1 | use core::iter::{ |
2 | FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen, |
3 | TrustedRandomAccessNoCoerce, |
4 | }; |
5 | use core::marker::PhantomData; |
6 | use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
7 | use core::num::NonZero; |
8 | #[cfg (not(no_global_oom_handling))] |
9 | use core::ops::Deref; |
10 | use core::ptr::{self, NonNull}; |
11 | use core::slice::{self}; |
12 | use core::{array, fmt}; |
13 | |
14 | #[cfg (not(no_global_oom_handling))] |
15 | use super::AsVecIntoIter; |
16 | use crate::alloc::{Allocator, Global}; |
17 | #[cfg (not(no_global_oom_handling))] |
18 | use crate::collections::VecDeque; |
19 | use crate::raw_vec::RawVec; |
20 | |
21 | macro non_null { |
22 | (mut $place:expr, $t:ident) => {{ |
23 | #![allow(unused_unsafe)] // we're sometimes used within an unsafe block |
24 | unsafe { &mut *((&raw mut $place) as *mut NonNull<$t>) } |
25 | }}, |
26 | ($place:expr, $t:ident) => {{ |
27 | #![allow(unused_unsafe)] // we're sometimes used within an unsafe block |
28 | unsafe { *((&raw const $place) as *const NonNull<$t>) } |
29 | }}, |
30 | } |
31 | |
32 | /// An iterator that moves out of a vector. |
33 | /// |
34 | /// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec) |
35 | /// (provided by the [`IntoIterator`] trait). |
36 | /// |
37 | /// # Example |
38 | /// |
39 | /// ``` |
40 | /// let v = vec![0, 1, 2]; |
41 | /// let iter: std::vec::IntoIter<_> = v.into_iter(); |
42 | /// ``` |
43 | #[stable (feature = "rust1" , since = "1.0.0" )] |
44 | #[rustc_insignificant_dtor ] |
45 | pub struct IntoIter< |
46 | T, |
47 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
48 | > { |
49 | pub(super) buf: NonNull<T>, |
50 | pub(super) phantom: PhantomData<T>, |
51 | pub(super) cap: usize, |
52 | // the drop impl reconstructs a RawVec from buf, cap and alloc |
53 | // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop |
54 | pub(super) alloc: ManuallyDrop<A>, |
55 | pub(super) ptr: NonNull<T>, |
56 | /// If T is a ZST, this is actually ptr+len. This encoding is picked so that |
57 | /// ptr == end is a quick test for the Iterator being empty, that works |
58 | /// for both ZST and non-ZST. |
59 | /// For non-ZSTs the pointer is treated as `NonNull<T>` |
60 | pub(super) end: *const T, |
61 | } |
62 | |
63 | #[stable (feature = "vec_intoiter_debug" , since = "1.13.0" )] |
64 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> { |
65 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
66 | f.debug_tuple(name:"IntoIter" ).field(&self.as_slice()).finish() |
67 | } |
68 | } |
69 | |
70 | impl<T, A: Allocator> IntoIter<T, A> { |
71 | /// Returns the remaining items of this iterator as a slice. |
72 | /// |
73 | /// # Examples |
74 | /// |
75 | /// ``` |
76 | /// let vec = vec!['a' , 'b' , 'c' ]; |
77 | /// let mut into_iter = vec.into_iter(); |
78 | /// assert_eq!(into_iter.as_slice(), &['a' , 'b' , 'c' ]); |
79 | /// let _ = into_iter.next().unwrap(); |
80 | /// assert_eq!(into_iter.as_slice(), &['b' , 'c' ]); |
81 | /// ``` |
82 | #[stable (feature = "vec_into_iter_as_slice" , since = "1.15.0" )] |
83 | pub fn as_slice(&self) -> &[T] { |
84 | unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len()) } |
85 | } |
86 | |
87 | /// Returns the remaining items of this iterator as a mutable slice. |
88 | /// |
89 | /// # Examples |
90 | /// |
91 | /// ``` |
92 | /// let vec = vec!['a' , 'b' , 'c' ]; |
93 | /// let mut into_iter = vec.into_iter(); |
94 | /// assert_eq!(into_iter.as_slice(), &['a' , 'b' , 'c' ]); |
95 | /// into_iter.as_mut_slice()[2] = 'z' ; |
96 | /// assert_eq!(into_iter.next().unwrap(), 'a' ); |
97 | /// assert_eq!(into_iter.next().unwrap(), 'b' ); |
98 | /// assert_eq!(into_iter.next().unwrap(), 'z' ); |
99 | /// ``` |
100 | #[stable (feature = "vec_into_iter_as_slice" , since = "1.15.0" )] |
101 | pub fn as_mut_slice(&mut self) -> &mut [T] { |
102 | unsafe { &mut *self.as_raw_mut_slice() } |
103 | } |
104 | |
105 | /// Returns a reference to the underlying allocator. |
106 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
107 | #[inline ] |
108 | pub fn allocator(&self) -> &A { |
109 | &self.alloc |
110 | } |
111 | |
112 | fn as_raw_mut_slice(&mut self) -> *mut [T] { |
113 | ptr::slice_from_raw_parts_mut(self.ptr.as_ptr(), self.len()) |
114 | } |
115 | |
116 | /// Drops remaining elements and relinquishes the backing allocation. |
117 | /// |
118 | /// This method guarantees it won't panic before relinquishing the backing |
119 | /// allocation. |
120 | /// |
121 | /// This is roughly equivalent to the following, but more efficient |
122 | /// |
123 | /// ``` |
124 | /// # let mut vec = Vec::<u8>::with_capacity(10); |
125 | /// # let ptr = vec.as_mut_ptr(); |
126 | /// # let mut into_iter = vec.into_iter(); |
127 | /// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter()); |
128 | /// (&mut into_iter).for_each(drop); |
129 | /// std::mem::forget(into_iter); |
130 | /// # // FIXME(https://github.com/rust-lang/miri/issues/3670): |
131 | /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak. |
132 | /// # drop(unsafe { Vec::<u8>::from_raw_parts(ptr, 0, 10) }); |
133 | /// ``` |
134 | /// |
135 | /// This method is used by in-place iteration, refer to the vec::in_place_collect |
136 | /// documentation for an overview. |
137 | #[cfg (not(no_global_oom_handling))] |
138 | pub(super) fn forget_allocation_drop_remaining(&mut self) { |
139 | let remaining = self.as_raw_mut_slice(); |
140 | |
141 | // overwrite the individual fields instead of creating a new |
142 | // struct and then overwriting &mut self. |
143 | // this creates less assembly |
144 | self.cap = 0; |
145 | self.buf = RawVec::new().non_null(); |
146 | self.ptr = self.buf; |
147 | self.end = self.buf.as_ptr(); |
148 | |
149 | // Dropping the remaining elements can panic, so this needs to be |
150 | // done only after updating the other fields. |
151 | unsafe { |
152 | ptr::drop_in_place(remaining); |
153 | } |
154 | } |
155 | |
156 | /// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed. |
157 | pub(crate) fn forget_remaining_elements(&mut self) { |
158 | // For the ZST case, it is crucial that we mutate `end` here, not `ptr`. |
159 | // `ptr` must stay aligned, while `end` may be unaligned. |
160 | self.end = self.ptr.as_ptr(); |
161 | } |
162 | |
163 | #[cfg (not(no_global_oom_handling))] |
164 | #[inline ] |
165 | pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> { |
166 | // Keep our `Drop` impl from dropping the elements and the allocator |
167 | let mut this = ManuallyDrop::new(self); |
168 | |
169 | // SAFETY: This allocation originally came from a `Vec`, so it passes |
170 | // all those checks. We have `this.buf` ≤ `this.ptr` ≤ `this.end`, |
171 | // so the `sub_ptr`s below cannot wrap, and will produce a well-formed |
172 | // range. `end` ≤ `buf + cap`, so the range will be in-bounds. |
173 | // Taking `alloc` is ok because nothing else is going to look at it, |
174 | // since our `Drop` impl isn't going to run so there's no more code. |
175 | unsafe { |
176 | let buf = this.buf.as_ptr(); |
177 | let initialized = if T::IS_ZST { |
178 | // All the pointers are the same for ZSTs, so it's fine to |
179 | // say that they're all at the beginning of the "allocation". |
180 | 0..this.len() |
181 | } else { |
182 | this.ptr.offset_from_unsigned(this.buf)..this.end.offset_from_unsigned(buf) |
183 | }; |
184 | let cap = this.cap; |
185 | let alloc = ManuallyDrop::take(&mut this.alloc); |
186 | VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc) |
187 | } |
188 | } |
189 | } |
190 | |
191 | #[stable (feature = "vec_intoiter_as_ref" , since = "1.46.0" )] |
192 | impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> { |
193 | fn as_ref(&self) -> &[T] { |
194 | self.as_slice() |
195 | } |
196 | } |
197 | |
198 | #[stable (feature = "rust1" , since = "1.0.0" )] |
199 | unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {} |
200 | #[stable (feature = "rust1" , since = "1.0.0" )] |
201 | unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {} |
202 | |
203 | #[stable (feature = "rust1" , since = "1.0.0" )] |
204 | impl<T, A: Allocator> Iterator for IntoIter<T, A> { |
205 | type Item = T; |
206 | |
207 | #[inline ] |
208 | fn next(&mut self) -> Option<T> { |
209 | let ptr = if T::IS_ZST { |
210 | if self.ptr.as_ptr() == self.end as *mut T { |
211 | return None; |
212 | } |
213 | // `ptr` has to stay where it is to remain aligned, so we reduce the length by 1 by |
214 | // reducing the `end`. |
215 | self.end = self.end.wrapping_byte_sub(1); |
216 | self.ptr |
217 | } else { |
218 | if self.ptr == non_null!(self.end, T) { |
219 | return None; |
220 | } |
221 | let old = self.ptr; |
222 | self.ptr = unsafe { old.add(1) }; |
223 | old |
224 | }; |
225 | Some(unsafe { ptr.read() }) |
226 | } |
227 | |
228 | #[inline ] |
229 | fn size_hint(&self) -> (usize, Option<usize>) { |
230 | let exact = if T::IS_ZST { |
231 | self.end.addr().wrapping_sub(self.ptr.as_ptr().addr()) |
232 | } else { |
233 | unsafe { non_null!(self.end, T).offset_from_unsigned(self.ptr) } |
234 | }; |
235 | (exact, Some(exact)) |
236 | } |
237 | |
238 | #[inline ] |
239 | fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
240 | let step_size = self.len().min(n); |
241 | let to_drop = ptr::slice_from_raw_parts_mut(self.ptr.as_ptr(), step_size); |
242 | if T::IS_ZST { |
243 | // See `next` for why we sub `end` here. |
244 | self.end = self.end.wrapping_byte_sub(step_size); |
245 | } else { |
246 | // SAFETY: the min() above ensures that step_size is in bounds |
247 | self.ptr = unsafe { self.ptr.add(step_size) }; |
248 | } |
249 | // SAFETY: the min() above ensures that step_size is in bounds |
250 | unsafe { |
251 | ptr::drop_in_place(to_drop); |
252 | } |
253 | NonZero::new(n - step_size).map_or(Ok(()), Err) |
254 | } |
255 | |
256 | #[inline ] |
257 | fn count(self) -> usize { |
258 | self.len() |
259 | } |
260 | |
261 | #[inline ] |
262 | fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> { |
263 | let mut raw_ary = [const { MaybeUninit::uninit() }; N]; |
264 | |
265 | let len = self.len(); |
266 | |
267 | if T::IS_ZST { |
268 | if len < N { |
269 | self.forget_remaining_elements(); |
270 | // Safety: ZSTs can be conjured ex nihilo, only the amount has to be correct |
271 | return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) }); |
272 | } |
273 | |
274 | self.end = self.end.wrapping_byte_sub(N); |
275 | // Safety: ditto |
276 | return Ok(unsafe { raw_ary.transpose().assume_init() }); |
277 | } |
278 | |
279 | if len < N { |
280 | // Safety: `len` indicates that this many elements are available and we just checked that |
281 | // it fits into the array. |
282 | unsafe { |
283 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), raw_ary.as_mut_ptr() as *mut T, len); |
284 | self.forget_remaining_elements(); |
285 | return Err(array::IntoIter::new_unchecked(raw_ary, 0..len)); |
286 | } |
287 | } |
288 | |
289 | // Safety: `len` is larger than the array size. Copy a fixed amount here to fully initialize |
290 | // the array. |
291 | unsafe { |
292 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), raw_ary.as_mut_ptr() as *mut T, N); |
293 | self.ptr = self.ptr.add(N); |
294 | Ok(raw_ary.transpose().assume_init()) |
295 | } |
296 | } |
297 | |
298 | fn fold<B, F>(mut self, mut accum: B, mut f: F) -> B |
299 | where |
300 | F: FnMut(B, Self::Item) -> B, |
301 | { |
302 | if T::IS_ZST { |
303 | while self.ptr.as_ptr() != self.end.cast_mut() { |
304 | // SAFETY: we just checked that `self.ptr` is in bounds. |
305 | let tmp = unsafe { self.ptr.read() }; |
306 | // See `next` for why we subtract from `end` here. |
307 | self.end = self.end.wrapping_byte_sub(1); |
308 | accum = f(accum, tmp); |
309 | } |
310 | } else { |
311 | // SAFETY: `self.end` can only be null if `T` is a ZST. |
312 | while self.ptr != non_null!(self.end, T) { |
313 | // SAFETY: we just checked that `self.ptr` is in bounds. |
314 | let tmp = unsafe { self.ptr.read() }; |
315 | // SAFETY: the maximum this can be is `self.end`. |
316 | // Increment `self.ptr` first to avoid double dropping in the event of a panic. |
317 | self.ptr = unsafe { self.ptr.add(1) }; |
318 | accum = f(accum, tmp); |
319 | } |
320 | } |
321 | accum |
322 | } |
323 | |
324 | fn try_fold<B, F, R>(&mut self, mut accum: B, mut f: F) -> R |
325 | where |
326 | Self: Sized, |
327 | F: FnMut(B, Self::Item) -> R, |
328 | R: core::ops::Try<Output = B>, |
329 | { |
330 | if T::IS_ZST { |
331 | while self.ptr.as_ptr() != self.end.cast_mut() { |
332 | // SAFETY: we just checked that `self.ptr` is in bounds. |
333 | let tmp = unsafe { self.ptr.read() }; |
334 | // See `next` for why we subtract from `end` here. |
335 | self.end = self.end.wrapping_byte_sub(1); |
336 | accum = f(accum, tmp)?; |
337 | } |
338 | } else { |
339 | // SAFETY: `self.end` can only be null if `T` is a ZST. |
340 | while self.ptr != non_null!(self.end, T) { |
341 | // SAFETY: we just checked that `self.ptr` is in bounds. |
342 | let tmp = unsafe { self.ptr.read() }; |
343 | // SAFETY: the maximum this can be is `self.end`. |
344 | // Increment `self.ptr` first to avoid double dropping in the event of a panic. |
345 | self.ptr = unsafe { self.ptr.add(1) }; |
346 | accum = f(accum, tmp)?; |
347 | } |
348 | } |
349 | R::from_output(accum) |
350 | } |
351 | |
352 | unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item |
353 | where |
354 | Self: TrustedRandomAccessNoCoerce, |
355 | { |
356 | // SAFETY: the caller must guarantee that `i` is in bounds of the |
357 | // `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)` |
358 | // is guaranteed to pointer to an element of the `Vec<T>` and |
359 | // thus guaranteed to be valid to dereference. |
360 | // |
361 | // Also note the implementation of `Self: TrustedRandomAccess` requires |
362 | // that `T: Copy` so reading elements from the buffer doesn't invalidate |
363 | // them for `Drop`. |
364 | unsafe { self.ptr.add(i).read() } |
365 | } |
366 | } |
367 | |
368 | #[stable (feature = "rust1" , since = "1.0.0" )] |
369 | impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> { |
370 | #[inline ] |
371 | fn next_back(&mut self) -> Option<T> { |
372 | if T::IS_ZST { |
373 | if self.ptr.as_ptr() == self.end as *mut _ { |
374 | return None; |
375 | } |
376 | // See above for why 'ptr.offset' isn't used |
377 | self.end = self.end.wrapping_byte_sub(1); |
378 | // Note that even though this is next_back() we're reading from `self.ptr`, not |
379 | // `self.end`. We track our length using the byte offset from `self.ptr` to `self.end`, |
380 | // so the end pointer may not be suitably aligned for T. |
381 | Some(unsafe { ptr::read(self.ptr.as_ptr()) }) |
382 | } else { |
383 | if self.ptr == non_null!(self.end, T) { |
384 | return None; |
385 | } |
386 | unsafe { |
387 | self.end = self.end.sub(1); |
388 | Some(ptr::read(self.end)) |
389 | } |
390 | } |
391 | } |
392 | |
393 | #[inline ] |
394 | fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
395 | let step_size = self.len().min(n); |
396 | if T::IS_ZST { |
397 | // SAFETY: same as for advance_by() |
398 | self.end = self.end.wrapping_byte_sub(step_size); |
399 | } else { |
400 | // SAFETY: same as for advance_by() |
401 | self.end = unsafe { self.end.sub(step_size) }; |
402 | } |
403 | let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size); |
404 | // SAFETY: same as for advance_by() |
405 | unsafe { |
406 | ptr::drop_in_place(to_drop); |
407 | } |
408 | NonZero::new(n - step_size).map_or(Ok(()), Err) |
409 | } |
410 | } |
411 | |
412 | #[stable (feature = "rust1" , since = "1.0.0" )] |
413 | impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> { |
414 | fn is_empty(&self) -> bool { |
415 | if T::IS_ZST { |
416 | self.ptr.as_ptr() == self.end as *mut _ |
417 | } else { |
418 | self.ptr == non_null!(self.end, T) |
419 | } |
420 | } |
421 | } |
422 | |
423 | #[stable (feature = "fused" , since = "1.26.0" )] |
424 | impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {} |
425 | |
426 | #[doc (hidden)] |
427 | #[unstable (issue = "none" , feature = "trusted_fused" )] |
428 | unsafe impl<T, A: Allocator> TrustedFused for IntoIter<T, A> {} |
429 | |
430 | #[unstable (feature = "trusted_len" , issue = "37572" )] |
431 | unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {} |
432 | |
433 | #[stable (feature = "default_iters" , since = "1.70.0" )] |
434 | impl<T, A> Default for IntoIter<T, A> |
435 | where |
436 | A: Allocator + Default, |
437 | { |
438 | /// Creates an empty `vec::IntoIter`. |
439 | /// |
440 | /// ``` |
441 | /// # use std::vec; |
442 | /// let iter: vec::IntoIter<u8> = Default::default(); |
443 | /// assert_eq!(iter.len(), 0); |
444 | /// assert_eq!(iter.as_slice(), &[]); |
445 | /// ``` |
446 | fn default() -> Self { |
447 | super::Vec::new_in(alloc:Default::default()).into_iter() |
448 | } |
449 | } |
450 | |
451 | #[doc (hidden)] |
452 | #[unstable (issue = "none" , feature = "std_internals" )] |
453 | #[rustc_unsafe_specialization_marker ] |
454 | pub trait NonDrop {} |
455 | |
456 | // T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr |
457 | // and thus we can't implement drop-handling |
458 | #[unstable (issue = "none" , feature = "std_internals" )] |
459 | impl<T: Copy> NonDrop for T {} |
460 | |
461 | #[doc (hidden)] |
462 | #[unstable (issue = "none" , feature = "std_internals" )] |
463 | // TrustedRandomAccess (without NoCoerce) must not be implemented because |
464 | // subtypes/supertypes of `T` might not be `NonDrop` |
465 | unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A> |
466 | where |
467 | T: NonDrop, |
468 | { |
469 | const MAY_HAVE_SIDE_EFFECT: bool = false; |
470 | } |
471 | |
472 | #[cfg (not(no_global_oom_handling))] |
473 | #[stable (feature = "vec_into_iter_clone" , since = "1.8.0" )] |
474 | impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> { |
475 | fn clone(&self) -> Self { |
476 | self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter() |
477 | } |
478 | } |
479 | |
480 | #[stable (feature = "rust1" , since = "1.0.0" )] |
481 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for IntoIter<T, A> { |
482 | fn drop(&mut self) { |
483 | struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>); |
484 | |
485 | impl<T, A: Allocator> Drop for DropGuard<'_, T, A> { |
486 | fn drop(&mut self) { |
487 | unsafe { |
488 | // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec |
489 | let alloc: A = ManuallyDrop::take(&mut self.0.alloc); |
490 | // RawVec handles deallocation |
491 | let _ = RawVec::from_nonnull_in(self.0.buf, self.0.cap, alloc); |
492 | } |
493 | } |
494 | } |
495 | |
496 | let guard: DropGuard<'_, T, A> = DropGuard(self); |
497 | // destroy the remaining elements |
498 | unsafe { |
499 | ptr::drop_in_place(to_drop:guard.0.as_raw_mut_slice()); |
500 | } |
501 | // now `guard` will be dropped and do the rest |
502 | } |
503 | } |
504 | |
505 | // In addition to the SAFETY invariants of the following three unsafe traits |
506 | // also refer to the vec::in_place_collect module documentation to get an overview |
507 | #[unstable (issue = "none" , feature = "inplace_iteration" )] |
508 | #[doc (hidden)] |
509 | unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> { |
510 | const EXPAND_BY: Option<NonZero<usize>> = NonZero::new(1); |
511 | const MERGE_BY: Option<NonZero<usize>> = NonZero::new(1); |
512 | } |
513 | |
514 | #[unstable (issue = "none" , feature = "inplace_iteration" )] |
515 | #[doc (hidden)] |
516 | unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> { |
517 | type Source = Self; |
518 | |
519 | #[inline ] |
520 | unsafe fn as_inner(&mut self) -> &mut Self::Source { |
521 | self |
522 | } |
523 | } |
524 | |
525 | #[cfg (not(no_global_oom_handling))] |
526 | unsafe impl<T> AsVecIntoIter for IntoIter<T> { |
527 | type Item = T; |
528 | |
529 | fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> { |
530 | self |
531 | } |
532 | } |
533 | |