1 | #![unstable (feature = "raw_vec_internals" , reason = "unstable const warnings" , issue = "none" )] |
2 | |
3 | use core::alloc::LayoutError; |
4 | use core::cmp; |
5 | use core::hint; |
6 | use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
7 | use core::ptr::{self, NonNull, Unique}; |
8 | use core::slice; |
9 | |
10 | #[cfg (not(no_global_oom_handling))] |
11 | use crate::alloc::handle_alloc_error; |
12 | use crate::alloc::{Allocator, Global, Layout}; |
13 | use crate::boxed::Box; |
14 | use crate::collections::TryReserveError; |
15 | use crate::collections::TryReserveErrorKind::*; |
16 | |
17 | #[cfg (test)] |
18 | mod tests; |
19 | |
20 | #[cfg (not(no_global_oom_handling))] |
21 | enum AllocInit { |
22 | /// The contents of the new memory are uninitialized. |
23 | Uninitialized, |
24 | /// The new memory is guaranteed to be zeroed. |
25 | Zeroed, |
26 | } |
27 | |
28 | #[repr (transparent)] |
29 | #[cfg_attr (target_pointer_width = "16" , rustc_layout_scalar_valid_range_end(0x7fff))] |
30 | #[cfg_attr (target_pointer_width = "32" , rustc_layout_scalar_valid_range_end(0x7fff_ffff))] |
31 | #[cfg_attr (target_pointer_width = "64" , rustc_layout_scalar_valid_range_end(0x7fff_ffff_ffff_ffff))] |
32 | struct Cap(usize); |
33 | |
34 | impl Cap { |
35 | const ZERO: Cap = unsafe { Cap(0) }; |
36 | } |
37 | |
38 | /// A low-level utility for more ergonomically allocating, reallocating, and deallocating |
39 | /// a buffer of memory on the heap without having to worry about all the corner cases |
40 | /// involved. This type is excellent for building your own data structures like Vec and VecDeque. |
41 | /// In particular: |
42 | /// |
43 | /// * Produces `Unique::dangling()` on zero-sized types. |
44 | /// * Produces `Unique::dangling()` on zero-length allocations. |
45 | /// * Avoids freeing `Unique::dangling()`. |
46 | /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). |
47 | /// * Guards against 32-bit systems allocating more than isize::MAX bytes. |
48 | /// * Guards against overflowing your length. |
49 | /// * Calls `handle_alloc_error` for fallible allocations. |
50 | /// * Contains a `ptr::Unique` and thus endows the user with all related benefits. |
51 | /// * Uses the excess returned from the allocator to use the largest available capacity. |
52 | /// |
53 | /// This type does not in anyway inspect the memory that it manages. When dropped it *will* |
54 | /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` |
55 | /// to handle the actual things *stored* inside of a `RawVec`. |
56 | /// |
57 | /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns |
58 | /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a |
59 | /// `Box<[T]>`, since `capacity()` won't yield the length. |
60 | #[allow (missing_debug_implementations)] |
61 | pub(crate) struct RawVec<T, A: Allocator = Global> { |
62 | ptr: Unique<T>, |
63 | /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. |
64 | /// |
65 | /// # Safety |
66 | /// |
67 | /// `cap` must be in the `0..=isize::MAX` range. |
68 | cap: Cap, |
69 | alloc: A, |
70 | } |
71 | |
72 | impl<T> RawVec<T, Global> { |
73 | /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so |
74 | /// they cannot call `Self::new()`. |
75 | /// |
76 | /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything |
77 | /// that would truly const-call something unstable. |
78 | pub const NEW: Self = Self::new(); |
79 | |
80 | /// Creates the biggest possible `RawVec` (on the system heap) |
81 | /// without allocating. If `T` has positive size, then this makes a |
82 | /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a |
83 | /// `RawVec` with capacity `usize::MAX`. Useful for implementing |
84 | /// delayed allocation. |
85 | #[must_use ] |
86 | pub const fn new() -> Self { |
87 | Self::new_in(Global) |
88 | } |
89 | |
90 | /// Creates a `RawVec` (on the system heap) with exactly the |
91 | /// capacity and alignment requirements for a `[T; capacity]`. This is |
92 | /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is |
93 | /// zero-sized. Note that if `T` is zero-sized this means you will |
94 | /// *not* get a `RawVec` with the requested capacity. |
95 | /// |
96 | /// # Panics |
97 | /// |
98 | /// Panics if the requested capacity exceeds `isize::MAX` bytes. |
99 | /// |
100 | /// # Aborts |
101 | /// |
102 | /// Aborts on OOM. |
103 | #[cfg (not(any(no_global_oom_handling, test)))] |
104 | #[must_use ] |
105 | #[inline ] |
106 | pub fn with_capacity(capacity: usize) -> Self { |
107 | Self::with_capacity_in(capacity, Global) |
108 | } |
109 | |
110 | /// Like `with_capacity`, but guarantees the buffer is zeroed. |
111 | #[cfg (not(any(no_global_oom_handling, test)))] |
112 | #[must_use ] |
113 | #[inline ] |
114 | pub fn with_capacity_zeroed(capacity: usize) -> Self { |
115 | Self::with_capacity_zeroed_in(capacity, Global) |
116 | } |
117 | } |
118 | |
119 | impl<T, A: Allocator> RawVec<T, A> { |
120 | // Tiny Vecs are dumb. Skip to: |
121 | // - 8 if the element size is 1, because any heap allocators is likely |
122 | // to round up a request of less than 8 bytes to at least 8 bytes. |
123 | // - 4 if elements are moderate-sized (<= 1 KiB). |
124 | // - 1 otherwise, to avoid wasting too much space for very short Vecs. |
125 | pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 { |
126 | 8 |
127 | } else if mem::size_of::<T>() <= 1024 { |
128 | 4 |
129 | } else { |
130 | 1 |
131 | }; |
132 | |
133 | /// Like `new`, but parameterized over the choice of allocator for |
134 | /// the returned `RawVec`. |
135 | pub const fn new_in(alloc: A) -> Self { |
136 | // `cap: 0` means "unallocated". zero-sized types are ignored. |
137 | Self { ptr: Unique::dangling(), cap: Cap::ZERO, alloc } |
138 | } |
139 | |
140 | /// Like `with_capacity`, but parameterized over the choice of |
141 | /// allocator for the returned `RawVec`. |
142 | #[cfg (not(no_global_oom_handling))] |
143 | #[inline ] |
144 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
145 | Self::allocate_in(capacity, AllocInit::Uninitialized, alloc) |
146 | } |
147 | |
148 | /// Like `with_capacity_zeroed`, but parameterized over the choice |
149 | /// of allocator for the returned `RawVec`. |
150 | #[cfg (not(no_global_oom_handling))] |
151 | #[inline ] |
152 | pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { |
153 | Self::allocate_in(capacity, AllocInit::Zeroed, alloc) |
154 | } |
155 | |
156 | /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. |
157 | /// |
158 | /// Note that this will correctly reconstitute any `cap` changes |
159 | /// that may have been performed. (See description of type for details.) |
160 | /// |
161 | /// # Safety |
162 | /// |
163 | /// * `len` must be greater than or equal to the most recently requested capacity, and |
164 | /// * `len` must be less than or equal to `self.capacity()`. |
165 | /// |
166 | /// Note, that the requested capacity and `self.capacity()` could differ, as |
167 | /// an allocator could overallocate and return a greater memory block than requested. |
168 | pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { |
169 | // Sanity-check one half of the safety requirement (we cannot check the other half). |
170 | debug_assert!( |
171 | len <= self.capacity(), |
172 | "`len` must be smaller than or equal to `self.capacity()`" |
173 | ); |
174 | |
175 | let me = ManuallyDrop::new(self); |
176 | unsafe { |
177 | let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); |
178 | Box::from_raw_in(slice, ptr::read(&me.alloc)) |
179 | } |
180 | } |
181 | |
182 | #[cfg (not(no_global_oom_handling))] |
183 | fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self { |
184 | // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. |
185 | if T::IS_ZST || capacity == 0 { |
186 | Self::new_in(alloc) |
187 | } else { |
188 | // We avoid `unwrap_or_else` here because it bloats the amount of |
189 | // LLVM IR generated. |
190 | let layout = match Layout::array::<T>(capacity) { |
191 | Ok(layout) => layout, |
192 | Err(_) => capacity_overflow(), |
193 | }; |
194 | match alloc_guard(layout.size()) { |
195 | Ok(_) => {} |
196 | Err(_) => capacity_overflow(), |
197 | } |
198 | let result = match init { |
199 | AllocInit::Uninitialized => alloc.allocate(layout), |
200 | AllocInit::Zeroed => alloc.allocate_zeroed(layout), |
201 | }; |
202 | let ptr = match result { |
203 | Ok(ptr) => ptr, |
204 | Err(_) => handle_alloc_error(layout), |
205 | }; |
206 | |
207 | // Allocators currently return a `NonNull<[u8]>` whose length |
208 | // matches the size requested. If that ever changes, the capacity |
209 | // here should change to `ptr.len() / mem::size_of::<T>()`. |
210 | Self { |
211 | ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }, |
212 | cap: unsafe { Cap(capacity) }, |
213 | alloc, |
214 | } |
215 | } |
216 | } |
217 | |
218 | /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. |
219 | /// |
220 | /// # Safety |
221 | /// |
222 | /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given |
223 | /// `capacity`. |
224 | /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit |
225 | /// systems). For ZSTs capacity is ignored. |
226 | /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is |
227 | /// guaranteed. |
228 | #[inline ] |
229 | pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { |
230 | let cap = if T::IS_ZST { Cap::ZERO } else { unsafe { Cap(capacity) } }; |
231 | Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc } |
232 | } |
233 | |
234 | /// Gets a raw pointer to the start of the allocation. Note that this is |
235 | /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must |
236 | /// be careful. |
237 | #[inline ] |
238 | pub fn ptr(&self) -> *mut T { |
239 | self.ptr.as_ptr() |
240 | } |
241 | |
242 | /// Gets the capacity of the allocation. |
243 | /// |
244 | /// This will always be `usize::MAX` if `T` is zero-sized. |
245 | #[inline (always)] |
246 | pub fn capacity(&self) -> usize { |
247 | if T::IS_ZST { usize::MAX } else { self.cap.0 } |
248 | } |
249 | |
250 | /// Returns a shared reference to the allocator backing this `RawVec`. |
251 | pub fn allocator(&self) -> &A { |
252 | &self.alloc |
253 | } |
254 | |
255 | fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> { |
256 | if T::IS_ZST || self.cap.0 == 0 { |
257 | None |
258 | } else { |
259 | // We could use Layout::array here which ensures the absence of isize and usize overflows |
260 | // and could hypothetically handle differences between stride and size, but this memory |
261 | // has already been allocated so we know it can't overflow and currently rust does not |
262 | // support such types. So we can do better by skipping some checks and avoid an unwrap. |
263 | let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) }; |
264 | unsafe { |
265 | let align = mem::align_of::<T>(); |
266 | let size = mem::size_of::<T>().unchecked_mul(self.cap.0); |
267 | let layout = Layout::from_size_align_unchecked(size, align); |
268 | Some((self.ptr.cast().into(), layout)) |
269 | } |
270 | } |
271 | } |
272 | |
273 | /// Ensures that the buffer contains at least enough space to hold `len + |
274 | /// additional` elements. If it doesn't already have enough capacity, will |
275 | /// reallocate enough space plus comfortable slack space to get amortized |
276 | /// *O*(1) behavior. Will limit this behavior if it would needlessly cause |
277 | /// itself to panic. |
278 | /// |
279 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
280 | /// the requested space. This is not really unsafe, but the unsafe |
281 | /// code *you* write that relies on the behavior of this function may break. |
282 | /// |
283 | /// This is ideal for implementing a bulk-push operation like `extend`. |
284 | /// |
285 | /// # Panics |
286 | /// |
287 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
288 | /// |
289 | /// # Aborts |
290 | /// |
291 | /// Aborts on OOM. |
292 | #[cfg (not(no_global_oom_handling))] |
293 | #[inline ] |
294 | pub fn reserve(&mut self, len: usize, additional: usize) { |
295 | // Callers expect this function to be very cheap when there is already sufficient capacity. |
296 | // Therefore, we move all the resizing and error-handling logic from grow_amortized and |
297 | // handle_reserve behind a call, while making sure that this function is likely to be |
298 | // inlined as just a comparison and a call if the comparison fails. |
299 | #[cold ] |
300 | fn do_reserve_and_handle<T, A: Allocator>( |
301 | slf: &mut RawVec<T, A>, |
302 | len: usize, |
303 | additional: usize, |
304 | ) { |
305 | handle_reserve(slf.grow_amortized(len, additional)); |
306 | } |
307 | |
308 | if self.needs_to_grow(len, additional) { |
309 | do_reserve_and_handle(self, len, additional); |
310 | } |
311 | } |
312 | |
313 | /// A specialized version of `reserve()` used only by the hot and |
314 | /// oft-instantiated `Vec::push()`, which does its own capacity check. |
315 | #[cfg (not(no_global_oom_handling))] |
316 | #[inline (never)] |
317 | pub fn reserve_for_push(&mut self, len: usize) { |
318 | handle_reserve(self.grow_amortized(len, 1)); |
319 | } |
320 | |
321 | /// The same as `reserve`, but returns on errors instead of panicking or aborting. |
322 | pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
323 | if self.needs_to_grow(len, additional) { |
324 | self.grow_amortized(len, additional)?; |
325 | } |
326 | unsafe { |
327 | // Inform the optimizer that the reservation has succeeded or wasn't needed |
328 | hint::assert_unchecked(!self.needs_to_grow(len, additional)); |
329 | } |
330 | Ok(()) |
331 | } |
332 | |
333 | /// Ensures that the buffer contains at least enough space to hold `len + |
334 | /// additional` elements. If it doesn't already, will reallocate the |
335 | /// minimum possible amount of memory necessary. Generally this will be |
336 | /// exactly the amount of memory necessary, but in principle the allocator |
337 | /// is free to give back more than we asked for. |
338 | /// |
339 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
340 | /// the requested space. This is not really unsafe, but the unsafe code |
341 | /// *you* write that relies on the behavior of this function may break. |
342 | /// |
343 | /// # Panics |
344 | /// |
345 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
346 | /// |
347 | /// # Aborts |
348 | /// |
349 | /// Aborts on OOM. |
350 | #[cfg (not(no_global_oom_handling))] |
351 | pub fn reserve_exact(&mut self, len: usize, additional: usize) { |
352 | handle_reserve(self.try_reserve_exact(len, additional)); |
353 | } |
354 | |
355 | /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. |
356 | pub fn try_reserve_exact( |
357 | &mut self, |
358 | len: usize, |
359 | additional: usize, |
360 | ) -> Result<(), TryReserveError> { |
361 | if self.needs_to_grow(len, additional) { |
362 | self.grow_exact(len, additional)?; |
363 | } |
364 | unsafe { |
365 | // Inform the optimizer that the reservation has succeeded or wasn't needed |
366 | hint::assert_unchecked(!self.needs_to_grow(len, additional)); |
367 | } |
368 | Ok(()) |
369 | } |
370 | |
371 | /// Shrinks the buffer down to the specified capacity. If the given amount |
372 | /// is 0, actually completely deallocates. |
373 | /// |
374 | /// # Panics |
375 | /// |
376 | /// Panics if the given amount is *larger* than the current capacity. |
377 | /// |
378 | /// # Aborts |
379 | /// |
380 | /// Aborts on OOM. |
381 | #[cfg (not(no_global_oom_handling))] |
382 | pub fn shrink_to_fit(&mut self, cap: usize) { |
383 | handle_reserve(self.shrink(cap)); |
384 | } |
385 | } |
386 | |
387 | impl<T, A: Allocator> RawVec<T, A> { |
388 | /// Returns if the buffer needs to grow to fulfill the needed extra capacity. |
389 | /// Mainly used to make inlining reserve-calls possible without inlining `grow`. |
390 | fn needs_to_grow(&self, len: usize, additional: usize) -> bool { |
391 | additional > self.capacity().wrapping_sub(len) |
392 | } |
393 | |
394 | /// # Safety: |
395 | /// |
396 | /// `cap` must not exceed `isize::MAX`. |
397 | unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { |
398 | // Allocators currently return a `NonNull<[u8]>` whose length matches |
399 | // the size requested. If that ever changes, the capacity here should |
400 | // change to `ptr.len() / mem::size_of::<T>()`. |
401 | self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) }; |
402 | self.cap = unsafe { Cap(cap) }; |
403 | } |
404 | |
405 | // This method is usually instantiated many times. So we want it to be as |
406 | // small as possible, to improve compile times. But we also want as much of |
407 | // its contents to be statically computable as possible, to make the |
408 | // generated code run faster. Therefore, this method is carefully written |
409 | // so that all of the code that depends on `T` is within it, while as much |
410 | // of the code that doesn't depend on `T` as possible is in functions that |
411 | // are non-generic over `T`. |
412 | fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
413 | // This is ensured by the calling contexts. |
414 | debug_assert!(additional > 0); |
415 | |
416 | if T::IS_ZST { |
417 | // Since we return a capacity of `usize::MAX` when `elem_size` is |
418 | // 0, getting to here necessarily means the `RawVec` is overfull. |
419 | return Err(CapacityOverflow.into()); |
420 | } |
421 | |
422 | // Nothing we can really do about these checks, sadly. |
423 | let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
424 | |
425 | // This guarantees exponential growth. The doubling cannot overflow |
426 | // because `cap <= isize::MAX` and the type of `cap` is `usize`. |
427 | let cap = cmp::max(self.cap.0 * 2, required_cap); |
428 | let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap); |
429 | |
430 | let new_layout = Layout::array::<T>(cap); |
431 | |
432 | // `finish_grow` is non-generic over `T`. |
433 | let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; |
434 | // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items |
435 | unsafe { self.set_ptr_and_cap(ptr, cap) }; |
436 | Ok(()) |
437 | } |
438 | |
439 | // The constraints on this method are much the same as those on |
440 | // `grow_amortized`, but this method is usually instantiated less often so |
441 | // it's less critical. |
442 | fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
443 | if T::IS_ZST { |
444 | // Since we return a capacity of `usize::MAX` when the type size is |
445 | // 0, getting to here necessarily means the `RawVec` is overfull. |
446 | return Err(CapacityOverflow.into()); |
447 | } |
448 | |
449 | let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
450 | let new_layout = Layout::array::<T>(cap); |
451 | |
452 | // `finish_grow` is non-generic over `T`. |
453 | let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?; |
454 | // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items |
455 | unsafe { |
456 | self.set_ptr_and_cap(ptr, cap); |
457 | } |
458 | Ok(()) |
459 | } |
460 | |
461 | #[cfg (not(no_global_oom_handling))] |
462 | fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> { |
463 | assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity" ); |
464 | |
465 | let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) }; |
466 | // See current_memory() why this assert is here |
467 | let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) }; |
468 | |
469 | // If shrinking to 0, deallocate the buffer. We don't reach this point |
470 | // for the T::IS_ZST case since current_memory() will have returned |
471 | // None. |
472 | if cap == 0 { |
473 | unsafe { self.alloc.deallocate(ptr, layout) }; |
474 | self.ptr = Unique::dangling(); |
475 | self.cap = Cap::ZERO; |
476 | } else { |
477 | let ptr = unsafe { |
478 | // `Layout::array` cannot overflow here because it would have |
479 | // overflowed earlier when capacity was larger. |
480 | let new_size = mem::size_of::<T>().unchecked_mul(cap); |
481 | let new_layout = Layout::from_size_align_unchecked(new_size, layout.align()); |
482 | self.alloc |
483 | .shrink(ptr, layout, new_layout) |
484 | .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? |
485 | }; |
486 | // SAFETY: if the allocation is valid, then the capacity is too |
487 | unsafe { |
488 | self.set_ptr_and_cap(ptr, cap); |
489 | } |
490 | } |
491 | Ok(()) |
492 | } |
493 | } |
494 | |
495 | // This function is outside `RawVec` to minimize compile times. See the comment |
496 | // above `RawVec::grow_amortized` for details. (The `A` parameter isn't |
497 | // significant, because the number of different `A` types seen in practice is |
498 | // much smaller than the number of `T` types.) |
499 | #[inline (never)] |
500 | fn finish_grow<A>( |
501 | new_layout: Result<Layout, LayoutError>, |
502 | current_memory: Option<(NonNull<u8>, Layout)>, |
503 | alloc: &mut A, |
504 | ) -> Result<NonNull<[u8]>, TryReserveError> |
505 | where |
506 | A: Allocator, |
507 | { |
508 | // Check for the error here to minimize the size of `RawVec::grow_*`. |
509 | let new_layout: Layout = new_layout.map_err(|_| CapacityOverflow)?; |
510 | |
511 | alloc_guard(alloc_size:new_layout.size())?; |
512 | |
513 | let memory: Result, AllocError> = if let Some((ptr: NonNull, old_layout: Layout)) = current_memory { |
514 | debug_assert_eq!(old_layout.align(), new_layout.align()); |
515 | unsafe { |
516 | // The allocator checks for alignment equality |
517 | hint::assert_unchecked(cond:old_layout.align() == new_layout.align()); |
518 | alloc.grow(ptr, old_layout, new_layout) |
519 | } |
520 | } else { |
521 | alloc.allocate(new_layout) |
522 | }; |
523 | |
524 | memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) |
525 | } |
526 | |
527 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for RawVec<T, A> { |
528 | /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. |
529 | fn drop(&mut self) { |
530 | if let Some((ptr: NonNull, layout: Layout)) = self.current_memory() { |
531 | unsafe { self.alloc.deallocate(ptr, layout) } |
532 | } |
533 | } |
534 | } |
535 | |
536 | // Central function for reserve error handling. |
537 | #[cfg (not(no_global_oom_handling))] |
538 | #[inline ] |
539 | fn handle_reserve(result: Result<(), TryReserveError>) { |
540 | match result.map_err(|e: TryReserveError| e.kind()) { |
541 | Err(CapacityOverflow) => capacity_overflow(), |
542 | Err(AllocError { layout: Layout, .. }) => handle_alloc_error(layout), |
543 | Ok(()) => { /* yay */ } |
544 | } |
545 | } |
546 | |
547 | // We need to guarantee the following: |
548 | // * We don't ever allocate `> isize::MAX` byte-size objects. |
549 | // * We don't overflow `usize::MAX` and actually allocate too little. |
550 | // |
551 | // On 64-bit we just need to check for overflow since trying to allocate |
552 | // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add |
553 | // an extra guard for this in case we're running on a platform which can use |
554 | // all 4GB in user-space, e.g., PAE or x32. |
555 | #[inline ] |
556 | fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { |
557 | if usize::BITS < 64 && alloc_size > isize::MAX as usize { |
558 | Err(CapacityOverflow.into()) |
559 | } else { |
560 | Ok(()) |
561 | } |
562 | } |
563 | |
564 | // One central function responsible for reporting capacity overflows. This'll |
565 | // ensure that the code generation related to these panics is minimal as there's |
566 | // only one location which panics rather than a bunch throughout the module. |
567 | #[cfg (not(no_global_oom_handling))] |
568 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
569 | fn capacity_overflow() -> ! { |
570 | panic!("capacity overflow" ); |
571 | } |
572 | |