }
1996}
1997#[stable(feature = "rust1", since = "1.0.0")]
1998impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
1999 fn len(&self) -> usize {
2000 (**self).len()
2001 }
2002 fn is_empty(&self) -> bool {
2003 (**self).is_empty()
2004 }
2005}
2006
2007#[stable(feature = "fused", since = "1.26.0")]
2008impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
2009
2010#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2011impl<Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
2012 type Output = <F as FnOnce<Args>>::Output;
2013
2014 extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
2015 <F as FnOnce<Args>>::call_once(*self, args)
2016 }
2017}
2018
2019#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2020impl<Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
2021 extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
2022 <F as FnMut<Args>>::call_mut(self, args)
2023 }
2024}
2025
2026#[stable(feature = "boxed_closure_impls", since = "1.35.0")]
2027impl<Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
2028 extern "rust-call" fn call(&self, args: Args) -> Self::Output {
2029 <F as Fn<Args>>::call(self, args)
2030 }
2031}
2032
2033#[unstable(feature = "coerce_unsized", issue = "18598")]
2034impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
2035
2036#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2037impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
2038
2039#[cfg(not(no_global_oom_handling))]
2040#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
2041impl<I> FromIterator<I> for Box<[I]> {
2042 fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
2043 iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
2044 }
2045}
2046
2047#[cfg(not(no_global_oom_handling))]
2048#[stable(feature = "box_slice_clone", since = "1.3.0")]
2049impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
2050 fn clone(&self) -> Self {
2051 let alloc: A = Box::allocator(self).clone();
2052 self.to_vec_in(alloc).into_boxed_slice()
2053 }
2054
2055 fn clone_from(&mut self, other: &Self) {
2056 if self.len() == other.len() {
2057 self.clone_from_slice(&other);
2058 } else {
2059 *self = other.clone();
2060 }
2061 }
2062}
2063
2064#[stable(feature = "box_borrow", since = "1.1.0")]
2065impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
2066 fn borrow(&self) -> &T {
2067 &**self
2068 }
2069}
2070
2071#[stable(feature = "box_borrow", since = "1.1.0")]
2072impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
2073 fn borrow_mut(&mut self) -> &mut T {
2074 &mut **self
2075 }
2076}
2077
2078#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2079impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
2080 fn as_ref(&self) -> &T {
2081 &**self
2082 }
2083}
2084
2085#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2086impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
2087 fn as_mut(&mut self) -> &mut T {
2088 &mut **self
2089 }
2090}
2091
2092/* Nota bene
2093 *
2094 * We could have chosen not to add this impl, and instead have written a
2095 * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2096 * because Box<T> implements Unpin even when T does not, as a result of
2097 * this impl.
2098 *
2099 * We chose this API instead of the alternative for a few reasons:
2100 * - Logically, it is helpful to understand pinning in regard to the
2101 * memory region being pointed to. For this reason none of the
2102 * standard library pointer types support projecting through a pin
2103 * (Box<T> is the only pointer type in std for which this would be
2104 * safe.)
2105 * - It is in practice very useful to have Box<T> be unconditionally
2106 * Unpin because of trait objects, for which the structural auto
2107 * trait functionality does not apply (e.g., Box<dyn Foo> would
2108 * otherwise not be Unpin).
2109 *
2110 * Another type with the same semantics as Box but only a conditional
2111 * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2112 * could have a method to project a Pin<T> from it.
2113 */
2114#[stable(feature = "pin", since = "1.33.0")]
2115impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
2116
2117#[unstable(feature = "coroutine_trait", issue = "43122")]
2118impl<G: ?Sized + Coroutine<R> + Unpin, R, A: Allocator> Coroutine<R> for Box<G, A>
2119where
2120 A: 'static,
2121{
2122 type Yield = G::Yield;
2123 type Return = G::Return;
2124
2125 fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
2126 G::resume(self:Pin::new(&mut *self), arg)
2127 }
2128}
2129
2130#[unstable(feature = "coroutine_trait", issue = "43122")]
2131impl<G: ?Sized + Coroutine<R>, R, A: Allocator> Coroutine<R> for Pin<Box<G, A>>
2132where
2133 A: 'static,
2134{
2135 type Yield = G::Yield;
2136 type Return = G::Return;
2137
2138 fn resume(mut self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
2139 G::resume((*self).as_mut(), arg)
2140 }
2141}
2142
2143#[stable(feature = "futures_api", since = "1.36.0")]
2144impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
2145where
2146 A: 'static,
2147{
2148 type Output = F::Output;
2149
2150 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2151 F::poll(self:Pin::new(&mut *self), cx)
2152 }
2153}
2154
2155#[unstable(feature = "async_iterator", issue = "79024")]
2156impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
2157 type Item = S::Item;
2158
2159 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
2160 Pin::new(&mut **self).poll_next(cx)
2161 }
2162
2163 fn size_hint(&self) -> (usize, Option<usize>) {
2164 (**self).size_hint()
2165 }
2166}
2167
2168impl dyn Error {
2169 #[inline]
2170 #[stable(feature = "error_downcast", since = "1.3.0")]
2171 #[rustc_allow_incoherent_impl]
2172 /// Attempts to downcast the box to a concrete type.
2173 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error>> {
2174 if self.is::<T>() {
2175 unsafe {
2176 let raw: *mut dyn Error = Box::into_raw(self);
2177 Ok(Box::from_raw(raw as *mut T))
2178 }
2179 } else {
2180 Err(self)
2181 }
2182 }
2183}
2184
2185impl dyn Error + Send {
2186 #[inline]
2187 #[stable(feature = "error_downcast", since = "1.3.0")]
2188 #[rustc_allow_incoherent_impl]
2189 /// Attempts to downcast the box to a concrete type.
2190 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<dyn Error + Send>> {
2191 let err: Box<dyn Error> = self;
2192 <dyn Error>::downcast(err).map_err(|s: Box| unsafe {
2193 // Reapply the `Send` marker.
2194 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send))
2195 })
2196 }
2197}
2198
2199impl dyn Error + Send + Sync {
2200 #[inline]
2201 #[stable(feature = "error_downcast", since = "1.3.0")]
2202 #[rustc_allow_incoherent_impl]
2203 /// Attempts to downcast the box to a concrete type.
2204 pub fn downcast<T: Error + 'static>(self: Box<Self>) -> Result<Box<T>, Box<Self>> {
2205 let err: Box<dyn Error> = self;
2206 <dyn Error>::downcast(err).map_err(|s: Box| unsafe {
2207 // Reapply the `Send + Sync` marker.
2208 Box::from_raw(Box::into_raw(s) as *mut (dyn Error + Send + Sync))
2209 })
2210 }
2211}
2212
2213#[cfg(not(no_global_oom_handling))]
2214#[stable(feature = "rust1", since = "1.0.0")]
2215impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
2216 /// Converts a type of [`Error`] into a box of dyn [`Error`].
2217 ///
2218 /// # Examples
2219 ///
2220 /// ```
2221 /// use std::error::Error;
2222 /// use std::fmt;
2223 /// use std::mem;
2224 ///
2225 /// #[derive(Debug)]
2226 /// struct AnError;
2227 ///
2228 /// impl fmt::Display for AnError {
2229 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2230 /// write!(f, "An error")
2231 /// }
2232 /// }
2233 ///
2234 /// impl Error for AnError {}
2235 ///
2236 /// let an_error = AnError;
2237 /// assert!(0 == mem::size_of_val(&an_error));
2238 /// let a_boxed_error = Box::<dyn Error>::from(an_error);
2239 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2240 /// ```
2241 fn from(err: E) -> Box<dyn Error + 'a> {
2242 Box::new(err)
2243 }
2244}
2245
2246#[cfg(not(no_global_oom_handling))]
2247#[stable(feature = "rust1", since = "1.0.0")]
2248impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
2249 /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
2250 /// dyn [`Error`] + [`Send`] + [`Sync`].
2251 ///
2252 /// # Examples
2253 ///
2254 /// ```
2255 /// use std::error::Error;
2256 /// use std::fmt;
2257 /// use std::mem;
2258 ///
2259 /// #[derive(Debug)]
2260 /// struct AnError;
2261 ///
2262 /// impl fmt::Display for AnError {
2263 /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2264 /// write!(f, "An error")
2265 /// }
2266 /// }
2267 ///
2268 /// impl Error for AnError {}
2269 ///
2270 /// unsafe impl Send for AnError {}
2271 ///
2272 /// unsafe impl Sync for AnError {}
2273 ///
2274 /// let an_error = AnError;
2275 /// assert!(0 == mem::size_of_val(&an_error));
2276 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2277 /// assert!(
2278 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2279 /// ```
2280 fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2281 Box::new(err)
2282 }
2283}
2284
2285#[cfg(not(no_global_oom_handling))]
2286#[stable(feature = "rust1", since = "1.0.0")]
2287impl From<String> for Box<dyn Error + Send + Sync> {
2288 /// Converts a [`String`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2289 ///
2290 /// # Examples
2291 ///
2292 /// ```
2293 /// use std::error::Error;
2294 /// use std::mem;
2295 ///
2296 /// let a_string_error = "a string error".to_string();
2297 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
2298 /// assert!(
2299 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2300 /// ```
2301 #[inline]
2302 fn from(err: String) -> Box<dyn Error + Send + Sync> {
2303 struct StringError(String);
2304
2305 impl Error for StringError {
2306 #[allow(deprecated)]
2307 fn description(&self) -> &str {
2308 &self.0
2309 }
2310 }
2311
2312 impl fmt::Display for StringError {
2313 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2314 fmt::Display::fmt(&self.0, f)
2315 }
2316 }
2317
2318 // Purposefully skip printing "StringError(..)"
2319 impl fmt::Debug for StringError {
2320 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2321 fmt::Debug::fmt(&self.0, f)
2322 }
2323 }
2324
2325 Box::new(StringError(err))
2326 }
2327}
2328
2329#[cfg(not(no_global_oom_handling))]
2330#[stable(feature = "string_box_error", since = "1.6.0")]
2331impl From<String> for Box<dyn Error> {
2332 /// Converts a [`String`] into a box of dyn [`Error`].
2333 ///
2334 /// # Examples
2335 ///
2336 /// ```
2337 /// use std::error::Error;
2338 /// use std::mem;
2339 ///
2340 /// let a_string_error = "a string error".to_string();
2341 /// let a_boxed_error = Box::<dyn Error>::from(a_string_error);
2342 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2343 /// ```
2344 fn from(str_err: String) -> Box<dyn Error> {
2345 let err1: Box<dyn Error + Send + Sync> = From::from(str_err);
2346 let err2: Box<dyn Error> = err1;
2347 err2
2348 }
2349}
2350
2351#[cfg(not(no_global_oom_handling))]
2352#[stable(feature = "rust1", since = "1.0.0")]
2353impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a> {
2354 /// Converts a [`str`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2355 ///
2356 /// [`str`]: prim@str
2357 ///
2358 /// # Examples
2359 ///
2360 /// ```
2361 /// use std::error::Error;
2362 /// use std::mem;
2363 ///
2364 /// let a_str_error = "a str error";
2365 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error);
2366 /// assert!(
2367 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2368 /// ```
2369 #[inline]
2370 fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a> {
2371 From::from(String::from(err))
2372 }
2373}
2374
2375#[cfg(not(no_global_oom_handling))]
2376#[stable(feature = "string_box_error", since = "1.6.0")]
2377impl From<&str> for Box<dyn Error> {
2378 /// Converts a [`str`] into a box of dyn [`Error`].
2379 ///
2380 /// [`str`]: prim@str
2381 ///
2382 /// # Examples
2383 ///
2384 /// ```
2385 /// use std::error::Error;
2386 /// use std::mem;
2387 ///
2388 /// let a_str_error = "a str error";
2389 /// let a_boxed_error = Box::<dyn Error>::from(a_str_error);
2390 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2391 /// ```
2392 fn from(err: &str) -> Box<dyn Error> {
2393 From::from(String::from(err))
2394 }
2395}
2396
2397#[cfg(not(no_global_oom_handling))]
2398#[stable(feature = "cow_box_error", since = "1.22.0")]
2399impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a> {
2400 /// Converts a [`Cow`] into a box of dyn [`Error`] + [`Send`] + [`Sync`].
2401 ///
2402 /// # Examples
2403 ///
2404 /// ```
2405 /// use std::error::Error;
2406 /// use std::mem;
2407 /// use std::borrow::Cow;
2408 ///
2409 /// let a_cow_str_error = Cow::from("a str error");
2410 /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error);
2411 /// assert!(
2412 /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2413 /// ```
2414 fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a> {
2415 From::from(String::from(err))
2416 }
2417}
2418
2419#[cfg(not(no_global_oom_handling))]
2420#[stable(feature = "cow_box_error", since = "1.22.0")]
2421impl<'a> From<Cow<'a, str>> for Box<dyn Error> {
2422 /// Converts a [`Cow`] into a box of dyn [`Error`].
2423 ///
2424 /// # Examples
2425 ///
2426 /// ```
2427 /// use std::error::Error;
2428 /// use std::mem;
2429 /// use std::borrow::Cow;
2430 ///
2431 /// let a_cow_str_error = Cow::from("a str error");
2432 /// let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error);
2433 /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2434 /// ```
2435 fn from(err: Cow<'a, str>) -> Box<dyn Error> {
2436 From::from(String::from(err))
2437 }
2438}
2439
2440#[stable(feature = "box_error", since = "1.8.0")]
2441impl<T: core::error::Error> core::error::Error for Box<T> {
2442 #[allow(deprecated, deprecated_in_future)]
2443 fn description(&self) -> &str {
2444 core::error::Error::description(&**self)
2445 }
2446
2447 #[allow(deprecated)]
2448 fn cause(&self) -> Option<&dyn core::error::Error> {
2449 core::error::Error::cause(&**self)
2450 }
2451
2452 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
2453 core::error::Error::source(&**self)
2454 }
2455
2456 fn provide<'b>(&'b self, request: &mut core::error::Request<'b>) {
2457 core::error::Error::provide(&**self, request);
2458 }
2459}
2460