| 1 | //! Defines the `IntoIter` owned iterator for arrays. |
| 2 | |
| 3 | use crate::intrinsics::transmute_unchecked; |
| 4 | use crate::iter::{self, FusedIterator, TrustedLen, TrustedRandomAccessNoCoerce}; |
| 5 | use crate::mem::MaybeUninit; |
| 6 | use crate::num::NonZero; |
| 7 | use crate::ops::{IndexRange, Range}; |
| 8 | use crate::{fmt, ptr}; |
| 9 | |
| 10 | /// A by-value [array] iterator. |
| 11 | #[stable (feature = "array_value_iter" , since = "1.51.0" )] |
| 12 | #[rustc_insignificant_dtor ] |
| 13 | #[rustc_diagnostic_item = "ArrayIntoIter" ] |
| 14 | pub struct IntoIter<T, const N: usize> { |
| 15 | /// This is the array we are iterating over. |
| 16 | /// |
| 17 | /// Elements with index `i` where `alive.start <= i < alive.end` have not |
| 18 | /// been yielded yet and are valid array entries. Elements with indices `i |
| 19 | /// < alive.start` or `i >= alive.end` have been yielded already and must |
| 20 | /// not be accessed anymore! Those dead elements might even be in a |
| 21 | /// completely uninitialized state! |
| 22 | /// |
| 23 | /// So the invariants are: |
| 24 | /// - `data[alive]` is alive (i.e. contains valid elements) |
| 25 | /// - `data[..alive.start]` and `data[alive.end..]` are dead (i.e. the |
| 26 | /// elements were already read and must not be touched anymore!) |
| 27 | data: [MaybeUninit<T>; N], |
| 28 | |
| 29 | /// The elements in `data` that have not been yielded yet. |
| 30 | /// |
| 31 | /// Invariants: |
| 32 | /// - `alive.end <= N` |
| 33 | /// |
| 34 | /// (And the `IndexRange` type requires `alive.start <= alive.end`.) |
| 35 | alive: IndexRange, |
| 36 | } |
| 37 | |
| 38 | // Note: the `#[rustc_skip_during_method_dispatch(array)]` on `trait IntoIterator` |
| 39 | // hides this implementation from explicit `.into_iter()` calls on editions < 2021, |
| 40 | // so those calls will still resolve to the slice implementation, by reference. |
| 41 | #[stable (feature = "array_into_iter_impl" , since = "1.53.0" )] |
| 42 | impl<T, const N: usize> IntoIterator for [T; N] { |
| 43 | type Item = T; |
| 44 | type IntoIter = IntoIter<T, N>; |
| 45 | |
| 46 | /// Creates a consuming iterator, that is, one that moves each value out of |
| 47 | /// the array (from start to end). |
| 48 | /// |
| 49 | /// The array cannot be used after calling this unless `T` implements |
| 50 | /// `Copy`, so the whole array is copied. |
| 51 | /// |
| 52 | /// Arrays have special behavior when calling `.into_iter()` prior to the |
| 53 | /// 2021 edition -- see the [array] Editions section for more information. |
| 54 | /// |
| 55 | /// [array]: prim@array |
| 56 | fn into_iter(self) -> Self::IntoIter { |
| 57 | // SAFETY: The transmute here is actually safe. The docs of `MaybeUninit` |
| 58 | // promise: |
| 59 | // |
| 60 | // > `MaybeUninit<T>` is guaranteed to have the same size and alignment |
| 61 | // > as `T`. |
| 62 | // |
| 63 | // The docs even show a transmute from an array of `MaybeUninit<T>` to |
| 64 | // an array of `T`. |
| 65 | // |
| 66 | // With that, this initialization satisfies the invariants. |
| 67 | // |
| 68 | // FIXME: If normal `transmute` ever gets smart enough to allow this |
| 69 | // directly, use it instead of `transmute_unchecked`. |
| 70 | let data: [MaybeUninit<T>; N] = unsafe { transmute_unchecked(self) }; |
| 71 | IntoIter { data, alive: IndexRange::zero_to(N) } |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | impl<T, const N: usize> IntoIter<T, N> { |
| 76 | /// Creates a new iterator over the given `array`. |
| 77 | #[stable (feature = "array_value_iter" , since = "1.51.0" )] |
| 78 | #[deprecated (since = "1.59.0" , note = "use `IntoIterator::into_iter` instead" )] |
| 79 | pub fn new(array: [T; N]) -> Self { |
| 80 | IntoIterator::into_iter(array) |
| 81 | } |
| 82 | |
| 83 | /// Creates an iterator over the elements in a partially-initialized buffer. |
| 84 | /// |
| 85 | /// If you have a fully-initialized array, then use [`IntoIterator`]. |
| 86 | /// But this is useful for returning partial results from unsafe code. |
| 87 | /// |
| 88 | /// # Safety |
| 89 | /// |
| 90 | /// - The `buffer[initialized]` elements must all be initialized. |
| 91 | /// - The range must be canonical, with `initialized.start <= initialized.end`. |
| 92 | /// - The range must be in-bounds for the buffer, with `initialized.end <= N`. |
| 93 | /// (Like how indexing `[0][100..100]` fails despite the range being empty.) |
| 94 | /// |
| 95 | /// It's sound to have more elements initialized than mentioned, though that |
| 96 | /// will most likely result in them being leaked. |
| 97 | /// |
| 98 | /// # Examples |
| 99 | /// |
| 100 | /// ``` |
| 101 | /// #![feature(array_into_iter_constructors)] |
| 102 | /// #![feature(maybe_uninit_uninit_array_transpose)] |
| 103 | /// use std::array::IntoIter; |
| 104 | /// use std::mem::MaybeUninit; |
| 105 | /// |
| 106 | /// # // Hi! Thanks for reading the code. This is restricted to `Copy` because |
| 107 | /// # // otherwise it could leak. A fully-general version this would need a drop |
| 108 | /// # // guard to handle panics from the iterator, but this works for an example. |
| 109 | /// fn next_chunk<T: Copy, const N: usize>( |
| 110 | /// it: &mut impl Iterator<Item = T>, |
| 111 | /// ) -> Result<[T; N], IntoIter<T, N>> { |
| 112 | /// let mut buffer = [const { MaybeUninit::uninit() }; N]; |
| 113 | /// let mut i = 0; |
| 114 | /// while i < N { |
| 115 | /// match it.next() { |
| 116 | /// Some(x) => { |
| 117 | /// buffer[i].write(x); |
| 118 | /// i += 1; |
| 119 | /// } |
| 120 | /// None => { |
| 121 | /// // SAFETY: We've initialized the first `i` items |
| 122 | /// unsafe { |
| 123 | /// return Err(IntoIter::new_unchecked(buffer, 0..i)); |
| 124 | /// } |
| 125 | /// } |
| 126 | /// } |
| 127 | /// } |
| 128 | /// |
| 129 | /// // SAFETY: We've initialized all N items |
| 130 | /// unsafe { Ok(buffer.transpose().assume_init()) } |
| 131 | /// } |
| 132 | /// |
| 133 | /// let r: [_; 4] = next_chunk(&mut (10..16)).unwrap(); |
| 134 | /// assert_eq!(r, [10, 11, 12, 13]); |
| 135 | /// let r: IntoIter<_, 40> = next_chunk(&mut (10..16)).unwrap_err(); |
| 136 | /// assert_eq!(r.collect::<Vec<_>>(), vec![10, 11, 12, 13, 14, 15]); |
| 137 | /// ``` |
| 138 | #[unstable (feature = "array_into_iter_constructors" , issue = "91583" )] |
| 139 | pub const unsafe fn new_unchecked( |
| 140 | buffer: [MaybeUninit<T>; N], |
| 141 | initialized: Range<usize>, |
| 142 | ) -> Self { |
| 143 | // SAFETY: one of our safety conditions is that the range is canonical. |
| 144 | let alive = unsafe { IndexRange::new_unchecked(initialized.start, initialized.end) }; |
| 145 | Self { data: buffer, alive } |
| 146 | } |
| 147 | |
| 148 | /// Creates an iterator over `T` which returns no elements. |
| 149 | /// |
| 150 | /// If you just need an empty iterator, then use |
| 151 | /// [`iter::empty()`](crate::iter::empty) instead. |
| 152 | /// And if you need an empty array, use `[]`. |
| 153 | /// |
| 154 | /// But this is useful when you need an `array::IntoIter<T, N>` *specifically*. |
| 155 | /// |
| 156 | /// # Examples |
| 157 | /// |
| 158 | /// ``` |
| 159 | /// #![feature(array_into_iter_constructors)] |
| 160 | /// use std::array::IntoIter; |
| 161 | /// |
| 162 | /// let empty = IntoIter::<i32, 3>::empty(); |
| 163 | /// assert_eq!(empty.len(), 0); |
| 164 | /// assert_eq!(empty.as_slice(), &[]); |
| 165 | /// |
| 166 | /// let empty = IntoIter::<std::convert::Infallible, 200>::empty(); |
| 167 | /// assert_eq!(empty.len(), 0); |
| 168 | /// ``` |
| 169 | /// |
| 170 | /// `[1, 2].into_iter()` and `[].into_iter()` have different types |
| 171 | /// ```should_fail,edition2021 |
| 172 | /// #![feature(array_into_iter_constructors)] |
| 173 | /// use std::array::IntoIter; |
| 174 | /// |
| 175 | /// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> { |
| 176 | /// if b { |
| 177 | /// [1, 2, 3, 4].into_iter() |
| 178 | /// } else { |
| 179 | /// [].into_iter() // error[E0308]: mismatched types |
| 180 | /// } |
| 181 | /// } |
| 182 | /// ``` |
| 183 | /// |
| 184 | /// But using this method you can get an empty iterator of appropriate size: |
| 185 | /// ```edition2021 |
| 186 | /// #![feature(array_into_iter_constructors)] |
| 187 | /// use std::array::IntoIter; |
| 188 | /// |
| 189 | /// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> { |
| 190 | /// if b { |
| 191 | /// [1, 2, 3, 4].into_iter() |
| 192 | /// } else { |
| 193 | /// IntoIter::empty() |
| 194 | /// } |
| 195 | /// } |
| 196 | /// |
| 197 | /// assert_eq!(get_bytes(true).collect::<Vec<_>>(), vec![1, 2, 3, 4]); |
| 198 | /// assert_eq!(get_bytes(false).collect::<Vec<_>>(), vec![]); |
| 199 | /// ``` |
| 200 | #[unstable (feature = "array_into_iter_constructors" , issue = "91583" )] |
| 201 | pub const fn empty() -> Self { |
| 202 | let buffer = [const { MaybeUninit::uninit() }; N]; |
| 203 | let initialized = 0..0; |
| 204 | |
| 205 | // SAFETY: We're telling it that none of the elements are initialized, |
| 206 | // which is trivially true. And ∀N: usize, 0 <= N. |
| 207 | unsafe { Self::new_unchecked(buffer, initialized) } |
| 208 | } |
| 209 | |
| 210 | /// Returns an immutable slice of all elements that have not been yielded |
| 211 | /// yet. |
| 212 | #[stable (feature = "array_value_iter" , since = "1.51.0" )] |
| 213 | pub fn as_slice(&self) -> &[T] { |
| 214 | // SAFETY: We know that all elements within `alive` are properly initialized. |
| 215 | unsafe { |
| 216 | let slice = self.data.get_unchecked(self.alive.clone()); |
| 217 | slice.assume_init_ref() |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | /// Returns a mutable slice of all elements that have not been yielded yet. |
| 222 | #[stable (feature = "array_value_iter" , since = "1.51.0" )] |
| 223 | pub fn as_mut_slice(&mut self) -> &mut [T] { |
| 224 | // SAFETY: We know that all elements within `alive` are properly initialized. |
| 225 | unsafe { |
| 226 | let slice = self.data.get_unchecked_mut(self.alive.clone()); |
| 227 | slice.assume_init_mut() |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 233 | impl<T, const N: usize> Iterator for IntoIter<T, N> { |
| 234 | type Item = T; |
| 235 | fn next(&mut self) -> Option<Self::Item> { |
| 236 | // Get the next index from the front. |
| 237 | // |
| 238 | // Increasing `alive.start` by 1 maintains the invariant regarding |
| 239 | // `alive`. However, due to this change, for a short time, the alive |
| 240 | // zone is not `data[alive]` anymore, but `data[idx..alive.end]`. |
| 241 | self.alive.next().map(|idx| { |
| 242 | // Read the element from the array. |
| 243 | // SAFETY: `idx` is an index into the former "alive" region of the |
| 244 | // array. Reading this element means that `data[idx]` is regarded as |
| 245 | // dead now (i.e. do not touch). As `idx` was the start of the |
| 246 | // alive-zone, the alive zone is now `data[alive]` again, restoring |
| 247 | // all invariants. |
| 248 | unsafe { self.data.get_unchecked(idx).assume_init_read() } |
| 249 | }) |
| 250 | } |
| 251 | |
| 252 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 253 | let len = self.len(); |
| 254 | (len, Some(len)) |
| 255 | } |
| 256 | |
| 257 | #[inline ] |
| 258 | fn fold<Acc, Fold>(mut self, init: Acc, mut fold: Fold) -> Acc |
| 259 | where |
| 260 | Fold: FnMut(Acc, Self::Item) -> Acc, |
| 261 | { |
| 262 | let data = &mut self.data; |
| 263 | iter::ByRefSized(&mut self.alive).fold(init, |acc, idx| { |
| 264 | // SAFETY: idx is obtained by folding over the `alive` range, which implies the |
| 265 | // value is currently considered alive but as the range is being consumed each value |
| 266 | // we read here will only be read once and then considered dead. |
| 267 | fold(acc, unsafe { data.get_unchecked(idx).assume_init_read() }) |
| 268 | }) |
| 269 | } |
| 270 | |
| 271 | fn count(self) -> usize { |
| 272 | self.len() |
| 273 | } |
| 274 | |
| 275 | fn last(mut self) -> Option<Self::Item> { |
| 276 | self.next_back() |
| 277 | } |
| 278 | |
| 279 | fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| 280 | // This also moves the start, which marks them as conceptually "dropped", |
| 281 | // so if anything goes bad then our drop impl won't double-free them. |
| 282 | let range_to_drop = self.alive.take_prefix(n); |
| 283 | let remaining = n - range_to_drop.len(); |
| 284 | |
| 285 | // SAFETY: These elements are currently initialized, so it's fine to drop them. |
| 286 | unsafe { |
| 287 | let slice = self.data.get_unchecked_mut(range_to_drop); |
| 288 | slice.assume_init_drop(); |
| 289 | } |
| 290 | |
| 291 | NonZero::new(remaining).map_or(Ok(()), Err) |
| 292 | } |
| 293 | |
| 294 | #[inline ] |
| 295 | unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item { |
| 296 | // SAFETY: The caller must provide an idx that is in bound of the remainder. |
| 297 | unsafe { self.data.as_ptr().add(self.alive.start()).add(idx).cast::<T>().read() } |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 302 | impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> { |
| 303 | fn next_back(&mut self) -> Option<Self::Item> { |
| 304 | // Get the next index from the back. |
| 305 | // |
| 306 | // Decreasing `alive.end` by 1 maintains the invariant regarding |
| 307 | // `alive`. However, due to this change, for a short time, the alive |
| 308 | // zone is not `data[alive]` anymore, but `data[alive.start..=idx]`. |
| 309 | self.alive.next_back().map(|idx| { |
| 310 | // Read the element from the array. |
| 311 | // SAFETY: `idx` is an index into the former "alive" region of the |
| 312 | // array. Reading this element means that `data[idx]` is regarded as |
| 313 | // dead now (i.e. do not touch). As `idx` was the end of the |
| 314 | // alive-zone, the alive zone is now `data[alive]` again, restoring |
| 315 | // all invariants. |
| 316 | unsafe { self.data.get_unchecked(idx).assume_init_read() } |
| 317 | }) |
| 318 | } |
| 319 | |
| 320 | #[inline ] |
| 321 | fn rfold<Acc, Fold>(mut self, init: Acc, mut rfold: Fold) -> Acc |
| 322 | where |
| 323 | Fold: FnMut(Acc, Self::Item) -> Acc, |
| 324 | { |
| 325 | let data = &mut self.data; |
| 326 | iter::ByRefSized(&mut self.alive).rfold(init, |acc, idx| { |
| 327 | // SAFETY: idx is obtained by folding over the `alive` range, which implies the |
| 328 | // value is currently considered alive but as the range is being consumed each value |
| 329 | // we read here will only be read once and then considered dead. |
| 330 | rfold(acc, unsafe { data.get_unchecked(idx).assume_init_read() }) |
| 331 | }) |
| 332 | } |
| 333 | |
| 334 | fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| 335 | // This also moves the end, which marks them as conceptually "dropped", |
| 336 | // so if anything goes bad then our drop impl won't double-free them. |
| 337 | let range_to_drop = self.alive.take_suffix(n); |
| 338 | let remaining = n - range_to_drop.len(); |
| 339 | |
| 340 | // SAFETY: These elements are currently initialized, so it's fine to drop them. |
| 341 | unsafe { |
| 342 | let slice = self.data.get_unchecked_mut(range_to_drop); |
| 343 | slice.assume_init_drop(); |
| 344 | } |
| 345 | |
| 346 | NonZero::new(remaining).map_or(Ok(()), Err) |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 351 | impl<T, const N: usize> Drop for IntoIter<T, N> { |
| 352 | fn drop(&mut self) { |
| 353 | // SAFETY: This is safe: `as_mut_slice` returns exactly the sub-slice |
| 354 | // of elements that have not been moved out yet and that remain |
| 355 | // to be dropped. |
| 356 | unsafe { ptr::drop_in_place(self.as_mut_slice()) } |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 361 | impl<T, const N: usize> ExactSizeIterator for IntoIter<T, N> { |
| 362 | fn len(&self) -> usize { |
| 363 | self.alive.len() |
| 364 | } |
| 365 | fn is_empty(&self) -> bool { |
| 366 | self.alive.is_empty() |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 371 | impl<T, const N: usize> FusedIterator for IntoIter<T, N> {} |
| 372 | |
| 373 | // The iterator indeed reports the correct length. The number of "alive" |
| 374 | // elements (that will still be yielded) is the length of the range `alive`. |
| 375 | // This range is decremented in length in either `next` or `next_back`. It is |
| 376 | // always decremented by 1 in those methods, but only if `Some(_)` is returned. |
| 377 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 378 | unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, N> {} |
| 379 | |
| 380 | #[doc (hidden)] |
| 381 | #[unstable (issue = "none" , feature = "std_internals" )] |
| 382 | #[rustc_unsafe_specialization_marker ] |
| 383 | pub trait NonDrop {} |
| 384 | |
| 385 | // T: Copy as approximation for !Drop since get_unchecked does not advance self.alive |
| 386 | // and thus we can't implement drop-handling |
| 387 | #[unstable (issue = "none" , feature = "std_internals" )] |
| 388 | impl<T: Copy> NonDrop for T {} |
| 389 | |
| 390 | #[doc (hidden)] |
| 391 | #[unstable (issue = "none" , feature = "std_internals" )] |
| 392 | unsafe impl<T, const N: usize> TrustedRandomAccessNoCoerce for IntoIter<T, N> |
| 393 | where |
| 394 | T: NonDrop, |
| 395 | { |
| 396 | const MAY_HAVE_SIDE_EFFECT: bool = false; |
| 397 | } |
| 398 | |
| 399 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 400 | impl<T: Clone, const N: usize> Clone for IntoIter<T, N> { |
| 401 | fn clone(&self) -> Self { |
| 402 | // Note, we don't really need to match the exact same alive range, so |
| 403 | // we can just clone into offset 0 regardless of where `self` is. |
| 404 | let mut new: IntoIter = |
| 405 | Self { data: [const { MaybeUninit::uninit() }; N], alive: IndexRange::zero_to(end:0) }; |
| 406 | |
| 407 | // Clone all alive elements. |
| 408 | for (src: &T, dst: &mut MaybeUninit) in iter::zip(self.as_slice(), &mut new.data) { |
| 409 | // Write a clone into the new array, then update its alive range. |
| 410 | // If cloning panics, we'll correctly drop the previous items. |
| 411 | dst.write(val:src.clone()); |
| 412 | // This addition cannot overflow as we're iterating a slice |
| 413 | new.alive = IndexRange::zero_to(end:new.alive.end() + 1); |
| 414 | } |
| 415 | |
| 416 | new |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | #[stable (feature = "array_value_iter_impls" , since = "1.40.0" )] |
| 421 | impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, N> { |
| 422 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 423 | // Only print the elements that were not yielded yet: we cannot |
| 424 | // access the yielded elements anymore. |
| 425 | f.debug_tuple(name:"IntoIter" ).field(&self.as_slice()).finish() |
| 426 | } |
| 427 | } |
| 428 | |