1 | //! A contiguous growable array type with heap-allocated contents, written |
2 | //! `Vec<T>`. |
3 | //! |
4 | //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and |
5 | //! *O*(1) pop (from the end). |
6 | //! |
7 | //! Vectors ensure they never allocate more than `isize::MAX` bytes. |
8 | //! |
9 | //! # Examples |
10 | //! |
11 | //! You can explicitly create a [`Vec`] with [`Vec::new`]: |
12 | //! |
13 | //! ``` |
14 | //! let v: Vec<i32> = Vec::new(); |
15 | //! ``` |
16 | //! |
17 | //! ...or by using the [`vec!`] macro: |
18 | //! |
19 | //! ``` |
20 | //! let v: Vec<i32> = vec![]; |
21 | //! |
22 | //! let v = vec![1, 2, 3, 4, 5]; |
23 | //! |
24 | //! let v = vec![0; 10]; // ten zeroes |
25 | //! ``` |
26 | //! |
27 | //! You can [`push`] values onto the end of a vector (which will grow the vector |
28 | //! as needed): |
29 | //! |
30 | //! ``` |
31 | //! let mut v = vec![1, 2]; |
32 | //! |
33 | //! v.push(3); |
34 | //! ``` |
35 | //! |
36 | //! Popping values works in much the same way: |
37 | //! |
38 | //! ``` |
39 | //! let mut v = vec![1, 2]; |
40 | //! |
41 | //! let two = v.pop(); |
42 | //! ``` |
43 | //! |
44 | //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits): |
45 | //! |
46 | //! ``` |
47 | //! let mut v = vec![1, 2, 3]; |
48 | //! let three = v[2]; |
49 | //! v[1] = v[1] + 5; |
50 | //! ``` |
51 | //! |
52 | //! [`push`]: Vec::push |
53 | |
54 | #![stable (feature = "rust1" , since = "1.0.0" )] |
55 | |
56 | #[cfg (not(no_global_oom_handling))] |
57 | use core::cmp; |
58 | use core::cmp::Ordering; |
59 | use core::hash::{Hash, Hasher}; |
60 | #[cfg (not(no_global_oom_handling))] |
61 | use core::iter; |
62 | use core::marker::PhantomData; |
63 | use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
64 | use core::ops::{self, Index, IndexMut, Range, RangeBounds}; |
65 | use core::ptr::{self, NonNull}; |
66 | use core::slice::{self, SliceIndex}; |
67 | use core::{fmt, intrinsics}; |
68 | |
69 | #[stable (feature = "extract_if" , since = "1.87.0" )] |
70 | pub use self::extract_if::ExtractIf; |
71 | use crate::alloc::{Allocator, Global}; |
72 | use crate::borrow::{Cow, ToOwned}; |
73 | use crate::boxed::Box; |
74 | use crate::collections::TryReserveError; |
75 | use crate::raw_vec::RawVec; |
76 | |
77 | mod extract_if; |
78 | |
79 | #[cfg (not(no_global_oom_handling))] |
80 | #[stable (feature = "vec_splice" , since = "1.21.0" )] |
81 | pub use self::splice::Splice; |
82 | |
83 | #[cfg (not(no_global_oom_handling))] |
84 | mod splice; |
85 | |
86 | #[stable (feature = "drain" , since = "1.6.0" )] |
87 | pub use self::drain::Drain; |
88 | |
89 | mod drain; |
90 | |
91 | #[cfg (not(no_global_oom_handling))] |
92 | mod cow; |
93 | |
94 | #[cfg (not(no_global_oom_handling))] |
95 | pub(crate) use self::in_place_collect::AsVecIntoIter; |
96 | #[stable (feature = "rust1" , since = "1.0.0" )] |
97 | pub use self::into_iter::IntoIter; |
98 | |
99 | mod into_iter; |
100 | |
101 | #[cfg (not(no_global_oom_handling))] |
102 | use self::is_zero::IsZero; |
103 | |
104 | #[cfg (not(no_global_oom_handling))] |
105 | mod is_zero; |
106 | |
107 | #[cfg (not(no_global_oom_handling))] |
108 | mod in_place_collect; |
109 | |
110 | mod partial_eq; |
111 | |
112 | #[cfg (not(no_global_oom_handling))] |
113 | use self::spec_from_elem::SpecFromElem; |
114 | |
115 | #[cfg (not(no_global_oom_handling))] |
116 | mod spec_from_elem; |
117 | |
118 | #[cfg (not(no_global_oom_handling))] |
119 | use self::set_len_on_drop::SetLenOnDrop; |
120 | |
121 | #[cfg (not(no_global_oom_handling))] |
122 | mod set_len_on_drop; |
123 | |
124 | #[cfg (not(no_global_oom_handling))] |
125 | use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop}; |
126 | |
127 | #[cfg (not(no_global_oom_handling))] |
128 | mod in_place_drop; |
129 | |
130 | #[cfg (not(no_global_oom_handling))] |
131 | use self::spec_from_iter_nested::SpecFromIterNested; |
132 | |
133 | #[cfg (not(no_global_oom_handling))] |
134 | mod spec_from_iter_nested; |
135 | |
136 | #[cfg (not(no_global_oom_handling))] |
137 | use self::spec_from_iter::SpecFromIter; |
138 | |
139 | #[cfg (not(no_global_oom_handling))] |
140 | mod spec_from_iter; |
141 | |
142 | #[cfg (not(no_global_oom_handling))] |
143 | use self::spec_extend::SpecExtend; |
144 | |
145 | #[cfg (not(no_global_oom_handling))] |
146 | mod spec_extend; |
147 | |
148 | /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'. |
149 | /// |
150 | /// # Examples |
151 | /// |
152 | /// ``` |
153 | /// let mut vec = Vec::new(); |
154 | /// vec.push(1); |
155 | /// vec.push(2); |
156 | /// |
157 | /// assert_eq!(vec.len(), 2); |
158 | /// assert_eq!(vec[0], 1); |
159 | /// |
160 | /// assert_eq!(vec.pop(), Some(2)); |
161 | /// assert_eq!(vec.len(), 1); |
162 | /// |
163 | /// vec[0] = 7; |
164 | /// assert_eq!(vec[0], 7); |
165 | /// |
166 | /// vec.extend([1, 2, 3]); |
167 | /// |
168 | /// for x in &vec { |
169 | /// println!("{x}" ); |
170 | /// } |
171 | /// assert_eq!(vec, [7, 1, 2, 3]); |
172 | /// ``` |
173 | /// |
174 | /// The [`vec!`] macro is provided for convenient initialization: |
175 | /// |
176 | /// ``` |
177 | /// let mut vec1 = vec![1, 2, 3]; |
178 | /// vec1.push(4); |
179 | /// let vec2 = Vec::from([1, 2, 3, 4]); |
180 | /// assert_eq!(vec1, vec2); |
181 | /// ``` |
182 | /// |
183 | /// It can also initialize each element of a `Vec<T>` with a given value. |
184 | /// This may be more efficient than performing allocation and initialization |
185 | /// in separate steps, especially when initializing a vector of zeros: |
186 | /// |
187 | /// ``` |
188 | /// let vec = vec![0; 5]; |
189 | /// assert_eq!(vec, [0, 0, 0, 0, 0]); |
190 | /// |
191 | /// // The following is equivalent, but potentially slower: |
192 | /// let mut vec = Vec::with_capacity(5); |
193 | /// vec.resize(5, 0); |
194 | /// assert_eq!(vec, [0, 0, 0, 0, 0]); |
195 | /// ``` |
196 | /// |
197 | /// For more information, see |
198 | /// [Capacity and Reallocation](#capacity-and-reallocation). |
199 | /// |
200 | /// Use a `Vec<T>` as an efficient stack: |
201 | /// |
202 | /// ``` |
203 | /// let mut stack = Vec::new(); |
204 | /// |
205 | /// stack.push(1); |
206 | /// stack.push(2); |
207 | /// stack.push(3); |
208 | /// |
209 | /// while let Some(top) = stack.pop() { |
210 | /// // Prints 3, 2, 1 |
211 | /// println!("{top}" ); |
212 | /// } |
213 | /// ``` |
214 | /// |
215 | /// # Indexing |
216 | /// |
217 | /// The `Vec` type allows access to values by index, because it implements the |
218 | /// [`Index`] trait. An example will be more explicit: |
219 | /// |
220 | /// ``` |
221 | /// let v = vec![0, 2, 4, 6]; |
222 | /// println!("{}" , v[1]); // it will display '2' |
223 | /// ``` |
224 | /// |
225 | /// However be careful: if you try to access an index which isn't in the `Vec`, |
226 | /// your software will panic! You cannot do this: |
227 | /// |
228 | /// ```should_panic |
229 | /// let v = vec![0, 2, 4, 6]; |
230 | /// println!("{}" , v[6]); // it will panic! |
231 | /// ``` |
232 | /// |
233 | /// Use [`get`] and [`get_mut`] if you want to check whether the index is in |
234 | /// the `Vec`. |
235 | /// |
236 | /// # Slicing |
237 | /// |
238 | /// A `Vec` can be mutable. On the other hand, slices are read-only objects. |
239 | /// To get a [slice][prim@slice], use [`&`]. Example: |
240 | /// |
241 | /// ``` |
242 | /// fn read_slice(slice: &[usize]) { |
243 | /// // ... |
244 | /// } |
245 | /// |
246 | /// let v = vec![0, 1]; |
247 | /// read_slice(&v); |
248 | /// |
249 | /// // ... and that's all! |
250 | /// // you can also do it like this: |
251 | /// let u: &[usize] = &v; |
252 | /// // or like this: |
253 | /// let u: &[_] = &v; |
254 | /// ``` |
255 | /// |
256 | /// In Rust, it's more common to pass slices as arguments rather than vectors |
257 | /// when you just want to provide read access. The same goes for [`String`] and |
258 | /// [`&str`]. |
259 | /// |
260 | /// # Capacity and reallocation |
261 | /// |
262 | /// The capacity of a vector is the amount of space allocated for any future |
263 | /// elements that will be added onto the vector. This is not to be confused with |
264 | /// the *length* of a vector, which specifies the number of actual elements |
265 | /// within the vector. If a vector's length exceeds its capacity, its capacity |
266 | /// will automatically be increased, but its elements will have to be |
267 | /// reallocated. |
268 | /// |
269 | /// For example, a vector with capacity 10 and length 0 would be an empty vector |
270 | /// with space for 10 more elements. Pushing 10 or fewer elements onto the |
271 | /// vector will not change its capacity or cause reallocation to occur. However, |
272 | /// if the vector's length is increased to 11, it will have to reallocate, which |
273 | /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`] |
274 | /// whenever possible to specify how big the vector is expected to get. |
275 | /// |
276 | /// # Guarantees |
277 | /// |
278 | /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees |
279 | /// about its design. This ensures that it's as low-overhead as possible in |
280 | /// the general case, and can be correctly manipulated in primitive ways |
281 | /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`. |
282 | /// If additional type parameters are added (e.g., to support custom allocators), |
283 | /// overriding their defaults may change the behavior. |
284 | /// |
285 | /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length) |
286 | /// triplet. No more, no less. The order of these fields is completely |
287 | /// unspecified, and you should use the appropriate methods to modify these. |
288 | /// The pointer will never be null, so this type is null-pointer-optimized. |
289 | /// |
290 | /// However, the pointer might not actually point to allocated memory. In particular, |
291 | /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`], |
292 | /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`] |
293 | /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized |
294 | /// types inside a `Vec`, it will not allocate space for them. *Note that in this case |
295 | /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only |
296 | /// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation |
297 | /// details are very subtle --- if you intend to allocate memory using a `Vec` |
298 | /// and use it for something else (either to pass to unsafe code, or to build your |
299 | /// own memory-backed collection), be sure to deallocate this memory by using |
300 | /// `from_raw_parts` to recover the `Vec` and then dropping it. |
301 | /// |
302 | /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap |
303 | /// (as defined by the allocator Rust is configured to use by default), and its |
304 | /// pointer points to [`len`] initialized, contiguous elements in order (what |
305 | /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code> |
306 | /// logically uninitialized, contiguous elements. |
307 | /// |
308 | /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be |
309 | /// visualized as below. The top part is the `Vec` struct, it contains a |
310 | /// pointer to the head of the allocation in the heap, length and capacity. |
311 | /// The bottom part is the allocation on the heap, a contiguous memory block. |
312 | /// |
313 | /// ```text |
314 | /// ptr len capacity |
315 | /// +--------+--------+--------+ |
316 | /// | 0x0123 | 2 | 4 | |
317 | /// +--------+--------+--------+ |
318 | /// | |
319 | /// v |
320 | /// Heap +--------+--------+--------+--------+ |
321 | /// | 'a' | 'b' | uninit | uninit | |
322 | /// +--------+--------+--------+--------+ |
323 | /// ``` |
324 | /// |
325 | /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`]. |
326 | /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory |
327 | /// layout (including the order of fields). |
328 | /// |
329 | /// `Vec` will never perform a "small optimization" where elements are actually |
330 | /// stored on the stack for two reasons: |
331 | /// |
332 | /// * It would make it more difficult for unsafe code to correctly manipulate |
333 | /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were |
334 | /// only moved, and it would be more difficult to determine if a `Vec` had |
335 | /// actually allocated memory. |
336 | /// |
337 | /// * It would penalize the general case, incurring an additional branch |
338 | /// on every access. |
339 | /// |
340 | /// `Vec` will never automatically shrink itself, even if completely empty. This |
341 | /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec` |
342 | /// and then filling it back up to the same [`len`] should incur no calls to |
343 | /// the allocator. If you wish to free up unused memory, use |
344 | /// [`shrink_to_fit`] or [`shrink_to`]. |
345 | /// |
346 | /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is |
347 | /// sufficient. [`push`] and [`insert`] *will* (re)allocate if |
348 | /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely |
349 | /// accurate, and can be relied on. It can even be used to manually free the memory |
350 | /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even |
351 | /// when not necessary. |
352 | /// |
353 | /// `Vec` does not guarantee any particular growth strategy when reallocating |
354 | /// when full, nor when [`reserve`] is called. The current strategy is basic |
355 | /// and it may prove desirable to use a non-constant growth factor. Whatever |
356 | /// strategy is used will of course guarantee *O*(1) amortized [`push`]. |
357 | /// |
358 | /// It is guaranteed, in order to respect the intentions of the programmer, that |
359 | /// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec` |
360 | /// that requests an allocation of the exact size needed for precisely `n` elements from the allocator, |
361 | /// and no other size (such as, for example: a size rounded up to the nearest power of 2). |
362 | /// The allocator will return an allocation that is at least as large as requested, but it may be larger. |
363 | /// |
364 | /// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity |
365 | /// and not more than the allocated capacity. |
366 | /// |
367 | /// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`. |
368 | /// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted |
369 | /// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements. |
370 | /// `Vec` exploits this fact as much as reasonable when implementing common conversions |
371 | /// such as [`into_boxed_slice`]. |
372 | /// |
373 | /// `Vec` will not specifically overwrite any data that is removed from it, |
374 | /// but also won't specifically preserve it. Its uninitialized memory is |
375 | /// scratch space that it may use however it wants. It will generally just do |
376 | /// whatever is most efficient or otherwise easy to implement. Do not rely on |
377 | /// removed data to be erased for security purposes. Even if you drop a `Vec`, its |
378 | /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory |
379 | /// first, that might not actually happen because the optimizer does not consider |
380 | /// this a side-effect that must be preserved. There is one case which we will |
381 | /// not break, however: using `unsafe` code to write to the excess capacity, |
382 | /// and then increasing the length to match, is always valid. |
383 | /// |
384 | /// Currently, `Vec` does not guarantee the order in which elements are dropped. |
385 | /// The order has changed in the past and may change again. |
386 | /// |
387 | /// [`get`]: slice::get |
388 | /// [`get_mut`]: slice::get_mut |
389 | /// [`String`]: crate::string::String |
390 | /// [`&str`]: type@str |
391 | /// [`shrink_to_fit`]: Vec::shrink_to_fit |
392 | /// [`shrink_to`]: Vec::shrink_to |
393 | /// [capacity]: Vec::capacity |
394 | /// [`capacity`]: Vec::capacity |
395 | /// [`Vec::capacity`]: Vec::capacity |
396 | /// [size_of::\<T>]: size_of |
397 | /// [len]: Vec::len |
398 | /// [`len`]: Vec::len |
399 | /// [`push`]: Vec::push |
400 | /// [`insert`]: Vec::insert |
401 | /// [`reserve`]: Vec::reserve |
402 | /// [`Vec::with_capacity(n)`]: Vec::with_capacity |
403 | /// [`MaybeUninit`]: core::mem::MaybeUninit |
404 | /// [owned slice]: Box |
405 | /// [`into_boxed_slice`]: Vec::into_boxed_slice |
406 | #[stable (feature = "rust1" , since = "1.0.0" )] |
407 | #[rustc_diagnostic_item = "Vec" ] |
408 | #[rustc_insignificant_dtor ] |
409 | pub struct Vec<T, #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global> { |
410 | buf: RawVec<T, A>, |
411 | len: usize, |
412 | } |
413 | |
414 | //////////////////////////////////////////////////////////////////////////////// |
415 | // Inherent methods |
416 | //////////////////////////////////////////////////////////////////////////////// |
417 | |
418 | impl<T> Vec<T> { |
419 | /// Constructs a new, empty `Vec<T>`. |
420 | /// |
421 | /// The vector will not allocate until elements are pushed onto it. |
422 | /// |
423 | /// # Examples |
424 | /// |
425 | /// ``` |
426 | /// # #![allow (unused_mut)] |
427 | /// let mut vec: Vec<i32> = Vec::new(); |
428 | /// ``` |
429 | #[inline ] |
430 | #[rustc_const_stable (feature = "const_vec_new" , since = "1.39.0" )] |
431 | #[rustc_diagnostic_item = "vec_new" ] |
432 | #[stable (feature = "rust1" , since = "1.0.0" )] |
433 | #[must_use ] |
434 | pub const fn new() -> Self { |
435 | Vec { buf: RawVec::new(), len: 0 } |
436 | } |
437 | |
438 | /// Constructs a new, empty `Vec<T>` with at least the specified capacity. |
439 | /// |
440 | /// The vector will be able to hold at least `capacity` elements without |
441 | /// reallocating. This method is allowed to allocate for more elements than |
442 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
443 | /// |
444 | /// It is important to note that although the returned vector has the |
445 | /// minimum *capacity* specified, the vector will have a zero *length*. For |
446 | /// an explanation of the difference between length and capacity, see |
447 | /// *[Capacity and reallocation]*. |
448 | /// |
449 | /// If it is important to know the exact allocated capacity of a `Vec`, |
450 | /// always use the [`capacity`] method after construction. |
451 | /// |
452 | /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation |
453 | /// and the capacity will always be `usize::MAX`. |
454 | /// |
455 | /// [Capacity and reallocation]: #capacity-and-reallocation |
456 | /// [`capacity`]: Vec::capacity |
457 | /// |
458 | /// # Panics |
459 | /// |
460 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
461 | /// |
462 | /// # Examples |
463 | /// |
464 | /// ``` |
465 | /// let mut vec = Vec::with_capacity(10); |
466 | /// |
467 | /// // The vector contains no items, even though it has capacity for more |
468 | /// assert_eq!(vec.len(), 0); |
469 | /// assert!(vec.capacity() >= 10); |
470 | /// |
471 | /// // These are all done without reallocating... |
472 | /// for i in 0..10 { |
473 | /// vec.push(i); |
474 | /// } |
475 | /// assert_eq!(vec.len(), 10); |
476 | /// assert!(vec.capacity() >= 10); |
477 | /// |
478 | /// // ...but this may make the vector reallocate |
479 | /// vec.push(11); |
480 | /// assert_eq!(vec.len(), 11); |
481 | /// assert!(vec.capacity() >= 11); |
482 | /// |
483 | /// // A vector of a zero-sized type will always over-allocate, since no |
484 | /// // allocation is necessary |
485 | /// let vec_units = Vec::<()>::with_capacity(10); |
486 | /// assert_eq!(vec_units.capacity(), usize::MAX); |
487 | /// ``` |
488 | #[cfg (not(no_global_oom_handling))] |
489 | #[inline ] |
490 | #[stable (feature = "rust1" , since = "1.0.0" )] |
491 | #[must_use ] |
492 | #[rustc_diagnostic_item = "vec_with_capacity" ] |
493 | #[track_caller ] |
494 | pub fn with_capacity(capacity: usize) -> Self { |
495 | Self::with_capacity_in(capacity, Global) |
496 | } |
497 | |
498 | /// Constructs a new, empty `Vec<T>` with at least the specified capacity. |
499 | /// |
500 | /// The vector will be able to hold at least `capacity` elements without |
501 | /// reallocating. This method is allowed to allocate for more elements than |
502 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
503 | /// |
504 | /// # Errors |
505 | /// |
506 | /// Returns an error if the capacity exceeds `isize::MAX` _bytes_, |
507 | /// or if the allocator reports allocation failure. |
508 | #[inline ] |
509 | #[unstable (feature = "try_with_capacity" , issue = "91913" )] |
510 | pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> { |
511 | Self::try_with_capacity_in(capacity, Global) |
512 | } |
513 | |
514 | /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity. |
515 | /// |
516 | /// # Safety |
517 | /// |
518 | /// This is highly unsafe, due to the number of invariants that aren't |
519 | /// checked: |
520 | /// |
521 | /// * `ptr` must have been allocated using the global allocator, such as via |
522 | /// the [`alloc::alloc`] function. |
523 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
524 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
525 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
526 | /// allocated and deallocated with the same layout.) |
527 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
528 | /// to be the same size as the pointer was allocated with. (Because similar to |
529 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
530 | /// * `length` needs to be less than or equal to `capacity`. |
531 | /// * The first `length` values must be properly initialized values of type `T`. |
532 | /// * `capacity` needs to be the capacity that the pointer was allocated with. |
533 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
534 | /// See the safety documentation of [`pointer::offset`]. |
535 | /// |
536 | /// These requirements are always upheld by any `ptr` that has been allocated |
537 | /// via `Vec<T>`. Other allocation sources are allowed if the invariants are |
538 | /// upheld. |
539 | /// |
540 | /// Violating these may cause problems like corrupting the allocator's |
541 | /// internal data structures. For example it is normally **not** safe |
542 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length |
543 | /// `size_t`, doing so is only safe if the array was initially allocated by |
544 | /// a `Vec` or `String`. |
545 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
546 | /// the allocator cares about the alignment, and these two types have different |
547 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
548 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid |
549 | /// these issues, it is often preferable to do casting/transmuting using |
550 | /// [`slice::from_raw_parts`] instead. |
551 | /// |
552 | /// The ownership of `ptr` is effectively transferred to the |
553 | /// `Vec<T>` which may then deallocate, reallocate or change the |
554 | /// contents of memory pointed to by the pointer at will. Ensure |
555 | /// that nothing else uses the pointer after calling this |
556 | /// function. |
557 | /// |
558 | /// [`String`]: crate::string::String |
559 | /// [`alloc::alloc`]: crate::alloc::alloc |
560 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
561 | /// |
562 | /// # Examples |
563 | /// |
564 | /// ``` |
565 | /// use std::ptr; |
566 | /// use std::mem; |
567 | /// |
568 | /// let v = vec![1, 2, 3]; |
569 | /// |
570 | // FIXME Update this when vec_into_raw_parts is stabilized |
571 | /// // Prevent running `v`'s destructor so we are in complete control |
572 | /// // of the allocation. |
573 | /// let mut v = mem::ManuallyDrop::new(v); |
574 | /// |
575 | /// // Pull out the various important pieces of information about `v` |
576 | /// let p = v.as_mut_ptr(); |
577 | /// let len = v.len(); |
578 | /// let cap = v.capacity(); |
579 | /// |
580 | /// unsafe { |
581 | /// // Overwrite memory with 4, 5, 6 |
582 | /// for i in 0..len { |
583 | /// ptr::write(p.add(i), 4 + i); |
584 | /// } |
585 | /// |
586 | /// // Put everything back together into a Vec |
587 | /// let rebuilt = Vec::from_raw_parts(p, len, cap); |
588 | /// assert_eq!(rebuilt, [4, 5, 6]); |
589 | /// } |
590 | /// ``` |
591 | /// |
592 | /// Using memory that was allocated elsewhere: |
593 | /// |
594 | /// ```rust |
595 | /// use std::alloc::{alloc, Layout}; |
596 | /// |
597 | /// fn main() { |
598 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
599 | /// |
600 | /// let vec = unsafe { |
601 | /// let mem = alloc(layout).cast::<u32>(); |
602 | /// if mem.is_null() { |
603 | /// return; |
604 | /// } |
605 | /// |
606 | /// mem.write(1_000_000); |
607 | /// |
608 | /// Vec::from_raw_parts(mem, 1, 16) |
609 | /// }; |
610 | /// |
611 | /// assert_eq!(vec, &[1_000_000]); |
612 | /// assert_eq!(vec.capacity(), 16); |
613 | /// } |
614 | /// ``` |
615 | #[inline ] |
616 | #[stable (feature = "rust1" , since = "1.0.0" )] |
617 | pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { |
618 | unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) } |
619 | } |
620 | |
621 | #[doc (alias = "from_non_null_parts" )] |
622 | /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity. |
623 | /// |
624 | /// # Safety |
625 | /// |
626 | /// This is highly unsafe, due to the number of invariants that aren't |
627 | /// checked: |
628 | /// |
629 | /// * `ptr` must have been allocated using the global allocator, such as via |
630 | /// the [`alloc::alloc`] function. |
631 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
632 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
633 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
634 | /// allocated and deallocated with the same layout.) |
635 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
636 | /// to be the same size as the pointer was allocated with. (Because similar to |
637 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
638 | /// * `length` needs to be less than or equal to `capacity`. |
639 | /// * The first `length` values must be properly initialized values of type `T`. |
640 | /// * `capacity` needs to be the capacity that the pointer was allocated with. |
641 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
642 | /// See the safety documentation of [`pointer::offset`]. |
643 | /// |
644 | /// These requirements are always upheld by any `ptr` that has been allocated |
645 | /// via `Vec<T>`. Other allocation sources are allowed if the invariants are |
646 | /// upheld. |
647 | /// |
648 | /// Violating these may cause problems like corrupting the allocator's |
649 | /// internal data structures. For example it is normally **not** safe |
650 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length |
651 | /// `size_t`, doing so is only safe if the array was initially allocated by |
652 | /// a `Vec` or `String`. |
653 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
654 | /// the allocator cares about the alignment, and these two types have different |
655 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
656 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid |
657 | /// these issues, it is often preferable to do casting/transmuting using |
658 | /// [`NonNull::slice_from_raw_parts`] instead. |
659 | /// |
660 | /// The ownership of `ptr` is effectively transferred to the |
661 | /// `Vec<T>` which may then deallocate, reallocate or change the |
662 | /// contents of memory pointed to by the pointer at will. Ensure |
663 | /// that nothing else uses the pointer after calling this |
664 | /// function. |
665 | /// |
666 | /// [`String`]: crate::string::String |
667 | /// [`alloc::alloc`]: crate::alloc::alloc |
668 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
669 | /// |
670 | /// # Examples |
671 | /// |
672 | /// ``` |
673 | /// #![feature(box_vec_non_null)] |
674 | /// |
675 | /// use std::ptr::NonNull; |
676 | /// use std::mem; |
677 | /// |
678 | /// let v = vec![1, 2, 3]; |
679 | /// |
680 | // FIXME Update this when vec_into_raw_parts is stabilized |
681 | /// // Prevent running `v`'s destructor so we are in complete control |
682 | /// // of the allocation. |
683 | /// let mut v = mem::ManuallyDrop::new(v); |
684 | /// |
685 | /// // Pull out the various important pieces of information about `v` |
686 | /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) }; |
687 | /// let len = v.len(); |
688 | /// let cap = v.capacity(); |
689 | /// |
690 | /// unsafe { |
691 | /// // Overwrite memory with 4, 5, 6 |
692 | /// for i in 0..len { |
693 | /// p.add(i).write(4 + i); |
694 | /// } |
695 | /// |
696 | /// // Put everything back together into a Vec |
697 | /// let rebuilt = Vec::from_parts(p, len, cap); |
698 | /// assert_eq!(rebuilt, [4, 5, 6]); |
699 | /// } |
700 | /// ``` |
701 | /// |
702 | /// Using memory that was allocated elsewhere: |
703 | /// |
704 | /// ```rust |
705 | /// #![feature(box_vec_non_null)] |
706 | /// |
707 | /// use std::alloc::{alloc, Layout}; |
708 | /// use std::ptr::NonNull; |
709 | /// |
710 | /// fn main() { |
711 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
712 | /// |
713 | /// let vec = unsafe { |
714 | /// let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else { |
715 | /// return; |
716 | /// }; |
717 | /// |
718 | /// mem.write(1_000_000); |
719 | /// |
720 | /// Vec::from_parts(mem, 1, 16) |
721 | /// }; |
722 | /// |
723 | /// assert_eq!(vec, &[1_000_000]); |
724 | /// assert_eq!(vec.capacity(), 16); |
725 | /// } |
726 | /// ``` |
727 | #[inline ] |
728 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
729 | pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self { |
730 | unsafe { Self::from_parts_in(ptr, length, capacity, Global) } |
731 | } |
732 | } |
733 | |
734 | impl<T, A: Allocator> Vec<T, A> { |
735 | /// Constructs a new, empty `Vec<T, A>`. |
736 | /// |
737 | /// The vector will not allocate until elements are pushed onto it. |
738 | /// |
739 | /// # Examples |
740 | /// |
741 | /// ``` |
742 | /// #![feature(allocator_api)] |
743 | /// |
744 | /// use std::alloc::System; |
745 | /// |
746 | /// # #[allow (unused_mut)] |
747 | /// let mut vec: Vec<i32, _> = Vec::new_in(System); |
748 | /// ``` |
749 | #[inline ] |
750 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
751 | pub const fn new_in(alloc: A) -> Self { |
752 | Vec { buf: RawVec::new_in(alloc), len: 0 } |
753 | } |
754 | |
755 | /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity |
756 | /// with the provided allocator. |
757 | /// |
758 | /// The vector will be able to hold at least `capacity` elements without |
759 | /// reallocating. This method is allowed to allocate for more elements than |
760 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
761 | /// |
762 | /// It is important to note that although the returned vector has the |
763 | /// minimum *capacity* specified, the vector will have a zero *length*. For |
764 | /// an explanation of the difference between length and capacity, see |
765 | /// *[Capacity and reallocation]*. |
766 | /// |
767 | /// If it is important to know the exact allocated capacity of a `Vec`, |
768 | /// always use the [`capacity`] method after construction. |
769 | /// |
770 | /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation |
771 | /// and the capacity will always be `usize::MAX`. |
772 | /// |
773 | /// [Capacity and reallocation]: #capacity-and-reallocation |
774 | /// [`capacity`]: Vec::capacity |
775 | /// |
776 | /// # Panics |
777 | /// |
778 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
779 | /// |
780 | /// # Examples |
781 | /// |
782 | /// ``` |
783 | /// #![feature(allocator_api)] |
784 | /// |
785 | /// use std::alloc::System; |
786 | /// |
787 | /// let mut vec = Vec::with_capacity_in(10, System); |
788 | /// |
789 | /// // The vector contains no items, even though it has capacity for more |
790 | /// assert_eq!(vec.len(), 0); |
791 | /// assert!(vec.capacity() >= 10); |
792 | /// |
793 | /// // These are all done without reallocating... |
794 | /// for i in 0..10 { |
795 | /// vec.push(i); |
796 | /// } |
797 | /// assert_eq!(vec.len(), 10); |
798 | /// assert!(vec.capacity() >= 10); |
799 | /// |
800 | /// // ...but this may make the vector reallocate |
801 | /// vec.push(11); |
802 | /// assert_eq!(vec.len(), 11); |
803 | /// assert!(vec.capacity() >= 11); |
804 | /// |
805 | /// // A vector of a zero-sized type will always over-allocate, since no |
806 | /// // allocation is necessary |
807 | /// let vec_units = Vec::<(), System>::with_capacity_in(10, System); |
808 | /// assert_eq!(vec_units.capacity(), usize::MAX); |
809 | /// ``` |
810 | #[cfg (not(no_global_oom_handling))] |
811 | #[inline ] |
812 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
813 | #[track_caller ] |
814 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
815 | Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 } |
816 | } |
817 | |
818 | /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity |
819 | /// with the provided allocator. |
820 | /// |
821 | /// The vector will be able to hold at least `capacity` elements without |
822 | /// reallocating. This method is allowed to allocate for more elements than |
823 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
824 | /// |
825 | /// # Errors |
826 | /// |
827 | /// Returns an error if the capacity exceeds `isize::MAX` _bytes_, |
828 | /// or if the allocator reports allocation failure. |
829 | #[inline ] |
830 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
831 | // #[unstable(feature = "try_with_capacity", issue = "91913")] |
832 | pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { |
833 | Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 }) |
834 | } |
835 | |
836 | /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity, |
837 | /// and an allocator. |
838 | /// |
839 | /// # Safety |
840 | /// |
841 | /// This is highly unsafe, due to the number of invariants that aren't |
842 | /// checked: |
843 | /// |
844 | /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`. |
845 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
846 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
847 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
848 | /// allocated and deallocated with the same layout.) |
849 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
850 | /// to be the same size as the pointer was allocated with. (Because similar to |
851 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
852 | /// * `length` needs to be less than or equal to `capacity`. |
853 | /// * The first `length` values must be properly initialized values of type `T`. |
854 | /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with. |
855 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
856 | /// See the safety documentation of [`pointer::offset`]. |
857 | /// |
858 | /// These requirements are always upheld by any `ptr` that has been allocated |
859 | /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are |
860 | /// upheld. |
861 | /// |
862 | /// Violating these may cause problems like corrupting the allocator's |
863 | /// internal data structures. For example it is **not** safe |
864 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`. |
865 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
866 | /// the allocator cares about the alignment, and these two types have different |
867 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
868 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. |
869 | /// |
870 | /// The ownership of `ptr` is effectively transferred to the |
871 | /// `Vec<T>` which may then deallocate, reallocate or change the |
872 | /// contents of memory pointed to by the pointer at will. Ensure |
873 | /// that nothing else uses the pointer after calling this |
874 | /// function. |
875 | /// |
876 | /// [`String`]: crate::string::String |
877 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
878 | /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory |
879 | /// [*fit*]: crate::alloc::Allocator#memory-fitting |
880 | /// |
881 | /// # Examples |
882 | /// |
883 | /// ``` |
884 | /// #![feature(allocator_api)] |
885 | /// |
886 | /// use std::alloc::System; |
887 | /// |
888 | /// use std::ptr; |
889 | /// use std::mem; |
890 | /// |
891 | /// let mut v = Vec::with_capacity_in(3, System); |
892 | /// v.push(1); |
893 | /// v.push(2); |
894 | /// v.push(3); |
895 | /// |
896 | // FIXME Update this when vec_into_raw_parts is stabilized |
897 | /// // Prevent running `v`'s destructor so we are in complete control |
898 | /// // of the allocation. |
899 | /// let mut v = mem::ManuallyDrop::new(v); |
900 | /// |
901 | /// // Pull out the various important pieces of information about `v` |
902 | /// let p = v.as_mut_ptr(); |
903 | /// let len = v.len(); |
904 | /// let cap = v.capacity(); |
905 | /// let alloc = v.allocator(); |
906 | /// |
907 | /// unsafe { |
908 | /// // Overwrite memory with 4, 5, 6 |
909 | /// for i in 0..len { |
910 | /// ptr::write(p.add(i), 4 + i); |
911 | /// } |
912 | /// |
913 | /// // Put everything back together into a Vec |
914 | /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone()); |
915 | /// assert_eq!(rebuilt, [4, 5, 6]); |
916 | /// } |
917 | /// ``` |
918 | /// |
919 | /// Using memory that was allocated elsewhere: |
920 | /// |
921 | /// ```rust |
922 | /// #![feature(allocator_api)] |
923 | /// |
924 | /// use std::alloc::{AllocError, Allocator, Global, Layout}; |
925 | /// |
926 | /// fn main() { |
927 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
928 | /// |
929 | /// let vec = unsafe { |
930 | /// let mem = match Global.allocate(layout) { |
931 | /// Ok(mem) => mem.cast::<u32>().as_ptr(), |
932 | /// Err(AllocError) => return, |
933 | /// }; |
934 | /// |
935 | /// mem.write(1_000_000); |
936 | /// |
937 | /// Vec::from_raw_parts_in(mem, 1, 16, Global) |
938 | /// }; |
939 | /// |
940 | /// assert_eq!(vec, &[1_000_000]); |
941 | /// assert_eq!(vec.capacity(), 16); |
942 | /// } |
943 | /// ``` |
944 | #[inline ] |
945 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
946 | pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self { |
947 | unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } } |
948 | } |
949 | |
950 | #[doc (alias = "from_non_null_parts_in" )] |
951 | /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity, |
952 | /// and an allocator. |
953 | /// |
954 | /// # Safety |
955 | /// |
956 | /// This is highly unsafe, due to the number of invariants that aren't |
957 | /// checked: |
958 | /// |
959 | /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`. |
960 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
961 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
962 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
963 | /// allocated and deallocated with the same layout.) |
964 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
965 | /// to be the same size as the pointer was allocated with. (Because similar to |
966 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
967 | /// * `length` needs to be less than or equal to `capacity`. |
968 | /// * The first `length` values must be properly initialized values of type `T`. |
969 | /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with. |
970 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
971 | /// See the safety documentation of [`pointer::offset`]. |
972 | /// |
973 | /// These requirements are always upheld by any `ptr` that has been allocated |
974 | /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are |
975 | /// upheld. |
976 | /// |
977 | /// Violating these may cause problems like corrupting the allocator's |
978 | /// internal data structures. For example it is **not** safe |
979 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`. |
980 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
981 | /// the allocator cares about the alignment, and these two types have different |
982 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
983 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. |
984 | /// |
985 | /// The ownership of `ptr` is effectively transferred to the |
986 | /// `Vec<T>` which may then deallocate, reallocate or change the |
987 | /// contents of memory pointed to by the pointer at will. Ensure |
988 | /// that nothing else uses the pointer after calling this |
989 | /// function. |
990 | /// |
991 | /// [`String`]: crate::string::String |
992 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
993 | /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory |
994 | /// [*fit*]: crate::alloc::Allocator#memory-fitting |
995 | /// |
996 | /// # Examples |
997 | /// |
998 | /// ``` |
999 | /// #![feature(allocator_api, box_vec_non_null)] |
1000 | /// |
1001 | /// use std::alloc::System; |
1002 | /// |
1003 | /// use std::ptr::NonNull; |
1004 | /// use std::mem; |
1005 | /// |
1006 | /// let mut v = Vec::with_capacity_in(3, System); |
1007 | /// v.push(1); |
1008 | /// v.push(2); |
1009 | /// v.push(3); |
1010 | /// |
1011 | // FIXME Update this when vec_into_raw_parts is stabilized |
1012 | /// // Prevent running `v`'s destructor so we are in complete control |
1013 | /// // of the allocation. |
1014 | /// let mut v = mem::ManuallyDrop::new(v); |
1015 | /// |
1016 | /// // Pull out the various important pieces of information about `v` |
1017 | /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) }; |
1018 | /// let len = v.len(); |
1019 | /// let cap = v.capacity(); |
1020 | /// let alloc = v.allocator(); |
1021 | /// |
1022 | /// unsafe { |
1023 | /// // Overwrite memory with 4, 5, 6 |
1024 | /// for i in 0..len { |
1025 | /// p.add(i).write(4 + i); |
1026 | /// } |
1027 | /// |
1028 | /// // Put everything back together into a Vec |
1029 | /// let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone()); |
1030 | /// assert_eq!(rebuilt, [4, 5, 6]); |
1031 | /// } |
1032 | /// ``` |
1033 | /// |
1034 | /// Using memory that was allocated elsewhere: |
1035 | /// |
1036 | /// ```rust |
1037 | /// #![feature(allocator_api, box_vec_non_null)] |
1038 | /// |
1039 | /// use std::alloc::{AllocError, Allocator, Global, Layout}; |
1040 | /// |
1041 | /// fn main() { |
1042 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
1043 | /// |
1044 | /// let vec = unsafe { |
1045 | /// let mem = match Global.allocate(layout) { |
1046 | /// Ok(mem) => mem.cast::<u32>(), |
1047 | /// Err(AllocError) => return, |
1048 | /// }; |
1049 | /// |
1050 | /// mem.write(1_000_000); |
1051 | /// |
1052 | /// Vec::from_parts_in(mem, 1, 16, Global) |
1053 | /// }; |
1054 | /// |
1055 | /// assert_eq!(vec, &[1_000_000]); |
1056 | /// assert_eq!(vec.capacity(), 16); |
1057 | /// } |
1058 | /// ``` |
1059 | #[inline ] |
1060 | #[unstable (feature = "allocator_api" , reason = "new API" , issue = "32838" )] |
1061 | // #[unstable(feature = "box_vec_non_null", issue = "130364")] |
1062 | pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self { |
1063 | unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } } |
1064 | } |
1065 | |
1066 | /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`. |
1067 | /// |
1068 | /// Returns the raw pointer to the underlying data, the length of |
1069 | /// the vector (in elements), and the allocated capacity of the |
1070 | /// data (in elements). These are the same arguments in the same |
1071 | /// order as the arguments to [`from_raw_parts`]. |
1072 | /// |
1073 | /// After calling this function, the caller is responsible for the |
1074 | /// memory previously managed by the `Vec`. The only way to do |
1075 | /// this is to convert the raw pointer, length, and capacity back |
1076 | /// into a `Vec` with the [`from_raw_parts`] function, allowing |
1077 | /// the destructor to perform the cleanup. |
1078 | /// |
1079 | /// [`from_raw_parts`]: Vec::from_raw_parts |
1080 | /// |
1081 | /// # Examples |
1082 | /// |
1083 | /// ``` |
1084 | /// #![feature(vec_into_raw_parts)] |
1085 | /// let v: Vec<i32> = vec![-1, 0, 1]; |
1086 | /// |
1087 | /// let (ptr, len, cap) = v.into_raw_parts(); |
1088 | /// |
1089 | /// let rebuilt = unsafe { |
1090 | /// // We can now make changes to the components, such as |
1091 | /// // transmuting the raw pointer to a compatible type. |
1092 | /// let ptr = ptr as *mut u32; |
1093 | /// |
1094 | /// Vec::from_raw_parts(ptr, len, cap) |
1095 | /// }; |
1096 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
1097 | /// ``` |
1098 | #[must_use = "losing the pointer will leak memory" ] |
1099 | #[unstable (feature = "vec_into_raw_parts" , reason = "new API" , issue = "65816" )] |
1100 | pub fn into_raw_parts(self) -> (*mut T, usize, usize) { |
1101 | let mut me = ManuallyDrop::new(self); |
1102 | (me.as_mut_ptr(), me.len(), me.capacity()) |
1103 | } |
1104 | |
1105 | #[doc (alias = "into_non_null_parts" )] |
1106 | /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`. |
1107 | /// |
1108 | /// Returns the `NonNull` pointer to the underlying data, the length of |
1109 | /// the vector (in elements), and the allocated capacity of the |
1110 | /// data (in elements). These are the same arguments in the same |
1111 | /// order as the arguments to [`from_parts`]. |
1112 | /// |
1113 | /// After calling this function, the caller is responsible for the |
1114 | /// memory previously managed by the `Vec`. The only way to do |
1115 | /// this is to convert the `NonNull` pointer, length, and capacity back |
1116 | /// into a `Vec` with the [`from_parts`] function, allowing |
1117 | /// the destructor to perform the cleanup. |
1118 | /// |
1119 | /// [`from_parts`]: Vec::from_parts |
1120 | /// |
1121 | /// # Examples |
1122 | /// |
1123 | /// ``` |
1124 | /// #![feature(vec_into_raw_parts, box_vec_non_null)] |
1125 | /// |
1126 | /// let v: Vec<i32> = vec![-1, 0, 1]; |
1127 | /// |
1128 | /// let (ptr, len, cap) = v.into_parts(); |
1129 | /// |
1130 | /// let rebuilt = unsafe { |
1131 | /// // We can now make changes to the components, such as |
1132 | /// // transmuting the raw pointer to a compatible type. |
1133 | /// let ptr = ptr.cast::<u32>(); |
1134 | /// |
1135 | /// Vec::from_parts(ptr, len, cap) |
1136 | /// }; |
1137 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
1138 | /// ``` |
1139 | #[must_use = "losing the pointer will leak memory" ] |
1140 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
1141 | // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] |
1142 | pub fn into_parts(self) -> (NonNull<T>, usize, usize) { |
1143 | let (ptr, len, capacity) = self.into_raw_parts(); |
1144 | // SAFETY: A `Vec` always has a non-null pointer. |
1145 | (unsafe { NonNull::new_unchecked(ptr) }, len, capacity) |
1146 | } |
1147 | |
1148 | /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`. |
1149 | /// |
1150 | /// Returns the raw pointer to the underlying data, the length of the vector (in elements), |
1151 | /// the allocated capacity of the data (in elements), and the allocator. These are the same |
1152 | /// arguments in the same order as the arguments to [`from_raw_parts_in`]. |
1153 | /// |
1154 | /// After calling this function, the caller is responsible for the |
1155 | /// memory previously managed by the `Vec`. The only way to do |
1156 | /// this is to convert the raw pointer, length, and capacity back |
1157 | /// into a `Vec` with the [`from_raw_parts_in`] function, allowing |
1158 | /// the destructor to perform the cleanup. |
1159 | /// |
1160 | /// [`from_raw_parts_in`]: Vec::from_raw_parts_in |
1161 | /// |
1162 | /// # Examples |
1163 | /// |
1164 | /// ``` |
1165 | /// #![feature(allocator_api, vec_into_raw_parts)] |
1166 | /// |
1167 | /// use std::alloc::System; |
1168 | /// |
1169 | /// let mut v: Vec<i32, System> = Vec::new_in(System); |
1170 | /// v.push(-1); |
1171 | /// v.push(0); |
1172 | /// v.push(1); |
1173 | /// |
1174 | /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); |
1175 | /// |
1176 | /// let rebuilt = unsafe { |
1177 | /// // We can now make changes to the components, such as |
1178 | /// // transmuting the raw pointer to a compatible type. |
1179 | /// let ptr = ptr as *mut u32; |
1180 | /// |
1181 | /// Vec::from_raw_parts_in(ptr, len, cap, alloc) |
1182 | /// }; |
1183 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
1184 | /// ``` |
1185 | #[must_use = "losing the pointer will leak memory" ] |
1186 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1187 | // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] |
1188 | pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) { |
1189 | let mut me = ManuallyDrop::new(self); |
1190 | let len = me.len(); |
1191 | let capacity = me.capacity(); |
1192 | let ptr = me.as_mut_ptr(); |
1193 | let alloc = unsafe { ptr::read(me.allocator()) }; |
1194 | (ptr, len, capacity, alloc) |
1195 | } |
1196 | |
1197 | #[doc (alias = "into_non_null_parts_with_alloc" )] |
1198 | /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`. |
1199 | /// |
1200 | /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements), |
1201 | /// the allocated capacity of the data (in elements), and the allocator. These are the same |
1202 | /// arguments in the same order as the arguments to [`from_parts_in`]. |
1203 | /// |
1204 | /// After calling this function, the caller is responsible for the |
1205 | /// memory previously managed by the `Vec`. The only way to do |
1206 | /// this is to convert the `NonNull` pointer, length, and capacity back |
1207 | /// into a `Vec` with the [`from_parts_in`] function, allowing |
1208 | /// the destructor to perform the cleanup. |
1209 | /// |
1210 | /// [`from_parts_in`]: Vec::from_parts_in |
1211 | /// |
1212 | /// # Examples |
1213 | /// |
1214 | /// ``` |
1215 | /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)] |
1216 | /// |
1217 | /// use std::alloc::System; |
1218 | /// |
1219 | /// let mut v: Vec<i32, System> = Vec::new_in(System); |
1220 | /// v.push(-1); |
1221 | /// v.push(0); |
1222 | /// v.push(1); |
1223 | /// |
1224 | /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc(); |
1225 | /// |
1226 | /// let rebuilt = unsafe { |
1227 | /// // We can now make changes to the components, such as |
1228 | /// // transmuting the raw pointer to a compatible type. |
1229 | /// let ptr = ptr.cast::<u32>(); |
1230 | /// |
1231 | /// Vec::from_parts_in(ptr, len, cap, alloc) |
1232 | /// }; |
1233 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
1234 | /// ``` |
1235 | #[must_use = "losing the pointer will leak memory" ] |
1236 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1237 | // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] |
1238 | // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] |
1239 | pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) { |
1240 | let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc(); |
1241 | // SAFETY: A `Vec` always has a non-null pointer. |
1242 | (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc) |
1243 | } |
1244 | |
1245 | /// Returns the total number of elements the vector can hold without |
1246 | /// reallocating. |
1247 | /// |
1248 | /// # Examples |
1249 | /// |
1250 | /// ``` |
1251 | /// let mut vec: Vec<i32> = Vec::with_capacity(10); |
1252 | /// vec.push(42); |
1253 | /// assert!(vec.capacity() >= 10); |
1254 | /// ``` |
1255 | /// |
1256 | /// A vector with zero-sized elements will always have a capacity of usize::MAX: |
1257 | /// |
1258 | /// ``` |
1259 | /// #[derive(Clone)] |
1260 | /// struct ZeroSized; |
1261 | /// |
1262 | /// fn main() { |
1263 | /// assert_eq!(std::mem::size_of::<ZeroSized>(), 0); |
1264 | /// let v = vec![ZeroSized; 0]; |
1265 | /// assert_eq!(v.capacity(), usize::MAX); |
1266 | /// } |
1267 | /// ``` |
1268 | #[inline ] |
1269 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1270 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
1271 | pub const fn capacity(&self) -> usize { |
1272 | self.buf.capacity() |
1273 | } |
1274 | |
1275 | /// Reserves capacity for at least `additional` more elements to be inserted |
1276 | /// in the given `Vec<T>`. The collection may reserve more space to |
1277 | /// speculatively avoid frequent reallocations. After calling `reserve`, |
1278 | /// capacity will be greater than or equal to `self.len() + additional`. |
1279 | /// Does nothing if capacity is already sufficient. |
1280 | /// |
1281 | /// # Panics |
1282 | /// |
1283 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
1284 | /// |
1285 | /// # Examples |
1286 | /// |
1287 | /// ``` |
1288 | /// let mut vec = vec![1]; |
1289 | /// vec.reserve(10); |
1290 | /// assert!(vec.capacity() >= 11); |
1291 | /// ``` |
1292 | #[cfg (not(no_global_oom_handling))] |
1293 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1294 | #[track_caller ] |
1295 | #[rustc_diagnostic_item = "vec_reserve" ] |
1296 | pub fn reserve(&mut self, additional: usize) { |
1297 | self.buf.reserve(self.len, additional); |
1298 | } |
1299 | |
1300 | /// Reserves the minimum capacity for at least `additional` more elements to |
1301 | /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not |
1302 | /// deliberately over-allocate to speculatively avoid frequent allocations. |
1303 | /// After calling `reserve_exact`, capacity will be greater than or equal to |
1304 | /// `self.len() + additional`. Does nothing if the capacity is already |
1305 | /// sufficient. |
1306 | /// |
1307 | /// Note that the allocator may give the collection more space than it |
1308 | /// requests. Therefore, capacity can not be relied upon to be precisely |
1309 | /// minimal. Prefer [`reserve`] if future insertions are expected. |
1310 | /// |
1311 | /// [`reserve`]: Vec::reserve |
1312 | /// |
1313 | /// # Panics |
1314 | /// |
1315 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
1316 | /// |
1317 | /// # Examples |
1318 | /// |
1319 | /// ``` |
1320 | /// let mut vec = vec![1]; |
1321 | /// vec.reserve_exact(10); |
1322 | /// assert!(vec.capacity() >= 11); |
1323 | /// ``` |
1324 | #[cfg (not(no_global_oom_handling))] |
1325 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1326 | #[track_caller ] |
1327 | pub fn reserve_exact(&mut self, additional: usize) { |
1328 | self.buf.reserve_exact(self.len, additional); |
1329 | } |
1330 | |
1331 | /// Tries to reserve capacity for at least `additional` more elements to be inserted |
1332 | /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid |
1333 | /// frequent reallocations. After calling `try_reserve`, capacity will be |
1334 | /// greater than or equal to `self.len() + additional` if it returns |
1335 | /// `Ok(())`. Does nothing if capacity is already sufficient. This method |
1336 | /// preserves the contents even if an error occurs. |
1337 | /// |
1338 | /// # Errors |
1339 | /// |
1340 | /// If the capacity overflows, or the allocator reports a failure, then an error |
1341 | /// is returned. |
1342 | /// |
1343 | /// # Examples |
1344 | /// |
1345 | /// ``` |
1346 | /// use std::collections::TryReserveError; |
1347 | /// |
1348 | /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { |
1349 | /// let mut output = Vec::new(); |
1350 | /// |
1351 | /// // Pre-reserve the memory, exiting if we can't |
1352 | /// output.try_reserve(data.len())?; |
1353 | /// |
1354 | /// // Now we know this can't OOM in the middle of our complex work |
1355 | /// output.extend(data.iter().map(|&val| { |
1356 | /// val * 2 + 5 // very complicated |
1357 | /// })); |
1358 | /// |
1359 | /// Ok(output) |
1360 | /// } |
1361 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" ); |
1362 | /// ``` |
1363 | #[stable (feature = "try_reserve" , since = "1.57.0" )] |
1364 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
1365 | self.buf.try_reserve(self.len, additional) |
1366 | } |
1367 | |
1368 | /// Tries to reserve the minimum capacity for at least `additional` |
1369 | /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`], |
1370 | /// this will not deliberately over-allocate to speculatively avoid frequent |
1371 | /// allocations. After calling `try_reserve_exact`, capacity will be greater |
1372 | /// than or equal to `self.len() + additional` if it returns `Ok(())`. |
1373 | /// Does nothing if the capacity is already sufficient. |
1374 | /// |
1375 | /// Note that the allocator may give the collection more space than it |
1376 | /// requests. Therefore, capacity can not be relied upon to be precisely |
1377 | /// minimal. Prefer [`try_reserve`] if future insertions are expected. |
1378 | /// |
1379 | /// [`try_reserve`]: Vec::try_reserve |
1380 | /// |
1381 | /// # Errors |
1382 | /// |
1383 | /// If the capacity overflows, or the allocator reports a failure, then an error |
1384 | /// is returned. |
1385 | /// |
1386 | /// # Examples |
1387 | /// |
1388 | /// ``` |
1389 | /// use std::collections::TryReserveError; |
1390 | /// |
1391 | /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { |
1392 | /// let mut output = Vec::new(); |
1393 | /// |
1394 | /// // Pre-reserve the memory, exiting if we can't |
1395 | /// output.try_reserve_exact(data.len())?; |
1396 | /// |
1397 | /// // Now we know this can't OOM in the middle of our complex work |
1398 | /// output.extend(data.iter().map(|&val| { |
1399 | /// val * 2 + 5 // very complicated |
1400 | /// })); |
1401 | /// |
1402 | /// Ok(output) |
1403 | /// } |
1404 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" ); |
1405 | /// ``` |
1406 | #[stable (feature = "try_reserve" , since = "1.57.0" )] |
1407 | pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
1408 | self.buf.try_reserve_exact(self.len, additional) |
1409 | } |
1410 | |
1411 | /// Shrinks the capacity of the vector as much as possible. |
1412 | /// |
1413 | /// The behavior of this method depends on the allocator, which may either shrink the vector |
1414 | /// in-place or reallocate. The resulting vector might still have some excess capacity, just as |
1415 | /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details. |
1416 | /// |
1417 | /// [`with_capacity`]: Vec::with_capacity |
1418 | /// |
1419 | /// # Examples |
1420 | /// |
1421 | /// ``` |
1422 | /// let mut vec = Vec::with_capacity(10); |
1423 | /// vec.extend([1, 2, 3]); |
1424 | /// assert!(vec.capacity() >= 10); |
1425 | /// vec.shrink_to_fit(); |
1426 | /// assert!(vec.capacity() >= 3); |
1427 | /// ``` |
1428 | #[cfg (not(no_global_oom_handling))] |
1429 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1430 | #[track_caller ] |
1431 | #[inline ] |
1432 | pub fn shrink_to_fit(&mut self) { |
1433 | // The capacity is never less than the length, and there's nothing to do when |
1434 | // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit` |
1435 | // by only calling it with a greater capacity. |
1436 | if self.capacity() > self.len { |
1437 | self.buf.shrink_to_fit(self.len); |
1438 | } |
1439 | } |
1440 | |
1441 | /// Shrinks the capacity of the vector with a lower bound. |
1442 | /// |
1443 | /// The capacity will remain at least as large as both the length |
1444 | /// and the supplied value. |
1445 | /// |
1446 | /// If the current capacity is less than the lower limit, this is a no-op. |
1447 | /// |
1448 | /// # Examples |
1449 | /// |
1450 | /// ``` |
1451 | /// let mut vec = Vec::with_capacity(10); |
1452 | /// vec.extend([1, 2, 3]); |
1453 | /// assert!(vec.capacity() >= 10); |
1454 | /// vec.shrink_to(4); |
1455 | /// assert!(vec.capacity() >= 4); |
1456 | /// vec.shrink_to(0); |
1457 | /// assert!(vec.capacity() >= 3); |
1458 | /// ``` |
1459 | #[cfg (not(no_global_oom_handling))] |
1460 | #[stable (feature = "shrink_to" , since = "1.56.0" )] |
1461 | #[track_caller ] |
1462 | pub fn shrink_to(&mut self, min_capacity: usize) { |
1463 | if self.capacity() > min_capacity { |
1464 | self.buf.shrink_to_fit(cmp::max(self.len, min_capacity)); |
1465 | } |
1466 | } |
1467 | |
1468 | /// Converts the vector into [`Box<[T]>`][owned slice]. |
1469 | /// |
1470 | /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`]. |
1471 | /// |
1472 | /// [owned slice]: Box |
1473 | /// [`shrink_to_fit`]: Vec::shrink_to_fit |
1474 | /// |
1475 | /// # Examples |
1476 | /// |
1477 | /// ``` |
1478 | /// let v = vec![1, 2, 3]; |
1479 | /// |
1480 | /// let slice = v.into_boxed_slice(); |
1481 | /// ``` |
1482 | /// |
1483 | /// Any excess capacity is removed: |
1484 | /// |
1485 | /// ``` |
1486 | /// let mut vec = Vec::with_capacity(10); |
1487 | /// vec.extend([1, 2, 3]); |
1488 | /// |
1489 | /// assert!(vec.capacity() >= 10); |
1490 | /// let slice = vec.into_boxed_slice(); |
1491 | /// assert_eq!(slice.into_vec().capacity(), 3); |
1492 | /// ``` |
1493 | #[cfg (not(no_global_oom_handling))] |
1494 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1495 | #[track_caller ] |
1496 | pub fn into_boxed_slice(mut self) -> Box<[T], A> { |
1497 | unsafe { |
1498 | self.shrink_to_fit(); |
1499 | let me = ManuallyDrop::new(self); |
1500 | let buf = ptr::read(&me.buf); |
1501 | let len = me.len(); |
1502 | buf.into_box(len).assume_init() |
1503 | } |
1504 | } |
1505 | |
1506 | /// Shortens the vector, keeping the first `len` elements and dropping |
1507 | /// the rest. |
1508 | /// |
1509 | /// If `len` is greater or equal to the vector's current length, this has |
1510 | /// no effect. |
1511 | /// |
1512 | /// The [`drain`] method can emulate `truncate`, but causes the excess |
1513 | /// elements to be returned instead of dropped. |
1514 | /// |
1515 | /// Note that this method has no effect on the allocated capacity |
1516 | /// of the vector. |
1517 | /// |
1518 | /// # Examples |
1519 | /// |
1520 | /// Truncating a five element vector to two elements: |
1521 | /// |
1522 | /// ``` |
1523 | /// let mut vec = vec![1, 2, 3, 4, 5]; |
1524 | /// vec.truncate(2); |
1525 | /// assert_eq!(vec, [1, 2]); |
1526 | /// ``` |
1527 | /// |
1528 | /// No truncation occurs when `len` is greater than the vector's current |
1529 | /// length: |
1530 | /// |
1531 | /// ``` |
1532 | /// let mut vec = vec![1, 2, 3]; |
1533 | /// vec.truncate(8); |
1534 | /// assert_eq!(vec, [1, 2, 3]); |
1535 | /// ``` |
1536 | /// |
1537 | /// Truncating when `len == 0` is equivalent to calling the [`clear`] |
1538 | /// method. |
1539 | /// |
1540 | /// ``` |
1541 | /// let mut vec = vec![1, 2, 3]; |
1542 | /// vec.truncate(0); |
1543 | /// assert_eq!(vec, []); |
1544 | /// ``` |
1545 | /// |
1546 | /// [`clear`]: Vec::clear |
1547 | /// [`drain`]: Vec::drain |
1548 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1549 | pub fn truncate(&mut self, len: usize) { |
1550 | // This is safe because: |
1551 | // |
1552 | // * the slice passed to `drop_in_place` is valid; the `len > self.len` |
1553 | // case avoids creating an invalid slice, and |
1554 | // * the `len` of the vector is shrunk before calling `drop_in_place`, |
1555 | // such that no value will be dropped twice in case `drop_in_place` |
1556 | // were to panic once (if it panics twice, the program aborts). |
1557 | unsafe { |
1558 | // Note: It's intentional that this is `>` and not `>=`. |
1559 | // Changing it to `>=` has negative performance |
1560 | // implications in some cases. See #78884 for more. |
1561 | if len > self.len { |
1562 | return; |
1563 | } |
1564 | let remaining_len = self.len - len; |
1565 | let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len); |
1566 | self.len = len; |
1567 | ptr::drop_in_place(s); |
1568 | } |
1569 | } |
1570 | |
1571 | /// Extracts a slice containing the entire vector. |
1572 | /// |
1573 | /// Equivalent to `&s[..]`. |
1574 | /// |
1575 | /// # Examples |
1576 | /// |
1577 | /// ``` |
1578 | /// use std::io::{self, Write}; |
1579 | /// let buffer = vec![1, 2, 3, 5, 8]; |
1580 | /// io::sink().write(buffer.as_slice()).unwrap(); |
1581 | /// ``` |
1582 | #[inline ] |
1583 | #[stable (feature = "vec_as_slice" , since = "1.7.0" )] |
1584 | #[rustc_diagnostic_item = "vec_as_slice" ] |
1585 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
1586 | pub const fn as_slice(&self) -> &[T] { |
1587 | // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size |
1588 | // `len` containing properly-initialized `T`s. Data must not be mutated for the returned |
1589 | // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not |
1590 | // "wrap" through overflowing memory addresses. |
1591 | // |
1592 | // * Vec API guarantees that self.buf: |
1593 | // * contains only properly-initialized items within 0..len |
1594 | // * is aligned, contiguous, and valid for `len` reads |
1595 | // * obeys size and address-wrapping constraints |
1596 | // |
1597 | // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow- |
1598 | // check ensures that it is not possible to mutably alias `self.buf` within the |
1599 | // returned lifetime. |
1600 | unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } |
1601 | } |
1602 | |
1603 | /// Extracts a mutable slice of the entire vector. |
1604 | /// |
1605 | /// Equivalent to `&mut s[..]`. |
1606 | /// |
1607 | /// # Examples |
1608 | /// |
1609 | /// ``` |
1610 | /// use std::io::{self, Read}; |
1611 | /// let mut buffer = vec![0; 3]; |
1612 | /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap(); |
1613 | /// ``` |
1614 | #[inline ] |
1615 | #[stable (feature = "vec_as_slice" , since = "1.7.0" )] |
1616 | #[rustc_diagnostic_item = "vec_as_mut_slice" ] |
1617 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
1618 | pub const fn as_mut_slice(&mut self) -> &mut [T] { |
1619 | // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of |
1620 | // size `len` containing properly-initialized `T`s. Data must not be accessed through any |
1621 | // other pointer for the returned lifetime. Further, `len * size_of::<T>` <= |
1622 | // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses. |
1623 | // |
1624 | // * Vec API guarantees that self.buf: |
1625 | // * contains only properly-initialized items within 0..len |
1626 | // * is aligned, contiguous, and valid for `len` reads |
1627 | // * obeys size and address-wrapping constraints |
1628 | // |
1629 | // * We only construct references to `self.buf` through `&self` and `&mut self` methods; |
1630 | // borrow-check ensures that it is not possible to construct a reference to `self.buf` |
1631 | // within the returned lifetime. |
1632 | unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } |
1633 | } |
1634 | |
1635 | /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer |
1636 | /// valid for zero sized reads if the vector didn't allocate. |
1637 | /// |
1638 | /// The caller must ensure that the vector outlives the pointer this |
1639 | /// function returns, or else it will end up dangling. |
1640 | /// Modifying the vector may cause its buffer to be reallocated, |
1641 | /// which would also make any pointers to it invalid. |
1642 | /// |
1643 | /// The caller must also ensure that the memory the pointer (non-transitively) points to |
1644 | /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer |
1645 | /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`]. |
1646 | /// |
1647 | /// This method guarantees that for the purpose of the aliasing model, this method |
1648 | /// does not materialize a reference to the underlying slice, and thus the returned pointer |
1649 | /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`], |
1650 | /// and [`as_non_null`]. |
1651 | /// Note that calling other methods that materialize mutable references to the slice, |
1652 | /// or mutable references to specific elements you are planning on accessing through this pointer, |
1653 | /// as well as writing to those elements, may still invalidate this pointer. |
1654 | /// See the second example below for how this guarantee can be used. |
1655 | /// |
1656 | /// |
1657 | /// # Examples |
1658 | /// |
1659 | /// ``` |
1660 | /// let x = vec![1, 2, 4]; |
1661 | /// let x_ptr = x.as_ptr(); |
1662 | /// |
1663 | /// unsafe { |
1664 | /// for i in 0..x.len() { |
1665 | /// assert_eq!(*x_ptr.add(i), 1 << i); |
1666 | /// } |
1667 | /// } |
1668 | /// ``` |
1669 | /// |
1670 | /// Due to the aliasing guarantee, the following code is legal: |
1671 | /// |
1672 | /// ```rust |
1673 | /// unsafe { |
1674 | /// let mut v = vec![0, 1, 2]; |
1675 | /// let ptr1 = v.as_ptr(); |
1676 | /// let _ = ptr1.read(); |
1677 | /// let ptr2 = v.as_mut_ptr().offset(2); |
1678 | /// ptr2.write(2); |
1679 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1` |
1680 | /// // because it mutated a different element: |
1681 | /// let _ = ptr1.read(); |
1682 | /// } |
1683 | /// ``` |
1684 | /// |
1685 | /// [`as_mut_ptr`]: Vec::as_mut_ptr |
1686 | /// [`as_ptr`]: Vec::as_ptr |
1687 | /// [`as_non_null`]: Vec::as_non_null |
1688 | #[stable (feature = "vec_as_ptr" , since = "1.37.0" )] |
1689 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
1690 | #[rustc_never_returns_null_ptr ] |
1691 | #[rustc_as_ptr] |
1692 | #[inline ] |
1693 | pub const fn as_ptr(&self) -> *const T { |
1694 | // We shadow the slice method of the same name to avoid going through |
1695 | // `deref`, which creates an intermediate reference. |
1696 | self.buf.ptr() |
1697 | } |
1698 | |
1699 | /// Returns a raw mutable pointer to the vector's buffer, or a dangling |
1700 | /// raw pointer valid for zero sized reads if the vector didn't allocate. |
1701 | /// |
1702 | /// The caller must ensure that the vector outlives the pointer this |
1703 | /// function returns, or else it will end up dangling. |
1704 | /// Modifying the vector may cause its buffer to be reallocated, |
1705 | /// which would also make any pointers to it invalid. |
1706 | /// |
1707 | /// This method guarantees that for the purpose of the aliasing model, this method |
1708 | /// does not materialize a reference to the underlying slice, and thus the returned pointer |
1709 | /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`], |
1710 | /// and [`as_non_null`]. |
1711 | /// Note that calling other methods that materialize references to the slice, |
1712 | /// or references to specific elements you are planning on accessing through this pointer, |
1713 | /// may still invalidate this pointer. |
1714 | /// See the second example below for how this guarantee can be used. |
1715 | /// |
1716 | /// # Examples |
1717 | /// |
1718 | /// ``` |
1719 | /// // Allocate vector big enough for 4 elements. |
1720 | /// let size = 4; |
1721 | /// let mut x: Vec<i32> = Vec::with_capacity(size); |
1722 | /// let x_ptr = x.as_mut_ptr(); |
1723 | /// |
1724 | /// // Initialize elements via raw pointer writes, then set length. |
1725 | /// unsafe { |
1726 | /// for i in 0..size { |
1727 | /// *x_ptr.add(i) = i as i32; |
1728 | /// } |
1729 | /// x.set_len(size); |
1730 | /// } |
1731 | /// assert_eq!(&*x, &[0, 1, 2, 3]); |
1732 | /// ``` |
1733 | /// |
1734 | /// Due to the aliasing guarantee, the following code is legal: |
1735 | /// |
1736 | /// ```rust |
1737 | /// unsafe { |
1738 | /// let mut v = vec![0]; |
1739 | /// let ptr1 = v.as_mut_ptr(); |
1740 | /// ptr1.write(1); |
1741 | /// let ptr2 = v.as_mut_ptr(); |
1742 | /// ptr2.write(2); |
1743 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`: |
1744 | /// ptr1.write(3); |
1745 | /// } |
1746 | /// ``` |
1747 | /// |
1748 | /// [`as_mut_ptr`]: Vec::as_mut_ptr |
1749 | /// [`as_ptr`]: Vec::as_ptr |
1750 | /// [`as_non_null`]: Vec::as_non_null |
1751 | #[stable (feature = "vec_as_ptr" , since = "1.37.0" )] |
1752 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
1753 | #[rustc_never_returns_null_ptr ] |
1754 | #[rustc_as_ptr] |
1755 | #[inline ] |
1756 | pub const fn as_mut_ptr(&mut self) -> *mut T { |
1757 | // We shadow the slice method of the same name to avoid going through |
1758 | // `deref_mut`, which creates an intermediate reference. |
1759 | self.buf.ptr() |
1760 | } |
1761 | |
1762 | /// Returns a `NonNull` pointer to the vector's buffer, or a dangling |
1763 | /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate. |
1764 | /// |
1765 | /// The caller must ensure that the vector outlives the pointer this |
1766 | /// function returns, or else it will end up dangling. |
1767 | /// Modifying the vector may cause its buffer to be reallocated, |
1768 | /// which would also make any pointers to it invalid. |
1769 | /// |
1770 | /// This method guarantees that for the purpose of the aliasing model, this method |
1771 | /// does not materialize a reference to the underlying slice, and thus the returned pointer |
1772 | /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`], |
1773 | /// and [`as_non_null`]. |
1774 | /// Note that calling other methods that materialize references to the slice, |
1775 | /// or references to specific elements you are planning on accessing through this pointer, |
1776 | /// may still invalidate this pointer. |
1777 | /// See the second example below for how this guarantee can be used. |
1778 | /// |
1779 | /// # Examples |
1780 | /// |
1781 | /// ``` |
1782 | /// #![feature(box_vec_non_null)] |
1783 | /// |
1784 | /// // Allocate vector big enough for 4 elements. |
1785 | /// let size = 4; |
1786 | /// let mut x: Vec<i32> = Vec::with_capacity(size); |
1787 | /// let x_ptr = x.as_non_null(); |
1788 | /// |
1789 | /// // Initialize elements via raw pointer writes, then set length. |
1790 | /// unsafe { |
1791 | /// for i in 0..size { |
1792 | /// x_ptr.add(i).write(i as i32); |
1793 | /// } |
1794 | /// x.set_len(size); |
1795 | /// } |
1796 | /// assert_eq!(&*x, &[0, 1, 2, 3]); |
1797 | /// ``` |
1798 | /// |
1799 | /// Due to the aliasing guarantee, the following code is legal: |
1800 | /// |
1801 | /// ```rust |
1802 | /// #![feature(box_vec_non_null)] |
1803 | /// |
1804 | /// unsafe { |
1805 | /// let mut v = vec![0]; |
1806 | /// let ptr1 = v.as_non_null(); |
1807 | /// ptr1.write(1); |
1808 | /// let ptr2 = v.as_non_null(); |
1809 | /// ptr2.write(2); |
1810 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`: |
1811 | /// ptr1.write(3); |
1812 | /// } |
1813 | /// ``` |
1814 | /// |
1815 | /// [`as_mut_ptr`]: Vec::as_mut_ptr |
1816 | /// [`as_ptr`]: Vec::as_ptr |
1817 | /// [`as_non_null`]: Vec::as_non_null |
1818 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
1819 | #[inline ] |
1820 | pub fn as_non_null(&mut self) -> NonNull<T> { |
1821 | // SAFETY: A `Vec` always has a non-null pointer. |
1822 | unsafe { NonNull::new_unchecked(self.as_mut_ptr()) } |
1823 | } |
1824 | |
1825 | /// Returns a reference to the underlying allocator. |
1826 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
1827 | #[inline ] |
1828 | pub fn allocator(&self) -> &A { |
1829 | self.buf.allocator() |
1830 | } |
1831 | |
1832 | /// Forces the length of the vector to `new_len`. |
1833 | /// |
1834 | /// This is a low-level operation that maintains none of the normal |
1835 | /// invariants of the type. Normally changing the length of a vector |
1836 | /// is done using one of the safe operations instead, such as |
1837 | /// [`truncate`], [`resize`], [`extend`], or [`clear`]. |
1838 | /// |
1839 | /// [`truncate`]: Vec::truncate |
1840 | /// [`resize`]: Vec::resize |
1841 | /// [`extend`]: Extend::extend |
1842 | /// [`clear`]: Vec::clear |
1843 | /// |
1844 | /// # Safety |
1845 | /// |
1846 | /// - `new_len` must be less than or equal to [`capacity()`]. |
1847 | /// - The elements at `old_len..new_len` must be initialized. |
1848 | /// |
1849 | /// [`capacity()`]: Vec::capacity |
1850 | /// |
1851 | /// # Examples |
1852 | /// |
1853 | /// See [`spare_capacity_mut()`] for an example with safe |
1854 | /// initialization of capacity elements and use of this method. |
1855 | /// |
1856 | /// `set_len()` can be useful for situations in which the vector |
1857 | /// is serving as a buffer for other code, particularly over FFI: |
1858 | /// |
1859 | /// ```no_run |
1860 | /// # #![allow (dead_code)] |
1861 | /// # // This is just a minimal skeleton for the doc example; |
1862 | /// # // don't use this as a starting point for a real library. |
1863 | /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void } |
1864 | /// # const Z_OK: i32 = 0; |
1865 | /// # unsafe extern "C" { |
1866 | /// # fn deflateGetDictionary( |
1867 | /// # strm: *mut std::ffi::c_void, |
1868 | /// # dictionary: *mut u8, |
1869 | /// # dictLength: *mut usize, |
1870 | /// # ) -> i32; |
1871 | /// # } |
1872 | /// # impl StreamWrapper { |
1873 | /// pub fn get_dictionary(&self) -> Option<Vec<u8>> { |
1874 | /// // Per the FFI method's docs, "32768 bytes is always enough". |
1875 | /// let mut dict = Vec::with_capacity(32_768); |
1876 | /// let mut dict_length = 0; |
1877 | /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that: |
1878 | /// // 1. `dict_length` elements were initialized. |
1879 | /// // 2. `dict_length` <= the capacity (32_768) |
1880 | /// // which makes `set_len` safe to call. |
1881 | /// unsafe { |
1882 | /// // Make the FFI call... |
1883 | /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length); |
1884 | /// if r == Z_OK { |
1885 | /// // ...and update the length to what was initialized. |
1886 | /// dict.set_len(dict_length); |
1887 | /// Some(dict) |
1888 | /// } else { |
1889 | /// None |
1890 | /// } |
1891 | /// } |
1892 | /// } |
1893 | /// # } |
1894 | /// ``` |
1895 | /// |
1896 | /// While the following example is sound, there is a memory leak since |
1897 | /// the inner vectors were not freed prior to the `set_len` call: |
1898 | /// |
1899 | /// ``` |
1900 | /// let mut vec = vec![vec![1, 0, 0], |
1901 | /// vec![0, 1, 0], |
1902 | /// vec![0, 0, 1]]; |
1903 | /// // SAFETY: |
1904 | /// // 1. `old_len..0` is empty so no elements need to be initialized. |
1905 | /// // 2. `0 <= capacity` always holds whatever `capacity` is. |
1906 | /// unsafe { |
1907 | /// vec.set_len(0); |
1908 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
1909 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
1910 | /// # vec.set_len(3); |
1911 | /// } |
1912 | /// ``` |
1913 | /// |
1914 | /// Normally, here, one would use [`clear`] instead to correctly drop |
1915 | /// the contents and thus not leak memory. |
1916 | /// |
1917 | /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut |
1918 | #[inline ] |
1919 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1920 | pub unsafe fn set_len(&mut self, new_len: usize) { |
1921 | debug_assert!(new_len <= self.capacity()); |
1922 | |
1923 | self.len = new_len; |
1924 | } |
1925 | |
1926 | /// Removes an element from the vector and returns it. |
1927 | /// |
1928 | /// The removed element is replaced by the last element of the vector. |
1929 | /// |
1930 | /// This does not preserve ordering of the remaining elements, but is *O*(1). |
1931 | /// If you need to preserve the element order, use [`remove`] instead. |
1932 | /// |
1933 | /// [`remove`]: Vec::remove |
1934 | /// |
1935 | /// # Panics |
1936 | /// |
1937 | /// Panics if `index` is out of bounds. |
1938 | /// |
1939 | /// # Examples |
1940 | /// |
1941 | /// ``` |
1942 | /// let mut v = vec!["foo" , "bar" , "baz" , "qux" ]; |
1943 | /// |
1944 | /// assert_eq!(v.swap_remove(1), "bar" ); |
1945 | /// assert_eq!(v, ["foo" , "qux" , "baz" ]); |
1946 | /// |
1947 | /// assert_eq!(v.swap_remove(0), "foo" ); |
1948 | /// assert_eq!(v, ["baz" , "qux" ]); |
1949 | /// ``` |
1950 | #[inline ] |
1951 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1952 | pub fn swap_remove(&mut self, index: usize) -> T { |
1953 | #[cold ] |
1954 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
1955 | #[track_caller ] |
1956 | #[optimize (size)] |
1957 | fn assert_failed(index: usize, len: usize) -> ! { |
1958 | panic!("swap_remove index (is {index}) should be < len (is {len})" ); |
1959 | } |
1960 | |
1961 | let len = self.len(); |
1962 | if index >= len { |
1963 | assert_failed(index, len); |
1964 | } |
1965 | unsafe { |
1966 | // We replace self[index] with the last element. Note that if the |
1967 | // bounds check above succeeds there must be a last element (which |
1968 | // can be self[index] itself). |
1969 | let value = ptr::read(self.as_ptr().add(index)); |
1970 | let base_ptr = self.as_mut_ptr(); |
1971 | ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1); |
1972 | self.set_len(len - 1); |
1973 | value |
1974 | } |
1975 | } |
1976 | |
1977 | /// Inserts an element at position `index` within the vector, shifting all |
1978 | /// elements after it to the right. |
1979 | /// |
1980 | /// # Panics |
1981 | /// |
1982 | /// Panics if `index > len`. |
1983 | /// |
1984 | /// # Examples |
1985 | /// |
1986 | /// ``` |
1987 | /// let mut vec = vec!['a' , 'b' , 'c' ]; |
1988 | /// vec.insert(1, 'd' ); |
1989 | /// assert_eq!(vec, ['a' , 'd' , 'b' , 'c' ]); |
1990 | /// vec.insert(4, 'e' ); |
1991 | /// assert_eq!(vec, ['a' , 'd' , 'b' , 'c' , 'e' ]); |
1992 | /// ``` |
1993 | /// |
1994 | /// # Time complexity |
1995 | /// |
1996 | /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be |
1997 | /// shifted to the right. In the worst case, all elements are shifted when |
1998 | /// the insertion index is 0. |
1999 | #[cfg (not(no_global_oom_handling))] |
2000 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2001 | #[track_caller ] |
2002 | pub fn insert(&mut self, index: usize, element: T) { |
2003 | #[cold ] |
2004 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
2005 | #[track_caller ] |
2006 | #[optimize (size)] |
2007 | fn assert_failed(index: usize, len: usize) -> ! { |
2008 | panic!("insertion index (is {index}) should be <= len (is {len})" ); |
2009 | } |
2010 | |
2011 | let len = self.len(); |
2012 | if index > len { |
2013 | assert_failed(index, len); |
2014 | } |
2015 | |
2016 | // space for the new element |
2017 | if len == self.buf.capacity() { |
2018 | self.buf.grow_one(); |
2019 | } |
2020 | |
2021 | unsafe { |
2022 | // infallible |
2023 | // The spot to put the new value |
2024 | { |
2025 | let p = self.as_mut_ptr().add(index); |
2026 | if index < len { |
2027 | // Shift everything over to make space. (Duplicating the |
2028 | // `index`th element into two consecutive places.) |
2029 | ptr::copy(p, p.add(1), len - index); |
2030 | } |
2031 | // Write it in, overwriting the first copy of the `index`th |
2032 | // element. |
2033 | ptr::write(p, element); |
2034 | } |
2035 | self.set_len(len + 1); |
2036 | } |
2037 | } |
2038 | |
2039 | /// Removes and returns the element at position `index` within the vector, |
2040 | /// shifting all elements after it to the left. |
2041 | /// |
2042 | /// Note: Because this shifts over the remaining elements, it has a |
2043 | /// worst-case performance of *O*(*n*). If you don't need the order of elements |
2044 | /// to be preserved, use [`swap_remove`] instead. If you'd like to remove |
2045 | /// elements from the beginning of the `Vec`, consider using |
2046 | /// [`VecDeque::pop_front`] instead. |
2047 | /// |
2048 | /// [`swap_remove`]: Vec::swap_remove |
2049 | /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front |
2050 | /// |
2051 | /// # Panics |
2052 | /// |
2053 | /// Panics if `index` is out of bounds. |
2054 | /// |
2055 | /// # Examples |
2056 | /// |
2057 | /// ``` |
2058 | /// let mut v = vec!['a' , 'b' , 'c' ]; |
2059 | /// assert_eq!(v.remove(1), 'b' ); |
2060 | /// assert_eq!(v, ['a' , 'c' ]); |
2061 | /// ``` |
2062 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2063 | #[track_caller ] |
2064 | #[rustc_confusables ("delete" , "take" )] |
2065 | pub fn remove(&mut self, index: usize) -> T { |
2066 | #[cold ] |
2067 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
2068 | #[track_caller ] |
2069 | #[optimize (size)] |
2070 | fn assert_failed(index: usize, len: usize) -> ! { |
2071 | panic!("removal index (is {index}) should be < len (is {len})" ); |
2072 | } |
2073 | |
2074 | let len = self.len(); |
2075 | if index >= len { |
2076 | assert_failed(index, len); |
2077 | } |
2078 | unsafe { |
2079 | // infallible |
2080 | let ret; |
2081 | { |
2082 | // the place we are taking from. |
2083 | let ptr = self.as_mut_ptr().add(index); |
2084 | // copy it out, unsafely having a copy of the value on |
2085 | // the stack and in the vector at the same time. |
2086 | ret = ptr::read(ptr); |
2087 | |
2088 | // Shift everything down to fill in that spot. |
2089 | ptr::copy(ptr.add(1), ptr, len - index - 1); |
2090 | } |
2091 | self.set_len(len - 1); |
2092 | ret |
2093 | } |
2094 | } |
2095 | |
2096 | /// Retains only the elements specified by the predicate. |
2097 | /// |
2098 | /// In other words, remove all elements `e` for which `f(&e)` returns `false`. |
2099 | /// This method operates in place, visiting each element exactly once in the |
2100 | /// original order, and preserves the order of the retained elements. |
2101 | /// |
2102 | /// # Examples |
2103 | /// |
2104 | /// ``` |
2105 | /// let mut vec = vec![1, 2, 3, 4]; |
2106 | /// vec.retain(|&x| x % 2 == 0); |
2107 | /// assert_eq!(vec, [2, 4]); |
2108 | /// ``` |
2109 | /// |
2110 | /// Because the elements are visited exactly once in the original order, |
2111 | /// external state may be used to decide which elements to keep. |
2112 | /// |
2113 | /// ``` |
2114 | /// let mut vec = vec![1, 2, 3, 4, 5]; |
2115 | /// let keep = [false, true, true, false, true]; |
2116 | /// let mut iter = keep.iter(); |
2117 | /// vec.retain(|_| *iter.next().unwrap()); |
2118 | /// assert_eq!(vec, [2, 3, 5]); |
2119 | /// ``` |
2120 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2121 | pub fn retain<F>(&mut self, mut f: F) |
2122 | where |
2123 | F: FnMut(&T) -> bool, |
2124 | { |
2125 | self.retain_mut(|elem| f(elem)); |
2126 | } |
2127 | |
2128 | /// Retains only the elements specified by the predicate, passing a mutable reference to it. |
2129 | /// |
2130 | /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`. |
2131 | /// This method operates in place, visiting each element exactly once in the |
2132 | /// original order, and preserves the order of the retained elements. |
2133 | /// |
2134 | /// # Examples |
2135 | /// |
2136 | /// ``` |
2137 | /// let mut vec = vec![1, 2, 3, 4]; |
2138 | /// vec.retain_mut(|x| if *x <= 3 { |
2139 | /// *x += 1; |
2140 | /// true |
2141 | /// } else { |
2142 | /// false |
2143 | /// }); |
2144 | /// assert_eq!(vec, [2, 3, 4]); |
2145 | /// ``` |
2146 | #[stable (feature = "vec_retain_mut" , since = "1.61.0" )] |
2147 | pub fn retain_mut<F>(&mut self, mut f: F) |
2148 | where |
2149 | F: FnMut(&mut T) -> bool, |
2150 | { |
2151 | let original_len = self.len(); |
2152 | |
2153 | if original_len == 0 { |
2154 | // Empty case: explicit return allows better optimization, vs letting compiler infer it |
2155 | return; |
2156 | } |
2157 | |
2158 | // Avoid double drop if the drop guard is not executed, |
2159 | // since we may make some holes during the process. |
2160 | unsafe { self.set_len(0) }; |
2161 | |
2162 | // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked] |
2163 | // |<- processed len ->| ^- next to check |
2164 | // |<- deleted cnt ->| |
2165 | // |<- original_len ->| |
2166 | // Kept: Elements which predicate returns true on. |
2167 | // Hole: Moved or dropped element slot. |
2168 | // Unchecked: Unchecked valid elements. |
2169 | // |
2170 | // This drop guard will be invoked when predicate or `drop` of element panicked. |
2171 | // It shifts unchecked elements to cover holes and `set_len` to the correct length. |
2172 | // In cases when predicate and `drop` never panick, it will be optimized out. |
2173 | struct BackshiftOnDrop<'a, T, A: Allocator> { |
2174 | v: &'a mut Vec<T, A>, |
2175 | processed_len: usize, |
2176 | deleted_cnt: usize, |
2177 | original_len: usize, |
2178 | } |
2179 | |
2180 | impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> { |
2181 | fn drop(&mut self) { |
2182 | if self.deleted_cnt > 0 { |
2183 | // SAFETY: Trailing unchecked items must be valid since we never touch them. |
2184 | unsafe { |
2185 | ptr::copy( |
2186 | self.v.as_ptr().add(self.processed_len), |
2187 | self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt), |
2188 | self.original_len - self.processed_len, |
2189 | ); |
2190 | } |
2191 | } |
2192 | // SAFETY: After filling holes, all items are in contiguous memory. |
2193 | unsafe { |
2194 | self.v.set_len(self.original_len - self.deleted_cnt); |
2195 | } |
2196 | } |
2197 | } |
2198 | |
2199 | let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len }; |
2200 | |
2201 | fn process_loop<F, T, A: Allocator, const DELETED: bool>( |
2202 | original_len: usize, |
2203 | f: &mut F, |
2204 | g: &mut BackshiftOnDrop<'_, T, A>, |
2205 | ) where |
2206 | F: FnMut(&mut T) -> bool, |
2207 | { |
2208 | while g.processed_len != original_len { |
2209 | // SAFETY: Unchecked element must be valid. |
2210 | let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) }; |
2211 | if !f(cur) { |
2212 | // Advance early to avoid double drop if `drop_in_place` panicked. |
2213 | g.processed_len += 1; |
2214 | g.deleted_cnt += 1; |
2215 | // SAFETY: We never touch this element again after dropped. |
2216 | unsafe { ptr::drop_in_place(cur) }; |
2217 | // We already advanced the counter. |
2218 | if DELETED { |
2219 | continue; |
2220 | } else { |
2221 | break; |
2222 | } |
2223 | } |
2224 | if DELETED { |
2225 | // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element. |
2226 | // We use copy for move, and never touch this element again. |
2227 | unsafe { |
2228 | let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt); |
2229 | ptr::copy_nonoverlapping(cur, hole_slot, 1); |
2230 | } |
2231 | } |
2232 | g.processed_len += 1; |
2233 | } |
2234 | } |
2235 | |
2236 | // Stage 1: Nothing was deleted. |
2237 | process_loop::<F, T, A, false>(original_len, &mut f, &mut g); |
2238 | |
2239 | // Stage 2: Some elements were deleted. |
2240 | process_loop::<F, T, A, true>(original_len, &mut f, &mut g); |
2241 | |
2242 | // All item are processed. This can be optimized to `set_len` by LLVM. |
2243 | drop(g); |
2244 | } |
2245 | |
2246 | /// Removes all but the first of consecutive elements in the vector that resolve to the same |
2247 | /// key. |
2248 | /// |
2249 | /// If the vector is sorted, this removes all duplicates. |
2250 | /// |
2251 | /// # Examples |
2252 | /// |
2253 | /// ``` |
2254 | /// let mut vec = vec![10, 20, 21, 30, 20]; |
2255 | /// |
2256 | /// vec.dedup_by_key(|i| *i / 10); |
2257 | /// |
2258 | /// assert_eq!(vec, [10, 20, 30, 20]); |
2259 | /// ``` |
2260 | #[stable (feature = "dedup_by" , since = "1.16.0" )] |
2261 | #[inline ] |
2262 | pub fn dedup_by_key<F, K>(&mut self, mut key: F) |
2263 | where |
2264 | F: FnMut(&mut T) -> K, |
2265 | K: PartialEq, |
2266 | { |
2267 | self.dedup_by(|a, b| key(a) == key(b)) |
2268 | } |
2269 | |
2270 | /// Removes all but the first of consecutive elements in the vector satisfying a given equality |
2271 | /// relation. |
2272 | /// |
2273 | /// The `same_bucket` function is passed references to two elements from the vector and |
2274 | /// must determine if the elements compare equal. The elements are passed in opposite order |
2275 | /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed. |
2276 | /// |
2277 | /// If the vector is sorted, this removes all duplicates. |
2278 | /// |
2279 | /// # Examples |
2280 | /// |
2281 | /// ``` |
2282 | /// let mut vec = vec!["foo" , "bar" , "Bar" , "baz" , "bar" ]; |
2283 | /// |
2284 | /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); |
2285 | /// |
2286 | /// assert_eq!(vec, ["foo" , "bar" , "baz" , "bar" ]); |
2287 | /// ``` |
2288 | #[stable (feature = "dedup_by" , since = "1.16.0" )] |
2289 | pub fn dedup_by<F>(&mut self, mut same_bucket: F) |
2290 | where |
2291 | F: FnMut(&mut T, &mut T) -> bool, |
2292 | { |
2293 | let len = self.len(); |
2294 | if len <= 1 { |
2295 | return; |
2296 | } |
2297 | |
2298 | // Check if we ever want to remove anything. |
2299 | // This allows to use copy_non_overlapping in next cycle. |
2300 | // And avoids any memory writes if we don't need to remove anything. |
2301 | let mut first_duplicate_idx: usize = 1; |
2302 | let start = self.as_mut_ptr(); |
2303 | while first_duplicate_idx != len { |
2304 | let found_duplicate = unsafe { |
2305 | // SAFETY: first_duplicate always in range [1..len) |
2306 | // Note that we start iteration from 1 so we never overflow. |
2307 | let prev = start.add(first_duplicate_idx.wrapping_sub(1)); |
2308 | let current = start.add(first_duplicate_idx); |
2309 | // We explicitly say in docs that references are reversed. |
2310 | same_bucket(&mut *current, &mut *prev) |
2311 | }; |
2312 | if found_duplicate { |
2313 | break; |
2314 | } |
2315 | first_duplicate_idx += 1; |
2316 | } |
2317 | // Don't need to remove anything. |
2318 | // We cannot get bigger than len. |
2319 | if first_duplicate_idx == len { |
2320 | return; |
2321 | } |
2322 | |
2323 | /* INVARIANT: vec.len() > read > write > write-1 >= 0 */ |
2324 | struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> { |
2325 | /* Offset of the element we want to check if it is duplicate */ |
2326 | read: usize, |
2327 | |
2328 | /* Offset of the place where we want to place the non-duplicate |
2329 | * when we find it. */ |
2330 | write: usize, |
2331 | |
2332 | /* The Vec that would need correction if `same_bucket` panicked */ |
2333 | vec: &'a mut Vec<T, A>, |
2334 | } |
2335 | |
2336 | impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> { |
2337 | fn drop(&mut self) { |
2338 | /* This code gets executed when `same_bucket` panics */ |
2339 | |
2340 | /* SAFETY: invariant guarantees that `read - write` |
2341 | * and `len - read` never overflow and that the copy is always |
2342 | * in-bounds. */ |
2343 | unsafe { |
2344 | let ptr = self.vec.as_mut_ptr(); |
2345 | let len = self.vec.len(); |
2346 | |
2347 | /* How many items were left when `same_bucket` panicked. |
2348 | * Basically vec[read..].len() */ |
2349 | let items_left = len.wrapping_sub(self.read); |
2350 | |
2351 | /* Pointer to first item in vec[write..write+items_left] slice */ |
2352 | let dropped_ptr = ptr.add(self.write); |
2353 | /* Pointer to first item in vec[read..] slice */ |
2354 | let valid_ptr = ptr.add(self.read); |
2355 | |
2356 | /* Copy `vec[read..]` to `vec[write..write+items_left]`. |
2357 | * The slices can overlap, so `copy_nonoverlapping` cannot be used */ |
2358 | ptr::copy(valid_ptr, dropped_ptr, items_left); |
2359 | |
2360 | /* How many items have been already dropped |
2361 | * Basically vec[read..write].len() */ |
2362 | let dropped = self.read.wrapping_sub(self.write); |
2363 | |
2364 | self.vec.set_len(len - dropped); |
2365 | } |
2366 | } |
2367 | } |
2368 | |
2369 | /* Drop items while going through Vec, it should be more efficient than |
2370 | * doing slice partition_dedup + truncate */ |
2371 | |
2372 | // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics. |
2373 | let mut gap = |
2374 | FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self }; |
2375 | unsafe { |
2376 | // SAFETY: we checked that first_duplicate_idx in bounds before. |
2377 | // If drop panics, `gap` would remove this item without drop. |
2378 | ptr::drop_in_place(start.add(first_duplicate_idx)); |
2379 | } |
2380 | |
2381 | /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr |
2382 | * are always in-bounds and read_ptr never aliases prev_ptr */ |
2383 | unsafe { |
2384 | while gap.read < len { |
2385 | let read_ptr = start.add(gap.read); |
2386 | let prev_ptr = start.add(gap.write.wrapping_sub(1)); |
2387 | |
2388 | // We explicitly say in docs that references are reversed. |
2389 | let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr); |
2390 | if found_duplicate { |
2391 | // Increase `gap.read` now since the drop may panic. |
2392 | gap.read += 1; |
2393 | /* We have found duplicate, drop it in-place */ |
2394 | ptr::drop_in_place(read_ptr); |
2395 | } else { |
2396 | let write_ptr = start.add(gap.write); |
2397 | |
2398 | /* read_ptr cannot be equal to write_ptr because at this point |
2399 | * we guaranteed to skip at least one element (before loop starts). |
2400 | */ |
2401 | ptr::copy_nonoverlapping(read_ptr, write_ptr, 1); |
2402 | |
2403 | /* We have filled that place, so go further */ |
2404 | gap.write += 1; |
2405 | gap.read += 1; |
2406 | } |
2407 | } |
2408 | |
2409 | /* Technically we could let `gap` clean up with its Drop, but |
2410 | * when `same_bucket` is guaranteed to not panic, this bloats a little |
2411 | * the codegen, so we just do it manually */ |
2412 | gap.vec.set_len(gap.write); |
2413 | mem::forget(gap); |
2414 | } |
2415 | } |
2416 | |
2417 | /// Appends an element to the back of a collection. |
2418 | /// |
2419 | /// # Panics |
2420 | /// |
2421 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
2422 | /// |
2423 | /// # Examples |
2424 | /// |
2425 | /// ``` |
2426 | /// let mut vec = vec![1, 2]; |
2427 | /// vec.push(3); |
2428 | /// assert_eq!(vec, [1, 2, 3]); |
2429 | /// ``` |
2430 | /// |
2431 | /// # Time complexity |
2432 | /// |
2433 | /// Takes amortized *O*(1) time. If the vector's length would exceed its |
2434 | /// capacity after the push, *O*(*capacity*) time is taken to copy the |
2435 | /// vector's elements to a larger allocation. This expensive operation is |
2436 | /// offset by the *capacity* *O*(1) insertions it allows. |
2437 | #[cfg (not(no_global_oom_handling))] |
2438 | #[inline ] |
2439 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2440 | #[rustc_confusables ("push_back" , "put" , "append" )] |
2441 | #[track_caller ] |
2442 | pub fn push(&mut self, value: T) { |
2443 | // Inform codegen that the length does not change across grow_one(). |
2444 | let len = self.len; |
2445 | // This will panic or abort if we would allocate > isize::MAX bytes |
2446 | // or if the length increment would overflow for zero-sized types. |
2447 | if len == self.buf.capacity() { |
2448 | self.buf.grow_one(); |
2449 | } |
2450 | unsafe { |
2451 | let end = self.as_mut_ptr().add(len); |
2452 | ptr::write(end, value); |
2453 | self.len = len + 1; |
2454 | } |
2455 | } |
2456 | |
2457 | /// Appends an element if there is sufficient spare capacity, otherwise an error is returned |
2458 | /// with the element. |
2459 | /// |
2460 | /// Unlike [`push`] this method will not reallocate when there's insufficient capacity. |
2461 | /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity. |
2462 | /// |
2463 | /// [`push`]: Vec::push |
2464 | /// [`reserve`]: Vec::reserve |
2465 | /// [`try_reserve`]: Vec::try_reserve |
2466 | /// |
2467 | /// # Examples |
2468 | /// |
2469 | /// A manual, panic-free alternative to [`FromIterator`]: |
2470 | /// |
2471 | /// ``` |
2472 | /// #![feature(vec_push_within_capacity)] |
2473 | /// |
2474 | /// use std::collections::TryReserveError; |
2475 | /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> { |
2476 | /// let mut vec = Vec::new(); |
2477 | /// for value in iter { |
2478 | /// if let Err(value) = vec.push_within_capacity(value) { |
2479 | /// vec.try_reserve(1)?; |
2480 | /// // this cannot fail, the previous line either returned or added at least 1 free slot |
2481 | /// let _ = vec.push_within_capacity(value); |
2482 | /// } |
2483 | /// } |
2484 | /// Ok(vec) |
2485 | /// } |
2486 | /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100))); |
2487 | /// ``` |
2488 | /// |
2489 | /// # Time complexity |
2490 | /// |
2491 | /// Takes *O*(1) time. |
2492 | #[inline ] |
2493 | #[unstable (feature = "vec_push_within_capacity" , issue = "100486" )] |
2494 | pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> { |
2495 | if self.len == self.buf.capacity() { |
2496 | return Err(value); |
2497 | } |
2498 | unsafe { |
2499 | let end = self.as_mut_ptr().add(self.len); |
2500 | ptr::write(end, value); |
2501 | self.len += 1; |
2502 | } |
2503 | Ok(()) |
2504 | } |
2505 | |
2506 | /// Removes the last element from a vector and returns it, or [`None`] if it |
2507 | /// is empty. |
2508 | /// |
2509 | /// If you'd like to pop the first element, consider using |
2510 | /// [`VecDeque::pop_front`] instead. |
2511 | /// |
2512 | /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front |
2513 | /// |
2514 | /// # Examples |
2515 | /// |
2516 | /// ``` |
2517 | /// let mut vec = vec![1, 2, 3]; |
2518 | /// assert_eq!(vec.pop(), Some(3)); |
2519 | /// assert_eq!(vec, [1, 2]); |
2520 | /// ``` |
2521 | /// |
2522 | /// # Time complexity |
2523 | /// |
2524 | /// Takes *O*(1) time. |
2525 | #[inline ] |
2526 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2527 | #[rustc_diagnostic_item = "vec_pop" ] |
2528 | pub fn pop(&mut self) -> Option<T> { |
2529 | if self.len == 0 { |
2530 | None |
2531 | } else { |
2532 | unsafe { |
2533 | self.len -= 1; |
2534 | core::hint::assert_unchecked(self.len < self.capacity()); |
2535 | Some(ptr::read(self.as_ptr().add(self.len()))) |
2536 | } |
2537 | } |
2538 | } |
2539 | |
2540 | /// Removes and returns the last element from a vector if the predicate |
2541 | /// returns `true`, or [`None`] if the predicate returns false or the vector |
2542 | /// is empty (the predicate will not be called in that case). |
2543 | /// |
2544 | /// # Examples |
2545 | /// |
2546 | /// ``` |
2547 | /// let mut vec = vec![1, 2, 3, 4]; |
2548 | /// let pred = |x: &mut i32| *x % 2 == 0; |
2549 | /// |
2550 | /// assert_eq!(vec.pop_if(pred), Some(4)); |
2551 | /// assert_eq!(vec, [1, 2, 3]); |
2552 | /// assert_eq!(vec.pop_if(pred), None); |
2553 | /// ``` |
2554 | #[stable (feature = "vec_pop_if" , since = "1.86.0" )] |
2555 | pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> { |
2556 | let last = self.last_mut()?; |
2557 | if predicate(last) { self.pop() } else { None } |
2558 | } |
2559 | |
2560 | /// Moves all the elements of `other` into `self`, leaving `other` empty. |
2561 | /// |
2562 | /// # Panics |
2563 | /// |
2564 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
2565 | /// |
2566 | /// # Examples |
2567 | /// |
2568 | /// ``` |
2569 | /// let mut vec = vec![1, 2, 3]; |
2570 | /// let mut vec2 = vec![4, 5, 6]; |
2571 | /// vec.append(&mut vec2); |
2572 | /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); |
2573 | /// assert_eq!(vec2, []); |
2574 | /// ``` |
2575 | #[cfg (not(no_global_oom_handling))] |
2576 | #[inline ] |
2577 | #[stable (feature = "append" , since = "1.4.0" )] |
2578 | #[track_caller ] |
2579 | pub fn append(&mut self, other: &mut Self) { |
2580 | unsafe { |
2581 | self.append_elements(other.as_slice() as _); |
2582 | other.set_len(0); |
2583 | } |
2584 | } |
2585 | |
2586 | /// Appends elements to `self` from other buffer. |
2587 | #[cfg (not(no_global_oom_handling))] |
2588 | #[inline ] |
2589 | #[track_caller ] |
2590 | unsafe fn append_elements(&mut self, other: *const [T]) { |
2591 | let count = unsafe { (*other).len() }; |
2592 | self.reserve(count); |
2593 | let len = self.len(); |
2594 | unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) }; |
2595 | self.len += count; |
2596 | } |
2597 | |
2598 | /// Removes the subslice indicated by the given range from the vector, |
2599 | /// returning a double-ended iterator over the removed subslice. |
2600 | /// |
2601 | /// If the iterator is dropped before being fully consumed, |
2602 | /// it drops the remaining removed elements. |
2603 | /// |
2604 | /// The returned iterator keeps a mutable borrow on the vector to optimize |
2605 | /// its implementation. |
2606 | /// |
2607 | /// # Panics |
2608 | /// |
2609 | /// Panics if the starting point is greater than the end point or if |
2610 | /// the end point is greater than the length of the vector. |
2611 | /// |
2612 | /// # Leaking |
2613 | /// |
2614 | /// If the returned iterator goes out of scope without being dropped (due to |
2615 | /// [`mem::forget`], for example), the vector may have lost and leaked |
2616 | /// elements arbitrarily, including elements outside the range. |
2617 | /// |
2618 | /// # Examples |
2619 | /// |
2620 | /// ``` |
2621 | /// let mut v = vec![1, 2, 3]; |
2622 | /// let u: Vec<_> = v.drain(1..).collect(); |
2623 | /// assert_eq!(v, &[1]); |
2624 | /// assert_eq!(u, &[2, 3]); |
2625 | /// |
2626 | /// // A full range clears the vector, like `clear()` does |
2627 | /// v.drain(..); |
2628 | /// assert_eq!(v, &[]); |
2629 | /// ``` |
2630 | #[stable (feature = "drain" , since = "1.6.0" )] |
2631 | pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A> |
2632 | where |
2633 | R: RangeBounds<usize>, |
2634 | { |
2635 | // Memory safety |
2636 | // |
2637 | // When the Drain is first created, it shortens the length of |
2638 | // the source vector to make sure no uninitialized or moved-from elements |
2639 | // are accessible at all if the Drain's destructor never gets to run. |
2640 | // |
2641 | // Drain will ptr::read out the values to remove. |
2642 | // When finished, remaining tail of the vec is copied back to cover |
2643 | // the hole, and the vector length is restored to the new length. |
2644 | // |
2645 | let len = self.len(); |
2646 | let Range { start, end } = slice::range(range, ..len); |
2647 | |
2648 | unsafe { |
2649 | // set self.vec length's to start, to be safe in case Drain is leaked |
2650 | self.set_len(start); |
2651 | let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start); |
2652 | Drain { |
2653 | tail_start: end, |
2654 | tail_len: len - end, |
2655 | iter: range_slice.iter(), |
2656 | vec: NonNull::from(self), |
2657 | } |
2658 | } |
2659 | } |
2660 | |
2661 | /// Clears the vector, removing all values. |
2662 | /// |
2663 | /// Note that this method has no effect on the allocated capacity |
2664 | /// of the vector. |
2665 | /// |
2666 | /// # Examples |
2667 | /// |
2668 | /// ``` |
2669 | /// let mut v = vec![1, 2, 3]; |
2670 | /// |
2671 | /// v.clear(); |
2672 | /// |
2673 | /// assert!(v.is_empty()); |
2674 | /// ``` |
2675 | #[inline ] |
2676 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2677 | pub fn clear(&mut self) { |
2678 | let elems: *mut [T] = self.as_mut_slice(); |
2679 | |
2680 | // SAFETY: |
2681 | // - `elems` comes directly from `as_mut_slice` and is therefore valid. |
2682 | // - Setting `self.len` before calling `drop_in_place` means that, |
2683 | // if an element's `Drop` impl panics, the vector's `Drop` impl will |
2684 | // do nothing (leaking the rest of the elements) instead of dropping |
2685 | // some twice. |
2686 | unsafe { |
2687 | self.len = 0; |
2688 | ptr::drop_in_place(elems); |
2689 | } |
2690 | } |
2691 | |
2692 | /// Returns the number of elements in the vector, also referred to |
2693 | /// as its 'length'. |
2694 | /// |
2695 | /// # Examples |
2696 | /// |
2697 | /// ``` |
2698 | /// let a = vec![1, 2, 3]; |
2699 | /// assert_eq!(a.len(), 3); |
2700 | /// ``` |
2701 | #[inline ] |
2702 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2703 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
2704 | #[rustc_confusables ("length" , "size" )] |
2705 | pub const fn len(&self) -> usize { |
2706 | let len = self.len; |
2707 | |
2708 | // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can |
2709 | // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which |
2710 | // matches the definition of `T::MAX_SLICE_LEN`. |
2711 | unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) }; |
2712 | |
2713 | len |
2714 | } |
2715 | |
2716 | /// Returns `true` if the vector contains no elements. |
2717 | /// |
2718 | /// # Examples |
2719 | /// |
2720 | /// ``` |
2721 | /// let mut v = Vec::new(); |
2722 | /// assert!(v.is_empty()); |
2723 | /// |
2724 | /// v.push(1); |
2725 | /// assert!(!v.is_empty()); |
2726 | /// ``` |
2727 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2728 | #[rustc_diagnostic_item = "vec_is_empty" ] |
2729 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
2730 | pub const fn is_empty(&self) -> bool { |
2731 | self.len() == 0 |
2732 | } |
2733 | |
2734 | /// Splits the collection into two at the given index. |
2735 | /// |
2736 | /// Returns a newly allocated vector containing the elements in the range |
2737 | /// `[at, len)`. After the call, the original vector will be left containing |
2738 | /// the elements `[0, at)` with its previous capacity unchanged. |
2739 | /// |
2740 | /// - If you want to take ownership of the entire contents and capacity of |
2741 | /// the vector, see [`mem::take`] or [`mem::replace`]. |
2742 | /// - If you don't need the returned vector at all, see [`Vec::truncate`]. |
2743 | /// - If you want to take ownership of an arbitrary subslice, or you don't |
2744 | /// necessarily want to store the removed items in a vector, see [`Vec::drain`]. |
2745 | /// |
2746 | /// # Panics |
2747 | /// |
2748 | /// Panics if `at > len`. |
2749 | /// |
2750 | /// # Examples |
2751 | /// |
2752 | /// ``` |
2753 | /// let mut vec = vec!['a' , 'b' , 'c' ]; |
2754 | /// let vec2 = vec.split_off(1); |
2755 | /// assert_eq!(vec, ['a' ]); |
2756 | /// assert_eq!(vec2, ['b' , 'c' ]); |
2757 | /// ``` |
2758 | #[cfg (not(no_global_oom_handling))] |
2759 | #[inline ] |
2760 | #[must_use = "use `.truncate()` if you don't need the other half" ] |
2761 | #[stable (feature = "split_off" , since = "1.4.0" )] |
2762 | #[track_caller ] |
2763 | pub fn split_off(&mut self, at: usize) -> Self |
2764 | where |
2765 | A: Clone, |
2766 | { |
2767 | #[cold ] |
2768 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
2769 | #[track_caller ] |
2770 | #[optimize (size)] |
2771 | fn assert_failed(at: usize, len: usize) -> ! { |
2772 | panic!("`at` split index (is {at}) should be <= len (is {len})" ); |
2773 | } |
2774 | |
2775 | if at > self.len() { |
2776 | assert_failed(at, self.len()); |
2777 | } |
2778 | |
2779 | let other_len = self.len - at; |
2780 | let mut other = Vec::with_capacity_in(other_len, self.allocator().clone()); |
2781 | |
2782 | // Unsafely `set_len` and copy items to `other`. |
2783 | unsafe { |
2784 | self.set_len(at); |
2785 | other.set_len(other_len); |
2786 | |
2787 | ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len()); |
2788 | } |
2789 | other |
2790 | } |
2791 | |
2792 | /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. |
2793 | /// |
2794 | /// If `new_len` is greater than `len`, the `Vec` is extended by the |
2795 | /// difference, with each additional slot filled with the result of |
2796 | /// calling the closure `f`. The return values from `f` will end up |
2797 | /// in the `Vec` in the order they have been generated. |
2798 | /// |
2799 | /// If `new_len` is less than `len`, the `Vec` is simply truncated. |
2800 | /// |
2801 | /// This method uses a closure to create new values on every push. If |
2802 | /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you |
2803 | /// want to use the [`Default`] trait to generate values, you can |
2804 | /// pass [`Default::default`] as the second argument. |
2805 | /// |
2806 | /// # Examples |
2807 | /// |
2808 | /// ``` |
2809 | /// let mut vec = vec![1, 2, 3]; |
2810 | /// vec.resize_with(5, Default::default); |
2811 | /// assert_eq!(vec, [1, 2, 3, 0, 0]); |
2812 | /// |
2813 | /// let mut vec = vec![]; |
2814 | /// let mut p = 1; |
2815 | /// vec.resize_with(4, || { p *= 2; p }); |
2816 | /// assert_eq!(vec, [2, 4, 8, 16]); |
2817 | /// ``` |
2818 | #[cfg (not(no_global_oom_handling))] |
2819 | #[stable (feature = "vec_resize_with" , since = "1.33.0" )] |
2820 | #[track_caller ] |
2821 | pub fn resize_with<F>(&mut self, new_len: usize, f: F) |
2822 | where |
2823 | F: FnMut() -> T, |
2824 | { |
2825 | let len = self.len(); |
2826 | if new_len > len { |
2827 | self.extend_trusted(iter::repeat_with(f).take(new_len - len)); |
2828 | } else { |
2829 | self.truncate(new_len); |
2830 | } |
2831 | } |
2832 | |
2833 | /// Consumes and leaks the `Vec`, returning a mutable reference to the contents, |
2834 | /// `&'a mut [T]`. |
2835 | /// |
2836 | /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type |
2837 | /// has only static references, or none at all, then this may be chosen to be |
2838 | /// `'static`. |
2839 | /// |
2840 | /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`, |
2841 | /// so the leaked allocation may include unused capacity that is not part |
2842 | /// of the returned slice. |
2843 | /// |
2844 | /// This function is mainly useful for data that lives for the remainder of |
2845 | /// the program's life. Dropping the returned reference will cause a memory |
2846 | /// leak. |
2847 | /// |
2848 | /// # Examples |
2849 | /// |
2850 | /// Simple usage: |
2851 | /// |
2852 | /// ``` |
2853 | /// let x = vec![1, 2, 3]; |
2854 | /// let static_ref: &'static mut [usize] = x.leak(); |
2855 | /// static_ref[0] += 1; |
2856 | /// assert_eq!(static_ref, &[2, 2, 3]); |
2857 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
2858 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
2859 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
2860 | /// ``` |
2861 | #[stable (feature = "vec_leak" , since = "1.47.0" )] |
2862 | #[inline ] |
2863 | pub fn leak<'a>(self) -> &'a mut [T] |
2864 | where |
2865 | A: 'a, |
2866 | { |
2867 | let mut me = ManuallyDrop::new(self); |
2868 | unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) } |
2869 | } |
2870 | |
2871 | /// Returns the remaining spare capacity of the vector as a slice of |
2872 | /// `MaybeUninit<T>`. |
2873 | /// |
2874 | /// The returned slice can be used to fill the vector with data (e.g. by |
2875 | /// reading from a file) before marking the data as initialized using the |
2876 | /// [`set_len`] method. |
2877 | /// |
2878 | /// [`set_len`]: Vec::set_len |
2879 | /// |
2880 | /// # Examples |
2881 | /// |
2882 | /// ``` |
2883 | /// // Allocate vector big enough for 10 elements. |
2884 | /// let mut v = Vec::with_capacity(10); |
2885 | /// |
2886 | /// // Fill in the first 3 elements. |
2887 | /// let uninit = v.spare_capacity_mut(); |
2888 | /// uninit[0].write(0); |
2889 | /// uninit[1].write(1); |
2890 | /// uninit[2].write(2); |
2891 | /// |
2892 | /// // Mark the first 3 elements of the vector as being initialized. |
2893 | /// unsafe { |
2894 | /// v.set_len(3); |
2895 | /// } |
2896 | /// |
2897 | /// assert_eq!(&v, &[0, 1, 2]); |
2898 | /// ``` |
2899 | #[stable (feature = "vec_spare_capacity" , since = "1.60.0" )] |
2900 | #[inline ] |
2901 | pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { |
2902 | // Note: |
2903 | // This method is not implemented in terms of `split_at_spare_mut`, |
2904 | // to prevent invalidation of pointers to the buffer. |
2905 | unsafe { |
2906 | slice::from_raw_parts_mut( |
2907 | self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, |
2908 | self.buf.capacity() - self.len, |
2909 | ) |
2910 | } |
2911 | } |
2912 | |
2913 | /// Returns vector content as a slice of `T`, along with the remaining spare |
2914 | /// capacity of the vector as a slice of `MaybeUninit<T>`. |
2915 | /// |
2916 | /// The returned spare capacity slice can be used to fill the vector with data |
2917 | /// (e.g. by reading from a file) before marking the data as initialized using |
2918 | /// the [`set_len`] method. |
2919 | /// |
2920 | /// [`set_len`]: Vec::set_len |
2921 | /// |
2922 | /// Note that this is a low-level API, which should be used with care for |
2923 | /// optimization purposes. If you need to append data to a `Vec` |
2924 | /// you can use [`push`], [`extend`], [`extend_from_slice`], |
2925 | /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or |
2926 | /// [`resize_with`], depending on your exact needs. |
2927 | /// |
2928 | /// [`push`]: Vec::push |
2929 | /// [`extend`]: Vec::extend |
2930 | /// [`extend_from_slice`]: Vec::extend_from_slice |
2931 | /// [`extend_from_within`]: Vec::extend_from_within |
2932 | /// [`insert`]: Vec::insert |
2933 | /// [`append`]: Vec::append |
2934 | /// [`resize`]: Vec::resize |
2935 | /// [`resize_with`]: Vec::resize_with |
2936 | /// |
2937 | /// # Examples |
2938 | /// |
2939 | /// ``` |
2940 | /// #![feature(vec_split_at_spare)] |
2941 | /// |
2942 | /// let mut v = vec![1, 1, 2]; |
2943 | /// |
2944 | /// // Reserve additional space big enough for 10 elements. |
2945 | /// v.reserve(10); |
2946 | /// |
2947 | /// let (init, uninit) = v.split_at_spare_mut(); |
2948 | /// let sum = init.iter().copied().sum::<u32>(); |
2949 | /// |
2950 | /// // Fill in the next 4 elements. |
2951 | /// uninit[0].write(sum); |
2952 | /// uninit[1].write(sum * 2); |
2953 | /// uninit[2].write(sum * 3); |
2954 | /// uninit[3].write(sum * 4); |
2955 | /// |
2956 | /// // Mark the 4 elements of the vector as being initialized. |
2957 | /// unsafe { |
2958 | /// let len = v.len(); |
2959 | /// v.set_len(len + 4); |
2960 | /// } |
2961 | /// |
2962 | /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]); |
2963 | /// ``` |
2964 | #[unstable (feature = "vec_split_at_spare" , issue = "81944" )] |
2965 | #[inline ] |
2966 | pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) { |
2967 | // SAFETY: |
2968 | // - len is ignored and so never changed |
2969 | let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() }; |
2970 | (init, spare) |
2971 | } |
2972 | |
2973 | /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`. |
2974 | /// |
2975 | /// This method provides unique access to all vec parts at once in `extend_from_within`. |
2976 | unsafe fn split_at_spare_mut_with_len( |
2977 | &mut self, |
2978 | ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) { |
2979 | let ptr = self.as_mut_ptr(); |
2980 | // SAFETY: |
2981 | // - `ptr` is guaranteed to be valid for `self.len` elements |
2982 | // - but the allocation extends out to `self.buf.capacity()` elements, possibly |
2983 | // uninitialized |
2984 | let spare_ptr = unsafe { ptr.add(self.len) }; |
2985 | let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>(); |
2986 | let spare_len = self.buf.capacity() - self.len; |
2987 | |
2988 | // SAFETY: |
2989 | // - `ptr` is guaranteed to be valid for `self.len` elements |
2990 | // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized` |
2991 | unsafe { |
2992 | let initialized = slice::from_raw_parts_mut(ptr, self.len); |
2993 | let spare = slice::from_raw_parts_mut(spare_ptr, spare_len); |
2994 | |
2995 | (initialized, spare, &mut self.len) |
2996 | } |
2997 | } |
2998 | } |
2999 | |
3000 | impl<T: Clone, A: Allocator> Vec<T, A> { |
3001 | /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. |
3002 | /// |
3003 | /// If `new_len` is greater than `len`, the `Vec` is extended by the |
3004 | /// difference, with each additional slot filled with `value`. |
3005 | /// If `new_len` is less than `len`, the `Vec` is simply truncated. |
3006 | /// |
3007 | /// This method requires `T` to implement [`Clone`], |
3008 | /// in order to be able to clone the passed value. |
3009 | /// If you need more flexibility (or want to rely on [`Default`] instead of |
3010 | /// [`Clone`]), use [`Vec::resize_with`]. |
3011 | /// If you only need to resize to a smaller size, use [`Vec::truncate`]. |
3012 | /// |
3013 | /// # Examples |
3014 | /// |
3015 | /// ``` |
3016 | /// let mut vec = vec!["hello" ]; |
3017 | /// vec.resize(3, "world" ); |
3018 | /// assert_eq!(vec, ["hello" , "world" , "world" ]); |
3019 | /// |
3020 | /// let mut vec = vec!['a' , 'b' , 'c' , 'd' ]; |
3021 | /// vec.resize(2, '_' ); |
3022 | /// assert_eq!(vec, ['a' , 'b' ]); |
3023 | /// ``` |
3024 | #[cfg (not(no_global_oom_handling))] |
3025 | #[stable (feature = "vec_resize" , since = "1.5.0" )] |
3026 | #[track_caller ] |
3027 | pub fn resize(&mut self, new_len: usize, value: T) { |
3028 | let len = self.len(); |
3029 | |
3030 | if new_len > len { |
3031 | self.extend_with(new_len - len, value) |
3032 | } else { |
3033 | self.truncate(new_len); |
3034 | } |
3035 | } |
3036 | |
3037 | /// Clones and appends all elements in a slice to the `Vec`. |
3038 | /// |
3039 | /// Iterates over the slice `other`, clones each element, and then appends |
3040 | /// it to this `Vec`. The `other` slice is traversed in-order. |
3041 | /// |
3042 | /// Note that this function is the same as [`extend`], |
3043 | /// except that it also works with slice elements that are Clone but not Copy. |
3044 | /// If Rust gets specialization this function may be deprecated. |
3045 | /// |
3046 | /// # Examples |
3047 | /// |
3048 | /// ``` |
3049 | /// let mut vec = vec![1]; |
3050 | /// vec.extend_from_slice(&[2, 3, 4]); |
3051 | /// assert_eq!(vec, [1, 2, 3, 4]); |
3052 | /// ``` |
3053 | /// |
3054 | /// [`extend`]: Vec::extend |
3055 | #[cfg (not(no_global_oom_handling))] |
3056 | #[stable (feature = "vec_extend_from_slice" , since = "1.6.0" )] |
3057 | #[track_caller ] |
3058 | pub fn extend_from_slice(&mut self, other: &[T]) { |
3059 | self.spec_extend(other.iter()) |
3060 | } |
3061 | |
3062 | /// Given a range `src`, clones a slice of elements in that range and appends it to the end. |
3063 | /// |
3064 | /// `src` must be a range that can form a valid subslice of the `Vec`. |
3065 | /// |
3066 | /// # Panics |
3067 | /// |
3068 | /// Panics if starting index is greater than the end index |
3069 | /// or if the index is greater than the length of the vector. |
3070 | /// |
3071 | /// # Examples |
3072 | /// |
3073 | /// ``` |
3074 | /// let mut characters = vec!['a' , 'b' , 'c' , 'd' , 'e' ]; |
3075 | /// characters.extend_from_within(2..); |
3076 | /// assert_eq!(characters, ['a' , 'b' , 'c' , 'd' , 'e' , 'c' , 'd' , 'e' ]); |
3077 | /// |
3078 | /// let mut numbers = vec![0, 1, 2, 3, 4]; |
3079 | /// numbers.extend_from_within(..2); |
3080 | /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]); |
3081 | /// |
3082 | /// let mut strings = vec![String::from("hello" ), String::from("world" ), String::from("!" )]; |
3083 | /// strings.extend_from_within(1..=2); |
3084 | /// assert_eq!(strings, ["hello" , "world" , "!" , "world" , "!" ]); |
3085 | /// ``` |
3086 | #[cfg (not(no_global_oom_handling))] |
3087 | #[stable (feature = "vec_extend_from_within" , since = "1.53.0" )] |
3088 | #[track_caller ] |
3089 | pub fn extend_from_within<R>(&mut self, src: R) |
3090 | where |
3091 | R: RangeBounds<usize>, |
3092 | { |
3093 | let range = slice::range(src, ..self.len()); |
3094 | self.reserve(range.len()); |
3095 | |
3096 | // SAFETY: |
3097 | // - `slice::range` guarantees that the given range is valid for indexing self |
3098 | unsafe { |
3099 | self.spec_extend_from_within(range); |
3100 | } |
3101 | } |
3102 | } |
3103 | |
3104 | impl<T, A: Allocator, const N: usize> Vec<[T; N], A> { |
3105 | /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`. |
3106 | /// |
3107 | /// # Panics |
3108 | /// |
3109 | /// Panics if the length of the resulting vector would overflow a `usize`. |
3110 | /// |
3111 | /// This is only possible when flattening a vector of arrays of zero-sized |
3112 | /// types, and thus tends to be irrelevant in practice. If |
3113 | /// `size_of::<T>() > 0`, this will never panic. |
3114 | /// |
3115 | /// # Examples |
3116 | /// |
3117 | /// ``` |
3118 | /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]]; |
3119 | /// assert_eq!(vec.pop(), Some([7, 8, 9])); |
3120 | /// |
3121 | /// let mut flattened = vec.into_flattened(); |
3122 | /// assert_eq!(flattened.pop(), Some(6)); |
3123 | /// ``` |
3124 | #[stable (feature = "slice_flatten" , since = "1.80.0" )] |
3125 | pub fn into_flattened(self) -> Vec<T, A> { |
3126 | let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc(); |
3127 | let (new_len, new_cap) = if T::IS_ZST { |
3128 | (len.checked_mul(N).expect("vec len overflow" ), usize::MAX) |
3129 | } else { |
3130 | // SAFETY: |
3131 | // - `cap * N` cannot overflow because the allocation is already in |
3132 | // the address space. |
3133 | // - Each `[T; N]` has `N` valid elements, so there are `len * N` |
3134 | // valid elements in the allocation. |
3135 | unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) } |
3136 | }; |
3137 | // SAFETY: |
3138 | // - `ptr` was allocated by `self` |
3139 | // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`. |
3140 | // - `new_cap` refers to the same sized allocation as `cap` because |
3141 | // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()` |
3142 | // - `len` <= `cap`, so `len * N` <= `cap * N`. |
3143 | unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) } |
3144 | } |
3145 | } |
3146 | |
3147 | impl<T: Clone, A: Allocator> Vec<T, A> { |
3148 | #[cfg (not(no_global_oom_handling))] |
3149 | #[track_caller ] |
3150 | /// Extend the vector by `n` clones of value. |
3151 | fn extend_with(&mut self, n: usize, value: T) { |
3152 | self.reserve(n); |
3153 | |
3154 | unsafe { |
3155 | let mut ptr = self.as_mut_ptr().add(self.len()); |
3156 | // Use SetLenOnDrop to work around bug where compiler |
3157 | // might not realize the store through `ptr` through self.set_len() |
3158 | // don't alias. |
3159 | let mut local_len = SetLenOnDrop::new(&mut self.len); |
3160 | |
3161 | // Write all elements except the last one |
3162 | for _ in 1..n { |
3163 | ptr::write(ptr, value.clone()); |
3164 | ptr = ptr.add(1); |
3165 | // Increment the length in every step in case clone() panics |
3166 | local_len.increment_len(1); |
3167 | } |
3168 | |
3169 | if n > 0 { |
3170 | // We can write the last element directly without cloning needlessly |
3171 | ptr::write(ptr, value); |
3172 | local_len.increment_len(1); |
3173 | } |
3174 | |
3175 | // len set by scope guard |
3176 | } |
3177 | } |
3178 | } |
3179 | |
3180 | impl<T: PartialEq, A: Allocator> Vec<T, A> { |
3181 | /// Removes consecutive repeated elements in the vector according to the |
3182 | /// [`PartialEq`] trait implementation. |
3183 | /// |
3184 | /// If the vector is sorted, this removes all duplicates. |
3185 | /// |
3186 | /// # Examples |
3187 | /// |
3188 | /// ``` |
3189 | /// let mut vec = vec![1, 2, 2, 3, 2]; |
3190 | /// |
3191 | /// vec.dedup(); |
3192 | /// |
3193 | /// assert_eq!(vec, [1, 2, 3, 2]); |
3194 | /// ``` |
3195 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3196 | #[inline ] |
3197 | pub fn dedup(&mut self) { |
3198 | self.dedup_by(|a: &mut T, b: &mut T| a == b) |
3199 | } |
3200 | } |
3201 | |
3202 | //////////////////////////////////////////////////////////////////////////////// |
3203 | // Internal methods and functions |
3204 | //////////////////////////////////////////////////////////////////////////////// |
3205 | |
3206 | #[doc (hidden)] |
3207 | #[cfg (not(no_global_oom_handling))] |
3208 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3209 | #[rustc_diagnostic_item = "vec_from_elem" ] |
3210 | #[track_caller ] |
3211 | pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> { |
3212 | <T as SpecFromElem>::from_elem(elem, n, alloc:Global) |
3213 | } |
3214 | |
3215 | #[doc (hidden)] |
3216 | #[cfg (not(no_global_oom_handling))] |
3217 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
3218 | #[track_caller ] |
3219 | pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> { |
3220 | <T as SpecFromElem>::from_elem(elem, n, alloc) |
3221 | } |
3222 | |
3223 | #[cfg (not(no_global_oom_handling))] |
3224 | trait ExtendFromWithinSpec { |
3225 | /// # Safety |
3226 | /// |
3227 | /// - `src` needs to be valid index |
3228 | /// - `self.capacity() - self.len()` must be `>= src.len()` |
3229 | unsafe fn spec_extend_from_within(&mut self, src: Range<usize>); |
3230 | } |
3231 | |
3232 | #[cfg (not(no_global_oom_handling))] |
3233 | impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { |
3234 | default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { |
3235 | // SAFETY: |
3236 | // - len is increased only after initializing elements |
3237 | let (this: &mut [T], spare: &mut [MaybeUninit], len: &mut usize) = unsafe { self.split_at_spare_mut_with_len() }; |
3238 | |
3239 | // SAFETY: |
3240 | // - caller guarantees that src is a valid index |
3241 | let to_clone: &[T] = unsafe { this.get_unchecked(index:src) }; |
3242 | |
3243 | iterimpl Iterator ::zip(a:to_clone, b:spare) |
3244 | .map(|(src: &T, dst: &mut MaybeUninit)| dst.write(val:src.clone())) |
3245 | // Note: |
3246 | // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len |
3247 | // - len is increased after each element to prevent leaks (see issue #82533) |
3248 | .for_each(|_| *len += 1); |
3249 | } |
3250 | } |
3251 | |
3252 | #[cfg (not(no_global_oom_handling))] |
3253 | impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { |
3254 | unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { |
3255 | let count = src.len(); |
3256 | { |
3257 | let (init, spare) = self.split_at_spare_mut(); |
3258 | |
3259 | // SAFETY: |
3260 | // - caller guarantees that `src` is a valid index |
3261 | let source = unsafe { init.get_unchecked(src) }; |
3262 | |
3263 | // SAFETY: |
3264 | // - Both pointers are created from unique slice references (`&mut [_]`) |
3265 | // so they are valid and do not overlap. |
3266 | // - Elements are :Copy so it's OK to copy them, without doing |
3267 | // anything with the original values |
3268 | // - `count` is equal to the len of `source`, so source is valid for |
3269 | // `count` reads |
3270 | // - `.reserve(count)` guarantees that `spare.len() >= count` so spare |
3271 | // is valid for `count` writes |
3272 | unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) }; |
3273 | } |
3274 | |
3275 | // SAFETY: |
3276 | // - The elements were just initialized by `copy_nonoverlapping` |
3277 | self.len += count; |
3278 | } |
3279 | } |
3280 | |
3281 | //////////////////////////////////////////////////////////////////////////////// |
3282 | // Common trait implementations for Vec |
3283 | //////////////////////////////////////////////////////////////////////////////// |
3284 | |
3285 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3286 | impl<T, A: Allocator> ops::Deref for Vec<T, A> { |
3287 | type Target = [T]; |
3288 | |
3289 | #[inline ] |
3290 | fn deref(&self) -> &[T] { |
3291 | self.as_slice() |
3292 | } |
3293 | } |
3294 | |
3295 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3296 | impl<T, A: Allocator> ops::DerefMut for Vec<T, A> { |
3297 | #[inline ] |
3298 | fn deref_mut(&mut self) -> &mut [T] { |
3299 | self.as_mut_slice() |
3300 | } |
3301 | } |
3302 | |
3303 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
3304 | unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {} |
3305 | |
3306 | #[cfg (not(no_global_oom_handling))] |
3307 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3308 | impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> { |
3309 | #[track_caller ] |
3310 | fn clone(&self) -> Self { |
3311 | let alloc = self.allocator().clone(); |
3312 | <[T]>::to_vec_in(&**self, alloc) |
3313 | } |
3314 | |
3315 | /// Overwrites the contents of `self` with a clone of the contents of `source`. |
3316 | /// |
3317 | /// This method is preferred over simply assigning `source.clone()` to `self`, |
3318 | /// as it avoids reallocation if possible. Additionally, if the element type |
3319 | /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s |
3320 | /// elements as well. |
3321 | /// |
3322 | /// # Examples |
3323 | /// |
3324 | /// ``` |
3325 | /// let x = vec![5, 6, 7]; |
3326 | /// let mut y = vec![8, 9, 10]; |
3327 | /// let yp: *const i32 = y.as_ptr(); |
3328 | /// |
3329 | /// y.clone_from(&x); |
3330 | /// |
3331 | /// // The value is the same |
3332 | /// assert_eq!(x, y); |
3333 | /// |
3334 | /// // And no reallocation occurred |
3335 | /// assert_eq!(yp, y.as_ptr()); |
3336 | /// ``` |
3337 | #[track_caller ] |
3338 | fn clone_from(&mut self, source: &Self) { |
3339 | crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self); |
3340 | } |
3341 | } |
3342 | |
3343 | /// The hash of a vector is the same as that of the corresponding slice, |
3344 | /// as required by the `core::borrow::Borrow` implementation. |
3345 | /// |
3346 | /// ``` |
3347 | /// use std::hash::BuildHasher; |
3348 | /// |
3349 | /// let b = std::hash::RandomState::new(); |
3350 | /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09]; |
3351 | /// let s: &[u8] = &[0xa8, 0x3c, 0x09]; |
3352 | /// assert_eq!(b.hash_one(v), b.hash_one(s)); |
3353 | /// ``` |
3354 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3355 | impl<T: Hash, A: Allocator> Hash for Vec<T, A> { |
3356 | #[inline ] |
3357 | fn hash<H: Hasher>(&self, state: &mut H) { |
3358 | Hash::hash(&**self, state) |
3359 | } |
3360 | } |
3361 | |
3362 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3363 | #[rustc_on_unimplemented ( |
3364 | message = "vector indices are of type `usize` or ranges of `usize`" , |
3365 | label = "vector indices are of type `usize` or ranges of `usize`" |
3366 | )] |
3367 | impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> { |
3368 | type Output = I::Output; |
3369 | |
3370 | #[inline ] |
3371 | fn index(&self, index: I) -> &Self::Output { |
3372 | Index::index(&**self, index) |
3373 | } |
3374 | } |
3375 | |
3376 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3377 | #[rustc_on_unimplemented ( |
3378 | message = "vector indices are of type `usize` or ranges of `usize`" , |
3379 | label = "vector indices are of type `usize` or ranges of `usize`" |
3380 | )] |
3381 | impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> { |
3382 | #[inline ] |
3383 | fn index_mut(&mut self, index: I) -> &mut Self::Output { |
3384 | IndexMut::index_mut(&mut **self, index) |
3385 | } |
3386 | } |
3387 | |
3388 | /// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`] |
3389 | /// |
3390 | /// # Allocation behavior |
3391 | /// |
3392 | /// In general `Vec` does not guarantee any particular growth or allocation strategy. |
3393 | /// That also applies to this trait impl. |
3394 | /// |
3395 | /// **Note:** This section covers implementation details and is therefore exempt from |
3396 | /// stability guarantees. |
3397 | /// |
3398 | /// Vec may use any or none of the following strategies, |
3399 | /// depending on the supplied iterator: |
3400 | /// |
3401 | /// * preallocate based on [`Iterator::size_hint()`] |
3402 | /// * and panic if the number of items is outside the provided lower/upper bounds |
3403 | /// * use an amortized growth strategy similar to `pushing` one item at a time |
3404 | /// * perform the iteration in-place on the original allocation backing the iterator |
3405 | /// |
3406 | /// The last case warrants some attention. It is an optimization that in many cases reduces peak memory |
3407 | /// consumption and improves cache locality. But when big, short-lived allocations are created, |
3408 | /// only a small fraction of their items get collected, no further use is made of the spare capacity |
3409 | /// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large |
3410 | /// allocations having their lifetimes unnecessarily extended which can result in increased memory |
3411 | /// footprint. |
3412 | /// |
3413 | /// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`], |
3414 | /// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces |
3415 | /// the size of the long-lived struct. |
3416 | /// |
3417 | /// [owned slice]: Box |
3418 | /// |
3419 | /// ```rust |
3420 | /// # use std::sync::Mutex; |
3421 | /// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new()); |
3422 | /// |
3423 | /// for i in 0..10 { |
3424 | /// let big_temporary: Vec<u16> = (0..1024).collect(); |
3425 | /// // discard most items |
3426 | /// let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect(); |
3427 | /// // without this a lot of unused capacity might be moved into the global |
3428 | /// result.shrink_to_fit(); |
3429 | /// LONG_LIVED.lock().unwrap().push(result); |
3430 | /// } |
3431 | /// ``` |
3432 | #[cfg (not(no_global_oom_handling))] |
3433 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3434 | impl<T> FromIterator<T> for Vec<T> { |
3435 | #[inline ] |
3436 | #[track_caller ] |
3437 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> { |
3438 | <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter()) |
3439 | } |
3440 | } |
3441 | |
3442 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3443 | impl<T, A: Allocator> IntoIterator for Vec<T, A> { |
3444 | type Item = T; |
3445 | type IntoIter = IntoIter<T, A>; |
3446 | |
3447 | /// Creates a consuming iterator, that is, one that moves each value out of |
3448 | /// the vector (from start to end). The vector cannot be used after calling |
3449 | /// this. |
3450 | /// |
3451 | /// # Examples |
3452 | /// |
3453 | /// ``` |
3454 | /// let v = vec!["a" .to_string(), "b" .to_string()]; |
3455 | /// let mut v_iter = v.into_iter(); |
3456 | /// |
3457 | /// let first_element: Option<String> = v_iter.next(); |
3458 | /// |
3459 | /// assert_eq!(first_element, Some("a" .to_string())); |
3460 | /// assert_eq!(v_iter.next(), Some("b" .to_string())); |
3461 | /// assert_eq!(v_iter.next(), None); |
3462 | /// ``` |
3463 | #[inline ] |
3464 | fn into_iter(self) -> Self::IntoIter { |
3465 | unsafe { |
3466 | let me = ManuallyDrop::new(self); |
3467 | let alloc = ManuallyDrop::new(ptr::read(me.allocator())); |
3468 | let buf = me.buf.non_null(); |
3469 | let begin = buf.as_ptr(); |
3470 | let end = if T::IS_ZST { |
3471 | begin.wrapping_byte_add(me.len()) |
3472 | } else { |
3473 | begin.add(me.len()) as *const T |
3474 | }; |
3475 | let cap = me.buf.capacity(); |
3476 | IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end } |
3477 | } |
3478 | } |
3479 | } |
3480 | |
3481 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3482 | impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> { |
3483 | type Item = &'a T; |
3484 | type IntoIter = slice::Iter<'a, T>; |
3485 | |
3486 | fn into_iter(self) -> Self::IntoIter { |
3487 | self.iter() |
3488 | } |
3489 | } |
3490 | |
3491 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3492 | impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> { |
3493 | type Item = &'a mut T; |
3494 | type IntoIter = slice::IterMut<'a, T>; |
3495 | |
3496 | fn into_iter(self) -> Self::IntoIter { |
3497 | self.iter_mut() |
3498 | } |
3499 | } |
3500 | |
3501 | #[cfg (not(no_global_oom_handling))] |
3502 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3503 | impl<T, A: Allocator> Extend<T> for Vec<T, A> { |
3504 | #[inline ] |
3505 | #[track_caller ] |
3506 | fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { |
3507 | <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter()) |
3508 | } |
3509 | |
3510 | #[inline ] |
3511 | #[track_caller ] |
3512 | fn extend_one(&mut self, item: T) { |
3513 | self.push(item); |
3514 | } |
3515 | |
3516 | #[inline ] |
3517 | #[track_caller ] |
3518 | fn extend_reserve(&mut self, additional: usize) { |
3519 | self.reserve(additional); |
3520 | } |
3521 | |
3522 | #[inline ] |
3523 | unsafe fn extend_one_unchecked(&mut self, item: T) { |
3524 | // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly. |
3525 | unsafe { |
3526 | let len = self.len(); |
3527 | ptr::write(self.as_mut_ptr().add(len), item); |
3528 | self.set_len(len + 1); |
3529 | } |
3530 | } |
3531 | } |
3532 | |
3533 | impl<T, A: Allocator> Vec<T, A> { |
3534 | // leaf method to which various SpecFrom/SpecExtend implementations delegate when |
3535 | // they have no further optimizations to apply |
3536 | #[cfg (not(no_global_oom_handling))] |
3537 | #[track_caller ] |
3538 | fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) { |
3539 | // This is the case for a general iterator. |
3540 | // |
3541 | // This function should be the moral equivalent of: |
3542 | // |
3543 | // for item in iterator { |
3544 | // self.push(item); |
3545 | // } |
3546 | while let Some(element) = iterator.next() { |
3547 | let len = self.len(); |
3548 | if len == self.capacity() { |
3549 | let (lower, _) = iterator.size_hint(); |
3550 | self.reserve(lower.saturating_add(1)); |
3551 | } |
3552 | unsafe { |
3553 | ptr::write(self.as_mut_ptr().add(len), element); |
3554 | // Since next() executes user code which can panic we have to bump the length |
3555 | // after each step. |
3556 | // NB can't overflow since we would have had to alloc the address space |
3557 | self.set_len(len + 1); |
3558 | } |
3559 | } |
3560 | } |
3561 | |
3562 | // specific extend for `TrustedLen` iterators, called both by the specializations |
3563 | // and internal places where resolving specialization makes compilation slower |
3564 | #[cfg (not(no_global_oom_handling))] |
3565 | #[track_caller ] |
3566 | fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) { |
3567 | let (low, high) = iterator.size_hint(); |
3568 | if let Some(additional) = high { |
3569 | debug_assert_eq!( |
3570 | low, |
3571 | additional, |
3572 | "TrustedLen iterator's size hint is not exact: {:?}" , |
3573 | (low, high) |
3574 | ); |
3575 | self.reserve(additional); |
3576 | unsafe { |
3577 | let ptr = self.as_mut_ptr(); |
3578 | let mut local_len = SetLenOnDrop::new(&mut self.len); |
3579 | iterator.for_each(move |element| { |
3580 | ptr::write(ptr.add(local_len.current_len()), element); |
3581 | // Since the loop executes user code which can panic we have to update |
3582 | // the length every step to correctly drop what we've written. |
3583 | // NB can't overflow since we would have had to alloc the address space |
3584 | local_len.increment_len(1); |
3585 | }); |
3586 | } |
3587 | } else { |
3588 | // Per TrustedLen contract a `None` upper bound means that the iterator length |
3589 | // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway. |
3590 | // Since the other branch already panics eagerly (via `reserve()`) we do the same here. |
3591 | // This avoids additional codegen for a fallback code path which would eventually |
3592 | // panic anyway. |
3593 | panic!("capacity overflow" ); |
3594 | } |
3595 | } |
3596 | |
3597 | /// Creates a splicing iterator that replaces the specified range in the vector |
3598 | /// with the given `replace_with` iterator and yields the removed items. |
3599 | /// `replace_with` does not need to be the same length as `range`. |
3600 | /// |
3601 | /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped. |
3602 | /// |
3603 | /// It is unspecified how many elements are removed from the vector |
3604 | /// if the `Splice` value is leaked. |
3605 | /// |
3606 | /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped. |
3607 | /// |
3608 | /// This is optimal if: |
3609 | /// |
3610 | /// * The tail (elements in the vector after `range`) is empty, |
3611 | /// * or `replace_with` yields fewer or equal elements than `range`’s length |
3612 | /// * or the lower bound of its `size_hint()` is exact. |
3613 | /// |
3614 | /// Otherwise, a temporary vector is allocated and the tail is moved twice. |
3615 | /// |
3616 | /// # Panics |
3617 | /// |
3618 | /// Panics if the starting point is greater than the end point or if |
3619 | /// the end point is greater than the length of the vector. |
3620 | /// |
3621 | /// # Examples |
3622 | /// |
3623 | /// ``` |
3624 | /// let mut v = vec![1, 2, 3, 4]; |
3625 | /// let new = [7, 8, 9]; |
3626 | /// let u: Vec<_> = v.splice(1..3, new).collect(); |
3627 | /// assert_eq!(v, [1, 7, 8, 9, 4]); |
3628 | /// assert_eq!(u, [2, 3]); |
3629 | /// ``` |
3630 | /// |
3631 | /// Using `splice` to insert new items into a vector efficiently at a specific position |
3632 | /// indicated by an empty range: |
3633 | /// |
3634 | /// ``` |
3635 | /// let mut v = vec![1, 5]; |
3636 | /// let new = [2, 3, 4]; |
3637 | /// v.splice(1..1, new); |
3638 | /// assert_eq!(v, [1, 2, 3, 4, 5]); |
3639 | /// ``` |
3640 | #[cfg (not(no_global_oom_handling))] |
3641 | #[inline ] |
3642 | #[stable (feature = "vec_splice" , since = "1.21.0" )] |
3643 | pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> |
3644 | where |
3645 | R: RangeBounds<usize>, |
3646 | I: IntoIterator<Item = T>, |
3647 | { |
3648 | Splice { drain: self.drain(range), replace_with: replace_with.into_iter() } |
3649 | } |
3650 | |
3651 | /// Creates an iterator which uses a closure to determine if element in the range should be removed. |
3652 | /// |
3653 | /// If the closure returns true, then the element is removed and yielded. |
3654 | /// If the closure returns false, the element will remain in the vector and will not be yielded |
3655 | /// by the iterator. |
3656 | /// |
3657 | /// Only elements that fall in the provided range are considered for extraction, but any elements |
3658 | /// after the range will still have to be moved if any element has been extracted. |
3659 | /// |
3660 | /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating |
3661 | /// or the iteration short-circuits, then the remaining elements will be retained. |
3662 | /// Use [`retain`] with a negated predicate if you do not need the returned iterator. |
3663 | /// |
3664 | /// [`retain`]: Vec::retain |
3665 | /// |
3666 | /// Using this method is equivalent to the following code: |
3667 | /// |
3668 | /// ``` |
3669 | /// # use std::cmp::min; |
3670 | /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 }; |
3671 | /// # let mut vec = vec![1, 2, 3, 4, 5, 6]; |
3672 | /// # let range = 1..4; |
3673 | /// let mut i = range.start; |
3674 | /// while i < min(vec.len(), range.end) { |
3675 | /// if some_predicate(&mut vec[i]) { |
3676 | /// let val = vec.remove(i); |
3677 | /// // your code here |
3678 | /// } else { |
3679 | /// i += 1; |
3680 | /// } |
3681 | /// } |
3682 | /// |
3683 | /// # assert_eq!(vec, vec![1, 4, 5]); |
3684 | /// ``` |
3685 | /// |
3686 | /// But `extract_if` is easier to use. `extract_if` is also more efficient, |
3687 | /// because it can backshift the elements of the array in bulk. |
3688 | /// |
3689 | /// Note that `extract_if` also lets you mutate the elements passed to the filter closure, |
3690 | /// regardless of whether you choose to keep or remove them. |
3691 | /// |
3692 | /// # Panics |
3693 | /// |
3694 | /// If `range` is out of bounds. |
3695 | /// |
3696 | /// # Examples |
3697 | /// |
3698 | /// Splitting an array into evens and odds, reusing the original allocation: |
3699 | /// |
3700 | /// ``` |
3701 | /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]; |
3702 | /// |
3703 | /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>(); |
3704 | /// let odds = numbers; |
3705 | /// |
3706 | /// assert_eq!(evens, vec![2, 4, 6, 8, 14]); |
3707 | /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]); |
3708 | /// ``` |
3709 | /// |
3710 | /// Using the range argument to only process a part of the vector: |
3711 | /// |
3712 | /// ``` |
3713 | /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2]; |
3714 | /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>(); |
3715 | /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]); |
3716 | /// assert_eq!(ones.len(), 3); |
3717 | /// ``` |
3718 | #[stable (feature = "extract_if" , since = "1.87.0" )] |
3719 | pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A> |
3720 | where |
3721 | F: FnMut(&mut T) -> bool, |
3722 | R: RangeBounds<usize>, |
3723 | { |
3724 | ExtractIf::new(self, filter, range) |
3725 | } |
3726 | } |
3727 | |
3728 | /// Extend implementation that copies elements out of references before pushing them onto the Vec. |
3729 | /// |
3730 | /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to |
3731 | /// append the entire slice at once. |
3732 | /// |
3733 | /// [`copy_from_slice`]: slice::copy_from_slice |
3734 | #[cfg (not(no_global_oom_handling))] |
3735 | #[stable (feature = "extend_ref" , since = "1.2.0" )] |
3736 | impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> { |
3737 | #[track_caller ] |
3738 | fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { |
3739 | self.spec_extend(iter.into_iter()) |
3740 | } |
3741 | |
3742 | #[inline ] |
3743 | #[track_caller ] |
3744 | fn extend_one(&mut self, &item: &'a T) { |
3745 | self.push(item); |
3746 | } |
3747 | |
3748 | #[inline ] |
3749 | #[track_caller ] |
3750 | fn extend_reserve(&mut self, additional: usize) { |
3751 | self.reserve(additional); |
3752 | } |
3753 | |
3754 | #[inline ] |
3755 | unsafe fn extend_one_unchecked(&mut self, &item: &'a T) { |
3756 | // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly. |
3757 | unsafe { |
3758 | let len = self.len(); |
3759 | ptr::write(self.as_mut_ptr().add(len), item); |
3760 | self.set_len(len + 1); |
3761 | } |
3762 | } |
3763 | } |
3764 | |
3765 | /// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison). |
3766 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3767 | impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1> |
3768 | where |
3769 | T: PartialOrd, |
3770 | A1: Allocator, |
3771 | A2: Allocator, |
3772 | { |
3773 | #[inline ] |
3774 | fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> { |
3775 | PartialOrd::partial_cmp(&**self, &**other) |
3776 | } |
3777 | } |
3778 | |
3779 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3780 | impl<T: Eq, A: Allocator> Eq for Vec<T, A> {} |
3781 | |
3782 | /// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison). |
3783 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3784 | impl<T: Ord, A: Allocator> Ord for Vec<T, A> { |
3785 | #[inline ] |
3786 | fn cmp(&self, other: &Self) -> Ordering { |
3787 | Ord::cmp(&**self, &**other) |
3788 | } |
3789 | } |
3790 | |
3791 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3792 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for Vec<T, A> { |
3793 | fn drop(&mut self) { |
3794 | unsafe { |
3795 | // use drop for [T] |
3796 | // use a raw slice to refer to the elements of the vector as weakest necessary type; |
3797 | // could avoid questions of validity in certain cases |
3798 | ptr::drop_in_place(to_drop:ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len)) |
3799 | } |
3800 | // RawVec handles deallocation |
3801 | } |
3802 | } |
3803 | |
3804 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3805 | impl<T> Default for Vec<T> { |
3806 | /// Creates an empty `Vec<T>`. |
3807 | /// |
3808 | /// The vector will not allocate until elements are pushed onto it. |
3809 | fn default() -> Vec<T> { |
3810 | Vec::new() |
3811 | } |
3812 | } |
3813 | |
3814 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3815 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { |
3816 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
3817 | fmt::Debug::fmt(&**self, f) |
3818 | } |
3819 | } |
3820 | |
3821 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3822 | impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> { |
3823 | fn as_ref(&self) -> &Vec<T, A> { |
3824 | self |
3825 | } |
3826 | } |
3827 | |
3828 | #[stable (feature = "vec_as_mut" , since = "1.5.0" )] |
3829 | impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> { |
3830 | fn as_mut(&mut self) -> &mut Vec<T, A> { |
3831 | self |
3832 | } |
3833 | } |
3834 | |
3835 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3836 | impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> { |
3837 | fn as_ref(&self) -> &[T] { |
3838 | self |
3839 | } |
3840 | } |
3841 | |
3842 | #[stable (feature = "vec_as_mut" , since = "1.5.0" )] |
3843 | impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> { |
3844 | fn as_mut(&mut self) -> &mut [T] { |
3845 | self |
3846 | } |
3847 | } |
3848 | |
3849 | #[cfg (not(no_global_oom_handling))] |
3850 | #[stable (feature = "rust1" , since = "1.0.0" )] |
3851 | impl<T: Clone> From<&[T]> for Vec<T> { |
3852 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
3853 | /// |
3854 | /// # Examples |
3855 | /// |
3856 | /// ``` |
3857 | /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]); |
3858 | /// ``` |
3859 | #[track_caller ] |
3860 | fn from(s: &[T]) -> Vec<T> { |
3861 | s.to_vec() |
3862 | } |
3863 | } |
3864 | |
3865 | #[cfg (not(no_global_oom_handling))] |
3866 | #[stable (feature = "vec_from_mut" , since = "1.19.0" )] |
3867 | impl<T: Clone> From<&mut [T]> for Vec<T> { |
3868 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
3869 | /// |
3870 | /// # Examples |
3871 | /// |
3872 | /// ``` |
3873 | /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]); |
3874 | /// ``` |
3875 | #[track_caller ] |
3876 | fn from(s: &mut [T]) -> Vec<T> { |
3877 | s.to_vec() |
3878 | } |
3879 | } |
3880 | |
3881 | #[cfg (not(no_global_oom_handling))] |
3882 | #[stable (feature = "vec_from_array_ref" , since = "1.74.0" )] |
3883 | impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> { |
3884 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
3885 | /// |
3886 | /// # Examples |
3887 | /// |
3888 | /// ``` |
3889 | /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]); |
3890 | /// ``` |
3891 | #[track_caller ] |
3892 | fn from(s: &[T; N]) -> Vec<T> { |
3893 | Self::from(s.as_slice()) |
3894 | } |
3895 | } |
3896 | |
3897 | #[cfg (not(no_global_oom_handling))] |
3898 | #[stable (feature = "vec_from_array_ref" , since = "1.74.0" )] |
3899 | impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> { |
3900 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
3901 | /// |
3902 | /// # Examples |
3903 | /// |
3904 | /// ``` |
3905 | /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]); |
3906 | /// ``` |
3907 | #[track_caller ] |
3908 | fn from(s: &mut [T; N]) -> Vec<T> { |
3909 | Self::from(s.as_mut_slice()) |
3910 | } |
3911 | } |
3912 | |
3913 | #[cfg (not(no_global_oom_handling))] |
3914 | #[stable (feature = "vec_from_array" , since = "1.44.0" )] |
3915 | impl<T, const N: usize> From<[T; N]> for Vec<T> { |
3916 | /// Allocates a `Vec<T>` and moves `s`'s items into it. |
3917 | /// |
3918 | /// # Examples |
3919 | /// |
3920 | /// ``` |
3921 | /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]); |
3922 | /// ``` |
3923 | #[track_caller ] |
3924 | fn from(s: [T; N]) -> Vec<T> { |
3925 | <[T]>::into_vec(self:Box::new(s)) |
3926 | } |
3927 | } |
3928 | |
3929 | #[stable (feature = "vec_from_cow_slice" , since = "1.14.0" )] |
3930 | impl<'a, T> From<Cow<'a, [T]>> for Vec<T> |
3931 | where |
3932 | [T]: ToOwned<Owned = Vec<T>>, |
3933 | { |
3934 | /// Converts a clone-on-write slice into a vector. |
3935 | /// |
3936 | /// If `s` already owns a `Vec<T>`, it will be returned directly. |
3937 | /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and |
3938 | /// filled by cloning `s`'s items into it. |
3939 | /// |
3940 | /// # Examples |
3941 | /// |
3942 | /// ``` |
3943 | /// # use std::borrow::Cow; |
3944 | /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]); |
3945 | /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]); |
3946 | /// assert_eq!(Vec::from(o), Vec::from(b)); |
3947 | /// ``` |
3948 | #[track_caller ] |
3949 | fn from(s: Cow<'a, [T]>) -> Vec<T> { |
3950 | s.into_owned() |
3951 | } |
3952 | } |
3953 | |
3954 | // note: test pulls in std, which causes errors here |
3955 | #[stable (feature = "vec_from_box" , since = "1.18.0" )] |
3956 | impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> { |
3957 | /// Converts a boxed slice into a vector by transferring ownership of |
3958 | /// the existing heap allocation. |
3959 | /// |
3960 | /// # Examples |
3961 | /// |
3962 | /// ``` |
3963 | /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice(); |
3964 | /// assert_eq!(Vec::from(b), vec![1, 2, 3]); |
3965 | /// ``` |
3966 | fn from(s: Box<[T], A>) -> Self { |
3967 | s.into_vec() |
3968 | } |
3969 | } |
3970 | |
3971 | // note: test pulls in std, which causes errors here |
3972 | #[cfg (not(no_global_oom_handling))] |
3973 | #[stable (feature = "box_from_vec" , since = "1.20.0" )] |
3974 | impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> { |
3975 | /// Converts a vector into a boxed slice. |
3976 | /// |
3977 | /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`]. |
3978 | /// |
3979 | /// [owned slice]: Box |
3980 | /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit |
3981 | /// |
3982 | /// # Examples |
3983 | /// |
3984 | /// ``` |
3985 | /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice()); |
3986 | /// ``` |
3987 | /// |
3988 | /// Any excess capacity is removed: |
3989 | /// ``` |
3990 | /// let mut vec = Vec::with_capacity(10); |
3991 | /// vec.extend([1, 2, 3]); |
3992 | /// |
3993 | /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice()); |
3994 | /// ``` |
3995 | #[track_caller ] |
3996 | fn from(v: Vec<T, A>) -> Self { |
3997 | v.into_boxed_slice() |
3998 | } |
3999 | } |
4000 | |
4001 | #[cfg (not(no_global_oom_handling))] |
4002 | #[stable (feature = "rust1" , since = "1.0.0" )] |
4003 | impl From<&str> for Vec<u8> { |
4004 | /// Allocates a `Vec<u8>` and fills it with a UTF-8 string. |
4005 | /// |
4006 | /// # Examples |
4007 | /// |
4008 | /// ``` |
4009 | /// assert_eq!(Vec::from("123" ), vec![b'1' , b'2' , b'3' ]); |
4010 | /// ``` |
4011 | #[track_caller ] |
4012 | fn from(s: &str) -> Vec<u8> { |
4013 | From::from(s.as_bytes()) |
4014 | } |
4015 | } |
4016 | |
4017 | #[stable (feature = "array_try_from_vec" , since = "1.48.0" )] |
4018 | impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] { |
4019 | type Error = Vec<T, A>; |
4020 | |
4021 | /// Gets the entire contents of the `Vec<T>` as an array, |
4022 | /// if its size exactly matches that of the requested array. |
4023 | /// |
4024 | /// # Examples |
4025 | /// |
4026 | /// ``` |
4027 | /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3])); |
4028 | /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([])); |
4029 | /// ``` |
4030 | /// |
4031 | /// If the length doesn't match, the input comes back in `Err`: |
4032 | /// ``` |
4033 | /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into(); |
4034 | /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9])); |
4035 | /// ``` |
4036 | /// |
4037 | /// If you're fine with just getting a prefix of the `Vec<T>`, |
4038 | /// you can call [`.truncate(N)`](Vec::truncate) first. |
4039 | /// ``` |
4040 | /// let mut v = String::from("hello world" ).into_bytes(); |
4041 | /// v.sort(); |
4042 | /// v.truncate(2); |
4043 | /// let [a, b]: [_; 2] = v.try_into().unwrap(); |
4044 | /// assert_eq!(a, b' ' ); |
4045 | /// assert_eq!(b, b'd' ); |
4046 | /// ``` |
4047 | fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> { |
4048 | if vec.len() != N { |
4049 | return Err(vec); |
4050 | } |
4051 | |
4052 | // SAFETY: `.set_len(0)` is always sound. |
4053 | unsafe { vec.set_len(0) }; |
4054 | |
4055 | // SAFETY: A `Vec`'s pointer is always aligned properly, and |
4056 | // the alignment the array needs is the same as the items. |
4057 | // We checked earlier that we have sufficient items. |
4058 | // The items will not double-drop as the `set_len` |
4059 | // tells the `Vec` not to also drop them. |
4060 | let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) }; |
4061 | Ok(array) |
4062 | } |
4063 | } |
4064 | |