| 1 | //! A contiguous growable array type with heap-allocated contents, written |
| 2 | //! `Vec<T>`. |
| 3 | //! |
| 4 | //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and |
| 5 | //! *O*(1) pop (from the end). |
| 6 | //! |
| 7 | //! Vectors ensure they never allocate more than `isize::MAX` bytes. |
| 8 | //! |
| 9 | //! # Examples |
| 10 | //! |
| 11 | //! You can explicitly create a [`Vec`] with [`Vec::new`]: |
| 12 | //! |
| 13 | //! ``` |
| 14 | //! let v: Vec<i32> = Vec::new(); |
| 15 | //! ``` |
| 16 | //! |
| 17 | //! ...or by using the [`vec!`] macro: |
| 18 | //! |
| 19 | //! ``` |
| 20 | //! let v: Vec<i32> = vec![]; |
| 21 | //! |
| 22 | //! let v = vec![1, 2, 3, 4, 5]; |
| 23 | //! |
| 24 | //! let v = vec![0; 10]; // ten zeroes |
| 25 | //! ``` |
| 26 | //! |
| 27 | //! You can [`push`] values onto the end of a vector (which will grow the vector |
| 28 | //! as needed): |
| 29 | //! |
| 30 | //! ``` |
| 31 | //! let mut v = vec![1, 2]; |
| 32 | //! |
| 33 | //! v.push(3); |
| 34 | //! ``` |
| 35 | //! |
| 36 | //! Popping values works in much the same way: |
| 37 | //! |
| 38 | //! ``` |
| 39 | //! let mut v = vec![1, 2]; |
| 40 | //! |
| 41 | //! let two = v.pop(); |
| 42 | //! ``` |
| 43 | //! |
| 44 | //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits): |
| 45 | //! |
| 46 | //! ``` |
| 47 | //! let mut v = vec![1, 2, 3]; |
| 48 | //! let three = v[2]; |
| 49 | //! v[1] = v[1] + 5; |
| 50 | //! ``` |
| 51 | //! |
| 52 | //! [`push`]: Vec::push |
| 53 | |
| 54 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 55 | |
| 56 | #[cfg (not(no_global_oom_handling))] |
| 57 | use core::cmp; |
| 58 | use core::cmp::Ordering; |
| 59 | use core::hash::{Hash, Hasher}; |
| 60 | #[cfg (not(no_global_oom_handling))] |
| 61 | use core::iter; |
| 62 | use core::marker::PhantomData; |
| 63 | use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
| 64 | use core::ops::{self, Index, IndexMut, Range, RangeBounds}; |
| 65 | use core::ptr::{self, NonNull}; |
| 66 | use core::slice::{self, SliceIndex}; |
| 67 | use core::{fmt, intrinsics}; |
| 68 | |
| 69 | #[stable (feature = "extract_if" , since = "1.87.0" )] |
| 70 | pub use self::extract_if::ExtractIf; |
| 71 | use crate::alloc::{Allocator, Global}; |
| 72 | use crate::borrow::{Cow, ToOwned}; |
| 73 | use crate::boxed::Box; |
| 74 | use crate::collections::TryReserveError; |
| 75 | use crate::raw_vec::RawVec; |
| 76 | |
| 77 | mod extract_if; |
| 78 | |
| 79 | #[cfg (not(no_global_oom_handling))] |
| 80 | #[stable (feature = "vec_splice" , since = "1.21.0" )] |
| 81 | pub use self::splice::Splice; |
| 82 | |
| 83 | #[cfg (not(no_global_oom_handling))] |
| 84 | mod splice; |
| 85 | |
| 86 | #[stable (feature = "drain" , since = "1.6.0" )] |
| 87 | pub use self::drain::Drain; |
| 88 | |
| 89 | mod drain; |
| 90 | |
| 91 | #[cfg (not(no_global_oom_handling))] |
| 92 | mod cow; |
| 93 | |
| 94 | #[cfg (not(no_global_oom_handling))] |
| 95 | pub(crate) use self::in_place_collect::AsVecIntoIter; |
| 96 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 97 | pub use self::into_iter::IntoIter; |
| 98 | |
| 99 | mod into_iter; |
| 100 | |
| 101 | #[cfg (not(no_global_oom_handling))] |
| 102 | use self::is_zero::IsZero; |
| 103 | |
| 104 | #[cfg (not(no_global_oom_handling))] |
| 105 | mod is_zero; |
| 106 | |
| 107 | #[cfg (not(no_global_oom_handling))] |
| 108 | mod in_place_collect; |
| 109 | |
| 110 | mod partial_eq; |
| 111 | |
| 112 | #[cfg (not(no_global_oom_handling))] |
| 113 | use self::spec_from_elem::SpecFromElem; |
| 114 | |
| 115 | #[cfg (not(no_global_oom_handling))] |
| 116 | mod spec_from_elem; |
| 117 | |
| 118 | #[cfg (not(no_global_oom_handling))] |
| 119 | use self::set_len_on_drop::SetLenOnDrop; |
| 120 | |
| 121 | #[cfg (not(no_global_oom_handling))] |
| 122 | mod set_len_on_drop; |
| 123 | |
| 124 | #[cfg (not(no_global_oom_handling))] |
| 125 | use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop}; |
| 126 | |
| 127 | #[cfg (not(no_global_oom_handling))] |
| 128 | mod in_place_drop; |
| 129 | |
| 130 | #[cfg (not(no_global_oom_handling))] |
| 131 | use self::spec_from_iter_nested::SpecFromIterNested; |
| 132 | |
| 133 | #[cfg (not(no_global_oom_handling))] |
| 134 | mod spec_from_iter_nested; |
| 135 | |
| 136 | #[cfg (not(no_global_oom_handling))] |
| 137 | use self::spec_from_iter::SpecFromIter; |
| 138 | |
| 139 | #[cfg (not(no_global_oom_handling))] |
| 140 | mod spec_from_iter; |
| 141 | |
| 142 | #[cfg (not(no_global_oom_handling))] |
| 143 | use self::spec_extend::SpecExtend; |
| 144 | |
| 145 | #[cfg (not(no_global_oom_handling))] |
| 146 | mod spec_extend; |
| 147 | |
| 148 | /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'. |
| 149 | /// |
| 150 | /// # Examples |
| 151 | /// |
| 152 | /// ``` |
| 153 | /// let mut vec = Vec::new(); |
| 154 | /// vec.push(1); |
| 155 | /// vec.push(2); |
| 156 | /// |
| 157 | /// assert_eq!(vec.len(), 2); |
| 158 | /// assert_eq!(vec[0], 1); |
| 159 | /// |
| 160 | /// assert_eq!(vec.pop(), Some(2)); |
| 161 | /// assert_eq!(vec.len(), 1); |
| 162 | /// |
| 163 | /// vec[0] = 7; |
| 164 | /// assert_eq!(vec[0], 7); |
| 165 | /// |
| 166 | /// vec.extend([1, 2, 3]); |
| 167 | /// |
| 168 | /// for x in &vec { |
| 169 | /// println!("{x}" ); |
| 170 | /// } |
| 171 | /// assert_eq!(vec, [7, 1, 2, 3]); |
| 172 | /// ``` |
| 173 | /// |
| 174 | /// The [`vec!`] macro is provided for convenient initialization: |
| 175 | /// |
| 176 | /// ``` |
| 177 | /// let mut vec1 = vec![1, 2, 3]; |
| 178 | /// vec1.push(4); |
| 179 | /// let vec2 = Vec::from([1, 2, 3, 4]); |
| 180 | /// assert_eq!(vec1, vec2); |
| 181 | /// ``` |
| 182 | /// |
| 183 | /// It can also initialize each element of a `Vec<T>` with a given value. |
| 184 | /// This may be more efficient than performing allocation and initialization |
| 185 | /// in separate steps, especially when initializing a vector of zeros: |
| 186 | /// |
| 187 | /// ``` |
| 188 | /// let vec = vec![0; 5]; |
| 189 | /// assert_eq!(vec, [0, 0, 0, 0, 0]); |
| 190 | /// |
| 191 | /// // The following is equivalent, but potentially slower: |
| 192 | /// let mut vec = Vec::with_capacity(5); |
| 193 | /// vec.resize(5, 0); |
| 194 | /// assert_eq!(vec, [0, 0, 0, 0, 0]); |
| 195 | /// ``` |
| 196 | /// |
| 197 | /// For more information, see |
| 198 | /// [Capacity and Reallocation](#capacity-and-reallocation). |
| 199 | /// |
| 200 | /// Use a `Vec<T>` as an efficient stack: |
| 201 | /// |
| 202 | /// ``` |
| 203 | /// let mut stack = Vec::new(); |
| 204 | /// |
| 205 | /// stack.push(1); |
| 206 | /// stack.push(2); |
| 207 | /// stack.push(3); |
| 208 | /// |
| 209 | /// while let Some(top) = stack.pop() { |
| 210 | /// // Prints 3, 2, 1 |
| 211 | /// println!("{top}" ); |
| 212 | /// } |
| 213 | /// ``` |
| 214 | /// |
| 215 | /// # Indexing |
| 216 | /// |
| 217 | /// The `Vec` type allows access to values by index, because it implements the |
| 218 | /// [`Index`] trait. An example will be more explicit: |
| 219 | /// |
| 220 | /// ``` |
| 221 | /// let v = vec![0, 2, 4, 6]; |
| 222 | /// println!("{}" , v[1]); // it will display '2' |
| 223 | /// ``` |
| 224 | /// |
| 225 | /// However be careful: if you try to access an index which isn't in the `Vec`, |
| 226 | /// your software will panic! You cannot do this: |
| 227 | /// |
| 228 | /// ```should_panic |
| 229 | /// let v = vec![0, 2, 4, 6]; |
| 230 | /// println!("{}" , v[6]); // it will panic! |
| 231 | /// ``` |
| 232 | /// |
| 233 | /// Use [`get`] and [`get_mut`] if you want to check whether the index is in |
| 234 | /// the `Vec`. |
| 235 | /// |
| 236 | /// # Slicing |
| 237 | /// |
| 238 | /// A `Vec` can be mutable. On the other hand, slices are read-only objects. |
| 239 | /// To get a [slice][prim@slice], use [`&`]. Example: |
| 240 | /// |
| 241 | /// ``` |
| 242 | /// fn read_slice(slice: &[usize]) { |
| 243 | /// // ... |
| 244 | /// } |
| 245 | /// |
| 246 | /// let v = vec![0, 1]; |
| 247 | /// read_slice(&v); |
| 248 | /// |
| 249 | /// // ... and that's all! |
| 250 | /// // you can also do it like this: |
| 251 | /// let u: &[usize] = &v; |
| 252 | /// // or like this: |
| 253 | /// let u: &[_] = &v; |
| 254 | /// ``` |
| 255 | /// |
| 256 | /// In Rust, it's more common to pass slices as arguments rather than vectors |
| 257 | /// when you just want to provide read access. The same goes for [`String`] and |
| 258 | /// [`&str`]. |
| 259 | /// |
| 260 | /// # Capacity and reallocation |
| 261 | /// |
| 262 | /// The capacity of a vector is the amount of space allocated for any future |
| 263 | /// elements that will be added onto the vector. This is not to be confused with |
| 264 | /// the *length* of a vector, which specifies the number of actual elements |
| 265 | /// within the vector. If a vector's length exceeds its capacity, its capacity |
| 266 | /// will automatically be increased, but its elements will have to be |
| 267 | /// reallocated. |
| 268 | /// |
| 269 | /// For example, a vector with capacity 10 and length 0 would be an empty vector |
| 270 | /// with space for 10 more elements. Pushing 10 or fewer elements onto the |
| 271 | /// vector will not change its capacity or cause reallocation to occur. However, |
| 272 | /// if the vector's length is increased to 11, it will have to reallocate, which |
| 273 | /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`] |
| 274 | /// whenever possible to specify how big the vector is expected to get. |
| 275 | /// |
| 276 | /// # Guarantees |
| 277 | /// |
| 278 | /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees |
| 279 | /// about its design. This ensures that it's as low-overhead as possible in |
| 280 | /// the general case, and can be correctly manipulated in primitive ways |
| 281 | /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`. |
| 282 | /// If additional type parameters are added (e.g., to support custom allocators), |
| 283 | /// overriding their defaults may change the behavior. |
| 284 | /// |
| 285 | /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length) |
| 286 | /// triplet. No more, no less. The order of these fields is completely |
| 287 | /// unspecified, and you should use the appropriate methods to modify these. |
| 288 | /// The pointer will never be null, so this type is null-pointer-optimized. |
| 289 | /// |
| 290 | /// However, the pointer might not actually point to allocated memory. In particular, |
| 291 | /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`], |
| 292 | /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`] |
| 293 | /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized |
| 294 | /// types inside a `Vec`, it will not allocate space for them. *Note that in this case |
| 295 | /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only |
| 296 | /// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation |
| 297 | /// details are very subtle --- if you intend to allocate memory using a `Vec` |
| 298 | /// and use it for something else (either to pass to unsafe code, or to build your |
| 299 | /// own memory-backed collection), be sure to deallocate this memory by using |
| 300 | /// `from_raw_parts` to recover the `Vec` and then dropping it. |
| 301 | /// |
| 302 | /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap |
| 303 | /// (as defined by the allocator Rust is configured to use by default), and its |
| 304 | /// pointer points to [`len`] initialized, contiguous elements in order (what |
| 305 | /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code> |
| 306 | /// logically uninitialized, contiguous elements. |
| 307 | /// |
| 308 | /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be |
| 309 | /// visualized as below. The top part is the `Vec` struct, it contains a |
| 310 | /// pointer to the head of the allocation in the heap, length and capacity. |
| 311 | /// The bottom part is the allocation on the heap, a contiguous memory block. |
| 312 | /// |
| 313 | /// ```text |
| 314 | /// ptr len capacity |
| 315 | /// +--------+--------+--------+ |
| 316 | /// | 0x0123 | 2 | 4 | |
| 317 | /// +--------+--------+--------+ |
| 318 | /// | |
| 319 | /// v |
| 320 | /// Heap +--------+--------+--------+--------+ |
| 321 | /// | 'a' | 'b' | uninit | uninit | |
| 322 | /// +--------+--------+--------+--------+ |
| 323 | /// ``` |
| 324 | /// |
| 325 | /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`]. |
| 326 | /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory |
| 327 | /// layout (including the order of fields). |
| 328 | /// |
| 329 | /// `Vec` will never perform a "small optimization" where elements are actually |
| 330 | /// stored on the stack for two reasons: |
| 331 | /// |
| 332 | /// * It would make it more difficult for unsafe code to correctly manipulate |
| 333 | /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were |
| 334 | /// only moved, and it would be more difficult to determine if a `Vec` had |
| 335 | /// actually allocated memory. |
| 336 | /// |
| 337 | /// * It would penalize the general case, incurring an additional branch |
| 338 | /// on every access. |
| 339 | /// |
| 340 | /// `Vec` will never automatically shrink itself, even if completely empty. This |
| 341 | /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec` |
| 342 | /// and then filling it back up to the same [`len`] should incur no calls to |
| 343 | /// the allocator. If you wish to free up unused memory, use |
| 344 | /// [`shrink_to_fit`] or [`shrink_to`]. |
| 345 | /// |
| 346 | /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is |
| 347 | /// sufficient. [`push`] and [`insert`] *will* (re)allocate if |
| 348 | /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely |
| 349 | /// accurate, and can be relied on. It can even be used to manually free the memory |
| 350 | /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even |
| 351 | /// when not necessary. |
| 352 | /// |
| 353 | /// `Vec` does not guarantee any particular growth strategy when reallocating |
| 354 | /// when full, nor when [`reserve`] is called. The current strategy is basic |
| 355 | /// and it may prove desirable to use a non-constant growth factor. Whatever |
| 356 | /// strategy is used will of course guarantee *O*(1) amortized [`push`]. |
| 357 | /// |
| 358 | /// It is guaranteed, in order to respect the intentions of the programmer, that |
| 359 | /// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec` |
| 360 | /// that requests an allocation of the exact size needed for precisely `n` elements from the allocator, |
| 361 | /// and no other size (such as, for example: a size rounded up to the nearest power of 2). |
| 362 | /// The allocator will return an allocation that is at least as large as requested, but it may be larger. |
| 363 | /// |
| 364 | /// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity |
| 365 | /// and not more than the allocated capacity. |
| 366 | /// |
| 367 | /// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`. |
| 368 | /// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted |
| 369 | /// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements. |
| 370 | /// `Vec` exploits this fact as much as reasonable when implementing common conversions |
| 371 | /// such as [`into_boxed_slice`]. |
| 372 | /// |
| 373 | /// `Vec` will not specifically overwrite any data that is removed from it, |
| 374 | /// but also won't specifically preserve it. Its uninitialized memory is |
| 375 | /// scratch space that it may use however it wants. It will generally just do |
| 376 | /// whatever is most efficient or otherwise easy to implement. Do not rely on |
| 377 | /// removed data to be erased for security purposes. Even if you drop a `Vec`, its |
| 378 | /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory |
| 379 | /// first, that might not actually happen because the optimizer does not consider |
| 380 | /// this a side-effect that must be preserved. There is one case which we will |
| 381 | /// not break, however: using `unsafe` code to write to the excess capacity, |
| 382 | /// and then increasing the length to match, is always valid. |
| 383 | /// |
| 384 | /// Currently, `Vec` does not guarantee the order in which elements are dropped. |
| 385 | /// The order has changed in the past and may change again. |
| 386 | /// |
| 387 | /// [`get`]: slice::get |
| 388 | /// [`get_mut`]: slice::get_mut |
| 389 | /// [`String`]: crate::string::String |
| 390 | /// [`&str`]: type@str |
| 391 | /// [`shrink_to_fit`]: Vec::shrink_to_fit |
| 392 | /// [`shrink_to`]: Vec::shrink_to |
| 393 | /// [capacity]: Vec::capacity |
| 394 | /// [`capacity`]: Vec::capacity |
| 395 | /// [`Vec::capacity`]: Vec::capacity |
| 396 | /// [size_of::\<T>]: size_of |
| 397 | /// [len]: Vec::len |
| 398 | /// [`len`]: Vec::len |
| 399 | /// [`push`]: Vec::push |
| 400 | /// [`insert`]: Vec::insert |
| 401 | /// [`reserve`]: Vec::reserve |
| 402 | /// [`Vec::with_capacity(n)`]: Vec::with_capacity |
| 403 | /// [`MaybeUninit`]: core::mem::MaybeUninit |
| 404 | /// [owned slice]: Box |
| 405 | /// [`into_boxed_slice`]: Vec::into_boxed_slice |
| 406 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 407 | #[rustc_diagnostic_item = "Vec" ] |
| 408 | #[rustc_insignificant_dtor ] |
| 409 | pub struct Vec<T, #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global> { |
| 410 | buf: RawVec<T, A>, |
| 411 | len: usize, |
| 412 | } |
| 413 | |
| 414 | //////////////////////////////////////////////////////////////////////////////// |
| 415 | // Inherent methods |
| 416 | //////////////////////////////////////////////////////////////////////////////// |
| 417 | |
| 418 | impl<T> Vec<T> { |
| 419 | /// Constructs a new, empty `Vec<T>`. |
| 420 | /// |
| 421 | /// The vector will not allocate until elements are pushed onto it. |
| 422 | /// |
| 423 | /// # Examples |
| 424 | /// |
| 425 | /// ``` |
| 426 | /// # #![allow (unused_mut)] |
| 427 | /// let mut vec: Vec<i32> = Vec::new(); |
| 428 | /// ``` |
| 429 | #[inline ] |
| 430 | #[rustc_const_stable (feature = "const_vec_new" , since = "1.39.0" )] |
| 431 | #[rustc_diagnostic_item = "vec_new" ] |
| 432 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 433 | #[must_use ] |
| 434 | pub const fn new() -> Self { |
| 435 | Vec { buf: RawVec::new(), len: 0 } |
| 436 | } |
| 437 | |
| 438 | /// Constructs a new, empty `Vec<T>` with at least the specified capacity. |
| 439 | /// |
| 440 | /// The vector will be able to hold at least `capacity` elements without |
| 441 | /// reallocating. This method is allowed to allocate for more elements than |
| 442 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
| 443 | /// |
| 444 | /// It is important to note that although the returned vector has the |
| 445 | /// minimum *capacity* specified, the vector will have a zero *length*. For |
| 446 | /// an explanation of the difference between length and capacity, see |
| 447 | /// *[Capacity and reallocation]*. |
| 448 | /// |
| 449 | /// If it is important to know the exact allocated capacity of a `Vec`, |
| 450 | /// always use the [`capacity`] method after construction. |
| 451 | /// |
| 452 | /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation |
| 453 | /// and the capacity will always be `usize::MAX`. |
| 454 | /// |
| 455 | /// [Capacity and reallocation]: #capacity-and-reallocation |
| 456 | /// [`capacity`]: Vec::capacity |
| 457 | /// |
| 458 | /// # Panics |
| 459 | /// |
| 460 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 461 | /// |
| 462 | /// # Examples |
| 463 | /// |
| 464 | /// ``` |
| 465 | /// let mut vec = Vec::with_capacity(10); |
| 466 | /// |
| 467 | /// // The vector contains no items, even though it has capacity for more |
| 468 | /// assert_eq!(vec.len(), 0); |
| 469 | /// assert!(vec.capacity() >= 10); |
| 470 | /// |
| 471 | /// // These are all done without reallocating... |
| 472 | /// for i in 0..10 { |
| 473 | /// vec.push(i); |
| 474 | /// } |
| 475 | /// assert_eq!(vec.len(), 10); |
| 476 | /// assert!(vec.capacity() >= 10); |
| 477 | /// |
| 478 | /// // ...but this may make the vector reallocate |
| 479 | /// vec.push(11); |
| 480 | /// assert_eq!(vec.len(), 11); |
| 481 | /// assert!(vec.capacity() >= 11); |
| 482 | /// |
| 483 | /// // A vector of a zero-sized type will always over-allocate, since no |
| 484 | /// // allocation is necessary |
| 485 | /// let vec_units = Vec::<()>::with_capacity(10); |
| 486 | /// assert_eq!(vec_units.capacity(), usize::MAX); |
| 487 | /// ``` |
| 488 | #[cfg (not(no_global_oom_handling))] |
| 489 | #[inline ] |
| 490 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 491 | #[must_use ] |
| 492 | #[rustc_diagnostic_item = "vec_with_capacity" ] |
| 493 | #[track_caller ] |
| 494 | pub fn with_capacity(capacity: usize) -> Self { |
| 495 | Self::with_capacity_in(capacity, Global) |
| 496 | } |
| 497 | |
| 498 | /// Constructs a new, empty `Vec<T>` with at least the specified capacity. |
| 499 | /// |
| 500 | /// The vector will be able to hold at least `capacity` elements without |
| 501 | /// reallocating. This method is allowed to allocate for more elements than |
| 502 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
| 503 | /// |
| 504 | /// # Errors |
| 505 | /// |
| 506 | /// Returns an error if the capacity exceeds `isize::MAX` _bytes_, |
| 507 | /// or if the allocator reports allocation failure. |
| 508 | #[inline ] |
| 509 | #[unstable (feature = "try_with_capacity" , issue = "91913" )] |
| 510 | pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> { |
| 511 | Self::try_with_capacity_in(capacity, Global) |
| 512 | } |
| 513 | |
| 514 | /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity. |
| 515 | /// |
| 516 | /// # Safety |
| 517 | /// |
| 518 | /// This is highly unsafe, due to the number of invariants that aren't |
| 519 | /// checked: |
| 520 | /// |
| 521 | /// * `ptr` must have been allocated using the global allocator, such as via |
| 522 | /// the [`alloc::alloc`] function. |
| 523 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
| 524 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
| 525 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
| 526 | /// allocated and deallocated with the same layout.) |
| 527 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
| 528 | /// to be the same size as the pointer was allocated with. (Because similar to |
| 529 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
| 530 | /// * `length` needs to be less than or equal to `capacity`. |
| 531 | /// * The first `length` values must be properly initialized values of type `T`. |
| 532 | /// * `capacity` needs to be the capacity that the pointer was allocated with. |
| 533 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
| 534 | /// See the safety documentation of [`pointer::offset`]. |
| 535 | /// |
| 536 | /// These requirements are always upheld by any `ptr` that has been allocated |
| 537 | /// via `Vec<T>`. Other allocation sources are allowed if the invariants are |
| 538 | /// upheld. |
| 539 | /// |
| 540 | /// Violating these may cause problems like corrupting the allocator's |
| 541 | /// internal data structures. For example it is normally **not** safe |
| 542 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length |
| 543 | /// `size_t`, doing so is only safe if the array was initially allocated by |
| 544 | /// a `Vec` or `String`. |
| 545 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
| 546 | /// the allocator cares about the alignment, and these two types have different |
| 547 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
| 548 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid |
| 549 | /// these issues, it is often preferable to do casting/transmuting using |
| 550 | /// [`slice::from_raw_parts`] instead. |
| 551 | /// |
| 552 | /// The ownership of `ptr` is effectively transferred to the |
| 553 | /// `Vec<T>` which may then deallocate, reallocate or change the |
| 554 | /// contents of memory pointed to by the pointer at will. Ensure |
| 555 | /// that nothing else uses the pointer after calling this |
| 556 | /// function. |
| 557 | /// |
| 558 | /// [`String`]: crate::string::String |
| 559 | /// [`alloc::alloc`]: crate::alloc::alloc |
| 560 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
| 561 | /// |
| 562 | /// # Examples |
| 563 | /// |
| 564 | /// ``` |
| 565 | /// use std::ptr; |
| 566 | /// use std::mem; |
| 567 | /// |
| 568 | /// let v = vec![1, 2, 3]; |
| 569 | /// |
| 570 | // FIXME Update this when vec_into_raw_parts is stabilized |
| 571 | /// // Prevent running `v`'s destructor so we are in complete control |
| 572 | /// // of the allocation. |
| 573 | /// let mut v = mem::ManuallyDrop::new(v); |
| 574 | /// |
| 575 | /// // Pull out the various important pieces of information about `v` |
| 576 | /// let p = v.as_mut_ptr(); |
| 577 | /// let len = v.len(); |
| 578 | /// let cap = v.capacity(); |
| 579 | /// |
| 580 | /// unsafe { |
| 581 | /// // Overwrite memory with 4, 5, 6 |
| 582 | /// for i in 0..len { |
| 583 | /// ptr::write(p.add(i), 4 + i); |
| 584 | /// } |
| 585 | /// |
| 586 | /// // Put everything back together into a Vec |
| 587 | /// let rebuilt = Vec::from_raw_parts(p, len, cap); |
| 588 | /// assert_eq!(rebuilt, [4, 5, 6]); |
| 589 | /// } |
| 590 | /// ``` |
| 591 | /// |
| 592 | /// Using memory that was allocated elsewhere: |
| 593 | /// |
| 594 | /// ```rust |
| 595 | /// use std::alloc::{alloc, Layout}; |
| 596 | /// |
| 597 | /// fn main() { |
| 598 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
| 599 | /// |
| 600 | /// let vec = unsafe { |
| 601 | /// let mem = alloc(layout).cast::<u32>(); |
| 602 | /// if mem.is_null() { |
| 603 | /// return; |
| 604 | /// } |
| 605 | /// |
| 606 | /// mem.write(1_000_000); |
| 607 | /// |
| 608 | /// Vec::from_raw_parts(mem, 1, 16) |
| 609 | /// }; |
| 610 | /// |
| 611 | /// assert_eq!(vec, &[1_000_000]); |
| 612 | /// assert_eq!(vec.capacity(), 16); |
| 613 | /// } |
| 614 | /// ``` |
| 615 | #[inline ] |
| 616 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 617 | pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { |
| 618 | unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) } |
| 619 | } |
| 620 | |
| 621 | #[doc (alias = "from_non_null_parts" )] |
| 622 | /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity. |
| 623 | /// |
| 624 | /// # Safety |
| 625 | /// |
| 626 | /// This is highly unsafe, due to the number of invariants that aren't |
| 627 | /// checked: |
| 628 | /// |
| 629 | /// * `ptr` must have been allocated using the global allocator, such as via |
| 630 | /// the [`alloc::alloc`] function. |
| 631 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
| 632 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
| 633 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
| 634 | /// allocated and deallocated with the same layout.) |
| 635 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
| 636 | /// to be the same size as the pointer was allocated with. (Because similar to |
| 637 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
| 638 | /// * `length` needs to be less than or equal to `capacity`. |
| 639 | /// * The first `length` values must be properly initialized values of type `T`. |
| 640 | /// * `capacity` needs to be the capacity that the pointer was allocated with. |
| 641 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
| 642 | /// See the safety documentation of [`pointer::offset`]. |
| 643 | /// |
| 644 | /// These requirements are always upheld by any `ptr` that has been allocated |
| 645 | /// via `Vec<T>`. Other allocation sources are allowed if the invariants are |
| 646 | /// upheld. |
| 647 | /// |
| 648 | /// Violating these may cause problems like corrupting the allocator's |
| 649 | /// internal data structures. For example it is normally **not** safe |
| 650 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length |
| 651 | /// `size_t`, doing so is only safe if the array was initially allocated by |
| 652 | /// a `Vec` or `String`. |
| 653 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
| 654 | /// the allocator cares about the alignment, and these two types have different |
| 655 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
| 656 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid |
| 657 | /// these issues, it is often preferable to do casting/transmuting using |
| 658 | /// [`NonNull::slice_from_raw_parts`] instead. |
| 659 | /// |
| 660 | /// The ownership of `ptr` is effectively transferred to the |
| 661 | /// `Vec<T>` which may then deallocate, reallocate or change the |
| 662 | /// contents of memory pointed to by the pointer at will. Ensure |
| 663 | /// that nothing else uses the pointer after calling this |
| 664 | /// function. |
| 665 | /// |
| 666 | /// [`String`]: crate::string::String |
| 667 | /// [`alloc::alloc`]: crate::alloc::alloc |
| 668 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
| 669 | /// |
| 670 | /// # Examples |
| 671 | /// |
| 672 | /// ``` |
| 673 | /// #![feature(box_vec_non_null)] |
| 674 | /// |
| 675 | /// use std::ptr::NonNull; |
| 676 | /// use std::mem; |
| 677 | /// |
| 678 | /// let v = vec![1, 2, 3]; |
| 679 | /// |
| 680 | // FIXME Update this when vec_into_raw_parts is stabilized |
| 681 | /// // Prevent running `v`'s destructor so we are in complete control |
| 682 | /// // of the allocation. |
| 683 | /// let mut v = mem::ManuallyDrop::new(v); |
| 684 | /// |
| 685 | /// // Pull out the various important pieces of information about `v` |
| 686 | /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) }; |
| 687 | /// let len = v.len(); |
| 688 | /// let cap = v.capacity(); |
| 689 | /// |
| 690 | /// unsafe { |
| 691 | /// // Overwrite memory with 4, 5, 6 |
| 692 | /// for i in 0..len { |
| 693 | /// p.add(i).write(4 + i); |
| 694 | /// } |
| 695 | /// |
| 696 | /// // Put everything back together into a Vec |
| 697 | /// let rebuilt = Vec::from_parts(p, len, cap); |
| 698 | /// assert_eq!(rebuilt, [4, 5, 6]); |
| 699 | /// } |
| 700 | /// ``` |
| 701 | /// |
| 702 | /// Using memory that was allocated elsewhere: |
| 703 | /// |
| 704 | /// ```rust |
| 705 | /// #![feature(box_vec_non_null)] |
| 706 | /// |
| 707 | /// use std::alloc::{alloc, Layout}; |
| 708 | /// use std::ptr::NonNull; |
| 709 | /// |
| 710 | /// fn main() { |
| 711 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
| 712 | /// |
| 713 | /// let vec = unsafe { |
| 714 | /// let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else { |
| 715 | /// return; |
| 716 | /// }; |
| 717 | /// |
| 718 | /// mem.write(1_000_000); |
| 719 | /// |
| 720 | /// Vec::from_parts(mem, 1, 16) |
| 721 | /// }; |
| 722 | /// |
| 723 | /// assert_eq!(vec, &[1_000_000]); |
| 724 | /// assert_eq!(vec.capacity(), 16); |
| 725 | /// } |
| 726 | /// ``` |
| 727 | #[inline ] |
| 728 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
| 729 | pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self { |
| 730 | unsafe { Self::from_parts_in(ptr, length, capacity, Global) } |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | impl<T, A: Allocator> Vec<T, A> { |
| 735 | /// Constructs a new, empty `Vec<T, A>`. |
| 736 | /// |
| 737 | /// The vector will not allocate until elements are pushed onto it. |
| 738 | /// |
| 739 | /// # Examples |
| 740 | /// |
| 741 | /// ``` |
| 742 | /// #![feature(allocator_api)] |
| 743 | /// |
| 744 | /// use std::alloc::System; |
| 745 | /// |
| 746 | /// # #[allow (unused_mut)] |
| 747 | /// let mut vec: Vec<i32, _> = Vec::new_in(System); |
| 748 | /// ``` |
| 749 | #[inline ] |
| 750 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 751 | pub const fn new_in(alloc: A) -> Self { |
| 752 | Vec { buf: RawVec::new_in(alloc), len: 0 } |
| 753 | } |
| 754 | |
| 755 | /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity |
| 756 | /// with the provided allocator. |
| 757 | /// |
| 758 | /// The vector will be able to hold at least `capacity` elements without |
| 759 | /// reallocating. This method is allowed to allocate for more elements than |
| 760 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
| 761 | /// |
| 762 | /// It is important to note that although the returned vector has the |
| 763 | /// minimum *capacity* specified, the vector will have a zero *length*. For |
| 764 | /// an explanation of the difference between length and capacity, see |
| 765 | /// *[Capacity and reallocation]*. |
| 766 | /// |
| 767 | /// If it is important to know the exact allocated capacity of a `Vec`, |
| 768 | /// always use the [`capacity`] method after construction. |
| 769 | /// |
| 770 | /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation |
| 771 | /// and the capacity will always be `usize::MAX`. |
| 772 | /// |
| 773 | /// [Capacity and reallocation]: #capacity-and-reallocation |
| 774 | /// [`capacity`]: Vec::capacity |
| 775 | /// |
| 776 | /// # Panics |
| 777 | /// |
| 778 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 779 | /// |
| 780 | /// # Examples |
| 781 | /// |
| 782 | /// ``` |
| 783 | /// #![feature(allocator_api)] |
| 784 | /// |
| 785 | /// use std::alloc::System; |
| 786 | /// |
| 787 | /// let mut vec = Vec::with_capacity_in(10, System); |
| 788 | /// |
| 789 | /// // The vector contains no items, even though it has capacity for more |
| 790 | /// assert_eq!(vec.len(), 0); |
| 791 | /// assert!(vec.capacity() >= 10); |
| 792 | /// |
| 793 | /// // These are all done without reallocating... |
| 794 | /// for i in 0..10 { |
| 795 | /// vec.push(i); |
| 796 | /// } |
| 797 | /// assert_eq!(vec.len(), 10); |
| 798 | /// assert!(vec.capacity() >= 10); |
| 799 | /// |
| 800 | /// // ...but this may make the vector reallocate |
| 801 | /// vec.push(11); |
| 802 | /// assert_eq!(vec.len(), 11); |
| 803 | /// assert!(vec.capacity() >= 11); |
| 804 | /// |
| 805 | /// // A vector of a zero-sized type will always over-allocate, since no |
| 806 | /// // allocation is necessary |
| 807 | /// let vec_units = Vec::<(), System>::with_capacity_in(10, System); |
| 808 | /// assert_eq!(vec_units.capacity(), usize::MAX); |
| 809 | /// ``` |
| 810 | #[cfg (not(no_global_oom_handling))] |
| 811 | #[inline ] |
| 812 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 813 | #[track_caller ] |
| 814 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
| 815 | Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 } |
| 816 | } |
| 817 | |
| 818 | /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity |
| 819 | /// with the provided allocator. |
| 820 | /// |
| 821 | /// The vector will be able to hold at least `capacity` elements without |
| 822 | /// reallocating. This method is allowed to allocate for more elements than |
| 823 | /// `capacity`. If `capacity` is zero, the vector will not allocate. |
| 824 | /// |
| 825 | /// # Errors |
| 826 | /// |
| 827 | /// Returns an error if the capacity exceeds `isize::MAX` _bytes_, |
| 828 | /// or if the allocator reports allocation failure. |
| 829 | #[inline ] |
| 830 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 831 | // #[unstable(feature = "try_with_capacity", issue = "91913")] |
| 832 | pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { |
| 833 | Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 }) |
| 834 | } |
| 835 | |
| 836 | /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity, |
| 837 | /// and an allocator. |
| 838 | /// |
| 839 | /// # Safety |
| 840 | /// |
| 841 | /// This is highly unsafe, due to the number of invariants that aren't |
| 842 | /// checked: |
| 843 | /// |
| 844 | /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`. |
| 845 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
| 846 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
| 847 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
| 848 | /// allocated and deallocated with the same layout.) |
| 849 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
| 850 | /// to be the same size as the pointer was allocated with. (Because similar to |
| 851 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
| 852 | /// * `length` needs to be less than or equal to `capacity`. |
| 853 | /// * The first `length` values must be properly initialized values of type `T`. |
| 854 | /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with. |
| 855 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
| 856 | /// See the safety documentation of [`pointer::offset`]. |
| 857 | /// |
| 858 | /// These requirements are always upheld by any `ptr` that has been allocated |
| 859 | /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are |
| 860 | /// upheld. |
| 861 | /// |
| 862 | /// Violating these may cause problems like corrupting the allocator's |
| 863 | /// internal data structures. For example it is **not** safe |
| 864 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`. |
| 865 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
| 866 | /// the allocator cares about the alignment, and these two types have different |
| 867 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
| 868 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. |
| 869 | /// |
| 870 | /// The ownership of `ptr` is effectively transferred to the |
| 871 | /// `Vec<T>` which may then deallocate, reallocate or change the |
| 872 | /// contents of memory pointed to by the pointer at will. Ensure |
| 873 | /// that nothing else uses the pointer after calling this |
| 874 | /// function. |
| 875 | /// |
| 876 | /// [`String`]: crate::string::String |
| 877 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
| 878 | /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory |
| 879 | /// [*fit*]: crate::alloc::Allocator#memory-fitting |
| 880 | /// |
| 881 | /// # Examples |
| 882 | /// |
| 883 | /// ``` |
| 884 | /// #![feature(allocator_api)] |
| 885 | /// |
| 886 | /// use std::alloc::System; |
| 887 | /// |
| 888 | /// use std::ptr; |
| 889 | /// use std::mem; |
| 890 | /// |
| 891 | /// let mut v = Vec::with_capacity_in(3, System); |
| 892 | /// v.push(1); |
| 893 | /// v.push(2); |
| 894 | /// v.push(3); |
| 895 | /// |
| 896 | // FIXME Update this when vec_into_raw_parts is stabilized |
| 897 | /// // Prevent running `v`'s destructor so we are in complete control |
| 898 | /// // of the allocation. |
| 899 | /// let mut v = mem::ManuallyDrop::new(v); |
| 900 | /// |
| 901 | /// // Pull out the various important pieces of information about `v` |
| 902 | /// let p = v.as_mut_ptr(); |
| 903 | /// let len = v.len(); |
| 904 | /// let cap = v.capacity(); |
| 905 | /// let alloc = v.allocator(); |
| 906 | /// |
| 907 | /// unsafe { |
| 908 | /// // Overwrite memory with 4, 5, 6 |
| 909 | /// for i in 0..len { |
| 910 | /// ptr::write(p.add(i), 4 + i); |
| 911 | /// } |
| 912 | /// |
| 913 | /// // Put everything back together into a Vec |
| 914 | /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone()); |
| 915 | /// assert_eq!(rebuilt, [4, 5, 6]); |
| 916 | /// } |
| 917 | /// ``` |
| 918 | /// |
| 919 | /// Using memory that was allocated elsewhere: |
| 920 | /// |
| 921 | /// ```rust |
| 922 | /// #![feature(allocator_api)] |
| 923 | /// |
| 924 | /// use std::alloc::{AllocError, Allocator, Global, Layout}; |
| 925 | /// |
| 926 | /// fn main() { |
| 927 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
| 928 | /// |
| 929 | /// let vec = unsafe { |
| 930 | /// let mem = match Global.allocate(layout) { |
| 931 | /// Ok(mem) => mem.cast::<u32>().as_ptr(), |
| 932 | /// Err(AllocError) => return, |
| 933 | /// }; |
| 934 | /// |
| 935 | /// mem.write(1_000_000); |
| 936 | /// |
| 937 | /// Vec::from_raw_parts_in(mem, 1, 16, Global) |
| 938 | /// }; |
| 939 | /// |
| 940 | /// assert_eq!(vec, &[1_000_000]); |
| 941 | /// assert_eq!(vec.capacity(), 16); |
| 942 | /// } |
| 943 | /// ``` |
| 944 | #[inline ] |
| 945 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 946 | pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self { |
| 947 | unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } } |
| 948 | } |
| 949 | |
| 950 | #[doc (alias = "from_non_null_parts_in" )] |
| 951 | /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity, |
| 952 | /// and an allocator. |
| 953 | /// |
| 954 | /// # Safety |
| 955 | /// |
| 956 | /// This is highly unsafe, due to the number of invariants that aren't |
| 957 | /// checked: |
| 958 | /// |
| 959 | /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`. |
| 960 | /// * `T` needs to have the same alignment as what `ptr` was allocated with. |
| 961 | /// (`T` having a less strict alignment is not sufficient, the alignment really |
| 962 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be |
| 963 | /// allocated and deallocated with the same layout.) |
| 964 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs |
| 965 | /// to be the same size as the pointer was allocated with. (Because similar to |
| 966 | /// alignment, [`dealloc`] must be called with the same layout `size`.) |
| 967 | /// * `length` needs to be less than or equal to `capacity`. |
| 968 | /// * The first `length` values must be properly initialized values of type `T`. |
| 969 | /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with. |
| 970 | /// * The allocated size in bytes must be no larger than `isize::MAX`. |
| 971 | /// See the safety documentation of [`pointer::offset`]. |
| 972 | /// |
| 973 | /// These requirements are always upheld by any `ptr` that has been allocated |
| 974 | /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are |
| 975 | /// upheld. |
| 976 | /// |
| 977 | /// Violating these may cause problems like corrupting the allocator's |
| 978 | /// internal data structures. For example it is **not** safe |
| 979 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`. |
| 980 | /// It's also not safe to build one from a `Vec<u16>` and its length, because |
| 981 | /// the allocator cares about the alignment, and these two types have different |
| 982 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after |
| 983 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. |
| 984 | /// |
| 985 | /// The ownership of `ptr` is effectively transferred to the |
| 986 | /// `Vec<T>` which may then deallocate, reallocate or change the |
| 987 | /// contents of memory pointed to by the pointer at will. Ensure |
| 988 | /// that nothing else uses the pointer after calling this |
| 989 | /// function. |
| 990 | /// |
| 991 | /// [`String`]: crate::string::String |
| 992 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc |
| 993 | /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory |
| 994 | /// [*fit*]: crate::alloc::Allocator#memory-fitting |
| 995 | /// |
| 996 | /// # Examples |
| 997 | /// |
| 998 | /// ``` |
| 999 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1000 | /// |
| 1001 | /// use std::alloc::System; |
| 1002 | /// |
| 1003 | /// use std::ptr::NonNull; |
| 1004 | /// use std::mem; |
| 1005 | /// |
| 1006 | /// let mut v = Vec::with_capacity_in(3, System); |
| 1007 | /// v.push(1); |
| 1008 | /// v.push(2); |
| 1009 | /// v.push(3); |
| 1010 | /// |
| 1011 | // FIXME Update this when vec_into_raw_parts is stabilized |
| 1012 | /// // Prevent running `v`'s destructor so we are in complete control |
| 1013 | /// // of the allocation. |
| 1014 | /// let mut v = mem::ManuallyDrop::new(v); |
| 1015 | /// |
| 1016 | /// // Pull out the various important pieces of information about `v` |
| 1017 | /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) }; |
| 1018 | /// let len = v.len(); |
| 1019 | /// let cap = v.capacity(); |
| 1020 | /// let alloc = v.allocator(); |
| 1021 | /// |
| 1022 | /// unsafe { |
| 1023 | /// // Overwrite memory with 4, 5, 6 |
| 1024 | /// for i in 0..len { |
| 1025 | /// p.add(i).write(4 + i); |
| 1026 | /// } |
| 1027 | /// |
| 1028 | /// // Put everything back together into a Vec |
| 1029 | /// let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone()); |
| 1030 | /// assert_eq!(rebuilt, [4, 5, 6]); |
| 1031 | /// } |
| 1032 | /// ``` |
| 1033 | /// |
| 1034 | /// Using memory that was allocated elsewhere: |
| 1035 | /// |
| 1036 | /// ```rust |
| 1037 | /// #![feature(allocator_api, box_vec_non_null)] |
| 1038 | /// |
| 1039 | /// use std::alloc::{AllocError, Allocator, Global, Layout}; |
| 1040 | /// |
| 1041 | /// fn main() { |
| 1042 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" ); |
| 1043 | /// |
| 1044 | /// let vec = unsafe { |
| 1045 | /// let mem = match Global.allocate(layout) { |
| 1046 | /// Ok(mem) => mem.cast::<u32>(), |
| 1047 | /// Err(AllocError) => return, |
| 1048 | /// }; |
| 1049 | /// |
| 1050 | /// mem.write(1_000_000); |
| 1051 | /// |
| 1052 | /// Vec::from_parts_in(mem, 1, 16, Global) |
| 1053 | /// }; |
| 1054 | /// |
| 1055 | /// assert_eq!(vec, &[1_000_000]); |
| 1056 | /// assert_eq!(vec.capacity(), 16); |
| 1057 | /// } |
| 1058 | /// ``` |
| 1059 | #[inline ] |
| 1060 | #[unstable (feature = "allocator_api" , reason = "new API" , issue = "32838" )] |
| 1061 | // #[unstable(feature = "box_vec_non_null", issue = "130364")] |
| 1062 | pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self { |
| 1063 | unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } } |
| 1064 | } |
| 1065 | |
| 1066 | /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`. |
| 1067 | /// |
| 1068 | /// Returns the raw pointer to the underlying data, the length of |
| 1069 | /// the vector (in elements), and the allocated capacity of the |
| 1070 | /// data (in elements). These are the same arguments in the same |
| 1071 | /// order as the arguments to [`from_raw_parts`]. |
| 1072 | /// |
| 1073 | /// After calling this function, the caller is responsible for the |
| 1074 | /// memory previously managed by the `Vec`. The only way to do |
| 1075 | /// this is to convert the raw pointer, length, and capacity back |
| 1076 | /// into a `Vec` with the [`from_raw_parts`] function, allowing |
| 1077 | /// the destructor to perform the cleanup. |
| 1078 | /// |
| 1079 | /// [`from_raw_parts`]: Vec::from_raw_parts |
| 1080 | /// |
| 1081 | /// # Examples |
| 1082 | /// |
| 1083 | /// ``` |
| 1084 | /// #![feature(vec_into_raw_parts)] |
| 1085 | /// let v: Vec<i32> = vec![-1, 0, 1]; |
| 1086 | /// |
| 1087 | /// let (ptr, len, cap) = v.into_raw_parts(); |
| 1088 | /// |
| 1089 | /// let rebuilt = unsafe { |
| 1090 | /// // We can now make changes to the components, such as |
| 1091 | /// // transmuting the raw pointer to a compatible type. |
| 1092 | /// let ptr = ptr as *mut u32; |
| 1093 | /// |
| 1094 | /// Vec::from_raw_parts(ptr, len, cap) |
| 1095 | /// }; |
| 1096 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
| 1097 | /// ``` |
| 1098 | #[must_use = "losing the pointer will leak memory" ] |
| 1099 | #[unstable (feature = "vec_into_raw_parts" , reason = "new API" , issue = "65816" )] |
| 1100 | pub fn into_raw_parts(self) -> (*mut T, usize, usize) { |
| 1101 | let mut me = ManuallyDrop::new(self); |
| 1102 | (me.as_mut_ptr(), me.len(), me.capacity()) |
| 1103 | } |
| 1104 | |
| 1105 | #[doc (alias = "into_non_null_parts" )] |
| 1106 | /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`. |
| 1107 | /// |
| 1108 | /// Returns the `NonNull` pointer to the underlying data, the length of |
| 1109 | /// the vector (in elements), and the allocated capacity of the |
| 1110 | /// data (in elements). These are the same arguments in the same |
| 1111 | /// order as the arguments to [`from_parts`]. |
| 1112 | /// |
| 1113 | /// After calling this function, the caller is responsible for the |
| 1114 | /// memory previously managed by the `Vec`. The only way to do |
| 1115 | /// this is to convert the `NonNull` pointer, length, and capacity back |
| 1116 | /// into a `Vec` with the [`from_parts`] function, allowing |
| 1117 | /// the destructor to perform the cleanup. |
| 1118 | /// |
| 1119 | /// [`from_parts`]: Vec::from_parts |
| 1120 | /// |
| 1121 | /// # Examples |
| 1122 | /// |
| 1123 | /// ``` |
| 1124 | /// #![feature(vec_into_raw_parts, box_vec_non_null)] |
| 1125 | /// |
| 1126 | /// let v: Vec<i32> = vec![-1, 0, 1]; |
| 1127 | /// |
| 1128 | /// let (ptr, len, cap) = v.into_parts(); |
| 1129 | /// |
| 1130 | /// let rebuilt = unsafe { |
| 1131 | /// // We can now make changes to the components, such as |
| 1132 | /// // transmuting the raw pointer to a compatible type. |
| 1133 | /// let ptr = ptr.cast::<u32>(); |
| 1134 | /// |
| 1135 | /// Vec::from_parts(ptr, len, cap) |
| 1136 | /// }; |
| 1137 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
| 1138 | /// ``` |
| 1139 | #[must_use = "losing the pointer will leak memory" ] |
| 1140 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
| 1141 | // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] |
| 1142 | pub fn into_parts(self) -> (NonNull<T>, usize, usize) { |
| 1143 | let (ptr, len, capacity) = self.into_raw_parts(); |
| 1144 | // SAFETY: A `Vec` always has a non-null pointer. |
| 1145 | (unsafe { NonNull::new_unchecked(ptr) }, len, capacity) |
| 1146 | } |
| 1147 | |
| 1148 | /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`. |
| 1149 | /// |
| 1150 | /// Returns the raw pointer to the underlying data, the length of the vector (in elements), |
| 1151 | /// the allocated capacity of the data (in elements), and the allocator. These are the same |
| 1152 | /// arguments in the same order as the arguments to [`from_raw_parts_in`]. |
| 1153 | /// |
| 1154 | /// After calling this function, the caller is responsible for the |
| 1155 | /// memory previously managed by the `Vec`. The only way to do |
| 1156 | /// this is to convert the raw pointer, length, and capacity back |
| 1157 | /// into a `Vec` with the [`from_raw_parts_in`] function, allowing |
| 1158 | /// the destructor to perform the cleanup. |
| 1159 | /// |
| 1160 | /// [`from_raw_parts_in`]: Vec::from_raw_parts_in |
| 1161 | /// |
| 1162 | /// # Examples |
| 1163 | /// |
| 1164 | /// ``` |
| 1165 | /// #![feature(allocator_api, vec_into_raw_parts)] |
| 1166 | /// |
| 1167 | /// use std::alloc::System; |
| 1168 | /// |
| 1169 | /// let mut v: Vec<i32, System> = Vec::new_in(System); |
| 1170 | /// v.push(-1); |
| 1171 | /// v.push(0); |
| 1172 | /// v.push(1); |
| 1173 | /// |
| 1174 | /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); |
| 1175 | /// |
| 1176 | /// let rebuilt = unsafe { |
| 1177 | /// // We can now make changes to the components, such as |
| 1178 | /// // transmuting the raw pointer to a compatible type. |
| 1179 | /// let ptr = ptr as *mut u32; |
| 1180 | /// |
| 1181 | /// Vec::from_raw_parts_in(ptr, len, cap, alloc) |
| 1182 | /// }; |
| 1183 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
| 1184 | /// ``` |
| 1185 | #[must_use = "losing the pointer will leak memory" ] |
| 1186 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1187 | // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] |
| 1188 | pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) { |
| 1189 | let mut me = ManuallyDrop::new(self); |
| 1190 | let len = me.len(); |
| 1191 | let capacity = me.capacity(); |
| 1192 | let ptr = me.as_mut_ptr(); |
| 1193 | let alloc = unsafe { ptr::read(me.allocator()) }; |
| 1194 | (ptr, len, capacity, alloc) |
| 1195 | } |
| 1196 | |
| 1197 | #[doc (alias = "into_non_null_parts_with_alloc" )] |
| 1198 | /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`. |
| 1199 | /// |
| 1200 | /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements), |
| 1201 | /// the allocated capacity of the data (in elements), and the allocator. These are the same |
| 1202 | /// arguments in the same order as the arguments to [`from_parts_in`]. |
| 1203 | /// |
| 1204 | /// After calling this function, the caller is responsible for the |
| 1205 | /// memory previously managed by the `Vec`. The only way to do |
| 1206 | /// this is to convert the `NonNull` pointer, length, and capacity back |
| 1207 | /// into a `Vec` with the [`from_parts_in`] function, allowing |
| 1208 | /// the destructor to perform the cleanup. |
| 1209 | /// |
| 1210 | /// [`from_parts_in`]: Vec::from_parts_in |
| 1211 | /// |
| 1212 | /// # Examples |
| 1213 | /// |
| 1214 | /// ``` |
| 1215 | /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)] |
| 1216 | /// |
| 1217 | /// use std::alloc::System; |
| 1218 | /// |
| 1219 | /// let mut v: Vec<i32, System> = Vec::new_in(System); |
| 1220 | /// v.push(-1); |
| 1221 | /// v.push(0); |
| 1222 | /// v.push(1); |
| 1223 | /// |
| 1224 | /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc(); |
| 1225 | /// |
| 1226 | /// let rebuilt = unsafe { |
| 1227 | /// // We can now make changes to the components, such as |
| 1228 | /// // transmuting the raw pointer to a compatible type. |
| 1229 | /// let ptr = ptr.cast::<u32>(); |
| 1230 | /// |
| 1231 | /// Vec::from_parts_in(ptr, len, cap, alloc) |
| 1232 | /// }; |
| 1233 | /// assert_eq!(rebuilt, [4294967295, 0, 1]); |
| 1234 | /// ``` |
| 1235 | #[must_use = "losing the pointer will leak memory" ] |
| 1236 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1237 | // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] |
| 1238 | // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")] |
| 1239 | pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) { |
| 1240 | let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc(); |
| 1241 | // SAFETY: A `Vec` always has a non-null pointer. |
| 1242 | (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc) |
| 1243 | } |
| 1244 | |
| 1245 | /// Returns the total number of elements the vector can hold without |
| 1246 | /// reallocating. |
| 1247 | /// |
| 1248 | /// # Examples |
| 1249 | /// |
| 1250 | /// ``` |
| 1251 | /// let mut vec: Vec<i32> = Vec::with_capacity(10); |
| 1252 | /// vec.push(42); |
| 1253 | /// assert!(vec.capacity() >= 10); |
| 1254 | /// ``` |
| 1255 | /// |
| 1256 | /// A vector with zero-sized elements will always have a capacity of usize::MAX: |
| 1257 | /// |
| 1258 | /// ``` |
| 1259 | /// #[derive(Clone)] |
| 1260 | /// struct ZeroSized; |
| 1261 | /// |
| 1262 | /// fn main() { |
| 1263 | /// assert_eq!(std::mem::size_of::<ZeroSized>(), 0); |
| 1264 | /// let v = vec![ZeroSized; 0]; |
| 1265 | /// assert_eq!(v.capacity(), usize::MAX); |
| 1266 | /// } |
| 1267 | /// ``` |
| 1268 | #[inline ] |
| 1269 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1270 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
| 1271 | pub const fn capacity(&self) -> usize { |
| 1272 | self.buf.capacity() |
| 1273 | } |
| 1274 | |
| 1275 | /// Reserves capacity for at least `additional` more elements to be inserted |
| 1276 | /// in the given `Vec<T>`. The collection may reserve more space to |
| 1277 | /// speculatively avoid frequent reallocations. After calling `reserve`, |
| 1278 | /// capacity will be greater than or equal to `self.len() + additional`. |
| 1279 | /// Does nothing if capacity is already sufficient. |
| 1280 | /// |
| 1281 | /// # Panics |
| 1282 | /// |
| 1283 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 1284 | /// |
| 1285 | /// # Examples |
| 1286 | /// |
| 1287 | /// ``` |
| 1288 | /// let mut vec = vec![1]; |
| 1289 | /// vec.reserve(10); |
| 1290 | /// assert!(vec.capacity() >= 11); |
| 1291 | /// ``` |
| 1292 | #[cfg (not(no_global_oom_handling))] |
| 1293 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1294 | #[track_caller ] |
| 1295 | #[rustc_diagnostic_item = "vec_reserve" ] |
| 1296 | pub fn reserve(&mut self, additional: usize) { |
| 1297 | self.buf.reserve(self.len, additional); |
| 1298 | } |
| 1299 | |
| 1300 | /// Reserves the minimum capacity for at least `additional` more elements to |
| 1301 | /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not |
| 1302 | /// deliberately over-allocate to speculatively avoid frequent allocations. |
| 1303 | /// After calling `reserve_exact`, capacity will be greater than or equal to |
| 1304 | /// `self.len() + additional`. Does nothing if the capacity is already |
| 1305 | /// sufficient. |
| 1306 | /// |
| 1307 | /// Note that the allocator may give the collection more space than it |
| 1308 | /// requests. Therefore, capacity can not be relied upon to be precisely |
| 1309 | /// minimal. Prefer [`reserve`] if future insertions are expected. |
| 1310 | /// |
| 1311 | /// [`reserve`]: Vec::reserve |
| 1312 | /// |
| 1313 | /// # Panics |
| 1314 | /// |
| 1315 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 1316 | /// |
| 1317 | /// # Examples |
| 1318 | /// |
| 1319 | /// ``` |
| 1320 | /// let mut vec = vec![1]; |
| 1321 | /// vec.reserve_exact(10); |
| 1322 | /// assert!(vec.capacity() >= 11); |
| 1323 | /// ``` |
| 1324 | #[cfg (not(no_global_oom_handling))] |
| 1325 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1326 | #[track_caller ] |
| 1327 | pub fn reserve_exact(&mut self, additional: usize) { |
| 1328 | self.buf.reserve_exact(self.len, additional); |
| 1329 | } |
| 1330 | |
| 1331 | /// Tries to reserve capacity for at least `additional` more elements to be inserted |
| 1332 | /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid |
| 1333 | /// frequent reallocations. After calling `try_reserve`, capacity will be |
| 1334 | /// greater than or equal to `self.len() + additional` if it returns |
| 1335 | /// `Ok(())`. Does nothing if capacity is already sufficient. This method |
| 1336 | /// preserves the contents even if an error occurs. |
| 1337 | /// |
| 1338 | /// # Errors |
| 1339 | /// |
| 1340 | /// If the capacity overflows, or the allocator reports a failure, then an error |
| 1341 | /// is returned. |
| 1342 | /// |
| 1343 | /// # Examples |
| 1344 | /// |
| 1345 | /// ``` |
| 1346 | /// use std::collections::TryReserveError; |
| 1347 | /// |
| 1348 | /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { |
| 1349 | /// let mut output = Vec::new(); |
| 1350 | /// |
| 1351 | /// // Pre-reserve the memory, exiting if we can't |
| 1352 | /// output.try_reserve(data.len())?; |
| 1353 | /// |
| 1354 | /// // Now we know this can't OOM in the middle of our complex work |
| 1355 | /// output.extend(data.iter().map(|&val| { |
| 1356 | /// val * 2 + 5 // very complicated |
| 1357 | /// })); |
| 1358 | /// |
| 1359 | /// Ok(output) |
| 1360 | /// } |
| 1361 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" ); |
| 1362 | /// ``` |
| 1363 | #[stable (feature = "try_reserve" , since = "1.57.0" )] |
| 1364 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| 1365 | self.buf.try_reserve(self.len, additional) |
| 1366 | } |
| 1367 | |
| 1368 | /// Tries to reserve the minimum capacity for at least `additional` |
| 1369 | /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`], |
| 1370 | /// this will not deliberately over-allocate to speculatively avoid frequent |
| 1371 | /// allocations. After calling `try_reserve_exact`, capacity will be greater |
| 1372 | /// than or equal to `self.len() + additional` if it returns `Ok(())`. |
| 1373 | /// Does nothing if the capacity is already sufficient. |
| 1374 | /// |
| 1375 | /// Note that the allocator may give the collection more space than it |
| 1376 | /// requests. Therefore, capacity can not be relied upon to be precisely |
| 1377 | /// minimal. Prefer [`try_reserve`] if future insertions are expected. |
| 1378 | /// |
| 1379 | /// [`try_reserve`]: Vec::try_reserve |
| 1380 | /// |
| 1381 | /// # Errors |
| 1382 | /// |
| 1383 | /// If the capacity overflows, or the allocator reports a failure, then an error |
| 1384 | /// is returned. |
| 1385 | /// |
| 1386 | /// # Examples |
| 1387 | /// |
| 1388 | /// ``` |
| 1389 | /// use std::collections::TryReserveError; |
| 1390 | /// |
| 1391 | /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> { |
| 1392 | /// let mut output = Vec::new(); |
| 1393 | /// |
| 1394 | /// // Pre-reserve the memory, exiting if we can't |
| 1395 | /// output.try_reserve_exact(data.len())?; |
| 1396 | /// |
| 1397 | /// // Now we know this can't OOM in the middle of our complex work |
| 1398 | /// output.extend(data.iter().map(|&val| { |
| 1399 | /// val * 2 + 5 // very complicated |
| 1400 | /// })); |
| 1401 | /// |
| 1402 | /// Ok(output) |
| 1403 | /// } |
| 1404 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" ); |
| 1405 | /// ``` |
| 1406 | #[stable (feature = "try_reserve" , since = "1.57.0" )] |
| 1407 | pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| 1408 | self.buf.try_reserve_exact(self.len, additional) |
| 1409 | } |
| 1410 | |
| 1411 | /// Shrinks the capacity of the vector as much as possible. |
| 1412 | /// |
| 1413 | /// The behavior of this method depends on the allocator, which may either shrink the vector |
| 1414 | /// in-place or reallocate. The resulting vector might still have some excess capacity, just as |
| 1415 | /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details. |
| 1416 | /// |
| 1417 | /// [`with_capacity`]: Vec::with_capacity |
| 1418 | /// |
| 1419 | /// # Examples |
| 1420 | /// |
| 1421 | /// ``` |
| 1422 | /// let mut vec = Vec::with_capacity(10); |
| 1423 | /// vec.extend([1, 2, 3]); |
| 1424 | /// assert!(vec.capacity() >= 10); |
| 1425 | /// vec.shrink_to_fit(); |
| 1426 | /// assert!(vec.capacity() >= 3); |
| 1427 | /// ``` |
| 1428 | #[cfg (not(no_global_oom_handling))] |
| 1429 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1430 | #[track_caller ] |
| 1431 | #[inline ] |
| 1432 | pub fn shrink_to_fit(&mut self) { |
| 1433 | // The capacity is never less than the length, and there's nothing to do when |
| 1434 | // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit` |
| 1435 | // by only calling it with a greater capacity. |
| 1436 | if self.capacity() > self.len { |
| 1437 | self.buf.shrink_to_fit(self.len); |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | /// Shrinks the capacity of the vector with a lower bound. |
| 1442 | /// |
| 1443 | /// The capacity will remain at least as large as both the length |
| 1444 | /// and the supplied value. |
| 1445 | /// |
| 1446 | /// If the current capacity is less than the lower limit, this is a no-op. |
| 1447 | /// |
| 1448 | /// # Examples |
| 1449 | /// |
| 1450 | /// ``` |
| 1451 | /// let mut vec = Vec::with_capacity(10); |
| 1452 | /// vec.extend([1, 2, 3]); |
| 1453 | /// assert!(vec.capacity() >= 10); |
| 1454 | /// vec.shrink_to(4); |
| 1455 | /// assert!(vec.capacity() >= 4); |
| 1456 | /// vec.shrink_to(0); |
| 1457 | /// assert!(vec.capacity() >= 3); |
| 1458 | /// ``` |
| 1459 | #[cfg (not(no_global_oom_handling))] |
| 1460 | #[stable (feature = "shrink_to" , since = "1.56.0" )] |
| 1461 | #[track_caller ] |
| 1462 | pub fn shrink_to(&mut self, min_capacity: usize) { |
| 1463 | if self.capacity() > min_capacity { |
| 1464 | self.buf.shrink_to_fit(cmp::max(self.len, min_capacity)); |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | /// Converts the vector into [`Box<[T]>`][owned slice]. |
| 1469 | /// |
| 1470 | /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`]. |
| 1471 | /// |
| 1472 | /// [owned slice]: Box |
| 1473 | /// [`shrink_to_fit`]: Vec::shrink_to_fit |
| 1474 | /// |
| 1475 | /// # Examples |
| 1476 | /// |
| 1477 | /// ``` |
| 1478 | /// let v = vec![1, 2, 3]; |
| 1479 | /// |
| 1480 | /// let slice = v.into_boxed_slice(); |
| 1481 | /// ``` |
| 1482 | /// |
| 1483 | /// Any excess capacity is removed: |
| 1484 | /// |
| 1485 | /// ``` |
| 1486 | /// let mut vec = Vec::with_capacity(10); |
| 1487 | /// vec.extend([1, 2, 3]); |
| 1488 | /// |
| 1489 | /// assert!(vec.capacity() >= 10); |
| 1490 | /// let slice = vec.into_boxed_slice(); |
| 1491 | /// assert_eq!(slice.into_vec().capacity(), 3); |
| 1492 | /// ``` |
| 1493 | #[cfg (not(no_global_oom_handling))] |
| 1494 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1495 | #[track_caller ] |
| 1496 | pub fn into_boxed_slice(mut self) -> Box<[T], A> { |
| 1497 | unsafe { |
| 1498 | self.shrink_to_fit(); |
| 1499 | let me = ManuallyDrop::new(self); |
| 1500 | let buf = ptr::read(&me.buf); |
| 1501 | let len = me.len(); |
| 1502 | buf.into_box(len).assume_init() |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | /// Shortens the vector, keeping the first `len` elements and dropping |
| 1507 | /// the rest. |
| 1508 | /// |
| 1509 | /// If `len` is greater or equal to the vector's current length, this has |
| 1510 | /// no effect. |
| 1511 | /// |
| 1512 | /// The [`drain`] method can emulate `truncate`, but causes the excess |
| 1513 | /// elements to be returned instead of dropped. |
| 1514 | /// |
| 1515 | /// Note that this method has no effect on the allocated capacity |
| 1516 | /// of the vector. |
| 1517 | /// |
| 1518 | /// # Examples |
| 1519 | /// |
| 1520 | /// Truncating a five element vector to two elements: |
| 1521 | /// |
| 1522 | /// ``` |
| 1523 | /// let mut vec = vec![1, 2, 3, 4, 5]; |
| 1524 | /// vec.truncate(2); |
| 1525 | /// assert_eq!(vec, [1, 2]); |
| 1526 | /// ``` |
| 1527 | /// |
| 1528 | /// No truncation occurs when `len` is greater than the vector's current |
| 1529 | /// length: |
| 1530 | /// |
| 1531 | /// ``` |
| 1532 | /// let mut vec = vec![1, 2, 3]; |
| 1533 | /// vec.truncate(8); |
| 1534 | /// assert_eq!(vec, [1, 2, 3]); |
| 1535 | /// ``` |
| 1536 | /// |
| 1537 | /// Truncating when `len == 0` is equivalent to calling the [`clear`] |
| 1538 | /// method. |
| 1539 | /// |
| 1540 | /// ``` |
| 1541 | /// let mut vec = vec![1, 2, 3]; |
| 1542 | /// vec.truncate(0); |
| 1543 | /// assert_eq!(vec, []); |
| 1544 | /// ``` |
| 1545 | /// |
| 1546 | /// [`clear`]: Vec::clear |
| 1547 | /// [`drain`]: Vec::drain |
| 1548 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1549 | pub fn truncate(&mut self, len: usize) { |
| 1550 | // This is safe because: |
| 1551 | // |
| 1552 | // * the slice passed to `drop_in_place` is valid; the `len > self.len` |
| 1553 | // case avoids creating an invalid slice, and |
| 1554 | // * the `len` of the vector is shrunk before calling `drop_in_place`, |
| 1555 | // such that no value will be dropped twice in case `drop_in_place` |
| 1556 | // were to panic once (if it panics twice, the program aborts). |
| 1557 | unsafe { |
| 1558 | // Note: It's intentional that this is `>` and not `>=`. |
| 1559 | // Changing it to `>=` has negative performance |
| 1560 | // implications in some cases. See #78884 for more. |
| 1561 | if len > self.len { |
| 1562 | return; |
| 1563 | } |
| 1564 | let remaining_len = self.len - len; |
| 1565 | let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len); |
| 1566 | self.len = len; |
| 1567 | ptr::drop_in_place(s); |
| 1568 | } |
| 1569 | } |
| 1570 | |
| 1571 | /// Extracts a slice containing the entire vector. |
| 1572 | /// |
| 1573 | /// Equivalent to `&s[..]`. |
| 1574 | /// |
| 1575 | /// # Examples |
| 1576 | /// |
| 1577 | /// ``` |
| 1578 | /// use std::io::{self, Write}; |
| 1579 | /// let buffer = vec![1, 2, 3, 5, 8]; |
| 1580 | /// io::sink().write(buffer.as_slice()).unwrap(); |
| 1581 | /// ``` |
| 1582 | #[inline ] |
| 1583 | #[stable (feature = "vec_as_slice" , since = "1.7.0" )] |
| 1584 | #[rustc_diagnostic_item = "vec_as_slice" ] |
| 1585 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
| 1586 | pub const fn as_slice(&self) -> &[T] { |
| 1587 | // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size |
| 1588 | // `len` containing properly-initialized `T`s. Data must not be mutated for the returned |
| 1589 | // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not |
| 1590 | // "wrap" through overflowing memory addresses. |
| 1591 | // |
| 1592 | // * Vec API guarantees that self.buf: |
| 1593 | // * contains only properly-initialized items within 0..len |
| 1594 | // * is aligned, contiguous, and valid for `len` reads |
| 1595 | // * obeys size and address-wrapping constraints |
| 1596 | // |
| 1597 | // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow- |
| 1598 | // check ensures that it is not possible to mutably alias `self.buf` within the |
| 1599 | // returned lifetime. |
| 1600 | unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } |
| 1601 | } |
| 1602 | |
| 1603 | /// Extracts a mutable slice of the entire vector. |
| 1604 | /// |
| 1605 | /// Equivalent to `&mut s[..]`. |
| 1606 | /// |
| 1607 | /// # Examples |
| 1608 | /// |
| 1609 | /// ``` |
| 1610 | /// use std::io::{self, Read}; |
| 1611 | /// let mut buffer = vec![0; 3]; |
| 1612 | /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap(); |
| 1613 | /// ``` |
| 1614 | #[inline ] |
| 1615 | #[stable (feature = "vec_as_slice" , since = "1.7.0" )] |
| 1616 | #[rustc_diagnostic_item = "vec_as_mut_slice" ] |
| 1617 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
| 1618 | pub const fn as_mut_slice(&mut self) -> &mut [T] { |
| 1619 | // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of |
| 1620 | // size `len` containing properly-initialized `T`s. Data must not be accessed through any |
| 1621 | // other pointer for the returned lifetime. Further, `len * size_of::<T>` <= |
| 1622 | // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses. |
| 1623 | // |
| 1624 | // * Vec API guarantees that self.buf: |
| 1625 | // * contains only properly-initialized items within 0..len |
| 1626 | // * is aligned, contiguous, and valid for `len` reads |
| 1627 | // * obeys size and address-wrapping constraints |
| 1628 | // |
| 1629 | // * We only construct references to `self.buf` through `&self` and `&mut self` methods; |
| 1630 | // borrow-check ensures that it is not possible to construct a reference to `self.buf` |
| 1631 | // within the returned lifetime. |
| 1632 | unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } |
| 1633 | } |
| 1634 | |
| 1635 | /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer |
| 1636 | /// valid for zero sized reads if the vector didn't allocate. |
| 1637 | /// |
| 1638 | /// The caller must ensure that the vector outlives the pointer this |
| 1639 | /// function returns, or else it will end up dangling. |
| 1640 | /// Modifying the vector may cause its buffer to be reallocated, |
| 1641 | /// which would also make any pointers to it invalid. |
| 1642 | /// |
| 1643 | /// The caller must also ensure that the memory the pointer (non-transitively) points to |
| 1644 | /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer |
| 1645 | /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`]. |
| 1646 | /// |
| 1647 | /// This method guarantees that for the purpose of the aliasing model, this method |
| 1648 | /// does not materialize a reference to the underlying slice, and thus the returned pointer |
| 1649 | /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`], |
| 1650 | /// and [`as_non_null`]. |
| 1651 | /// Note that calling other methods that materialize mutable references to the slice, |
| 1652 | /// or mutable references to specific elements you are planning on accessing through this pointer, |
| 1653 | /// as well as writing to those elements, may still invalidate this pointer. |
| 1654 | /// See the second example below for how this guarantee can be used. |
| 1655 | /// |
| 1656 | /// |
| 1657 | /// # Examples |
| 1658 | /// |
| 1659 | /// ``` |
| 1660 | /// let x = vec![1, 2, 4]; |
| 1661 | /// let x_ptr = x.as_ptr(); |
| 1662 | /// |
| 1663 | /// unsafe { |
| 1664 | /// for i in 0..x.len() { |
| 1665 | /// assert_eq!(*x_ptr.add(i), 1 << i); |
| 1666 | /// } |
| 1667 | /// } |
| 1668 | /// ``` |
| 1669 | /// |
| 1670 | /// Due to the aliasing guarantee, the following code is legal: |
| 1671 | /// |
| 1672 | /// ```rust |
| 1673 | /// unsafe { |
| 1674 | /// let mut v = vec![0, 1, 2]; |
| 1675 | /// let ptr1 = v.as_ptr(); |
| 1676 | /// let _ = ptr1.read(); |
| 1677 | /// let ptr2 = v.as_mut_ptr().offset(2); |
| 1678 | /// ptr2.write(2); |
| 1679 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1` |
| 1680 | /// // because it mutated a different element: |
| 1681 | /// let _ = ptr1.read(); |
| 1682 | /// } |
| 1683 | /// ``` |
| 1684 | /// |
| 1685 | /// [`as_mut_ptr`]: Vec::as_mut_ptr |
| 1686 | /// [`as_ptr`]: Vec::as_ptr |
| 1687 | /// [`as_non_null`]: Vec::as_non_null |
| 1688 | #[stable (feature = "vec_as_ptr" , since = "1.37.0" )] |
| 1689 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
| 1690 | #[rustc_never_returns_null_ptr ] |
| 1691 | #[rustc_as_ptr] |
| 1692 | #[inline ] |
| 1693 | pub const fn as_ptr(&self) -> *const T { |
| 1694 | // We shadow the slice method of the same name to avoid going through |
| 1695 | // `deref`, which creates an intermediate reference. |
| 1696 | self.buf.ptr() |
| 1697 | } |
| 1698 | |
| 1699 | /// Returns a raw mutable pointer to the vector's buffer, or a dangling |
| 1700 | /// raw pointer valid for zero sized reads if the vector didn't allocate. |
| 1701 | /// |
| 1702 | /// The caller must ensure that the vector outlives the pointer this |
| 1703 | /// function returns, or else it will end up dangling. |
| 1704 | /// Modifying the vector may cause its buffer to be reallocated, |
| 1705 | /// which would also make any pointers to it invalid. |
| 1706 | /// |
| 1707 | /// This method guarantees that for the purpose of the aliasing model, this method |
| 1708 | /// does not materialize a reference to the underlying slice, and thus the returned pointer |
| 1709 | /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`], |
| 1710 | /// and [`as_non_null`]. |
| 1711 | /// Note that calling other methods that materialize references to the slice, |
| 1712 | /// or references to specific elements you are planning on accessing through this pointer, |
| 1713 | /// may still invalidate this pointer. |
| 1714 | /// See the second example below for how this guarantee can be used. |
| 1715 | /// |
| 1716 | /// # Examples |
| 1717 | /// |
| 1718 | /// ``` |
| 1719 | /// // Allocate vector big enough for 4 elements. |
| 1720 | /// let size = 4; |
| 1721 | /// let mut x: Vec<i32> = Vec::with_capacity(size); |
| 1722 | /// let x_ptr = x.as_mut_ptr(); |
| 1723 | /// |
| 1724 | /// // Initialize elements via raw pointer writes, then set length. |
| 1725 | /// unsafe { |
| 1726 | /// for i in 0..size { |
| 1727 | /// *x_ptr.add(i) = i as i32; |
| 1728 | /// } |
| 1729 | /// x.set_len(size); |
| 1730 | /// } |
| 1731 | /// assert_eq!(&*x, &[0, 1, 2, 3]); |
| 1732 | /// ``` |
| 1733 | /// |
| 1734 | /// Due to the aliasing guarantee, the following code is legal: |
| 1735 | /// |
| 1736 | /// ```rust |
| 1737 | /// unsafe { |
| 1738 | /// let mut v = vec![0]; |
| 1739 | /// let ptr1 = v.as_mut_ptr(); |
| 1740 | /// ptr1.write(1); |
| 1741 | /// let ptr2 = v.as_mut_ptr(); |
| 1742 | /// ptr2.write(2); |
| 1743 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`: |
| 1744 | /// ptr1.write(3); |
| 1745 | /// } |
| 1746 | /// ``` |
| 1747 | /// |
| 1748 | /// [`as_mut_ptr`]: Vec::as_mut_ptr |
| 1749 | /// [`as_ptr`]: Vec::as_ptr |
| 1750 | /// [`as_non_null`]: Vec::as_non_null |
| 1751 | #[stable (feature = "vec_as_ptr" , since = "1.37.0" )] |
| 1752 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
| 1753 | #[rustc_never_returns_null_ptr ] |
| 1754 | #[rustc_as_ptr] |
| 1755 | #[inline ] |
| 1756 | pub const fn as_mut_ptr(&mut self) -> *mut T { |
| 1757 | // We shadow the slice method of the same name to avoid going through |
| 1758 | // `deref_mut`, which creates an intermediate reference. |
| 1759 | self.buf.ptr() |
| 1760 | } |
| 1761 | |
| 1762 | /// Returns a `NonNull` pointer to the vector's buffer, or a dangling |
| 1763 | /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate. |
| 1764 | /// |
| 1765 | /// The caller must ensure that the vector outlives the pointer this |
| 1766 | /// function returns, or else it will end up dangling. |
| 1767 | /// Modifying the vector may cause its buffer to be reallocated, |
| 1768 | /// which would also make any pointers to it invalid. |
| 1769 | /// |
| 1770 | /// This method guarantees that for the purpose of the aliasing model, this method |
| 1771 | /// does not materialize a reference to the underlying slice, and thus the returned pointer |
| 1772 | /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`], |
| 1773 | /// and [`as_non_null`]. |
| 1774 | /// Note that calling other methods that materialize references to the slice, |
| 1775 | /// or references to specific elements you are planning on accessing through this pointer, |
| 1776 | /// may still invalidate this pointer. |
| 1777 | /// See the second example below for how this guarantee can be used. |
| 1778 | /// |
| 1779 | /// # Examples |
| 1780 | /// |
| 1781 | /// ``` |
| 1782 | /// #![feature(box_vec_non_null)] |
| 1783 | /// |
| 1784 | /// // Allocate vector big enough for 4 elements. |
| 1785 | /// let size = 4; |
| 1786 | /// let mut x: Vec<i32> = Vec::with_capacity(size); |
| 1787 | /// let x_ptr = x.as_non_null(); |
| 1788 | /// |
| 1789 | /// // Initialize elements via raw pointer writes, then set length. |
| 1790 | /// unsafe { |
| 1791 | /// for i in 0..size { |
| 1792 | /// x_ptr.add(i).write(i as i32); |
| 1793 | /// } |
| 1794 | /// x.set_len(size); |
| 1795 | /// } |
| 1796 | /// assert_eq!(&*x, &[0, 1, 2, 3]); |
| 1797 | /// ``` |
| 1798 | /// |
| 1799 | /// Due to the aliasing guarantee, the following code is legal: |
| 1800 | /// |
| 1801 | /// ```rust |
| 1802 | /// #![feature(box_vec_non_null)] |
| 1803 | /// |
| 1804 | /// unsafe { |
| 1805 | /// let mut v = vec![0]; |
| 1806 | /// let ptr1 = v.as_non_null(); |
| 1807 | /// ptr1.write(1); |
| 1808 | /// let ptr2 = v.as_non_null(); |
| 1809 | /// ptr2.write(2); |
| 1810 | /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`: |
| 1811 | /// ptr1.write(3); |
| 1812 | /// } |
| 1813 | /// ``` |
| 1814 | /// |
| 1815 | /// [`as_mut_ptr`]: Vec::as_mut_ptr |
| 1816 | /// [`as_ptr`]: Vec::as_ptr |
| 1817 | /// [`as_non_null`]: Vec::as_non_null |
| 1818 | #[unstable (feature = "box_vec_non_null" , reason = "new API" , issue = "130364" )] |
| 1819 | #[inline ] |
| 1820 | pub fn as_non_null(&mut self) -> NonNull<T> { |
| 1821 | // SAFETY: A `Vec` always has a non-null pointer. |
| 1822 | unsafe { NonNull::new_unchecked(self.as_mut_ptr()) } |
| 1823 | } |
| 1824 | |
| 1825 | /// Returns a reference to the underlying allocator. |
| 1826 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1827 | #[inline ] |
| 1828 | pub fn allocator(&self) -> &A { |
| 1829 | self.buf.allocator() |
| 1830 | } |
| 1831 | |
| 1832 | /// Forces the length of the vector to `new_len`. |
| 1833 | /// |
| 1834 | /// This is a low-level operation that maintains none of the normal |
| 1835 | /// invariants of the type. Normally changing the length of a vector |
| 1836 | /// is done using one of the safe operations instead, such as |
| 1837 | /// [`truncate`], [`resize`], [`extend`], or [`clear`]. |
| 1838 | /// |
| 1839 | /// [`truncate`]: Vec::truncate |
| 1840 | /// [`resize`]: Vec::resize |
| 1841 | /// [`extend`]: Extend::extend |
| 1842 | /// [`clear`]: Vec::clear |
| 1843 | /// |
| 1844 | /// # Safety |
| 1845 | /// |
| 1846 | /// - `new_len` must be less than or equal to [`capacity()`]. |
| 1847 | /// - The elements at `old_len..new_len` must be initialized. |
| 1848 | /// |
| 1849 | /// [`capacity()`]: Vec::capacity |
| 1850 | /// |
| 1851 | /// # Examples |
| 1852 | /// |
| 1853 | /// See [`spare_capacity_mut()`] for an example with safe |
| 1854 | /// initialization of capacity elements and use of this method. |
| 1855 | /// |
| 1856 | /// `set_len()` can be useful for situations in which the vector |
| 1857 | /// is serving as a buffer for other code, particularly over FFI: |
| 1858 | /// |
| 1859 | /// ```no_run |
| 1860 | /// # #![allow (dead_code)] |
| 1861 | /// # // This is just a minimal skeleton for the doc example; |
| 1862 | /// # // don't use this as a starting point for a real library. |
| 1863 | /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void } |
| 1864 | /// # const Z_OK: i32 = 0; |
| 1865 | /// # unsafe extern "C" { |
| 1866 | /// # fn deflateGetDictionary( |
| 1867 | /// # strm: *mut std::ffi::c_void, |
| 1868 | /// # dictionary: *mut u8, |
| 1869 | /// # dictLength: *mut usize, |
| 1870 | /// # ) -> i32; |
| 1871 | /// # } |
| 1872 | /// # impl StreamWrapper { |
| 1873 | /// pub fn get_dictionary(&self) -> Option<Vec<u8>> { |
| 1874 | /// // Per the FFI method's docs, "32768 bytes is always enough". |
| 1875 | /// let mut dict = Vec::with_capacity(32_768); |
| 1876 | /// let mut dict_length = 0; |
| 1877 | /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that: |
| 1878 | /// // 1. `dict_length` elements were initialized. |
| 1879 | /// // 2. `dict_length` <= the capacity (32_768) |
| 1880 | /// // which makes `set_len` safe to call. |
| 1881 | /// unsafe { |
| 1882 | /// // Make the FFI call... |
| 1883 | /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length); |
| 1884 | /// if r == Z_OK { |
| 1885 | /// // ...and update the length to what was initialized. |
| 1886 | /// dict.set_len(dict_length); |
| 1887 | /// Some(dict) |
| 1888 | /// } else { |
| 1889 | /// None |
| 1890 | /// } |
| 1891 | /// } |
| 1892 | /// } |
| 1893 | /// # } |
| 1894 | /// ``` |
| 1895 | /// |
| 1896 | /// While the following example is sound, there is a memory leak since |
| 1897 | /// the inner vectors were not freed prior to the `set_len` call: |
| 1898 | /// |
| 1899 | /// ``` |
| 1900 | /// let mut vec = vec![vec![1, 0, 0], |
| 1901 | /// vec![0, 1, 0], |
| 1902 | /// vec![0, 0, 1]]; |
| 1903 | /// // SAFETY: |
| 1904 | /// // 1. `old_len..0` is empty so no elements need to be initialized. |
| 1905 | /// // 2. `0 <= capacity` always holds whatever `capacity` is. |
| 1906 | /// unsafe { |
| 1907 | /// vec.set_len(0); |
| 1908 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
| 1909 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
| 1910 | /// # vec.set_len(3); |
| 1911 | /// } |
| 1912 | /// ``` |
| 1913 | /// |
| 1914 | /// Normally, here, one would use [`clear`] instead to correctly drop |
| 1915 | /// the contents and thus not leak memory. |
| 1916 | /// |
| 1917 | /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut |
| 1918 | #[inline ] |
| 1919 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1920 | pub unsafe fn set_len(&mut self, new_len: usize) { |
| 1921 | debug_assert!(new_len <= self.capacity()); |
| 1922 | |
| 1923 | self.len = new_len; |
| 1924 | } |
| 1925 | |
| 1926 | /// Removes an element from the vector and returns it. |
| 1927 | /// |
| 1928 | /// The removed element is replaced by the last element of the vector. |
| 1929 | /// |
| 1930 | /// This does not preserve ordering of the remaining elements, but is *O*(1). |
| 1931 | /// If you need to preserve the element order, use [`remove`] instead. |
| 1932 | /// |
| 1933 | /// [`remove`]: Vec::remove |
| 1934 | /// |
| 1935 | /// # Panics |
| 1936 | /// |
| 1937 | /// Panics if `index` is out of bounds. |
| 1938 | /// |
| 1939 | /// # Examples |
| 1940 | /// |
| 1941 | /// ``` |
| 1942 | /// let mut v = vec!["foo" , "bar" , "baz" , "qux" ]; |
| 1943 | /// |
| 1944 | /// assert_eq!(v.swap_remove(1), "bar" ); |
| 1945 | /// assert_eq!(v, ["foo" , "qux" , "baz" ]); |
| 1946 | /// |
| 1947 | /// assert_eq!(v.swap_remove(0), "foo" ); |
| 1948 | /// assert_eq!(v, ["baz" , "qux" ]); |
| 1949 | /// ``` |
| 1950 | #[inline ] |
| 1951 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1952 | pub fn swap_remove(&mut self, index: usize) -> T { |
| 1953 | #[cold ] |
| 1954 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
| 1955 | #[track_caller ] |
| 1956 | #[optimize (size)] |
| 1957 | fn assert_failed(index: usize, len: usize) -> ! { |
| 1958 | panic!("swap_remove index (is {index}) should be < len (is {len})" ); |
| 1959 | } |
| 1960 | |
| 1961 | let len = self.len(); |
| 1962 | if index >= len { |
| 1963 | assert_failed(index, len); |
| 1964 | } |
| 1965 | unsafe { |
| 1966 | // We replace self[index] with the last element. Note that if the |
| 1967 | // bounds check above succeeds there must be a last element (which |
| 1968 | // can be self[index] itself). |
| 1969 | let value = ptr::read(self.as_ptr().add(index)); |
| 1970 | let base_ptr = self.as_mut_ptr(); |
| 1971 | ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1); |
| 1972 | self.set_len(len - 1); |
| 1973 | value |
| 1974 | } |
| 1975 | } |
| 1976 | |
| 1977 | /// Inserts an element at position `index` within the vector, shifting all |
| 1978 | /// elements after it to the right. |
| 1979 | /// |
| 1980 | /// # Panics |
| 1981 | /// |
| 1982 | /// Panics if `index > len`. |
| 1983 | /// |
| 1984 | /// # Examples |
| 1985 | /// |
| 1986 | /// ``` |
| 1987 | /// let mut vec = vec!['a' , 'b' , 'c' ]; |
| 1988 | /// vec.insert(1, 'd' ); |
| 1989 | /// assert_eq!(vec, ['a' , 'd' , 'b' , 'c' ]); |
| 1990 | /// vec.insert(4, 'e' ); |
| 1991 | /// assert_eq!(vec, ['a' , 'd' , 'b' , 'c' , 'e' ]); |
| 1992 | /// ``` |
| 1993 | /// |
| 1994 | /// # Time complexity |
| 1995 | /// |
| 1996 | /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be |
| 1997 | /// shifted to the right. In the worst case, all elements are shifted when |
| 1998 | /// the insertion index is 0. |
| 1999 | #[cfg (not(no_global_oom_handling))] |
| 2000 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2001 | #[track_caller ] |
| 2002 | pub fn insert(&mut self, index: usize, element: T) { |
| 2003 | #[cold ] |
| 2004 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
| 2005 | #[track_caller ] |
| 2006 | #[optimize (size)] |
| 2007 | fn assert_failed(index: usize, len: usize) -> ! { |
| 2008 | panic!("insertion index (is {index}) should be <= len (is {len})" ); |
| 2009 | } |
| 2010 | |
| 2011 | let len = self.len(); |
| 2012 | if index > len { |
| 2013 | assert_failed(index, len); |
| 2014 | } |
| 2015 | |
| 2016 | // space for the new element |
| 2017 | if len == self.buf.capacity() { |
| 2018 | self.buf.grow_one(); |
| 2019 | } |
| 2020 | |
| 2021 | unsafe { |
| 2022 | // infallible |
| 2023 | // The spot to put the new value |
| 2024 | { |
| 2025 | let p = self.as_mut_ptr().add(index); |
| 2026 | if index < len { |
| 2027 | // Shift everything over to make space. (Duplicating the |
| 2028 | // `index`th element into two consecutive places.) |
| 2029 | ptr::copy(p, p.add(1), len - index); |
| 2030 | } |
| 2031 | // Write it in, overwriting the first copy of the `index`th |
| 2032 | // element. |
| 2033 | ptr::write(p, element); |
| 2034 | } |
| 2035 | self.set_len(len + 1); |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | /// Removes and returns the element at position `index` within the vector, |
| 2040 | /// shifting all elements after it to the left. |
| 2041 | /// |
| 2042 | /// Note: Because this shifts over the remaining elements, it has a |
| 2043 | /// worst-case performance of *O*(*n*). If you don't need the order of elements |
| 2044 | /// to be preserved, use [`swap_remove`] instead. If you'd like to remove |
| 2045 | /// elements from the beginning of the `Vec`, consider using |
| 2046 | /// [`VecDeque::pop_front`] instead. |
| 2047 | /// |
| 2048 | /// [`swap_remove`]: Vec::swap_remove |
| 2049 | /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front |
| 2050 | /// |
| 2051 | /// # Panics |
| 2052 | /// |
| 2053 | /// Panics if `index` is out of bounds. |
| 2054 | /// |
| 2055 | /// # Examples |
| 2056 | /// |
| 2057 | /// ``` |
| 2058 | /// let mut v = vec!['a' , 'b' , 'c' ]; |
| 2059 | /// assert_eq!(v.remove(1), 'b' ); |
| 2060 | /// assert_eq!(v, ['a' , 'c' ]); |
| 2061 | /// ``` |
| 2062 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2063 | #[track_caller ] |
| 2064 | #[rustc_confusables ("delete" , "take" )] |
| 2065 | pub fn remove(&mut self, index: usize) -> T { |
| 2066 | #[cold ] |
| 2067 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
| 2068 | #[track_caller ] |
| 2069 | #[optimize (size)] |
| 2070 | fn assert_failed(index: usize, len: usize) -> ! { |
| 2071 | panic!("removal index (is {index}) should be < len (is {len})" ); |
| 2072 | } |
| 2073 | |
| 2074 | let len = self.len(); |
| 2075 | if index >= len { |
| 2076 | assert_failed(index, len); |
| 2077 | } |
| 2078 | unsafe { |
| 2079 | // infallible |
| 2080 | let ret; |
| 2081 | { |
| 2082 | // the place we are taking from. |
| 2083 | let ptr = self.as_mut_ptr().add(index); |
| 2084 | // copy it out, unsafely having a copy of the value on |
| 2085 | // the stack and in the vector at the same time. |
| 2086 | ret = ptr::read(ptr); |
| 2087 | |
| 2088 | // Shift everything down to fill in that spot. |
| 2089 | ptr::copy(ptr.add(1), ptr, len - index - 1); |
| 2090 | } |
| 2091 | self.set_len(len - 1); |
| 2092 | ret |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | /// Retains only the elements specified by the predicate. |
| 2097 | /// |
| 2098 | /// In other words, remove all elements `e` for which `f(&e)` returns `false`. |
| 2099 | /// This method operates in place, visiting each element exactly once in the |
| 2100 | /// original order, and preserves the order of the retained elements. |
| 2101 | /// |
| 2102 | /// # Examples |
| 2103 | /// |
| 2104 | /// ``` |
| 2105 | /// let mut vec = vec![1, 2, 3, 4]; |
| 2106 | /// vec.retain(|&x| x % 2 == 0); |
| 2107 | /// assert_eq!(vec, [2, 4]); |
| 2108 | /// ``` |
| 2109 | /// |
| 2110 | /// Because the elements are visited exactly once in the original order, |
| 2111 | /// external state may be used to decide which elements to keep. |
| 2112 | /// |
| 2113 | /// ``` |
| 2114 | /// let mut vec = vec![1, 2, 3, 4, 5]; |
| 2115 | /// let keep = [false, true, true, false, true]; |
| 2116 | /// let mut iter = keep.iter(); |
| 2117 | /// vec.retain(|_| *iter.next().unwrap()); |
| 2118 | /// assert_eq!(vec, [2, 3, 5]); |
| 2119 | /// ``` |
| 2120 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2121 | pub fn retain<F>(&mut self, mut f: F) |
| 2122 | where |
| 2123 | F: FnMut(&T) -> bool, |
| 2124 | { |
| 2125 | self.retain_mut(|elem| f(elem)); |
| 2126 | } |
| 2127 | |
| 2128 | /// Retains only the elements specified by the predicate, passing a mutable reference to it. |
| 2129 | /// |
| 2130 | /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`. |
| 2131 | /// This method operates in place, visiting each element exactly once in the |
| 2132 | /// original order, and preserves the order of the retained elements. |
| 2133 | /// |
| 2134 | /// # Examples |
| 2135 | /// |
| 2136 | /// ``` |
| 2137 | /// let mut vec = vec![1, 2, 3, 4]; |
| 2138 | /// vec.retain_mut(|x| if *x <= 3 { |
| 2139 | /// *x += 1; |
| 2140 | /// true |
| 2141 | /// } else { |
| 2142 | /// false |
| 2143 | /// }); |
| 2144 | /// assert_eq!(vec, [2, 3, 4]); |
| 2145 | /// ``` |
| 2146 | #[stable (feature = "vec_retain_mut" , since = "1.61.0" )] |
| 2147 | pub fn retain_mut<F>(&mut self, mut f: F) |
| 2148 | where |
| 2149 | F: FnMut(&mut T) -> bool, |
| 2150 | { |
| 2151 | let original_len = self.len(); |
| 2152 | |
| 2153 | if original_len == 0 { |
| 2154 | // Empty case: explicit return allows better optimization, vs letting compiler infer it |
| 2155 | return; |
| 2156 | } |
| 2157 | |
| 2158 | // Avoid double drop if the drop guard is not executed, |
| 2159 | // since we may make some holes during the process. |
| 2160 | unsafe { self.set_len(0) }; |
| 2161 | |
| 2162 | // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked] |
| 2163 | // |<- processed len ->| ^- next to check |
| 2164 | // |<- deleted cnt ->| |
| 2165 | // |<- original_len ->| |
| 2166 | // Kept: Elements which predicate returns true on. |
| 2167 | // Hole: Moved or dropped element slot. |
| 2168 | // Unchecked: Unchecked valid elements. |
| 2169 | // |
| 2170 | // This drop guard will be invoked when predicate or `drop` of element panicked. |
| 2171 | // It shifts unchecked elements to cover holes and `set_len` to the correct length. |
| 2172 | // In cases when predicate and `drop` never panick, it will be optimized out. |
| 2173 | struct BackshiftOnDrop<'a, T, A: Allocator> { |
| 2174 | v: &'a mut Vec<T, A>, |
| 2175 | processed_len: usize, |
| 2176 | deleted_cnt: usize, |
| 2177 | original_len: usize, |
| 2178 | } |
| 2179 | |
| 2180 | impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> { |
| 2181 | fn drop(&mut self) { |
| 2182 | if self.deleted_cnt > 0 { |
| 2183 | // SAFETY: Trailing unchecked items must be valid since we never touch them. |
| 2184 | unsafe { |
| 2185 | ptr::copy( |
| 2186 | self.v.as_ptr().add(self.processed_len), |
| 2187 | self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt), |
| 2188 | self.original_len - self.processed_len, |
| 2189 | ); |
| 2190 | } |
| 2191 | } |
| 2192 | // SAFETY: After filling holes, all items are in contiguous memory. |
| 2193 | unsafe { |
| 2194 | self.v.set_len(self.original_len - self.deleted_cnt); |
| 2195 | } |
| 2196 | } |
| 2197 | } |
| 2198 | |
| 2199 | let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len }; |
| 2200 | |
| 2201 | fn process_loop<F, T, A: Allocator, const DELETED: bool>( |
| 2202 | original_len: usize, |
| 2203 | f: &mut F, |
| 2204 | g: &mut BackshiftOnDrop<'_, T, A>, |
| 2205 | ) where |
| 2206 | F: FnMut(&mut T) -> bool, |
| 2207 | { |
| 2208 | while g.processed_len != original_len { |
| 2209 | // SAFETY: Unchecked element must be valid. |
| 2210 | let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) }; |
| 2211 | if !f(cur) { |
| 2212 | // Advance early to avoid double drop if `drop_in_place` panicked. |
| 2213 | g.processed_len += 1; |
| 2214 | g.deleted_cnt += 1; |
| 2215 | // SAFETY: We never touch this element again after dropped. |
| 2216 | unsafe { ptr::drop_in_place(cur) }; |
| 2217 | // We already advanced the counter. |
| 2218 | if DELETED { |
| 2219 | continue; |
| 2220 | } else { |
| 2221 | break; |
| 2222 | } |
| 2223 | } |
| 2224 | if DELETED { |
| 2225 | // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element. |
| 2226 | // We use copy for move, and never touch this element again. |
| 2227 | unsafe { |
| 2228 | let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt); |
| 2229 | ptr::copy_nonoverlapping(cur, hole_slot, 1); |
| 2230 | } |
| 2231 | } |
| 2232 | g.processed_len += 1; |
| 2233 | } |
| 2234 | } |
| 2235 | |
| 2236 | // Stage 1: Nothing was deleted. |
| 2237 | process_loop::<F, T, A, false>(original_len, &mut f, &mut g); |
| 2238 | |
| 2239 | // Stage 2: Some elements were deleted. |
| 2240 | process_loop::<F, T, A, true>(original_len, &mut f, &mut g); |
| 2241 | |
| 2242 | // All item are processed. This can be optimized to `set_len` by LLVM. |
| 2243 | drop(g); |
| 2244 | } |
| 2245 | |
| 2246 | /// Removes all but the first of consecutive elements in the vector that resolve to the same |
| 2247 | /// key. |
| 2248 | /// |
| 2249 | /// If the vector is sorted, this removes all duplicates. |
| 2250 | /// |
| 2251 | /// # Examples |
| 2252 | /// |
| 2253 | /// ``` |
| 2254 | /// let mut vec = vec![10, 20, 21, 30, 20]; |
| 2255 | /// |
| 2256 | /// vec.dedup_by_key(|i| *i / 10); |
| 2257 | /// |
| 2258 | /// assert_eq!(vec, [10, 20, 30, 20]); |
| 2259 | /// ``` |
| 2260 | #[stable (feature = "dedup_by" , since = "1.16.0" )] |
| 2261 | #[inline ] |
| 2262 | pub fn dedup_by_key<F, K>(&mut self, mut key: F) |
| 2263 | where |
| 2264 | F: FnMut(&mut T) -> K, |
| 2265 | K: PartialEq, |
| 2266 | { |
| 2267 | self.dedup_by(|a, b| key(a) == key(b)) |
| 2268 | } |
| 2269 | |
| 2270 | /// Removes all but the first of consecutive elements in the vector satisfying a given equality |
| 2271 | /// relation. |
| 2272 | /// |
| 2273 | /// The `same_bucket` function is passed references to two elements from the vector and |
| 2274 | /// must determine if the elements compare equal. The elements are passed in opposite order |
| 2275 | /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed. |
| 2276 | /// |
| 2277 | /// If the vector is sorted, this removes all duplicates. |
| 2278 | /// |
| 2279 | /// # Examples |
| 2280 | /// |
| 2281 | /// ``` |
| 2282 | /// let mut vec = vec!["foo" , "bar" , "Bar" , "baz" , "bar" ]; |
| 2283 | /// |
| 2284 | /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); |
| 2285 | /// |
| 2286 | /// assert_eq!(vec, ["foo" , "bar" , "baz" , "bar" ]); |
| 2287 | /// ``` |
| 2288 | #[stable (feature = "dedup_by" , since = "1.16.0" )] |
| 2289 | pub fn dedup_by<F>(&mut self, mut same_bucket: F) |
| 2290 | where |
| 2291 | F: FnMut(&mut T, &mut T) -> bool, |
| 2292 | { |
| 2293 | let len = self.len(); |
| 2294 | if len <= 1 { |
| 2295 | return; |
| 2296 | } |
| 2297 | |
| 2298 | // Check if we ever want to remove anything. |
| 2299 | // This allows to use copy_non_overlapping in next cycle. |
| 2300 | // And avoids any memory writes if we don't need to remove anything. |
| 2301 | let mut first_duplicate_idx: usize = 1; |
| 2302 | let start = self.as_mut_ptr(); |
| 2303 | while first_duplicate_idx != len { |
| 2304 | let found_duplicate = unsafe { |
| 2305 | // SAFETY: first_duplicate always in range [1..len) |
| 2306 | // Note that we start iteration from 1 so we never overflow. |
| 2307 | let prev = start.add(first_duplicate_idx.wrapping_sub(1)); |
| 2308 | let current = start.add(first_duplicate_idx); |
| 2309 | // We explicitly say in docs that references are reversed. |
| 2310 | same_bucket(&mut *current, &mut *prev) |
| 2311 | }; |
| 2312 | if found_duplicate { |
| 2313 | break; |
| 2314 | } |
| 2315 | first_duplicate_idx += 1; |
| 2316 | } |
| 2317 | // Don't need to remove anything. |
| 2318 | // We cannot get bigger than len. |
| 2319 | if first_duplicate_idx == len { |
| 2320 | return; |
| 2321 | } |
| 2322 | |
| 2323 | /* INVARIANT: vec.len() > read > write > write-1 >= 0 */ |
| 2324 | struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> { |
| 2325 | /* Offset of the element we want to check if it is duplicate */ |
| 2326 | read: usize, |
| 2327 | |
| 2328 | /* Offset of the place where we want to place the non-duplicate |
| 2329 | * when we find it. */ |
| 2330 | write: usize, |
| 2331 | |
| 2332 | /* The Vec that would need correction if `same_bucket` panicked */ |
| 2333 | vec: &'a mut Vec<T, A>, |
| 2334 | } |
| 2335 | |
| 2336 | impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> { |
| 2337 | fn drop(&mut self) { |
| 2338 | /* This code gets executed when `same_bucket` panics */ |
| 2339 | |
| 2340 | /* SAFETY: invariant guarantees that `read - write` |
| 2341 | * and `len - read` never overflow and that the copy is always |
| 2342 | * in-bounds. */ |
| 2343 | unsafe { |
| 2344 | let ptr = self.vec.as_mut_ptr(); |
| 2345 | let len = self.vec.len(); |
| 2346 | |
| 2347 | /* How many items were left when `same_bucket` panicked. |
| 2348 | * Basically vec[read..].len() */ |
| 2349 | let items_left = len.wrapping_sub(self.read); |
| 2350 | |
| 2351 | /* Pointer to first item in vec[write..write+items_left] slice */ |
| 2352 | let dropped_ptr = ptr.add(self.write); |
| 2353 | /* Pointer to first item in vec[read..] slice */ |
| 2354 | let valid_ptr = ptr.add(self.read); |
| 2355 | |
| 2356 | /* Copy `vec[read..]` to `vec[write..write+items_left]`. |
| 2357 | * The slices can overlap, so `copy_nonoverlapping` cannot be used */ |
| 2358 | ptr::copy(valid_ptr, dropped_ptr, items_left); |
| 2359 | |
| 2360 | /* How many items have been already dropped |
| 2361 | * Basically vec[read..write].len() */ |
| 2362 | let dropped = self.read.wrapping_sub(self.write); |
| 2363 | |
| 2364 | self.vec.set_len(len - dropped); |
| 2365 | } |
| 2366 | } |
| 2367 | } |
| 2368 | |
| 2369 | /* Drop items while going through Vec, it should be more efficient than |
| 2370 | * doing slice partition_dedup + truncate */ |
| 2371 | |
| 2372 | // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics. |
| 2373 | let mut gap = |
| 2374 | FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self }; |
| 2375 | unsafe { |
| 2376 | // SAFETY: we checked that first_duplicate_idx in bounds before. |
| 2377 | // If drop panics, `gap` would remove this item without drop. |
| 2378 | ptr::drop_in_place(start.add(first_duplicate_idx)); |
| 2379 | } |
| 2380 | |
| 2381 | /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr |
| 2382 | * are always in-bounds and read_ptr never aliases prev_ptr */ |
| 2383 | unsafe { |
| 2384 | while gap.read < len { |
| 2385 | let read_ptr = start.add(gap.read); |
| 2386 | let prev_ptr = start.add(gap.write.wrapping_sub(1)); |
| 2387 | |
| 2388 | // We explicitly say in docs that references are reversed. |
| 2389 | let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr); |
| 2390 | if found_duplicate { |
| 2391 | // Increase `gap.read` now since the drop may panic. |
| 2392 | gap.read += 1; |
| 2393 | /* We have found duplicate, drop it in-place */ |
| 2394 | ptr::drop_in_place(read_ptr); |
| 2395 | } else { |
| 2396 | let write_ptr = start.add(gap.write); |
| 2397 | |
| 2398 | /* read_ptr cannot be equal to write_ptr because at this point |
| 2399 | * we guaranteed to skip at least one element (before loop starts). |
| 2400 | */ |
| 2401 | ptr::copy_nonoverlapping(read_ptr, write_ptr, 1); |
| 2402 | |
| 2403 | /* We have filled that place, so go further */ |
| 2404 | gap.write += 1; |
| 2405 | gap.read += 1; |
| 2406 | } |
| 2407 | } |
| 2408 | |
| 2409 | /* Technically we could let `gap` clean up with its Drop, but |
| 2410 | * when `same_bucket` is guaranteed to not panic, this bloats a little |
| 2411 | * the codegen, so we just do it manually */ |
| 2412 | gap.vec.set_len(gap.write); |
| 2413 | mem::forget(gap); |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | /// Appends an element to the back of a collection. |
| 2418 | /// |
| 2419 | /// # Panics |
| 2420 | /// |
| 2421 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 2422 | /// |
| 2423 | /// # Examples |
| 2424 | /// |
| 2425 | /// ``` |
| 2426 | /// let mut vec = vec![1, 2]; |
| 2427 | /// vec.push(3); |
| 2428 | /// assert_eq!(vec, [1, 2, 3]); |
| 2429 | /// ``` |
| 2430 | /// |
| 2431 | /// # Time complexity |
| 2432 | /// |
| 2433 | /// Takes amortized *O*(1) time. If the vector's length would exceed its |
| 2434 | /// capacity after the push, *O*(*capacity*) time is taken to copy the |
| 2435 | /// vector's elements to a larger allocation. This expensive operation is |
| 2436 | /// offset by the *capacity* *O*(1) insertions it allows. |
| 2437 | #[cfg (not(no_global_oom_handling))] |
| 2438 | #[inline ] |
| 2439 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2440 | #[rustc_confusables ("push_back" , "put" , "append" )] |
| 2441 | #[track_caller ] |
| 2442 | pub fn push(&mut self, value: T) { |
| 2443 | // Inform codegen that the length does not change across grow_one(). |
| 2444 | let len = self.len; |
| 2445 | // This will panic or abort if we would allocate > isize::MAX bytes |
| 2446 | // or if the length increment would overflow for zero-sized types. |
| 2447 | if len == self.buf.capacity() { |
| 2448 | self.buf.grow_one(); |
| 2449 | } |
| 2450 | unsafe { |
| 2451 | let end = self.as_mut_ptr().add(len); |
| 2452 | ptr::write(end, value); |
| 2453 | self.len = len + 1; |
| 2454 | } |
| 2455 | } |
| 2456 | |
| 2457 | /// Appends an element if there is sufficient spare capacity, otherwise an error is returned |
| 2458 | /// with the element. |
| 2459 | /// |
| 2460 | /// Unlike [`push`] this method will not reallocate when there's insufficient capacity. |
| 2461 | /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity. |
| 2462 | /// |
| 2463 | /// [`push`]: Vec::push |
| 2464 | /// [`reserve`]: Vec::reserve |
| 2465 | /// [`try_reserve`]: Vec::try_reserve |
| 2466 | /// |
| 2467 | /// # Examples |
| 2468 | /// |
| 2469 | /// A manual, panic-free alternative to [`FromIterator`]: |
| 2470 | /// |
| 2471 | /// ``` |
| 2472 | /// #![feature(vec_push_within_capacity)] |
| 2473 | /// |
| 2474 | /// use std::collections::TryReserveError; |
| 2475 | /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> { |
| 2476 | /// let mut vec = Vec::new(); |
| 2477 | /// for value in iter { |
| 2478 | /// if let Err(value) = vec.push_within_capacity(value) { |
| 2479 | /// vec.try_reserve(1)?; |
| 2480 | /// // this cannot fail, the previous line either returned or added at least 1 free slot |
| 2481 | /// let _ = vec.push_within_capacity(value); |
| 2482 | /// } |
| 2483 | /// } |
| 2484 | /// Ok(vec) |
| 2485 | /// } |
| 2486 | /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100))); |
| 2487 | /// ``` |
| 2488 | /// |
| 2489 | /// # Time complexity |
| 2490 | /// |
| 2491 | /// Takes *O*(1) time. |
| 2492 | #[inline ] |
| 2493 | #[unstable (feature = "vec_push_within_capacity" , issue = "100486" )] |
| 2494 | pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> { |
| 2495 | if self.len == self.buf.capacity() { |
| 2496 | return Err(value); |
| 2497 | } |
| 2498 | unsafe { |
| 2499 | let end = self.as_mut_ptr().add(self.len); |
| 2500 | ptr::write(end, value); |
| 2501 | self.len += 1; |
| 2502 | } |
| 2503 | Ok(()) |
| 2504 | } |
| 2505 | |
| 2506 | /// Removes the last element from a vector and returns it, or [`None`] if it |
| 2507 | /// is empty. |
| 2508 | /// |
| 2509 | /// If you'd like to pop the first element, consider using |
| 2510 | /// [`VecDeque::pop_front`] instead. |
| 2511 | /// |
| 2512 | /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front |
| 2513 | /// |
| 2514 | /// # Examples |
| 2515 | /// |
| 2516 | /// ``` |
| 2517 | /// let mut vec = vec![1, 2, 3]; |
| 2518 | /// assert_eq!(vec.pop(), Some(3)); |
| 2519 | /// assert_eq!(vec, [1, 2]); |
| 2520 | /// ``` |
| 2521 | /// |
| 2522 | /// # Time complexity |
| 2523 | /// |
| 2524 | /// Takes *O*(1) time. |
| 2525 | #[inline ] |
| 2526 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2527 | #[rustc_diagnostic_item = "vec_pop" ] |
| 2528 | pub fn pop(&mut self) -> Option<T> { |
| 2529 | if self.len == 0 { |
| 2530 | None |
| 2531 | } else { |
| 2532 | unsafe { |
| 2533 | self.len -= 1; |
| 2534 | core::hint::assert_unchecked(self.len < self.capacity()); |
| 2535 | Some(ptr::read(self.as_ptr().add(self.len()))) |
| 2536 | } |
| 2537 | } |
| 2538 | } |
| 2539 | |
| 2540 | /// Removes and returns the last element from a vector if the predicate |
| 2541 | /// returns `true`, or [`None`] if the predicate returns false or the vector |
| 2542 | /// is empty (the predicate will not be called in that case). |
| 2543 | /// |
| 2544 | /// # Examples |
| 2545 | /// |
| 2546 | /// ``` |
| 2547 | /// let mut vec = vec![1, 2, 3, 4]; |
| 2548 | /// let pred = |x: &mut i32| *x % 2 == 0; |
| 2549 | /// |
| 2550 | /// assert_eq!(vec.pop_if(pred), Some(4)); |
| 2551 | /// assert_eq!(vec, [1, 2, 3]); |
| 2552 | /// assert_eq!(vec.pop_if(pred), None); |
| 2553 | /// ``` |
| 2554 | #[stable (feature = "vec_pop_if" , since = "1.86.0" )] |
| 2555 | pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> { |
| 2556 | let last = self.last_mut()?; |
| 2557 | if predicate(last) { self.pop() } else { None } |
| 2558 | } |
| 2559 | |
| 2560 | /// Moves all the elements of `other` into `self`, leaving `other` empty. |
| 2561 | /// |
| 2562 | /// # Panics |
| 2563 | /// |
| 2564 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 2565 | /// |
| 2566 | /// # Examples |
| 2567 | /// |
| 2568 | /// ``` |
| 2569 | /// let mut vec = vec![1, 2, 3]; |
| 2570 | /// let mut vec2 = vec![4, 5, 6]; |
| 2571 | /// vec.append(&mut vec2); |
| 2572 | /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); |
| 2573 | /// assert_eq!(vec2, []); |
| 2574 | /// ``` |
| 2575 | #[cfg (not(no_global_oom_handling))] |
| 2576 | #[inline ] |
| 2577 | #[stable (feature = "append" , since = "1.4.0" )] |
| 2578 | #[track_caller ] |
| 2579 | pub fn append(&mut self, other: &mut Self) { |
| 2580 | unsafe { |
| 2581 | self.append_elements(other.as_slice() as _); |
| 2582 | other.set_len(0); |
| 2583 | } |
| 2584 | } |
| 2585 | |
| 2586 | /// Appends elements to `self` from other buffer. |
| 2587 | #[cfg (not(no_global_oom_handling))] |
| 2588 | #[inline ] |
| 2589 | #[track_caller ] |
| 2590 | unsafe fn append_elements(&mut self, other: *const [T]) { |
| 2591 | let count = unsafe { (*other).len() }; |
| 2592 | self.reserve(count); |
| 2593 | let len = self.len(); |
| 2594 | unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) }; |
| 2595 | self.len += count; |
| 2596 | } |
| 2597 | |
| 2598 | /// Removes the subslice indicated by the given range from the vector, |
| 2599 | /// returning a double-ended iterator over the removed subslice. |
| 2600 | /// |
| 2601 | /// If the iterator is dropped before being fully consumed, |
| 2602 | /// it drops the remaining removed elements. |
| 2603 | /// |
| 2604 | /// The returned iterator keeps a mutable borrow on the vector to optimize |
| 2605 | /// its implementation. |
| 2606 | /// |
| 2607 | /// # Panics |
| 2608 | /// |
| 2609 | /// Panics if the starting point is greater than the end point or if |
| 2610 | /// the end point is greater than the length of the vector. |
| 2611 | /// |
| 2612 | /// # Leaking |
| 2613 | /// |
| 2614 | /// If the returned iterator goes out of scope without being dropped (due to |
| 2615 | /// [`mem::forget`], for example), the vector may have lost and leaked |
| 2616 | /// elements arbitrarily, including elements outside the range. |
| 2617 | /// |
| 2618 | /// # Examples |
| 2619 | /// |
| 2620 | /// ``` |
| 2621 | /// let mut v = vec![1, 2, 3]; |
| 2622 | /// let u: Vec<_> = v.drain(1..).collect(); |
| 2623 | /// assert_eq!(v, &[1]); |
| 2624 | /// assert_eq!(u, &[2, 3]); |
| 2625 | /// |
| 2626 | /// // A full range clears the vector, like `clear()` does |
| 2627 | /// v.drain(..); |
| 2628 | /// assert_eq!(v, &[]); |
| 2629 | /// ``` |
| 2630 | #[stable (feature = "drain" , since = "1.6.0" )] |
| 2631 | pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A> |
| 2632 | where |
| 2633 | R: RangeBounds<usize>, |
| 2634 | { |
| 2635 | // Memory safety |
| 2636 | // |
| 2637 | // When the Drain is first created, it shortens the length of |
| 2638 | // the source vector to make sure no uninitialized or moved-from elements |
| 2639 | // are accessible at all if the Drain's destructor never gets to run. |
| 2640 | // |
| 2641 | // Drain will ptr::read out the values to remove. |
| 2642 | // When finished, remaining tail of the vec is copied back to cover |
| 2643 | // the hole, and the vector length is restored to the new length. |
| 2644 | // |
| 2645 | let len = self.len(); |
| 2646 | let Range { start, end } = slice::range(range, ..len); |
| 2647 | |
| 2648 | unsafe { |
| 2649 | // set self.vec length's to start, to be safe in case Drain is leaked |
| 2650 | self.set_len(start); |
| 2651 | let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start); |
| 2652 | Drain { |
| 2653 | tail_start: end, |
| 2654 | tail_len: len - end, |
| 2655 | iter: range_slice.iter(), |
| 2656 | vec: NonNull::from(self), |
| 2657 | } |
| 2658 | } |
| 2659 | } |
| 2660 | |
| 2661 | /// Clears the vector, removing all values. |
| 2662 | /// |
| 2663 | /// Note that this method has no effect on the allocated capacity |
| 2664 | /// of the vector. |
| 2665 | /// |
| 2666 | /// # Examples |
| 2667 | /// |
| 2668 | /// ``` |
| 2669 | /// let mut v = vec![1, 2, 3]; |
| 2670 | /// |
| 2671 | /// v.clear(); |
| 2672 | /// |
| 2673 | /// assert!(v.is_empty()); |
| 2674 | /// ``` |
| 2675 | #[inline ] |
| 2676 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2677 | pub fn clear(&mut self) { |
| 2678 | let elems: *mut [T] = self.as_mut_slice(); |
| 2679 | |
| 2680 | // SAFETY: |
| 2681 | // - `elems` comes directly from `as_mut_slice` and is therefore valid. |
| 2682 | // - Setting `self.len` before calling `drop_in_place` means that, |
| 2683 | // if an element's `Drop` impl panics, the vector's `Drop` impl will |
| 2684 | // do nothing (leaking the rest of the elements) instead of dropping |
| 2685 | // some twice. |
| 2686 | unsafe { |
| 2687 | self.len = 0; |
| 2688 | ptr::drop_in_place(elems); |
| 2689 | } |
| 2690 | } |
| 2691 | |
| 2692 | /// Returns the number of elements in the vector, also referred to |
| 2693 | /// as its 'length'. |
| 2694 | /// |
| 2695 | /// # Examples |
| 2696 | /// |
| 2697 | /// ``` |
| 2698 | /// let a = vec![1, 2, 3]; |
| 2699 | /// assert_eq!(a.len(), 3); |
| 2700 | /// ``` |
| 2701 | #[inline ] |
| 2702 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2703 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
| 2704 | #[rustc_confusables ("length" , "size" )] |
| 2705 | pub const fn len(&self) -> usize { |
| 2706 | let len = self.len; |
| 2707 | |
| 2708 | // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can |
| 2709 | // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which |
| 2710 | // matches the definition of `T::MAX_SLICE_LEN`. |
| 2711 | unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) }; |
| 2712 | |
| 2713 | len |
| 2714 | } |
| 2715 | |
| 2716 | /// Returns `true` if the vector contains no elements. |
| 2717 | /// |
| 2718 | /// # Examples |
| 2719 | /// |
| 2720 | /// ``` |
| 2721 | /// let mut v = Vec::new(); |
| 2722 | /// assert!(v.is_empty()); |
| 2723 | /// |
| 2724 | /// v.push(1); |
| 2725 | /// assert!(!v.is_empty()); |
| 2726 | /// ``` |
| 2727 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2728 | #[rustc_diagnostic_item = "vec_is_empty" ] |
| 2729 | #[rustc_const_stable (feature = "const_vec_string_slice" , since = "1.87.0" )] |
| 2730 | pub const fn is_empty(&self) -> bool { |
| 2731 | self.len() == 0 |
| 2732 | } |
| 2733 | |
| 2734 | /// Splits the collection into two at the given index. |
| 2735 | /// |
| 2736 | /// Returns a newly allocated vector containing the elements in the range |
| 2737 | /// `[at, len)`. After the call, the original vector will be left containing |
| 2738 | /// the elements `[0, at)` with its previous capacity unchanged. |
| 2739 | /// |
| 2740 | /// - If you want to take ownership of the entire contents and capacity of |
| 2741 | /// the vector, see [`mem::take`] or [`mem::replace`]. |
| 2742 | /// - If you don't need the returned vector at all, see [`Vec::truncate`]. |
| 2743 | /// - If you want to take ownership of an arbitrary subslice, or you don't |
| 2744 | /// necessarily want to store the removed items in a vector, see [`Vec::drain`]. |
| 2745 | /// |
| 2746 | /// # Panics |
| 2747 | /// |
| 2748 | /// Panics if `at > len`. |
| 2749 | /// |
| 2750 | /// # Examples |
| 2751 | /// |
| 2752 | /// ``` |
| 2753 | /// let mut vec = vec!['a' , 'b' , 'c' ]; |
| 2754 | /// let vec2 = vec.split_off(1); |
| 2755 | /// assert_eq!(vec, ['a' ]); |
| 2756 | /// assert_eq!(vec2, ['b' , 'c' ]); |
| 2757 | /// ``` |
| 2758 | #[cfg (not(no_global_oom_handling))] |
| 2759 | #[inline ] |
| 2760 | #[must_use = "use `.truncate()` if you don't need the other half" ] |
| 2761 | #[stable (feature = "split_off" , since = "1.4.0" )] |
| 2762 | #[track_caller ] |
| 2763 | pub fn split_off(&mut self, at: usize) -> Self |
| 2764 | where |
| 2765 | A: Clone, |
| 2766 | { |
| 2767 | #[cold ] |
| 2768 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
| 2769 | #[track_caller ] |
| 2770 | #[optimize (size)] |
| 2771 | fn assert_failed(at: usize, len: usize) -> ! { |
| 2772 | panic!("`at` split index (is {at}) should be <= len (is {len})" ); |
| 2773 | } |
| 2774 | |
| 2775 | if at > self.len() { |
| 2776 | assert_failed(at, self.len()); |
| 2777 | } |
| 2778 | |
| 2779 | let other_len = self.len - at; |
| 2780 | let mut other = Vec::with_capacity_in(other_len, self.allocator().clone()); |
| 2781 | |
| 2782 | // Unsafely `set_len` and copy items to `other`. |
| 2783 | unsafe { |
| 2784 | self.set_len(at); |
| 2785 | other.set_len(other_len); |
| 2786 | |
| 2787 | ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len()); |
| 2788 | } |
| 2789 | other |
| 2790 | } |
| 2791 | |
| 2792 | /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. |
| 2793 | /// |
| 2794 | /// If `new_len` is greater than `len`, the `Vec` is extended by the |
| 2795 | /// difference, with each additional slot filled with the result of |
| 2796 | /// calling the closure `f`. The return values from `f` will end up |
| 2797 | /// in the `Vec` in the order they have been generated. |
| 2798 | /// |
| 2799 | /// If `new_len` is less than `len`, the `Vec` is simply truncated. |
| 2800 | /// |
| 2801 | /// This method uses a closure to create new values on every push. If |
| 2802 | /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you |
| 2803 | /// want to use the [`Default`] trait to generate values, you can |
| 2804 | /// pass [`Default::default`] as the second argument. |
| 2805 | /// |
| 2806 | /// # Examples |
| 2807 | /// |
| 2808 | /// ``` |
| 2809 | /// let mut vec = vec![1, 2, 3]; |
| 2810 | /// vec.resize_with(5, Default::default); |
| 2811 | /// assert_eq!(vec, [1, 2, 3, 0, 0]); |
| 2812 | /// |
| 2813 | /// let mut vec = vec![]; |
| 2814 | /// let mut p = 1; |
| 2815 | /// vec.resize_with(4, || { p *= 2; p }); |
| 2816 | /// assert_eq!(vec, [2, 4, 8, 16]); |
| 2817 | /// ``` |
| 2818 | #[cfg (not(no_global_oom_handling))] |
| 2819 | #[stable (feature = "vec_resize_with" , since = "1.33.0" )] |
| 2820 | #[track_caller ] |
| 2821 | pub fn resize_with<F>(&mut self, new_len: usize, f: F) |
| 2822 | where |
| 2823 | F: FnMut() -> T, |
| 2824 | { |
| 2825 | let len = self.len(); |
| 2826 | if new_len > len { |
| 2827 | self.extend_trusted(iter::repeat_with(f).take(new_len - len)); |
| 2828 | } else { |
| 2829 | self.truncate(new_len); |
| 2830 | } |
| 2831 | } |
| 2832 | |
| 2833 | /// Consumes and leaks the `Vec`, returning a mutable reference to the contents, |
| 2834 | /// `&'a mut [T]`. |
| 2835 | /// |
| 2836 | /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type |
| 2837 | /// has only static references, or none at all, then this may be chosen to be |
| 2838 | /// `'static`. |
| 2839 | /// |
| 2840 | /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`, |
| 2841 | /// so the leaked allocation may include unused capacity that is not part |
| 2842 | /// of the returned slice. |
| 2843 | /// |
| 2844 | /// This function is mainly useful for data that lives for the remainder of |
| 2845 | /// the program's life. Dropping the returned reference will cause a memory |
| 2846 | /// leak. |
| 2847 | /// |
| 2848 | /// # Examples |
| 2849 | /// |
| 2850 | /// Simple usage: |
| 2851 | /// |
| 2852 | /// ``` |
| 2853 | /// let x = vec![1, 2, 3]; |
| 2854 | /// let static_ref: &'static mut [usize] = x.leak(); |
| 2855 | /// static_ref[0] += 1; |
| 2856 | /// assert_eq!(static_ref, &[2, 2, 3]); |
| 2857 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
| 2858 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
| 2859 | /// # drop(unsafe { Box::from_raw(static_ref) }); |
| 2860 | /// ``` |
| 2861 | #[stable (feature = "vec_leak" , since = "1.47.0" )] |
| 2862 | #[inline ] |
| 2863 | pub fn leak<'a>(self) -> &'a mut [T] |
| 2864 | where |
| 2865 | A: 'a, |
| 2866 | { |
| 2867 | let mut me = ManuallyDrop::new(self); |
| 2868 | unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) } |
| 2869 | } |
| 2870 | |
| 2871 | /// Returns the remaining spare capacity of the vector as a slice of |
| 2872 | /// `MaybeUninit<T>`. |
| 2873 | /// |
| 2874 | /// The returned slice can be used to fill the vector with data (e.g. by |
| 2875 | /// reading from a file) before marking the data as initialized using the |
| 2876 | /// [`set_len`] method. |
| 2877 | /// |
| 2878 | /// [`set_len`]: Vec::set_len |
| 2879 | /// |
| 2880 | /// # Examples |
| 2881 | /// |
| 2882 | /// ``` |
| 2883 | /// // Allocate vector big enough for 10 elements. |
| 2884 | /// let mut v = Vec::with_capacity(10); |
| 2885 | /// |
| 2886 | /// // Fill in the first 3 elements. |
| 2887 | /// let uninit = v.spare_capacity_mut(); |
| 2888 | /// uninit[0].write(0); |
| 2889 | /// uninit[1].write(1); |
| 2890 | /// uninit[2].write(2); |
| 2891 | /// |
| 2892 | /// // Mark the first 3 elements of the vector as being initialized. |
| 2893 | /// unsafe { |
| 2894 | /// v.set_len(3); |
| 2895 | /// } |
| 2896 | /// |
| 2897 | /// assert_eq!(&v, &[0, 1, 2]); |
| 2898 | /// ``` |
| 2899 | #[stable (feature = "vec_spare_capacity" , since = "1.60.0" )] |
| 2900 | #[inline ] |
| 2901 | pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { |
| 2902 | // Note: |
| 2903 | // This method is not implemented in terms of `split_at_spare_mut`, |
| 2904 | // to prevent invalidation of pointers to the buffer. |
| 2905 | unsafe { |
| 2906 | slice::from_raw_parts_mut( |
| 2907 | self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>, |
| 2908 | self.buf.capacity() - self.len, |
| 2909 | ) |
| 2910 | } |
| 2911 | } |
| 2912 | |
| 2913 | /// Returns vector content as a slice of `T`, along with the remaining spare |
| 2914 | /// capacity of the vector as a slice of `MaybeUninit<T>`. |
| 2915 | /// |
| 2916 | /// The returned spare capacity slice can be used to fill the vector with data |
| 2917 | /// (e.g. by reading from a file) before marking the data as initialized using |
| 2918 | /// the [`set_len`] method. |
| 2919 | /// |
| 2920 | /// [`set_len`]: Vec::set_len |
| 2921 | /// |
| 2922 | /// Note that this is a low-level API, which should be used with care for |
| 2923 | /// optimization purposes. If you need to append data to a `Vec` |
| 2924 | /// you can use [`push`], [`extend`], [`extend_from_slice`], |
| 2925 | /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or |
| 2926 | /// [`resize_with`], depending on your exact needs. |
| 2927 | /// |
| 2928 | /// [`push`]: Vec::push |
| 2929 | /// [`extend`]: Vec::extend |
| 2930 | /// [`extend_from_slice`]: Vec::extend_from_slice |
| 2931 | /// [`extend_from_within`]: Vec::extend_from_within |
| 2932 | /// [`insert`]: Vec::insert |
| 2933 | /// [`append`]: Vec::append |
| 2934 | /// [`resize`]: Vec::resize |
| 2935 | /// [`resize_with`]: Vec::resize_with |
| 2936 | /// |
| 2937 | /// # Examples |
| 2938 | /// |
| 2939 | /// ``` |
| 2940 | /// #![feature(vec_split_at_spare)] |
| 2941 | /// |
| 2942 | /// let mut v = vec![1, 1, 2]; |
| 2943 | /// |
| 2944 | /// // Reserve additional space big enough for 10 elements. |
| 2945 | /// v.reserve(10); |
| 2946 | /// |
| 2947 | /// let (init, uninit) = v.split_at_spare_mut(); |
| 2948 | /// let sum = init.iter().copied().sum::<u32>(); |
| 2949 | /// |
| 2950 | /// // Fill in the next 4 elements. |
| 2951 | /// uninit[0].write(sum); |
| 2952 | /// uninit[1].write(sum * 2); |
| 2953 | /// uninit[2].write(sum * 3); |
| 2954 | /// uninit[3].write(sum * 4); |
| 2955 | /// |
| 2956 | /// // Mark the 4 elements of the vector as being initialized. |
| 2957 | /// unsafe { |
| 2958 | /// let len = v.len(); |
| 2959 | /// v.set_len(len + 4); |
| 2960 | /// } |
| 2961 | /// |
| 2962 | /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]); |
| 2963 | /// ``` |
| 2964 | #[unstable (feature = "vec_split_at_spare" , issue = "81944" )] |
| 2965 | #[inline ] |
| 2966 | pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) { |
| 2967 | // SAFETY: |
| 2968 | // - len is ignored and so never changed |
| 2969 | let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() }; |
| 2970 | (init, spare) |
| 2971 | } |
| 2972 | |
| 2973 | /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`. |
| 2974 | /// |
| 2975 | /// This method provides unique access to all vec parts at once in `extend_from_within`. |
| 2976 | unsafe fn split_at_spare_mut_with_len( |
| 2977 | &mut self, |
| 2978 | ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) { |
| 2979 | let ptr = self.as_mut_ptr(); |
| 2980 | // SAFETY: |
| 2981 | // - `ptr` is guaranteed to be valid for `self.len` elements |
| 2982 | // - but the allocation extends out to `self.buf.capacity()` elements, possibly |
| 2983 | // uninitialized |
| 2984 | let spare_ptr = unsafe { ptr.add(self.len) }; |
| 2985 | let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>(); |
| 2986 | let spare_len = self.buf.capacity() - self.len; |
| 2987 | |
| 2988 | // SAFETY: |
| 2989 | // - `ptr` is guaranteed to be valid for `self.len` elements |
| 2990 | // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized` |
| 2991 | unsafe { |
| 2992 | let initialized = slice::from_raw_parts_mut(ptr, self.len); |
| 2993 | let spare = slice::from_raw_parts_mut(spare_ptr, spare_len); |
| 2994 | |
| 2995 | (initialized, spare, &mut self.len) |
| 2996 | } |
| 2997 | } |
| 2998 | } |
| 2999 | |
| 3000 | impl<T: Clone, A: Allocator> Vec<T, A> { |
| 3001 | /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. |
| 3002 | /// |
| 3003 | /// If `new_len` is greater than `len`, the `Vec` is extended by the |
| 3004 | /// difference, with each additional slot filled with `value`. |
| 3005 | /// If `new_len` is less than `len`, the `Vec` is simply truncated. |
| 3006 | /// |
| 3007 | /// This method requires `T` to implement [`Clone`], |
| 3008 | /// in order to be able to clone the passed value. |
| 3009 | /// If you need more flexibility (or want to rely on [`Default`] instead of |
| 3010 | /// [`Clone`]), use [`Vec::resize_with`]. |
| 3011 | /// If you only need to resize to a smaller size, use [`Vec::truncate`]. |
| 3012 | /// |
| 3013 | /// # Examples |
| 3014 | /// |
| 3015 | /// ``` |
| 3016 | /// let mut vec = vec!["hello" ]; |
| 3017 | /// vec.resize(3, "world" ); |
| 3018 | /// assert_eq!(vec, ["hello" , "world" , "world" ]); |
| 3019 | /// |
| 3020 | /// let mut vec = vec!['a' , 'b' , 'c' , 'd' ]; |
| 3021 | /// vec.resize(2, '_' ); |
| 3022 | /// assert_eq!(vec, ['a' , 'b' ]); |
| 3023 | /// ``` |
| 3024 | #[cfg (not(no_global_oom_handling))] |
| 3025 | #[stable (feature = "vec_resize" , since = "1.5.0" )] |
| 3026 | #[track_caller ] |
| 3027 | pub fn resize(&mut self, new_len: usize, value: T) { |
| 3028 | let len = self.len(); |
| 3029 | |
| 3030 | if new_len > len { |
| 3031 | self.extend_with(new_len - len, value) |
| 3032 | } else { |
| 3033 | self.truncate(new_len); |
| 3034 | } |
| 3035 | } |
| 3036 | |
| 3037 | /// Clones and appends all elements in a slice to the `Vec`. |
| 3038 | /// |
| 3039 | /// Iterates over the slice `other`, clones each element, and then appends |
| 3040 | /// it to this `Vec`. The `other` slice is traversed in-order. |
| 3041 | /// |
| 3042 | /// Note that this function is the same as [`extend`], |
| 3043 | /// except that it also works with slice elements that are Clone but not Copy. |
| 3044 | /// If Rust gets specialization this function may be deprecated. |
| 3045 | /// |
| 3046 | /// # Examples |
| 3047 | /// |
| 3048 | /// ``` |
| 3049 | /// let mut vec = vec![1]; |
| 3050 | /// vec.extend_from_slice(&[2, 3, 4]); |
| 3051 | /// assert_eq!(vec, [1, 2, 3, 4]); |
| 3052 | /// ``` |
| 3053 | /// |
| 3054 | /// [`extend`]: Vec::extend |
| 3055 | #[cfg (not(no_global_oom_handling))] |
| 3056 | #[stable (feature = "vec_extend_from_slice" , since = "1.6.0" )] |
| 3057 | #[track_caller ] |
| 3058 | pub fn extend_from_slice(&mut self, other: &[T]) { |
| 3059 | self.spec_extend(other.iter()) |
| 3060 | } |
| 3061 | |
| 3062 | /// Given a range `src`, clones a slice of elements in that range and appends it to the end. |
| 3063 | /// |
| 3064 | /// `src` must be a range that can form a valid subslice of the `Vec`. |
| 3065 | /// |
| 3066 | /// # Panics |
| 3067 | /// |
| 3068 | /// Panics if starting index is greater than the end index |
| 3069 | /// or if the index is greater than the length of the vector. |
| 3070 | /// |
| 3071 | /// # Examples |
| 3072 | /// |
| 3073 | /// ``` |
| 3074 | /// let mut characters = vec!['a' , 'b' , 'c' , 'd' , 'e' ]; |
| 3075 | /// characters.extend_from_within(2..); |
| 3076 | /// assert_eq!(characters, ['a' , 'b' , 'c' , 'd' , 'e' , 'c' , 'd' , 'e' ]); |
| 3077 | /// |
| 3078 | /// let mut numbers = vec![0, 1, 2, 3, 4]; |
| 3079 | /// numbers.extend_from_within(..2); |
| 3080 | /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]); |
| 3081 | /// |
| 3082 | /// let mut strings = vec![String::from("hello" ), String::from("world" ), String::from("!" )]; |
| 3083 | /// strings.extend_from_within(1..=2); |
| 3084 | /// assert_eq!(strings, ["hello" , "world" , "!" , "world" , "!" ]); |
| 3085 | /// ``` |
| 3086 | #[cfg (not(no_global_oom_handling))] |
| 3087 | #[stable (feature = "vec_extend_from_within" , since = "1.53.0" )] |
| 3088 | #[track_caller ] |
| 3089 | pub fn extend_from_within<R>(&mut self, src: R) |
| 3090 | where |
| 3091 | R: RangeBounds<usize>, |
| 3092 | { |
| 3093 | let range = slice::range(src, ..self.len()); |
| 3094 | self.reserve(range.len()); |
| 3095 | |
| 3096 | // SAFETY: |
| 3097 | // - `slice::range` guarantees that the given range is valid for indexing self |
| 3098 | unsafe { |
| 3099 | self.spec_extend_from_within(range); |
| 3100 | } |
| 3101 | } |
| 3102 | } |
| 3103 | |
| 3104 | impl<T, A: Allocator, const N: usize> Vec<[T; N], A> { |
| 3105 | /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`. |
| 3106 | /// |
| 3107 | /// # Panics |
| 3108 | /// |
| 3109 | /// Panics if the length of the resulting vector would overflow a `usize`. |
| 3110 | /// |
| 3111 | /// This is only possible when flattening a vector of arrays of zero-sized |
| 3112 | /// types, and thus tends to be irrelevant in practice. If |
| 3113 | /// `size_of::<T>() > 0`, this will never panic. |
| 3114 | /// |
| 3115 | /// # Examples |
| 3116 | /// |
| 3117 | /// ``` |
| 3118 | /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]]; |
| 3119 | /// assert_eq!(vec.pop(), Some([7, 8, 9])); |
| 3120 | /// |
| 3121 | /// let mut flattened = vec.into_flattened(); |
| 3122 | /// assert_eq!(flattened.pop(), Some(6)); |
| 3123 | /// ``` |
| 3124 | #[stable (feature = "slice_flatten" , since = "1.80.0" )] |
| 3125 | pub fn into_flattened(self) -> Vec<T, A> { |
| 3126 | let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc(); |
| 3127 | let (new_len, new_cap) = if T::IS_ZST { |
| 3128 | (len.checked_mul(N).expect("vec len overflow" ), usize::MAX) |
| 3129 | } else { |
| 3130 | // SAFETY: |
| 3131 | // - `cap * N` cannot overflow because the allocation is already in |
| 3132 | // the address space. |
| 3133 | // - Each `[T; N]` has `N` valid elements, so there are `len * N` |
| 3134 | // valid elements in the allocation. |
| 3135 | unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) } |
| 3136 | }; |
| 3137 | // SAFETY: |
| 3138 | // - `ptr` was allocated by `self` |
| 3139 | // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`. |
| 3140 | // - `new_cap` refers to the same sized allocation as `cap` because |
| 3141 | // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()` |
| 3142 | // - `len` <= `cap`, so `len * N` <= `cap * N`. |
| 3143 | unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) } |
| 3144 | } |
| 3145 | } |
| 3146 | |
| 3147 | impl<T: Clone, A: Allocator> Vec<T, A> { |
| 3148 | #[cfg (not(no_global_oom_handling))] |
| 3149 | #[track_caller ] |
| 3150 | /// Extend the vector by `n` clones of value. |
| 3151 | fn extend_with(&mut self, n: usize, value: T) { |
| 3152 | self.reserve(n); |
| 3153 | |
| 3154 | unsafe { |
| 3155 | let mut ptr = self.as_mut_ptr().add(self.len()); |
| 3156 | // Use SetLenOnDrop to work around bug where compiler |
| 3157 | // might not realize the store through `ptr` through self.set_len() |
| 3158 | // don't alias. |
| 3159 | let mut local_len = SetLenOnDrop::new(&mut self.len); |
| 3160 | |
| 3161 | // Write all elements except the last one |
| 3162 | for _ in 1..n { |
| 3163 | ptr::write(ptr, value.clone()); |
| 3164 | ptr = ptr.add(1); |
| 3165 | // Increment the length in every step in case clone() panics |
| 3166 | local_len.increment_len(1); |
| 3167 | } |
| 3168 | |
| 3169 | if n > 0 { |
| 3170 | // We can write the last element directly without cloning needlessly |
| 3171 | ptr::write(ptr, value); |
| 3172 | local_len.increment_len(1); |
| 3173 | } |
| 3174 | |
| 3175 | // len set by scope guard |
| 3176 | } |
| 3177 | } |
| 3178 | } |
| 3179 | |
| 3180 | impl<T: PartialEq, A: Allocator> Vec<T, A> { |
| 3181 | /// Removes consecutive repeated elements in the vector according to the |
| 3182 | /// [`PartialEq`] trait implementation. |
| 3183 | /// |
| 3184 | /// If the vector is sorted, this removes all duplicates. |
| 3185 | /// |
| 3186 | /// # Examples |
| 3187 | /// |
| 3188 | /// ``` |
| 3189 | /// let mut vec = vec![1, 2, 2, 3, 2]; |
| 3190 | /// |
| 3191 | /// vec.dedup(); |
| 3192 | /// |
| 3193 | /// assert_eq!(vec, [1, 2, 3, 2]); |
| 3194 | /// ``` |
| 3195 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3196 | #[inline ] |
| 3197 | pub fn dedup(&mut self) { |
| 3198 | self.dedup_by(|a: &mut T, b: &mut T| a == b) |
| 3199 | } |
| 3200 | } |
| 3201 | |
| 3202 | //////////////////////////////////////////////////////////////////////////////// |
| 3203 | // Internal methods and functions |
| 3204 | //////////////////////////////////////////////////////////////////////////////// |
| 3205 | |
| 3206 | #[doc (hidden)] |
| 3207 | #[cfg (not(no_global_oom_handling))] |
| 3208 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3209 | #[rustc_diagnostic_item = "vec_from_elem" ] |
| 3210 | #[track_caller ] |
| 3211 | pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> { |
| 3212 | <T as SpecFromElem>::from_elem(elem, n, alloc:Global) |
| 3213 | } |
| 3214 | |
| 3215 | #[doc (hidden)] |
| 3216 | #[cfg (not(no_global_oom_handling))] |
| 3217 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 3218 | #[track_caller ] |
| 3219 | pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> { |
| 3220 | <T as SpecFromElem>::from_elem(elem, n, alloc) |
| 3221 | } |
| 3222 | |
| 3223 | #[cfg (not(no_global_oom_handling))] |
| 3224 | trait ExtendFromWithinSpec { |
| 3225 | /// # Safety |
| 3226 | /// |
| 3227 | /// - `src` needs to be valid index |
| 3228 | /// - `self.capacity() - self.len()` must be `>= src.len()` |
| 3229 | unsafe fn spec_extend_from_within(&mut self, src: Range<usize>); |
| 3230 | } |
| 3231 | |
| 3232 | #[cfg (not(no_global_oom_handling))] |
| 3233 | impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { |
| 3234 | default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { |
| 3235 | // SAFETY: |
| 3236 | // - len is increased only after initializing elements |
| 3237 | let (this: &mut [T], spare: &mut [MaybeUninit], len: &mut usize) = unsafe { self.split_at_spare_mut_with_len() }; |
| 3238 | |
| 3239 | // SAFETY: |
| 3240 | // - caller guarantees that src is a valid index |
| 3241 | let to_clone: &[T] = unsafe { this.get_unchecked(index:src) }; |
| 3242 | |
| 3243 | iterimpl Iterator ::zip(a:to_clone, b:spare) |
| 3244 | .map(|(src: &T, dst: &mut MaybeUninit)| dst.write(val:src.clone())) |
| 3245 | // Note: |
| 3246 | // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len |
| 3247 | // - len is increased after each element to prevent leaks (see issue #82533) |
| 3248 | .for_each(|_| *len += 1); |
| 3249 | } |
| 3250 | } |
| 3251 | |
| 3252 | #[cfg (not(no_global_oom_handling))] |
| 3253 | impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> { |
| 3254 | unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { |
| 3255 | let count = src.len(); |
| 3256 | { |
| 3257 | let (init, spare) = self.split_at_spare_mut(); |
| 3258 | |
| 3259 | // SAFETY: |
| 3260 | // - caller guarantees that `src` is a valid index |
| 3261 | let source = unsafe { init.get_unchecked(src) }; |
| 3262 | |
| 3263 | // SAFETY: |
| 3264 | // - Both pointers are created from unique slice references (`&mut [_]`) |
| 3265 | // so they are valid and do not overlap. |
| 3266 | // - Elements are :Copy so it's OK to copy them, without doing |
| 3267 | // anything with the original values |
| 3268 | // - `count` is equal to the len of `source`, so source is valid for |
| 3269 | // `count` reads |
| 3270 | // - `.reserve(count)` guarantees that `spare.len() >= count` so spare |
| 3271 | // is valid for `count` writes |
| 3272 | unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) }; |
| 3273 | } |
| 3274 | |
| 3275 | // SAFETY: |
| 3276 | // - The elements were just initialized by `copy_nonoverlapping` |
| 3277 | self.len += count; |
| 3278 | } |
| 3279 | } |
| 3280 | |
| 3281 | //////////////////////////////////////////////////////////////////////////////// |
| 3282 | // Common trait implementations for Vec |
| 3283 | //////////////////////////////////////////////////////////////////////////////// |
| 3284 | |
| 3285 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3286 | impl<T, A: Allocator> ops::Deref for Vec<T, A> { |
| 3287 | type Target = [T]; |
| 3288 | |
| 3289 | #[inline ] |
| 3290 | fn deref(&self) -> &[T] { |
| 3291 | self.as_slice() |
| 3292 | } |
| 3293 | } |
| 3294 | |
| 3295 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3296 | impl<T, A: Allocator> ops::DerefMut for Vec<T, A> { |
| 3297 | #[inline ] |
| 3298 | fn deref_mut(&mut self) -> &mut [T] { |
| 3299 | self.as_mut_slice() |
| 3300 | } |
| 3301 | } |
| 3302 | |
| 3303 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 3304 | unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {} |
| 3305 | |
| 3306 | #[cfg (not(no_global_oom_handling))] |
| 3307 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3308 | impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> { |
| 3309 | #[track_caller ] |
| 3310 | fn clone(&self) -> Self { |
| 3311 | let alloc = self.allocator().clone(); |
| 3312 | <[T]>::to_vec_in(&**self, alloc) |
| 3313 | } |
| 3314 | |
| 3315 | /// Overwrites the contents of `self` with a clone of the contents of `source`. |
| 3316 | /// |
| 3317 | /// This method is preferred over simply assigning `source.clone()` to `self`, |
| 3318 | /// as it avoids reallocation if possible. Additionally, if the element type |
| 3319 | /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s |
| 3320 | /// elements as well. |
| 3321 | /// |
| 3322 | /// # Examples |
| 3323 | /// |
| 3324 | /// ``` |
| 3325 | /// let x = vec![5, 6, 7]; |
| 3326 | /// let mut y = vec![8, 9, 10]; |
| 3327 | /// let yp: *const i32 = y.as_ptr(); |
| 3328 | /// |
| 3329 | /// y.clone_from(&x); |
| 3330 | /// |
| 3331 | /// // The value is the same |
| 3332 | /// assert_eq!(x, y); |
| 3333 | /// |
| 3334 | /// // And no reallocation occurred |
| 3335 | /// assert_eq!(yp, y.as_ptr()); |
| 3336 | /// ``` |
| 3337 | #[track_caller ] |
| 3338 | fn clone_from(&mut self, source: &Self) { |
| 3339 | crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self); |
| 3340 | } |
| 3341 | } |
| 3342 | |
| 3343 | /// The hash of a vector is the same as that of the corresponding slice, |
| 3344 | /// as required by the `core::borrow::Borrow` implementation. |
| 3345 | /// |
| 3346 | /// ``` |
| 3347 | /// use std::hash::BuildHasher; |
| 3348 | /// |
| 3349 | /// let b = std::hash::RandomState::new(); |
| 3350 | /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09]; |
| 3351 | /// let s: &[u8] = &[0xa8, 0x3c, 0x09]; |
| 3352 | /// assert_eq!(b.hash_one(v), b.hash_one(s)); |
| 3353 | /// ``` |
| 3354 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3355 | impl<T: Hash, A: Allocator> Hash for Vec<T, A> { |
| 3356 | #[inline ] |
| 3357 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 3358 | Hash::hash(&**self, state) |
| 3359 | } |
| 3360 | } |
| 3361 | |
| 3362 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3363 | #[rustc_on_unimplemented ( |
| 3364 | message = "vector indices are of type `usize` or ranges of `usize`" , |
| 3365 | label = "vector indices are of type `usize` or ranges of `usize`" |
| 3366 | )] |
| 3367 | impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> { |
| 3368 | type Output = I::Output; |
| 3369 | |
| 3370 | #[inline ] |
| 3371 | fn index(&self, index: I) -> &Self::Output { |
| 3372 | Index::index(&**self, index) |
| 3373 | } |
| 3374 | } |
| 3375 | |
| 3376 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3377 | #[rustc_on_unimplemented ( |
| 3378 | message = "vector indices are of type `usize` or ranges of `usize`" , |
| 3379 | label = "vector indices are of type `usize` or ranges of `usize`" |
| 3380 | )] |
| 3381 | impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> { |
| 3382 | #[inline ] |
| 3383 | fn index_mut(&mut self, index: I) -> &mut Self::Output { |
| 3384 | IndexMut::index_mut(&mut **self, index) |
| 3385 | } |
| 3386 | } |
| 3387 | |
| 3388 | /// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`] |
| 3389 | /// |
| 3390 | /// # Allocation behavior |
| 3391 | /// |
| 3392 | /// In general `Vec` does not guarantee any particular growth or allocation strategy. |
| 3393 | /// That also applies to this trait impl. |
| 3394 | /// |
| 3395 | /// **Note:** This section covers implementation details and is therefore exempt from |
| 3396 | /// stability guarantees. |
| 3397 | /// |
| 3398 | /// Vec may use any or none of the following strategies, |
| 3399 | /// depending on the supplied iterator: |
| 3400 | /// |
| 3401 | /// * preallocate based on [`Iterator::size_hint()`] |
| 3402 | /// * and panic if the number of items is outside the provided lower/upper bounds |
| 3403 | /// * use an amortized growth strategy similar to `pushing` one item at a time |
| 3404 | /// * perform the iteration in-place on the original allocation backing the iterator |
| 3405 | /// |
| 3406 | /// The last case warrants some attention. It is an optimization that in many cases reduces peak memory |
| 3407 | /// consumption and improves cache locality. But when big, short-lived allocations are created, |
| 3408 | /// only a small fraction of their items get collected, no further use is made of the spare capacity |
| 3409 | /// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large |
| 3410 | /// allocations having their lifetimes unnecessarily extended which can result in increased memory |
| 3411 | /// footprint. |
| 3412 | /// |
| 3413 | /// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`], |
| 3414 | /// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces |
| 3415 | /// the size of the long-lived struct. |
| 3416 | /// |
| 3417 | /// [owned slice]: Box |
| 3418 | /// |
| 3419 | /// ```rust |
| 3420 | /// # use std::sync::Mutex; |
| 3421 | /// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new()); |
| 3422 | /// |
| 3423 | /// for i in 0..10 { |
| 3424 | /// let big_temporary: Vec<u16> = (0..1024).collect(); |
| 3425 | /// // discard most items |
| 3426 | /// let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect(); |
| 3427 | /// // without this a lot of unused capacity might be moved into the global |
| 3428 | /// result.shrink_to_fit(); |
| 3429 | /// LONG_LIVED.lock().unwrap().push(result); |
| 3430 | /// } |
| 3431 | /// ``` |
| 3432 | #[cfg (not(no_global_oom_handling))] |
| 3433 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3434 | impl<T> FromIterator<T> for Vec<T> { |
| 3435 | #[inline ] |
| 3436 | #[track_caller ] |
| 3437 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> { |
| 3438 | <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter()) |
| 3439 | } |
| 3440 | } |
| 3441 | |
| 3442 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3443 | impl<T, A: Allocator> IntoIterator for Vec<T, A> { |
| 3444 | type Item = T; |
| 3445 | type IntoIter = IntoIter<T, A>; |
| 3446 | |
| 3447 | /// Creates a consuming iterator, that is, one that moves each value out of |
| 3448 | /// the vector (from start to end). The vector cannot be used after calling |
| 3449 | /// this. |
| 3450 | /// |
| 3451 | /// # Examples |
| 3452 | /// |
| 3453 | /// ``` |
| 3454 | /// let v = vec!["a" .to_string(), "b" .to_string()]; |
| 3455 | /// let mut v_iter = v.into_iter(); |
| 3456 | /// |
| 3457 | /// let first_element: Option<String> = v_iter.next(); |
| 3458 | /// |
| 3459 | /// assert_eq!(first_element, Some("a" .to_string())); |
| 3460 | /// assert_eq!(v_iter.next(), Some("b" .to_string())); |
| 3461 | /// assert_eq!(v_iter.next(), None); |
| 3462 | /// ``` |
| 3463 | #[inline ] |
| 3464 | fn into_iter(self) -> Self::IntoIter { |
| 3465 | unsafe { |
| 3466 | let me = ManuallyDrop::new(self); |
| 3467 | let alloc = ManuallyDrop::new(ptr::read(me.allocator())); |
| 3468 | let buf = me.buf.non_null(); |
| 3469 | let begin = buf.as_ptr(); |
| 3470 | let end = if T::IS_ZST { |
| 3471 | begin.wrapping_byte_add(me.len()) |
| 3472 | } else { |
| 3473 | begin.add(me.len()) as *const T |
| 3474 | }; |
| 3475 | let cap = me.buf.capacity(); |
| 3476 | IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end } |
| 3477 | } |
| 3478 | } |
| 3479 | } |
| 3480 | |
| 3481 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3482 | impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> { |
| 3483 | type Item = &'a T; |
| 3484 | type IntoIter = slice::Iter<'a, T>; |
| 3485 | |
| 3486 | fn into_iter(self) -> Self::IntoIter { |
| 3487 | self.iter() |
| 3488 | } |
| 3489 | } |
| 3490 | |
| 3491 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3492 | impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> { |
| 3493 | type Item = &'a mut T; |
| 3494 | type IntoIter = slice::IterMut<'a, T>; |
| 3495 | |
| 3496 | fn into_iter(self) -> Self::IntoIter { |
| 3497 | self.iter_mut() |
| 3498 | } |
| 3499 | } |
| 3500 | |
| 3501 | #[cfg (not(no_global_oom_handling))] |
| 3502 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3503 | impl<T, A: Allocator> Extend<T> for Vec<T, A> { |
| 3504 | #[inline ] |
| 3505 | #[track_caller ] |
| 3506 | fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { |
| 3507 | <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter()) |
| 3508 | } |
| 3509 | |
| 3510 | #[inline ] |
| 3511 | #[track_caller ] |
| 3512 | fn extend_one(&mut self, item: T) { |
| 3513 | self.push(item); |
| 3514 | } |
| 3515 | |
| 3516 | #[inline ] |
| 3517 | #[track_caller ] |
| 3518 | fn extend_reserve(&mut self, additional: usize) { |
| 3519 | self.reserve(additional); |
| 3520 | } |
| 3521 | |
| 3522 | #[inline ] |
| 3523 | unsafe fn extend_one_unchecked(&mut self, item: T) { |
| 3524 | // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly. |
| 3525 | unsafe { |
| 3526 | let len = self.len(); |
| 3527 | ptr::write(self.as_mut_ptr().add(len), item); |
| 3528 | self.set_len(len + 1); |
| 3529 | } |
| 3530 | } |
| 3531 | } |
| 3532 | |
| 3533 | impl<T, A: Allocator> Vec<T, A> { |
| 3534 | // leaf method to which various SpecFrom/SpecExtend implementations delegate when |
| 3535 | // they have no further optimizations to apply |
| 3536 | #[cfg (not(no_global_oom_handling))] |
| 3537 | #[track_caller ] |
| 3538 | fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) { |
| 3539 | // This is the case for a general iterator. |
| 3540 | // |
| 3541 | // This function should be the moral equivalent of: |
| 3542 | // |
| 3543 | // for item in iterator { |
| 3544 | // self.push(item); |
| 3545 | // } |
| 3546 | while let Some(element) = iterator.next() { |
| 3547 | let len = self.len(); |
| 3548 | if len == self.capacity() { |
| 3549 | let (lower, _) = iterator.size_hint(); |
| 3550 | self.reserve(lower.saturating_add(1)); |
| 3551 | } |
| 3552 | unsafe { |
| 3553 | ptr::write(self.as_mut_ptr().add(len), element); |
| 3554 | // Since next() executes user code which can panic we have to bump the length |
| 3555 | // after each step. |
| 3556 | // NB can't overflow since we would have had to alloc the address space |
| 3557 | self.set_len(len + 1); |
| 3558 | } |
| 3559 | } |
| 3560 | } |
| 3561 | |
| 3562 | // specific extend for `TrustedLen` iterators, called both by the specializations |
| 3563 | // and internal places where resolving specialization makes compilation slower |
| 3564 | #[cfg (not(no_global_oom_handling))] |
| 3565 | #[track_caller ] |
| 3566 | fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) { |
| 3567 | let (low, high) = iterator.size_hint(); |
| 3568 | if let Some(additional) = high { |
| 3569 | debug_assert_eq!( |
| 3570 | low, |
| 3571 | additional, |
| 3572 | "TrustedLen iterator's size hint is not exact: {:?}" , |
| 3573 | (low, high) |
| 3574 | ); |
| 3575 | self.reserve(additional); |
| 3576 | unsafe { |
| 3577 | let ptr = self.as_mut_ptr(); |
| 3578 | let mut local_len = SetLenOnDrop::new(&mut self.len); |
| 3579 | iterator.for_each(move |element| { |
| 3580 | ptr::write(ptr.add(local_len.current_len()), element); |
| 3581 | // Since the loop executes user code which can panic we have to update |
| 3582 | // the length every step to correctly drop what we've written. |
| 3583 | // NB can't overflow since we would have had to alloc the address space |
| 3584 | local_len.increment_len(1); |
| 3585 | }); |
| 3586 | } |
| 3587 | } else { |
| 3588 | // Per TrustedLen contract a `None` upper bound means that the iterator length |
| 3589 | // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway. |
| 3590 | // Since the other branch already panics eagerly (via `reserve()`) we do the same here. |
| 3591 | // This avoids additional codegen for a fallback code path which would eventually |
| 3592 | // panic anyway. |
| 3593 | panic!("capacity overflow" ); |
| 3594 | } |
| 3595 | } |
| 3596 | |
| 3597 | /// Creates a splicing iterator that replaces the specified range in the vector |
| 3598 | /// with the given `replace_with` iterator and yields the removed items. |
| 3599 | /// `replace_with` does not need to be the same length as `range`. |
| 3600 | /// |
| 3601 | /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped. |
| 3602 | /// |
| 3603 | /// It is unspecified how many elements are removed from the vector |
| 3604 | /// if the `Splice` value is leaked. |
| 3605 | /// |
| 3606 | /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped. |
| 3607 | /// |
| 3608 | /// This is optimal if: |
| 3609 | /// |
| 3610 | /// * The tail (elements in the vector after `range`) is empty, |
| 3611 | /// * or `replace_with` yields fewer or equal elements than `range`’s length |
| 3612 | /// * or the lower bound of its `size_hint()` is exact. |
| 3613 | /// |
| 3614 | /// Otherwise, a temporary vector is allocated and the tail is moved twice. |
| 3615 | /// |
| 3616 | /// # Panics |
| 3617 | /// |
| 3618 | /// Panics if the starting point is greater than the end point or if |
| 3619 | /// the end point is greater than the length of the vector. |
| 3620 | /// |
| 3621 | /// # Examples |
| 3622 | /// |
| 3623 | /// ``` |
| 3624 | /// let mut v = vec![1, 2, 3, 4]; |
| 3625 | /// let new = [7, 8, 9]; |
| 3626 | /// let u: Vec<_> = v.splice(1..3, new).collect(); |
| 3627 | /// assert_eq!(v, [1, 7, 8, 9, 4]); |
| 3628 | /// assert_eq!(u, [2, 3]); |
| 3629 | /// ``` |
| 3630 | /// |
| 3631 | /// Using `splice` to insert new items into a vector efficiently at a specific position |
| 3632 | /// indicated by an empty range: |
| 3633 | /// |
| 3634 | /// ``` |
| 3635 | /// let mut v = vec![1, 5]; |
| 3636 | /// let new = [2, 3, 4]; |
| 3637 | /// v.splice(1..1, new); |
| 3638 | /// assert_eq!(v, [1, 2, 3, 4, 5]); |
| 3639 | /// ``` |
| 3640 | #[cfg (not(no_global_oom_handling))] |
| 3641 | #[inline ] |
| 3642 | #[stable (feature = "vec_splice" , since = "1.21.0" )] |
| 3643 | pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> |
| 3644 | where |
| 3645 | R: RangeBounds<usize>, |
| 3646 | I: IntoIterator<Item = T>, |
| 3647 | { |
| 3648 | Splice { drain: self.drain(range), replace_with: replace_with.into_iter() } |
| 3649 | } |
| 3650 | |
| 3651 | /// Creates an iterator which uses a closure to determine if element in the range should be removed. |
| 3652 | /// |
| 3653 | /// If the closure returns true, then the element is removed and yielded. |
| 3654 | /// If the closure returns false, the element will remain in the vector and will not be yielded |
| 3655 | /// by the iterator. |
| 3656 | /// |
| 3657 | /// Only elements that fall in the provided range are considered for extraction, but any elements |
| 3658 | /// after the range will still have to be moved if any element has been extracted. |
| 3659 | /// |
| 3660 | /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating |
| 3661 | /// or the iteration short-circuits, then the remaining elements will be retained. |
| 3662 | /// Use [`retain`] with a negated predicate if you do not need the returned iterator. |
| 3663 | /// |
| 3664 | /// [`retain`]: Vec::retain |
| 3665 | /// |
| 3666 | /// Using this method is equivalent to the following code: |
| 3667 | /// |
| 3668 | /// ``` |
| 3669 | /// # use std::cmp::min; |
| 3670 | /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 }; |
| 3671 | /// # let mut vec = vec![1, 2, 3, 4, 5, 6]; |
| 3672 | /// # let range = 1..4; |
| 3673 | /// let mut i = range.start; |
| 3674 | /// while i < min(vec.len(), range.end) { |
| 3675 | /// if some_predicate(&mut vec[i]) { |
| 3676 | /// let val = vec.remove(i); |
| 3677 | /// // your code here |
| 3678 | /// } else { |
| 3679 | /// i += 1; |
| 3680 | /// } |
| 3681 | /// } |
| 3682 | /// |
| 3683 | /// # assert_eq!(vec, vec![1, 4, 5]); |
| 3684 | /// ``` |
| 3685 | /// |
| 3686 | /// But `extract_if` is easier to use. `extract_if` is also more efficient, |
| 3687 | /// because it can backshift the elements of the array in bulk. |
| 3688 | /// |
| 3689 | /// Note that `extract_if` also lets you mutate the elements passed to the filter closure, |
| 3690 | /// regardless of whether you choose to keep or remove them. |
| 3691 | /// |
| 3692 | /// # Panics |
| 3693 | /// |
| 3694 | /// If `range` is out of bounds. |
| 3695 | /// |
| 3696 | /// # Examples |
| 3697 | /// |
| 3698 | /// Splitting an array into evens and odds, reusing the original allocation: |
| 3699 | /// |
| 3700 | /// ``` |
| 3701 | /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]; |
| 3702 | /// |
| 3703 | /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>(); |
| 3704 | /// let odds = numbers; |
| 3705 | /// |
| 3706 | /// assert_eq!(evens, vec![2, 4, 6, 8, 14]); |
| 3707 | /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]); |
| 3708 | /// ``` |
| 3709 | /// |
| 3710 | /// Using the range argument to only process a part of the vector: |
| 3711 | /// |
| 3712 | /// ``` |
| 3713 | /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2]; |
| 3714 | /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>(); |
| 3715 | /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]); |
| 3716 | /// assert_eq!(ones.len(), 3); |
| 3717 | /// ``` |
| 3718 | #[stable (feature = "extract_if" , since = "1.87.0" )] |
| 3719 | pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A> |
| 3720 | where |
| 3721 | F: FnMut(&mut T) -> bool, |
| 3722 | R: RangeBounds<usize>, |
| 3723 | { |
| 3724 | ExtractIf::new(self, filter, range) |
| 3725 | } |
| 3726 | } |
| 3727 | |
| 3728 | /// Extend implementation that copies elements out of references before pushing them onto the Vec. |
| 3729 | /// |
| 3730 | /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to |
| 3731 | /// append the entire slice at once. |
| 3732 | /// |
| 3733 | /// [`copy_from_slice`]: slice::copy_from_slice |
| 3734 | #[cfg (not(no_global_oom_handling))] |
| 3735 | #[stable (feature = "extend_ref" , since = "1.2.0" )] |
| 3736 | impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> { |
| 3737 | #[track_caller ] |
| 3738 | fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { |
| 3739 | self.spec_extend(iter.into_iter()) |
| 3740 | } |
| 3741 | |
| 3742 | #[inline ] |
| 3743 | #[track_caller ] |
| 3744 | fn extend_one(&mut self, &item: &'a T) { |
| 3745 | self.push(item); |
| 3746 | } |
| 3747 | |
| 3748 | #[inline ] |
| 3749 | #[track_caller ] |
| 3750 | fn extend_reserve(&mut self, additional: usize) { |
| 3751 | self.reserve(additional); |
| 3752 | } |
| 3753 | |
| 3754 | #[inline ] |
| 3755 | unsafe fn extend_one_unchecked(&mut self, &item: &'a T) { |
| 3756 | // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly. |
| 3757 | unsafe { |
| 3758 | let len = self.len(); |
| 3759 | ptr::write(self.as_mut_ptr().add(len), item); |
| 3760 | self.set_len(len + 1); |
| 3761 | } |
| 3762 | } |
| 3763 | } |
| 3764 | |
| 3765 | /// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison). |
| 3766 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3767 | impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1> |
| 3768 | where |
| 3769 | T: PartialOrd, |
| 3770 | A1: Allocator, |
| 3771 | A2: Allocator, |
| 3772 | { |
| 3773 | #[inline ] |
| 3774 | fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> { |
| 3775 | PartialOrd::partial_cmp(&**self, &**other) |
| 3776 | } |
| 3777 | } |
| 3778 | |
| 3779 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3780 | impl<T: Eq, A: Allocator> Eq for Vec<T, A> {} |
| 3781 | |
| 3782 | /// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison). |
| 3783 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3784 | impl<T: Ord, A: Allocator> Ord for Vec<T, A> { |
| 3785 | #[inline ] |
| 3786 | fn cmp(&self, other: &Self) -> Ordering { |
| 3787 | Ord::cmp(&**self, &**other) |
| 3788 | } |
| 3789 | } |
| 3790 | |
| 3791 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3792 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for Vec<T, A> { |
| 3793 | fn drop(&mut self) { |
| 3794 | unsafe { |
| 3795 | // use drop for [T] |
| 3796 | // use a raw slice to refer to the elements of the vector as weakest necessary type; |
| 3797 | // could avoid questions of validity in certain cases |
| 3798 | ptr::drop_in_place(to_drop:ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len)) |
| 3799 | } |
| 3800 | // RawVec handles deallocation |
| 3801 | } |
| 3802 | } |
| 3803 | |
| 3804 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3805 | impl<T> Default for Vec<T> { |
| 3806 | /// Creates an empty `Vec<T>`. |
| 3807 | /// |
| 3808 | /// The vector will not allocate until elements are pushed onto it. |
| 3809 | fn default() -> Vec<T> { |
| 3810 | Vec::new() |
| 3811 | } |
| 3812 | } |
| 3813 | |
| 3814 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3815 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { |
| 3816 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3817 | fmt::Debug::fmt(&**self, f) |
| 3818 | } |
| 3819 | } |
| 3820 | |
| 3821 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3822 | impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> { |
| 3823 | fn as_ref(&self) -> &Vec<T, A> { |
| 3824 | self |
| 3825 | } |
| 3826 | } |
| 3827 | |
| 3828 | #[stable (feature = "vec_as_mut" , since = "1.5.0" )] |
| 3829 | impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> { |
| 3830 | fn as_mut(&mut self) -> &mut Vec<T, A> { |
| 3831 | self |
| 3832 | } |
| 3833 | } |
| 3834 | |
| 3835 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3836 | impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> { |
| 3837 | fn as_ref(&self) -> &[T] { |
| 3838 | self |
| 3839 | } |
| 3840 | } |
| 3841 | |
| 3842 | #[stable (feature = "vec_as_mut" , since = "1.5.0" )] |
| 3843 | impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> { |
| 3844 | fn as_mut(&mut self) -> &mut [T] { |
| 3845 | self |
| 3846 | } |
| 3847 | } |
| 3848 | |
| 3849 | #[cfg (not(no_global_oom_handling))] |
| 3850 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3851 | impl<T: Clone> From<&[T]> for Vec<T> { |
| 3852 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
| 3853 | /// |
| 3854 | /// # Examples |
| 3855 | /// |
| 3856 | /// ``` |
| 3857 | /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]); |
| 3858 | /// ``` |
| 3859 | #[track_caller ] |
| 3860 | fn from(s: &[T]) -> Vec<T> { |
| 3861 | s.to_vec() |
| 3862 | } |
| 3863 | } |
| 3864 | |
| 3865 | #[cfg (not(no_global_oom_handling))] |
| 3866 | #[stable (feature = "vec_from_mut" , since = "1.19.0" )] |
| 3867 | impl<T: Clone> From<&mut [T]> for Vec<T> { |
| 3868 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
| 3869 | /// |
| 3870 | /// # Examples |
| 3871 | /// |
| 3872 | /// ``` |
| 3873 | /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]); |
| 3874 | /// ``` |
| 3875 | #[track_caller ] |
| 3876 | fn from(s: &mut [T]) -> Vec<T> { |
| 3877 | s.to_vec() |
| 3878 | } |
| 3879 | } |
| 3880 | |
| 3881 | #[cfg (not(no_global_oom_handling))] |
| 3882 | #[stable (feature = "vec_from_array_ref" , since = "1.74.0" )] |
| 3883 | impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> { |
| 3884 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
| 3885 | /// |
| 3886 | /// # Examples |
| 3887 | /// |
| 3888 | /// ``` |
| 3889 | /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]); |
| 3890 | /// ``` |
| 3891 | #[track_caller ] |
| 3892 | fn from(s: &[T; N]) -> Vec<T> { |
| 3893 | Self::from(s.as_slice()) |
| 3894 | } |
| 3895 | } |
| 3896 | |
| 3897 | #[cfg (not(no_global_oom_handling))] |
| 3898 | #[stable (feature = "vec_from_array_ref" , since = "1.74.0" )] |
| 3899 | impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> { |
| 3900 | /// Allocates a `Vec<T>` and fills it by cloning `s`'s items. |
| 3901 | /// |
| 3902 | /// # Examples |
| 3903 | /// |
| 3904 | /// ``` |
| 3905 | /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]); |
| 3906 | /// ``` |
| 3907 | #[track_caller ] |
| 3908 | fn from(s: &mut [T; N]) -> Vec<T> { |
| 3909 | Self::from(s.as_mut_slice()) |
| 3910 | } |
| 3911 | } |
| 3912 | |
| 3913 | #[cfg (not(no_global_oom_handling))] |
| 3914 | #[stable (feature = "vec_from_array" , since = "1.44.0" )] |
| 3915 | impl<T, const N: usize> From<[T; N]> for Vec<T> { |
| 3916 | /// Allocates a `Vec<T>` and moves `s`'s items into it. |
| 3917 | /// |
| 3918 | /// # Examples |
| 3919 | /// |
| 3920 | /// ``` |
| 3921 | /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]); |
| 3922 | /// ``` |
| 3923 | #[track_caller ] |
| 3924 | fn from(s: [T; N]) -> Vec<T> { |
| 3925 | <[T]>::into_vec(self:Box::new(s)) |
| 3926 | } |
| 3927 | } |
| 3928 | |
| 3929 | #[stable (feature = "vec_from_cow_slice" , since = "1.14.0" )] |
| 3930 | impl<'a, T> From<Cow<'a, [T]>> for Vec<T> |
| 3931 | where |
| 3932 | [T]: ToOwned<Owned = Vec<T>>, |
| 3933 | { |
| 3934 | /// Converts a clone-on-write slice into a vector. |
| 3935 | /// |
| 3936 | /// If `s` already owns a `Vec<T>`, it will be returned directly. |
| 3937 | /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and |
| 3938 | /// filled by cloning `s`'s items into it. |
| 3939 | /// |
| 3940 | /// # Examples |
| 3941 | /// |
| 3942 | /// ``` |
| 3943 | /// # use std::borrow::Cow; |
| 3944 | /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]); |
| 3945 | /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]); |
| 3946 | /// assert_eq!(Vec::from(o), Vec::from(b)); |
| 3947 | /// ``` |
| 3948 | #[track_caller ] |
| 3949 | fn from(s: Cow<'a, [T]>) -> Vec<T> { |
| 3950 | s.into_owned() |
| 3951 | } |
| 3952 | } |
| 3953 | |
| 3954 | // note: test pulls in std, which causes errors here |
| 3955 | #[stable (feature = "vec_from_box" , since = "1.18.0" )] |
| 3956 | impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> { |
| 3957 | /// Converts a boxed slice into a vector by transferring ownership of |
| 3958 | /// the existing heap allocation. |
| 3959 | /// |
| 3960 | /// # Examples |
| 3961 | /// |
| 3962 | /// ``` |
| 3963 | /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice(); |
| 3964 | /// assert_eq!(Vec::from(b), vec![1, 2, 3]); |
| 3965 | /// ``` |
| 3966 | fn from(s: Box<[T], A>) -> Self { |
| 3967 | s.into_vec() |
| 3968 | } |
| 3969 | } |
| 3970 | |
| 3971 | // note: test pulls in std, which causes errors here |
| 3972 | #[cfg (not(no_global_oom_handling))] |
| 3973 | #[stable (feature = "box_from_vec" , since = "1.20.0" )] |
| 3974 | impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> { |
| 3975 | /// Converts a vector into a boxed slice. |
| 3976 | /// |
| 3977 | /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`]. |
| 3978 | /// |
| 3979 | /// [owned slice]: Box |
| 3980 | /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit |
| 3981 | /// |
| 3982 | /// # Examples |
| 3983 | /// |
| 3984 | /// ``` |
| 3985 | /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice()); |
| 3986 | /// ``` |
| 3987 | /// |
| 3988 | /// Any excess capacity is removed: |
| 3989 | /// ``` |
| 3990 | /// let mut vec = Vec::with_capacity(10); |
| 3991 | /// vec.extend([1, 2, 3]); |
| 3992 | /// |
| 3993 | /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice()); |
| 3994 | /// ``` |
| 3995 | #[track_caller ] |
| 3996 | fn from(v: Vec<T, A>) -> Self { |
| 3997 | v.into_boxed_slice() |
| 3998 | } |
| 3999 | } |
| 4000 | |
| 4001 | #[cfg (not(no_global_oom_handling))] |
| 4002 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 4003 | impl From<&str> for Vec<u8> { |
| 4004 | /// Allocates a `Vec<u8>` and fills it with a UTF-8 string. |
| 4005 | /// |
| 4006 | /// # Examples |
| 4007 | /// |
| 4008 | /// ``` |
| 4009 | /// assert_eq!(Vec::from("123" ), vec![b'1' , b'2' , b'3' ]); |
| 4010 | /// ``` |
| 4011 | #[track_caller ] |
| 4012 | fn from(s: &str) -> Vec<u8> { |
| 4013 | From::from(s.as_bytes()) |
| 4014 | } |
| 4015 | } |
| 4016 | |
| 4017 | #[stable (feature = "array_try_from_vec" , since = "1.48.0" )] |
| 4018 | impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] { |
| 4019 | type Error = Vec<T, A>; |
| 4020 | |
| 4021 | /// Gets the entire contents of the `Vec<T>` as an array, |
| 4022 | /// if its size exactly matches that of the requested array. |
| 4023 | /// |
| 4024 | /// # Examples |
| 4025 | /// |
| 4026 | /// ``` |
| 4027 | /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3])); |
| 4028 | /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([])); |
| 4029 | /// ``` |
| 4030 | /// |
| 4031 | /// If the length doesn't match, the input comes back in `Err`: |
| 4032 | /// ``` |
| 4033 | /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into(); |
| 4034 | /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9])); |
| 4035 | /// ``` |
| 4036 | /// |
| 4037 | /// If you're fine with just getting a prefix of the `Vec<T>`, |
| 4038 | /// you can call [`.truncate(N)`](Vec::truncate) first. |
| 4039 | /// ``` |
| 4040 | /// let mut v = String::from("hello world" ).into_bytes(); |
| 4041 | /// v.sort(); |
| 4042 | /// v.truncate(2); |
| 4043 | /// let [a, b]: [_; 2] = v.try_into().unwrap(); |
| 4044 | /// assert_eq!(a, b' ' ); |
| 4045 | /// assert_eq!(b, b'd' ); |
| 4046 | /// ``` |
| 4047 | fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> { |
| 4048 | if vec.len() != N { |
| 4049 | return Err(vec); |
| 4050 | } |
| 4051 | |
| 4052 | // SAFETY: `.set_len(0)` is always sound. |
| 4053 | unsafe { vec.set_len(0) }; |
| 4054 | |
| 4055 | // SAFETY: A `Vec`'s pointer is always aligned properly, and |
| 4056 | // the alignment the array needs is the same as the items. |
| 4057 | // We checked earlier that we have sufficient items. |
| 4058 | // The items will not double-drop as the `set_len` |
| 4059 | // tells the `Vec` not to also drop them. |
| 4060 | let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) }; |
| 4061 | Ok(array) |
| 4062 | } |
| 4063 | } |
| 4064 | |