| 1 | //! Slice management and manipulation. |
| 2 | //! |
| 3 | //! For more details see [`std::slice`]. |
| 4 | //! |
| 5 | //! [`std::slice`]: ../../std/slice/index.html |
| 6 | |
| 7 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 8 | |
| 9 | use crate::cmp::Ordering::{self, Equal, Greater, Less}; |
| 10 | use crate::intrinsics::{exact_div, unchecked_sub}; |
| 11 | use crate::mem::{self, SizedTypeProperties}; |
| 12 | use crate::num::NonZero; |
| 13 | use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive}; |
| 14 | use crate::panic::const_panic; |
| 15 | use crate::simd::{self, Simd}; |
| 16 | use crate::ub_checks::assert_unsafe_precondition; |
| 17 | use crate::{fmt, hint, ptr, range, slice}; |
| 18 | |
| 19 | #[unstable ( |
| 20 | feature = "slice_internals" , |
| 21 | issue = "none" , |
| 22 | reason = "exposed from core to be reused in std; use the memchr crate" |
| 23 | )] |
| 24 | /// Pure Rust memchr implementation, taken from rust-memchr |
| 25 | pub mod memchr; |
| 26 | |
| 27 | #[unstable ( |
| 28 | feature = "slice_internals" , |
| 29 | issue = "none" , |
| 30 | reason = "exposed from core to be reused in std;" |
| 31 | )] |
| 32 | #[doc (hidden)] |
| 33 | pub mod sort; |
| 34 | |
| 35 | mod ascii; |
| 36 | mod cmp; |
| 37 | pub(crate) mod index; |
| 38 | mod iter; |
| 39 | mod raw; |
| 40 | mod rotate; |
| 41 | mod specialize; |
| 42 | |
| 43 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
| 44 | pub use ascii::EscapeAscii; |
| 45 | #[unstable (feature = "str_internals" , issue = "none" )] |
| 46 | #[doc (hidden)] |
| 47 | pub use ascii::is_ascii_simple; |
| 48 | #[stable (feature = "slice_get_slice" , since = "1.28.0" )] |
| 49 | pub use index::SliceIndex; |
| 50 | #[unstable (feature = "slice_range" , issue = "76393" )] |
| 51 | pub use index::{range, try_range}; |
| 52 | #[unstable (feature = "array_windows" , issue = "75027" )] |
| 53 | pub use iter::ArrayWindows; |
| 54 | #[unstable (feature = "array_chunks" , issue = "74985" )] |
| 55 | pub use iter::{ArrayChunks, ArrayChunksMut}; |
| 56 | #[stable (feature = "slice_group_by" , since = "1.77.0" )] |
| 57 | pub use iter::{ChunkBy, ChunkByMut}; |
| 58 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 59 | pub use iter::{Chunks, ChunksMut, Windows}; |
| 60 | #[stable (feature = "chunks_exact" , since = "1.31.0" )] |
| 61 | pub use iter::{ChunksExact, ChunksExactMut}; |
| 62 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 63 | pub use iter::{Iter, IterMut}; |
| 64 | #[stable (feature = "rchunks" , since = "1.31.0" )] |
| 65 | pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; |
| 66 | #[stable (feature = "slice_rsplit" , since = "1.27.0" )] |
| 67 | pub use iter::{RSplit, RSplitMut}; |
| 68 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 69 | pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut}; |
| 70 | #[stable (feature = "split_inclusive" , since = "1.51.0" )] |
| 71 | pub use iter::{SplitInclusive, SplitInclusiveMut}; |
| 72 | #[stable (feature = "from_ref" , since = "1.28.0" )] |
| 73 | pub use raw::{from_mut, from_ref}; |
| 74 | #[unstable (feature = "slice_from_ptr_range" , issue = "89792" )] |
| 75 | pub use raw::{from_mut_ptr_range, from_ptr_range}; |
| 76 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 77 | pub use raw::{from_raw_parts, from_raw_parts_mut}; |
| 78 | |
| 79 | /// Calculates the direction and split point of a one-sided range. |
| 80 | /// |
| 81 | /// This is a helper function for `split_off` and `split_off_mut` that returns |
| 82 | /// the direction of the split (front or back) as well as the index at |
| 83 | /// which to split. Returns `None` if the split index would overflow. |
| 84 | #[inline ] |
| 85 | fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> { |
| 86 | use OneSidedRangeBound::{End, EndInclusive, StartInclusive}; |
| 87 | |
| 88 | Some(match range.bound() { |
| 89 | (StartInclusive, i: usize) => (Direction::Back, i), |
| 90 | (End, i: usize) => (Direction::Front, i), |
| 91 | (EndInclusive, i: usize) => (Direction::Front, i.checked_add(1)?), |
| 92 | }) |
| 93 | } |
| 94 | |
| 95 | enum Direction { |
| 96 | Front, |
| 97 | Back, |
| 98 | } |
| 99 | |
| 100 | impl<T> [T] { |
| 101 | /// Returns the number of elements in the slice. |
| 102 | /// |
| 103 | /// # Examples |
| 104 | /// |
| 105 | /// ``` |
| 106 | /// let a = [1, 2, 3]; |
| 107 | /// assert_eq!(a.len(), 3); |
| 108 | /// ``` |
| 109 | #[lang = "slice_len_fn" ] |
| 110 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 111 | #[rustc_const_stable (feature = "const_slice_len" , since = "1.39.0" )] |
| 112 | #[inline ] |
| 113 | #[must_use ] |
| 114 | pub const fn len(&self) -> usize { |
| 115 | ptr::metadata(self) |
| 116 | } |
| 117 | |
| 118 | /// Returns `true` if the slice has a length of 0. |
| 119 | /// |
| 120 | /// # Examples |
| 121 | /// |
| 122 | /// ``` |
| 123 | /// let a = [1, 2, 3]; |
| 124 | /// assert!(!a.is_empty()); |
| 125 | /// |
| 126 | /// let b: &[i32] = &[]; |
| 127 | /// assert!(b.is_empty()); |
| 128 | /// ``` |
| 129 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 130 | #[rustc_const_stable (feature = "const_slice_is_empty" , since = "1.39.0" )] |
| 131 | #[inline ] |
| 132 | #[must_use ] |
| 133 | pub const fn is_empty(&self) -> bool { |
| 134 | self.len() == 0 |
| 135 | } |
| 136 | |
| 137 | /// Returns the first element of the slice, or `None` if it is empty. |
| 138 | /// |
| 139 | /// # Examples |
| 140 | /// |
| 141 | /// ``` |
| 142 | /// let v = [10, 40, 30]; |
| 143 | /// assert_eq!(Some(&10), v.first()); |
| 144 | /// |
| 145 | /// let w: &[i32] = &[]; |
| 146 | /// assert_eq!(None, w.first()); |
| 147 | /// ``` |
| 148 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 149 | #[rustc_const_stable (feature = "const_slice_first_last_not_mut" , since = "1.56.0" )] |
| 150 | #[inline ] |
| 151 | #[must_use ] |
| 152 | pub const fn first(&self) -> Option<&T> { |
| 153 | if let [first, ..] = self { Some(first) } else { None } |
| 154 | } |
| 155 | |
| 156 | /// Returns a mutable reference to the first element of the slice, or `None` if it is empty. |
| 157 | /// |
| 158 | /// # Examples |
| 159 | /// |
| 160 | /// ``` |
| 161 | /// let x = &mut [0, 1, 2]; |
| 162 | /// |
| 163 | /// if let Some(first) = x.first_mut() { |
| 164 | /// *first = 5; |
| 165 | /// } |
| 166 | /// assert_eq!(x, &[5, 1, 2]); |
| 167 | /// |
| 168 | /// let y: &mut [i32] = &mut []; |
| 169 | /// assert_eq!(None, y.first_mut()); |
| 170 | /// ``` |
| 171 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 172 | #[rustc_const_stable (feature = "const_slice_first_last" , since = "1.83.0" )] |
| 173 | #[inline ] |
| 174 | #[must_use ] |
| 175 | pub const fn first_mut(&mut self) -> Option<&mut T> { |
| 176 | if let [first, ..] = self { Some(first) } else { None } |
| 177 | } |
| 178 | |
| 179 | /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. |
| 180 | /// |
| 181 | /// # Examples |
| 182 | /// |
| 183 | /// ``` |
| 184 | /// let x = &[0, 1, 2]; |
| 185 | /// |
| 186 | /// if let Some((first, elements)) = x.split_first() { |
| 187 | /// assert_eq!(first, &0); |
| 188 | /// assert_eq!(elements, &[1, 2]); |
| 189 | /// } |
| 190 | /// ``` |
| 191 | #[stable (feature = "slice_splits" , since = "1.5.0" )] |
| 192 | #[rustc_const_stable (feature = "const_slice_first_last_not_mut" , since = "1.56.0" )] |
| 193 | #[inline ] |
| 194 | #[must_use ] |
| 195 | pub const fn split_first(&self) -> Option<(&T, &[T])> { |
| 196 | if let [first, tail @ ..] = self { Some((first, tail)) } else { None } |
| 197 | } |
| 198 | |
| 199 | /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. |
| 200 | /// |
| 201 | /// # Examples |
| 202 | /// |
| 203 | /// ``` |
| 204 | /// let x = &mut [0, 1, 2]; |
| 205 | /// |
| 206 | /// if let Some((first, elements)) = x.split_first_mut() { |
| 207 | /// *first = 3; |
| 208 | /// elements[0] = 4; |
| 209 | /// elements[1] = 5; |
| 210 | /// } |
| 211 | /// assert_eq!(x, &[3, 4, 5]); |
| 212 | /// ``` |
| 213 | #[stable (feature = "slice_splits" , since = "1.5.0" )] |
| 214 | #[rustc_const_stable (feature = "const_slice_first_last" , since = "1.83.0" )] |
| 215 | #[inline ] |
| 216 | #[must_use ] |
| 217 | pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> { |
| 218 | if let [first, tail @ ..] = self { Some((first, tail)) } else { None } |
| 219 | } |
| 220 | |
| 221 | /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. |
| 222 | /// |
| 223 | /// # Examples |
| 224 | /// |
| 225 | /// ``` |
| 226 | /// let x = &[0, 1, 2]; |
| 227 | /// |
| 228 | /// if let Some((last, elements)) = x.split_last() { |
| 229 | /// assert_eq!(last, &2); |
| 230 | /// assert_eq!(elements, &[0, 1]); |
| 231 | /// } |
| 232 | /// ``` |
| 233 | #[stable (feature = "slice_splits" , since = "1.5.0" )] |
| 234 | #[rustc_const_stable (feature = "const_slice_first_last_not_mut" , since = "1.56.0" )] |
| 235 | #[inline ] |
| 236 | #[must_use ] |
| 237 | pub const fn split_last(&self) -> Option<(&T, &[T])> { |
| 238 | if let [init @ .., last] = self { Some((last, init)) } else { None } |
| 239 | } |
| 240 | |
| 241 | /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. |
| 242 | /// |
| 243 | /// # Examples |
| 244 | /// |
| 245 | /// ``` |
| 246 | /// let x = &mut [0, 1, 2]; |
| 247 | /// |
| 248 | /// if let Some((last, elements)) = x.split_last_mut() { |
| 249 | /// *last = 3; |
| 250 | /// elements[0] = 4; |
| 251 | /// elements[1] = 5; |
| 252 | /// } |
| 253 | /// assert_eq!(x, &[4, 5, 3]); |
| 254 | /// ``` |
| 255 | #[stable (feature = "slice_splits" , since = "1.5.0" )] |
| 256 | #[rustc_const_stable (feature = "const_slice_first_last" , since = "1.83.0" )] |
| 257 | #[inline ] |
| 258 | #[must_use ] |
| 259 | pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> { |
| 260 | if let [init @ .., last] = self { Some((last, init)) } else { None } |
| 261 | } |
| 262 | |
| 263 | /// Returns the last element of the slice, or `None` if it is empty. |
| 264 | /// |
| 265 | /// # Examples |
| 266 | /// |
| 267 | /// ``` |
| 268 | /// let v = [10, 40, 30]; |
| 269 | /// assert_eq!(Some(&30), v.last()); |
| 270 | /// |
| 271 | /// let w: &[i32] = &[]; |
| 272 | /// assert_eq!(None, w.last()); |
| 273 | /// ``` |
| 274 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 275 | #[rustc_const_stable (feature = "const_slice_first_last_not_mut" , since = "1.56.0" )] |
| 276 | #[inline ] |
| 277 | #[must_use ] |
| 278 | pub const fn last(&self) -> Option<&T> { |
| 279 | if let [.., last] = self { Some(last) } else { None } |
| 280 | } |
| 281 | |
| 282 | /// Returns a mutable reference to the last item in the slice, or `None` if it is empty. |
| 283 | /// |
| 284 | /// # Examples |
| 285 | /// |
| 286 | /// ``` |
| 287 | /// let x = &mut [0, 1, 2]; |
| 288 | /// |
| 289 | /// if let Some(last) = x.last_mut() { |
| 290 | /// *last = 10; |
| 291 | /// } |
| 292 | /// assert_eq!(x, &[0, 1, 10]); |
| 293 | /// |
| 294 | /// let y: &mut [i32] = &mut []; |
| 295 | /// assert_eq!(None, y.last_mut()); |
| 296 | /// ``` |
| 297 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 298 | #[rustc_const_stable (feature = "const_slice_first_last" , since = "1.83.0" )] |
| 299 | #[inline ] |
| 300 | #[must_use ] |
| 301 | pub const fn last_mut(&mut self) -> Option<&mut T> { |
| 302 | if let [.., last] = self { Some(last) } else { None } |
| 303 | } |
| 304 | |
| 305 | /// Returns an array reference to the first `N` items in the slice. |
| 306 | /// |
| 307 | /// If the slice is not at least `N` in length, this will return `None`. |
| 308 | /// |
| 309 | /// # Examples |
| 310 | /// |
| 311 | /// ``` |
| 312 | /// let u = [10, 40, 30]; |
| 313 | /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>()); |
| 314 | /// |
| 315 | /// let v: &[i32] = &[10]; |
| 316 | /// assert_eq!(None, v.first_chunk::<2>()); |
| 317 | /// |
| 318 | /// let w: &[i32] = &[]; |
| 319 | /// assert_eq!(Some(&[]), w.first_chunk::<0>()); |
| 320 | /// ``` |
| 321 | #[inline ] |
| 322 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 323 | #[rustc_const_stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 324 | pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> { |
| 325 | if self.len() < N { |
| 326 | None |
| 327 | } else { |
| 328 | // SAFETY: We explicitly check for the correct number of elements, |
| 329 | // and do not let the reference outlive the slice. |
| 330 | Some(unsafe { &*(self.as_ptr().cast::<[T; N]>()) }) |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | /// Returns a mutable array reference to the first `N` items in the slice. |
| 335 | /// |
| 336 | /// If the slice is not at least `N` in length, this will return `None`. |
| 337 | /// |
| 338 | /// # Examples |
| 339 | /// |
| 340 | /// ``` |
| 341 | /// let x = &mut [0, 1, 2]; |
| 342 | /// |
| 343 | /// if let Some(first) = x.first_chunk_mut::<2>() { |
| 344 | /// first[0] = 5; |
| 345 | /// first[1] = 4; |
| 346 | /// } |
| 347 | /// assert_eq!(x, &[5, 4, 2]); |
| 348 | /// |
| 349 | /// assert_eq!(None, x.first_chunk_mut::<4>()); |
| 350 | /// ``` |
| 351 | #[inline ] |
| 352 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 353 | #[rustc_const_stable (feature = "const_slice_first_last_chunk" , since = "1.83.0" )] |
| 354 | pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> { |
| 355 | if self.len() < N { |
| 356 | None |
| 357 | } else { |
| 358 | // SAFETY: We explicitly check for the correct number of elements, |
| 359 | // do not let the reference outlive the slice, |
| 360 | // and require exclusive access to the entire slice to mutate the chunk. |
| 361 | Some(unsafe { &mut *(self.as_mut_ptr().cast::<[T; N]>()) }) |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | /// Returns an array reference to the first `N` items in the slice and the remaining slice. |
| 366 | /// |
| 367 | /// If the slice is not at least `N` in length, this will return `None`. |
| 368 | /// |
| 369 | /// # Examples |
| 370 | /// |
| 371 | /// ``` |
| 372 | /// let x = &[0, 1, 2]; |
| 373 | /// |
| 374 | /// if let Some((first, elements)) = x.split_first_chunk::<2>() { |
| 375 | /// assert_eq!(first, &[0, 1]); |
| 376 | /// assert_eq!(elements, &[2]); |
| 377 | /// } |
| 378 | /// |
| 379 | /// assert_eq!(None, x.split_first_chunk::<4>()); |
| 380 | /// ``` |
| 381 | #[inline ] |
| 382 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 383 | #[rustc_const_stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 384 | pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> { |
| 385 | if self.len() < N { |
| 386 | None |
| 387 | } else { |
| 388 | // SAFETY: We manually verified the bounds of the split. |
| 389 | let (first, tail) = unsafe { self.split_at_unchecked(N) }; |
| 390 | |
| 391 | // SAFETY: We explicitly check for the correct number of elements, |
| 392 | // and do not let the references outlive the slice. |
| 393 | Some((unsafe { &*(first.as_ptr().cast::<[T; N]>()) }, tail)) |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | /// Returns a mutable array reference to the first `N` items in the slice and the remaining |
| 398 | /// slice. |
| 399 | /// |
| 400 | /// If the slice is not at least `N` in length, this will return `None`. |
| 401 | /// |
| 402 | /// # Examples |
| 403 | /// |
| 404 | /// ``` |
| 405 | /// let x = &mut [0, 1, 2]; |
| 406 | /// |
| 407 | /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() { |
| 408 | /// first[0] = 3; |
| 409 | /// first[1] = 4; |
| 410 | /// elements[0] = 5; |
| 411 | /// } |
| 412 | /// assert_eq!(x, &[3, 4, 5]); |
| 413 | /// |
| 414 | /// assert_eq!(None, x.split_first_chunk_mut::<4>()); |
| 415 | /// ``` |
| 416 | #[inline ] |
| 417 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 418 | #[rustc_const_stable (feature = "const_slice_first_last_chunk" , since = "1.83.0" )] |
| 419 | pub const fn split_first_chunk_mut<const N: usize>( |
| 420 | &mut self, |
| 421 | ) -> Option<(&mut [T; N], &mut [T])> { |
| 422 | if self.len() < N { |
| 423 | None |
| 424 | } else { |
| 425 | // SAFETY: We manually verified the bounds of the split. |
| 426 | let (first, tail) = unsafe { self.split_at_mut_unchecked(N) }; |
| 427 | |
| 428 | // SAFETY: We explicitly check for the correct number of elements, |
| 429 | // do not let the reference outlive the slice, |
| 430 | // and enforce exclusive mutability of the chunk by the split. |
| 431 | Some((unsafe { &mut *(first.as_mut_ptr().cast::<[T; N]>()) }, tail)) |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | /// Returns an array reference to the last `N` items in the slice and the remaining slice. |
| 436 | /// |
| 437 | /// If the slice is not at least `N` in length, this will return `None`. |
| 438 | /// |
| 439 | /// # Examples |
| 440 | /// |
| 441 | /// ``` |
| 442 | /// let x = &[0, 1, 2]; |
| 443 | /// |
| 444 | /// if let Some((elements, last)) = x.split_last_chunk::<2>() { |
| 445 | /// assert_eq!(elements, &[0]); |
| 446 | /// assert_eq!(last, &[1, 2]); |
| 447 | /// } |
| 448 | /// |
| 449 | /// assert_eq!(None, x.split_last_chunk::<4>()); |
| 450 | /// ``` |
| 451 | #[inline ] |
| 452 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 453 | #[rustc_const_stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 454 | pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> { |
| 455 | if self.len() < N { |
| 456 | None |
| 457 | } else { |
| 458 | // SAFETY: We manually verified the bounds of the split. |
| 459 | let (init, last) = unsafe { self.split_at_unchecked(self.len() - N) }; |
| 460 | |
| 461 | // SAFETY: We explicitly check for the correct number of elements, |
| 462 | // and do not let the references outlive the slice. |
| 463 | Some((init, unsafe { &*(last.as_ptr().cast::<[T; N]>()) })) |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | /// Returns a mutable array reference to the last `N` items in the slice and the remaining |
| 468 | /// slice. |
| 469 | /// |
| 470 | /// If the slice is not at least `N` in length, this will return `None`. |
| 471 | /// |
| 472 | /// # Examples |
| 473 | /// |
| 474 | /// ``` |
| 475 | /// let x = &mut [0, 1, 2]; |
| 476 | /// |
| 477 | /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() { |
| 478 | /// last[0] = 3; |
| 479 | /// last[1] = 4; |
| 480 | /// elements[0] = 5; |
| 481 | /// } |
| 482 | /// assert_eq!(x, &[5, 3, 4]); |
| 483 | /// |
| 484 | /// assert_eq!(None, x.split_last_chunk_mut::<4>()); |
| 485 | /// ``` |
| 486 | #[inline ] |
| 487 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 488 | #[rustc_const_stable (feature = "const_slice_first_last_chunk" , since = "1.83.0" )] |
| 489 | pub const fn split_last_chunk_mut<const N: usize>( |
| 490 | &mut self, |
| 491 | ) -> Option<(&mut [T], &mut [T; N])> { |
| 492 | if self.len() < N { |
| 493 | None |
| 494 | } else { |
| 495 | // SAFETY: We manually verified the bounds of the split. |
| 496 | let (init, last) = unsafe { self.split_at_mut_unchecked(self.len() - N) }; |
| 497 | |
| 498 | // SAFETY: We explicitly check for the correct number of elements, |
| 499 | // do not let the reference outlive the slice, |
| 500 | // and enforce exclusive mutability of the chunk by the split. |
| 501 | Some((init, unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) })) |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | /// Returns an array reference to the last `N` items in the slice. |
| 506 | /// |
| 507 | /// If the slice is not at least `N` in length, this will return `None`. |
| 508 | /// |
| 509 | /// # Examples |
| 510 | /// |
| 511 | /// ``` |
| 512 | /// let u = [10, 40, 30]; |
| 513 | /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>()); |
| 514 | /// |
| 515 | /// let v: &[i32] = &[10]; |
| 516 | /// assert_eq!(None, v.last_chunk::<2>()); |
| 517 | /// |
| 518 | /// let w: &[i32] = &[]; |
| 519 | /// assert_eq!(Some(&[]), w.last_chunk::<0>()); |
| 520 | /// ``` |
| 521 | #[inline ] |
| 522 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 523 | #[rustc_const_stable (feature = "const_slice_last_chunk" , since = "1.80.0" )] |
| 524 | pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> { |
| 525 | if self.len() < N { |
| 526 | None |
| 527 | } else { |
| 528 | // SAFETY: We manually verified the bounds of the slice. |
| 529 | // FIXME(const-hack): Without const traits, we need this instead of `get_unchecked`. |
| 530 | let last = unsafe { self.split_at_unchecked(self.len() - N).1 }; |
| 531 | |
| 532 | // SAFETY: We explicitly check for the correct number of elements, |
| 533 | // and do not let the references outlive the slice. |
| 534 | Some(unsafe { &*(last.as_ptr().cast::<[T; N]>()) }) |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | /// Returns a mutable array reference to the last `N` items in the slice. |
| 539 | /// |
| 540 | /// If the slice is not at least `N` in length, this will return `None`. |
| 541 | /// |
| 542 | /// # Examples |
| 543 | /// |
| 544 | /// ``` |
| 545 | /// let x = &mut [0, 1, 2]; |
| 546 | /// |
| 547 | /// if let Some(last) = x.last_chunk_mut::<2>() { |
| 548 | /// last[0] = 10; |
| 549 | /// last[1] = 20; |
| 550 | /// } |
| 551 | /// assert_eq!(x, &[0, 10, 20]); |
| 552 | /// |
| 553 | /// assert_eq!(None, x.last_chunk_mut::<4>()); |
| 554 | /// ``` |
| 555 | #[inline ] |
| 556 | #[stable (feature = "slice_first_last_chunk" , since = "1.77.0" )] |
| 557 | #[rustc_const_stable (feature = "const_slice_first_last_chunk" , since = "1.83.0" )] |
| 558 | pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> { |
| 559 | if self.len() < N { |
| 560 | None |
| 561 | } else { |
| 562 | // SAFETY: We manually verified the bounds of the slice. |
| 563 | // FIXME(const-hack): Without const traits, we need this instead of `get_unchecked`. |
| 564 | let last = unsafe { self.split_at_mut_unchecked(self.len() - N).1 }; |
| 565 | |
| 566 | // SAFETY: We explicitly check for the correct number of elements, |
| 567 | // do not let the reference outlive the slice, |
| 568 | // and require exclusive access to the entire slice to mutate the chunk. |
| 569 | Some(unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) }) |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | /// Returns a reference to an element or subslice depending on the type of |
| 574 | /// index. |
| 575 | /// |
| 576 | /// - If given a position, returns a reference to the element at that |
| 577 | /// position or `None` if out of bounds. |
| 578 | /// - If given a range, returns the subslice corresponding to that range, |
| 579 | /// or `None` if out of bounds. |
| 580 | /// |
| 581 | /// # Examples |
| 582 | /// |
| 583 | /// ``` |
| 584 | /// let v = [10, 40, 30]; |
| 585 | /// assert_eq!(Some(&40), v.get(1)); |
| 586 | /// assert_eq!(Some(&[10, 40][..]), v.get(0..2)); |
| 587 | /// assert_eq!(None, v.get(3)); |
| 588 | /// assert_eq!(None, v.get(0..4)); |
| 589 | /// ``` |
| 590 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 591 | #[inline ] |
| 592 | #[must_use ] |
| 593 | pub fn get<I>(&self, index: I) -> Option<&I::Output> |
| 594 | where |
| 595 | I: SliceIndex<Self>, |
| 596 | { |
| 597 | index.get(self) |
| 598 | } |
| 599 | |
| 600 | /// Returns a mutable reference to an element or subslice depending on the |
| 601 | /// type of index (see [`get`]) or `None` if the index is out of bounds. |
| 602 | /// |
| 603 | /// [`get`]: slice::get |
| 604 | /// |
| 605 | /// # Examples |
| 606 | /// |
| 607 | /// ``` |
| 608 | /// let x = &mut [0, 1, 2]; |
| 609 | /// |
| 610 | /// if let Some(elem) = x.get_mut(1) { |
| 611 | /// *elem = 42; |
| 612 | /// } |
| 613 | /// assert_eq!(x, &[0, 42, 2]); |
| 614 | /// ``` |
| 615 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 616 | #[inline ] |
| 617 | #[must_use ] |
| 618 | pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output> |
| 619 | where |
| 620 | I: SliceIndex<Self>, |
| 621 | { |
| 622 | index.get_mut(self) |
| 623 | } |
| 624 | |
| 625 | /// Returns a reference to an element or subslice, without doing bounds |
| 626 | /// checking. |
| 627 | /// |
| 628 | /// For a safe alternative see [`get`]. |
| 629 | /// |
| 630 | /// # Safety |
| 631 | /// |
| 632 | /// Calling this method with an out-of-bounds index is *[undefined behavior]* |
| 633 | /// even if the resulting reference is not used. |
| 634 | /// |
| 635 | /// You can think of this like `.get(index).unwrap_unchecked()`. It's UB |
| 636 | /// to call `.get_unchecked(len)`, even if you immediately convert to a |
| 637 | /// pointer. And it's UB to call `.get_unchecked(..len + 1)`, |
| 638 | /// `.get_unchecked(..=len)`, or similar. |
| 639 | /// |
| 640 | /// [`get`]: slice::get |
| 641 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 642 | /// |
| 643 | /// # Examples |
| 644 | /// |
| 645 | /// ``` |
| 646 | /// let x = &[1, 2, 4]; |
| 647 | /// |
| 648 | /// unsafe { |
| 649 | /// assert_eq!(x.get_unchecked(1), &2); |
| 650 | /// } |
| 651 | /// ``` |
| 652 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 653 | #[inline ] |
| 654 | #[must_use ] |
| 655 | pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output |
| 656 | where |
| 657 | I: SliceIndex<Self>, |
| 658 | { |
| 659 | // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`; |
| 660 | // the slice is dereferenceable because `self` is a safe reference. |
| 661 | // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
| 662 | unsafe { &*index.get_unchecked(self) } |
| 663 | } |
| 664 | |
| 665 | /// Returns a mutable reference to an element or subslice, without doing |
| 666 | /// bounds checking. |
| 667 | /// |
| 668 | /// For a safe alternative see [`get_mut`]. |
| 669 | /// |
| 670 | /// # Safety |
| 671 | /// |
| 672 | /// Calling this method with an out-of-bounds index is *[undefined behavior]* |
| 673 | /// even if the resulting reference is not used. |
| 674 | /// |
| 675 | /// You can think of this like `.get_mut(index).unwrap_unchecked()`. It's |
| 676 | /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert |
| 677 | /// to a pointer. And it's UB to call `.get_unchecked_mut(..len + 1)`, |
| 678 | /// `.get_unchecked_mut(..=len)`, or similar. |
| 679 | /// |
| 680 | /// [`get_mut`]: slice::get_mut |
| 681 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 682 | /// |
| 683 | /// # Examples |
| 684 | /// |
| 685 | /// ``` |
| 686 | /// let x = &mut [1, 2, 4]; |
| 687 | /// |
| 688 | /// unsafe { |
| 689 | /// let elem = x.get_unchecked_mut(1); |
| 690 | /// *elem = 13; |
| 691 | /// } |
| 692 | /// assert_eq!(x, &[1, 13, 4]); |
| 693 | /// ``` |
| 694 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 695 | #[inline ] |
| 696 | #[must_use ] |
| 697 | pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output |
| 698 | where |
| 699 | I: SliceIndex<Self>, |
| 700 | { |
| 701 | // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`; |
| 702 | // the slice is dereferenceable because `self` is a safe reference. |
| 703 | // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
| 704 | unsafe { &mut *index.get_unchecked_mut(self) } |
| 705 | } |
| 706 | |
| 707 | /// Returns a raw pointer to the slice's buffer. |
| 708 | /// |
| 709 | /// The caller must ensure that the slice outlives the pointer this |
| 710 | /// function returns, or else it will end up dangling. |
| 711 | /// |
| 712 | /// The caller must also ensure that the memory the pointer (non-transitively) points to |
| 713 | /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer |
| 714 | /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`]. |
| 715 | /// |
| 716 | /// Modifying the container referenced by this slice may cause its buffer |
| 717 | /// to be reallocated, which would also make any pointers to it invalid. |
| 718 | /// |
| 719 | /// # Examples |
| 720 | /// |
| 721 | /// ``` |
| 722 | /// let x = &[1, 2, 4]; |
| 723 | /// let x_ptr = x.as_ptr(); |
| 724 | /// |
| 725 | /// unsafe { |
| 726 | /// for i in 0..x.len() { |
| 727 | /// assert_eq!(x.get_unchecked(i), &*x_ptr.add(i)); |
| 728 | /// } |
| 729 | /// } |
| 730 | /// ``` |
| 731 | /// |
| 732 | /// [`as_mut_ptr`]: slice::as_mut_ptr |
| 733 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 734 | #[rustc_const_stable (feature = "const_slice_as_ptr" , since = "1.32.0" )] |
| 735 | #[rustc_never_returns_null_ptr ] |
| 736 | #[rustc_as_ptr] |
| 737 | #[inline (always)] |
| 738 | #[must_use ] |
| 739 | pub const fn as_ptr(&self) -> *const T { |
| 740 | self as *const [T] as *const T |
| 741 | } |
| 742 | |
| 743 | /// Returns an unsafe mutable pointer to the slice's buffer. |
| 744 | /// |
| 745 | /// The caller must ensure that the slice outlives the pointer this |
| 746 | /// function returns, or else it will end up dangling. |
| 747 | /// |
| 748 | /// Modifying the container referenced by this slice may cause its buffer |
| 749 | /// to be reallocated, which would also make any pointers to it invalid. |
| 750 | /// |
| 751 | /// # Examples |
| 752 | /// |
| 753 | /// ``` |
| 754 | /// let x = &mut [1, 2, 4]; |
| 755 | /// let x_ptr = x.as_mut_ptr(); |
| 756 | /// |
| 757 | /// unsafe { |
| 758 | /// for i in 0..x.len() { |
| 759 | /// *x_ptr.add(i) += 2; |
| 760 | /// } |
| 761 | /// } |
| 762 | /// assert_eq!(x, &[3, 4, 6]); |
| 763 | /// ``` |
| 764 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 765 | #[rustc_const_stable (feature = "const_ptr_offset" , since = "1.61.0" )] |
| 766 | #[rustc_never_returns_null_ptr ] |
| 767 | #[rustc_as_ptr] |
| 768 | #[inline (always)] |
| 769 | #[must_use ] |
| 770 | pub const fn as_mut_ptr(&mut self) -> *mut T { |
| 771 | self as *mut [T] as *mut T |
| 772 | } |
| 773 | |
| 774 | /// Returns the two raw pointers spanning the slice. |
| 775 | /// |
| 776 | /// The returned range is half-open, which means that the end pointer |
| 777 | /// points *one past* the last element of the slice. This way, an empty |
| 778 | /// slice is represented by two equal pointers, and the difference between |
| 779 | /// the two pointers represents the size of the slice. |
| 780 | /// |
| 781 | /// See [`as_ptr`] for warnings on using these pointers. The end pointer |
| 782 | /// requires extra caution, as it does not point to a valid element in the |
| 783 | /// slice. |
| 784 | /// |
| 785 | /// This function is useful for interacting with foreign interfaces which |
| 786 | /// use two pointers to refer to a range of elements in memory, as is |
| 787 | /// common in C++. |
| 788 | /// |
| 789 | /// It can also be useful to check if a pointer to an element refers to an |
| 790 | /// element of this slice: |
| 791 | /// |
| 792 | /// ``` |
| 793 | /// let a = [1, 2, 3]; |
| 794 | /// let x = &a[1] as *const _; |
| 795 | /// let y = &5 as *const _; |
| 796 | /// |
| 797 | /// assert!(a.as_ptr_range().contains(&x)); |
| 798 | /// assert!(!a.as_ptr_range().contains(&y)); |
| 799 | /// ``` |
| 800 | /// |
| 801 | /// [`as_ptr`]: slice::as_ptr |
| 802 | #[stable (feature = "slice_ptr_range" , since = "1.48.0" )] |
| 803 | #[rustc_const_stable (feature = "const_ptr_offset" , since = "1.61.0" )] |
| 804 | #[inline ] |
| 805 | #[must_use ] |
| 806 | pub const fn as_ptr_range(&self) -> Range<*const T> { |
| 807 | let start = self.as_ptr(); |
| 808 | // SAFETY: The `add` here is safe, because: |
| 809 | // |
| 810 | // - Both pointers are part of the same object, as pointing directly |
| 811 | // past the object also counts. |
| 812 | // |
| 813 | // - The size of the slice is never larger than `isize::MAX` bytes, as |
| 814 | // noted here: |
| 815 | // - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447 |
| 816 | // - https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 817 | // - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety |
| 818 | // (This doesn't seem normative yet, but the very same assumption is |
| 819 | // made in many places, including the Index implementation of slices.) |
| 820 | // |
| 821 | // - There is no wrapping around involved, as slices do not wrap past |
| 822 | // the end of the address space. |
| 823 | // |
| 824 | // See the documentation of [`pointer::add`]. |
| 825 | let end = unsafe { start.add(self.len()) }; |
| 826 | start..end |
| 827 | } |
| 828 | |
| 829 | /// Returns the two unsafe mutable pointers spanning the slice. |
| 830 | /// |
| 831 | /// The returned range is half-open, which means that the end pointer |
| 832 | /// points *one past* the last element of the slice. This way, an empty |
| 833 | /// slice is represented by two equal pointers, and the difference between |
| 834 | /// the two pointers represents the size of the slice. |
| 835 | /// |
| 836 | /// See [`as_mut_ptr`] for warnings on using these pointers. The end |
| 837 | /// pointer requires extra caution, as it does not point to a valid element |
| 838 | /// in the slice. |
| 839 | /// |
| 840 | /// This function is useful for interacting with foreign interfaces which |
| 841 | /// use two pointers to refer to a range of elements in memory, as is |
| 842 | /// common in C++. |
| 843 | /// |
| 844 | /// [`as_mut_ptr`]: slice::as_mut_ptr |
| 845 | #[stable (feature = "slice_ptr_range" , since = "1.48.0" )] |
| 846 | #[rustc_const_stable (feature = "const_ptr_offset" , since = "1.61.0" )] |
| 847 | #[inline ] |
| 848 | #[must_use ] |
| 849 | pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> { |
| 850 | let start = self.as_mut_ptr(); |
| 851 | // SAFETY: See as_ptr_range() above for why `add` here is safe. |
| 852 | let end = unsafe { start.add(self.len()) }; |
| 853 | start..end |
| 854 | } |
| 855 | |
| 856 | /// Gets a reference to the underlying array. |
| 857 | /// |
| 858 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
| 859 | #[unstable (feature = "slice_as_array" , issue = "133508" )] |
| 860 | #[inline ] |
| 861 | #[must_use ] |
| 862 | pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> { |
| 863 | if self.len() == N { |
| 864 | let ptr = self.as_ptr() as *const [T; N]; |
| 865 | |
| 866 | // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length. |
| 867 | let me = unsafe { &*ptr }; |
| 868 | Some(me) |
| 869 | } else { |
| 870 | None |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | /// Gets a mutable reference to the slice's underlying array. |
| 875 | /// |
| 876 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
| 877 | #[unstable (feature = "slice_as_array" , issue = "133508" )] |
| 878 | #[inline ] |
| 879 | #[must_use ] |
| 880 | pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> { |
| 881 | if self.len() == N { |
| 882 | let ptr = self.as_mut_ptr() as *mut [T; N]; |
| 883 | |
| 884 | // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length. |
| 885 | let me = unsafe { &mut *ptr }; |
| 886 | Some(me) |
| 887 | } else { |
| 888 | None |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | /// Swaps two elements in the slice. |
| 893 | /// |
| 894 | /// If `a` equals to `b`, it's guaranteed that elements won't change value. |
| 895 | /// |
| 896 | /// # Arguments |
| 897 | /// |
| 898 | /// * a - The index of the first element |
| 899 | /// * b - The index of the second element |
| 900 | /// |
| 901 | /// # Panics |
| 902 | /// |
| 903 | /// Panics if `a` or `b` are out of bounds. |
| 904 | /// |
| 905 | /// # Examples |
| 906 | /// |
| 907 | /// ``` |
| 908 | /// let mut v = ["a" , "b" , "c" , "d" , "e" ]; |
| 909 | /// v.swap(2, 4); |
| 910 | /// assert!(v == ["a" , "b" , "e" , "d" , "c" ]); |
| 911 | /// ``` |
| 912 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 913 | #[rustc_const_stable (feature = "const_swap" , since = "1.85.0" )] |
| 914 | #[inline ] |
| 915 | #[track_caller ] |
| 916 | pub const fn swap(&mut self, a: usize, b: usize) { |
| 917 | // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343) |
| 918 | // Can't take two mutable loans from one vector, so instead use raw pointers. |
| 919 | let pa = &raw mut self[a]; |
| 920 | let pb = &raw mut self[b]; |
| 921 | // SAFETY: `pa` and `pb` have been created from safe mutable references and refer |
| 922 | // to elements in the slice and therefore are guaranteed to be valid and aligned. |
| 923 | // Note that accessing the elements behind `a` and `b` is checked and will |
| 924 | // panic when out of bounds. |
| 925 | unsafe { |
| 926 | ptr::swap(pa, pb); |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | /// Swaps two elements in the slice, without doing bounds checking. |
| 931 | /// |
| 932 | /// For a safe alternative see [`swap`]. |
| 933 | /// |
| 934 | /// # Arguments |
| 935 | /// |
| 936 | /// * a - The index of the first element |
| 937 | /// * b - The index of the second element |
| 938 | /// |
| 939 | /// # Safety |
| 940 | /// |
| 941 | /// Calling this method with an out-of-bounds index is *[undefined behavior]*. |
| 942 | /// The caller has to ensure that `a < self.len()` and `b < self.len()`. |
| 943 | /// |
| 944 | /// # Examples |
| 945 | /// |
| 946 | /// ``` |
| 947 | /// #![feature(slice_swap_unchecked)] |
| 948 | /// |
| 949 | /// let mut v = ["a" , "b" , "c" , "d" ]; |
| 950 | /// // SAFETY: we know that 1 and 3 are both indices of the slice |
| 951 | /// unsafe { v.swap_unchecked(1, 3) }; |
| 952 | /// assert!(v == ["a" , "d" , "c" , "b" ]); |
| 953 | /// ``` |
| 954 | /// |
| 955 | /// [`swap`]: slice::swap |
| 956 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 957 | #[unstable (feature = "slice_swap_unchecked" , issue = "88539" )] |
| 958 | pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) { |
| 959 | assert_unsafe_precondition!( |
| 960 | check_library_ub, |
| 961 | "slice::swap_unchecked requires that the indices are within the slice" , |
| 962 | ( |
| 963 | len: usize = self.len(), |
| 964 | a: usize = a, |
| 965 | b: usize = b, |
| 966 | ) => a < len && b < len, |
| 967 | ); |
| 968 | |
| 969 | let ptr = self.as_mut_ptr(); |
| 970 | // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()` |
| 971 | unsafe { |
| 972 | ptr::swap(ptr.add(a), ptr.add(b)); |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | /// Reverses the order of elements in the slice, in place. |
| 977 | /// |
| 978 | /// # Examples |
| 979 | /// |
| 980 | /// ``` |
| 981 | /// let mut v = [1, 2, 3]; |
| 982 | /// v.reverse(); |
| 983 | /// assert!(v == [3, 2, 1]); |
| 984 | /// ``` |
| 985 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 986 | #[rustc_const_unstable (feature = "const_slice_reverse" , issue = "135120" )] |
| 987 | #[inline ] |
| 988 | pub const fn reverse(&mut self) { |
| 989 | let half_len = self.len() / 2; |
| 990 | let Range { start, end } = self.as_mut_ptr_range(); |
| 991 | |
| 992 | // These slices will skip the middle item for an odd length, |
| 993 | // since that one doesn't need to move. |
| 994 | let (front_half, back_half) = |
| 995 | // SAFETY: Both are subparts of the original slice, so the memory |
| 996 | // range is valid, and they don't overlap because they're each only |
| 997 | // half (or less) of the original slice. |
| 998 | unsafe { |
| 999 | ( |
| 1000 | slice::from_raw_parts_mut(start, half_len), |
| 1001 | slice::from_raw_parts_mut(end.sub(half_len), half_len), |
| 1002 | ) |
| 1003 | }; |
| 1004 | |
| 1005 | // Introducing a function boundary here means that the two halves |
| 1006 | // get `noalias` markers, allowing better optimization as LLVM |
| 1007 | // knows that they're disjoint, unlike in the original slice. |
| 1008 | revswap(front_half, back_half, half_len); |
| 1009 | |
| 1010 | #[inline ] |
| 1011 | const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) { |
| 1012 | debug_assert!(a.len() == n); |
| 1013 | debug_assert!(b.len() == n); |
| 1014 | |
| 1015 | // Because this function is first compiled in isolation, |
| 1016 | // this check tells LLVM that the indexing below is |
| 1017 | // in-bounds. Then after inlining -- once the actual |
| 1018 | // lengths of the slices are known -- it's removed. |
| 1019 | let (a, _) = a.split_at_mut(n); |
| 1020 | let (b, _) = b.split_at_mut(n); |
| 1021 | |
| 1022 | let mut i = 0; |
| 1023 | while i < n { |
| 1024 | mem::swap(&mut a[i], &mut b[n - 1 - i]); |
| 1025 | i += 1; |
| 1026 | } |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | /// Returns an iterator over the slice. |
| 1031 | /// |
| 1032 | /// The iterator yields all items from start to end. |
| 1033 | /// |
| 1034 | /// # Examples |
| 1035 | /// |
| 1036 | /// ``` |
| 1037 | /// let x = &[1, 2, 4]; |
| 1038 | /// let mut iterator = x.iter(); |
| 1039 | /// |
| 1040 | /// assert_eq!(iterator.next(), Some(&1)); |
| 1041 | /// assert_eq!(iterator.next(), Some(&2)); |
| 1042 | /// assert_eq!(iterator.next(), Some(&4)); |
| 1043 | /// assert_eq!(iterator.next(), None); |
| 1044 | /// ``` |
| 1045 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1046 | #[inline ] |
| 1047 | #[rustc_diagnostic_item = "slice_iter" ] |
| 1048 | pub fn iter(&self) -> Iter<'_, T> { |
| 1049 | Iter::new(self) |
| 1050 | } |
| 1051 | |
| 1052 | /// Returns an iterator that allows modifying each value. |
| 1053 | /// |
| 1054 | /// The iterator yields all items from start to end. |
| 1055 | /// |
| 1056 | /// # Examples |
| 1057 | /// |
| 1058 | /// ``` |
| 1059 | /// let x = &mut [1, 2, 4]; |
| 1060 | /// for elem in x.iter_mut() { |
| 1061 | /// *elem += 2; |
| 1062 | /// } |
| 1063 | /// assert_eq!(x, &[3, 4, 6]); |
| 1064 | /// ``` |
| 1065 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1066 | #[inline ] |
| 1067 | pub fn iter_mut(&mut self) -> IterMut<'_, T> { |
| 1068 | IterMut::new(self) |
| 1069 | } |
| 1070 | |
| 1071 | /// Returns an iterator over all contiguous windows of length |
| 1072 | /// `size`. The windows overlap. If the slice is shorter than |
| 1073 | /// `size`, the iterator returns no values. |
| 1074 | /// |
| 1075 | /// # Panics |
| 1076 | /// |
| 1077 | /// Panics if `size` is zero. |
| 1078 | /// |
| 1079 | /// # Examples |
| 1080 | /// |
| 1081 | /// ``` |
| 1082 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1083 | /// let mut iter = slice.windows(3); |
| 1084 | /// assert_eq!(iter.next().unwrap(), &['l' , 'o' , 'r' ]); |
| 1085 | /// assert_eq!(iter.next().unwrap(), &['o' , 'r' , 'e' ]); |
| 1086 | /// assert_eq!(iter.next().unwrap(), &['r' , 'e' , 'm' ]); |
| 1087 | /// assert!(iter.next().is_none()); |
| 1088 | /// ``` |
| 1089 | /// |
| 1090 | /// If the slice is shorter than `size`: |
| 1091 | /// |
| 1092 | /// ``` |
| 1093 | /// let slice = ['f' , 'o' , 'o' ]; |
| 1094 | /// let mut iter = slice.windows(4); |
| 1095 | /// assert!(iter.next().is_none()); |
| 1096 | /// ``` |
| 1097 | /// |
| 1098 | /// Because the [Iterator] trait cannot represent the required lifetimes, |
| 1099 | /// there is no `windows_mut` analog to `windows`; |
| 1100 | /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references] |
| 1101 | /// (though a [LendingIterator] analog is possible). You can sometimes use |
| 1102 | /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in |
| 1103 | /// conjunction with `windows` instead: |
| 1104 | /// |
| 1105 | /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references |
| 1106 | /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html |
| 1107 | /// ``` |
| 1108 | /// use std::cell::Cell; |
| 1109 | /// |
| 1110 | /// let mut array = ['R' , 'u' , 's' , 't' , ' ' , '2' , '0' , '1' , '5' ]; |
| 1111 | /// let slice = &mut array[..]; |
| 1112 | /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells(); |
| 1113 | /// for w in slice_of_cells.windows(3) { |
| 1114 | /// Cell::swap(&w[0], &w[2]); |
| 1115 | /// } |
| 1116 | /// assert_eq!(array, ['s' , 't' , ' ' , '2' , '0' , '1' , '5' , 'u' , 'R' ]); |
| 1117 | /// ``` |
| 1118 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1119 | #[inline ] |
| 1120 | #[track_caller ] |
| 1121 | pub fn windows(&self, size: usize) -> Windows<'_, T> { |
| 1122 | let size = NonZero::new(size).expect("window size must be non-zero" ); |
| 1123 | Windows::new(self, size) |
| 1124 | } |
| 1125 | |
| 1126 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the |
| 1127 | /// beginning of the slice. |
| 1128 | /// |
| 1129 | /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the |
| 1130 | /// slice, then the last chunk will not have length `chunk_size`. |
| 1131 | /// |
| 1132 | /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly |
| 1133 | /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the |
| 1134 | /// slice. |
| 1135 | /// |
| 1136 | /// # Panics |
| 1137 | /// |
| 1138 | /// Panics if `chunk_size` is zero. |
| 1139 | /// |
| 1140 | /// # Examples |
| 1141 | /// |
| 1142 | /// ``` |
| 1143 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1144 | /// let mut iter = slice.chunks(2); |
| 1145 | /// assert_eq!(iter.next().unwrap(), &['l' , 'o' ]); |
| 1146 | /// assert_eq!(iter.next().unwrap(), &['r' , 'e' ]); |
| 1147 | /// assert_eq!(iter.next().unwrap(), &['m' ]); |
| 1148 | /// assert!(iter.next().is_none()); |
| 1149 | /// ``` |
| 1150 | /// |
| 1151 | /// [`chunks_exact`]: slice::chunks_exact |
| 1152 | /// [`rchunks`]: slice::rchunks |
| 1153 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1154 | #[inline ] |
| 1155 | #[track_caller ] |
| 1156 | pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> { |
| 1157 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1158 | Chunks::new(self, chunk_size) |
| 1159 | } |
| 1160 | |
| 1161 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the |
| 1162 | /// beginning of the slice. |
| 1163 | /// |
| 1164 | /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the |
| 1165 | /// length of the slice, then the last chunk will not have length `chunk_size`. |
| 1166 | /// |
| 1167 | /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always |
| 1168 | /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at |
| 1169 | /// the end of the slice. |
| 1170 | /// |
| 1171 | /// # Panics |
| 1172 | /// |
| 1173 | /// Panics if `chunk_size` is zero. |
| 1174 | /// |
| 1175 | /// # Examples |
| 1176 | /// |
| 1177 | /// ``` |
| 1178 | /// let v = &mut [0, 0, 0, 0, 0]; |
| 1179 | /// let mut count = 1; |
| 1180 | /// |
| 1181 | /// for chunk in v.chunks_mut(2) { |
| 1182 | /// for elem in chunk.iter_mut() { |
| 1183 | /// *elem += count; |
| 1184 | /// } |
| 1185 | /// count += 1; |
| 1186 | /// } |
| 1187 | /// assert_eq!(v, &[1, 1, 2, 2, 3]); |
| 1188 | /// ``` |
| 1189 | /// |
| 1190 | /// [`chunks_exact_mut`]: slice::chunks_exact_mut |
| 1191 | /// [`rchunks_mut`]: slice::rchunks_mut |
| 1192 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1193 | #[inline ] |
| 1194 | #[track_caller ] |
| 1195 | pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> { |
| 1196 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1197 | ChunksMut::new(self, chunk_size) |
| 1198 | } |
| 1199 | |
| 1200 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the |
| 1201 | /// beginning of the slice. |
| 1202 | /// |
| 1203 | /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the |
| 1204 | /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved |
| 1205 | /// from the `remainder` function of the iterator. |
| 1206 | /// |
| 1207 | /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the |
| 1208 | /// resulting code better than in the case of [`chunks`]. |
| 1209 | /// |
| 1210 | /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller |
| 1211 | /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice. |
| 1212 | /// |
| 1213 | /// # Panics |
| 1214 | /// |
| 1215 | /// Panics if `chunk_size` is zero. |
| 1216 | /// |
| 1217 | /// # Examples |
| 1218 | /// |
| 1219 | /// ``` |
| 1220 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1221 | /// let mut iter = slice.chunks_exact(2); |
| 1222 | /// assert_eq!(iter.next().unwrap(), &['l' , 'o' ]); |
| 1223 | /// assert_eq!(iter.next().unwrap(), &['r' , 'e' ]); |
| 1224 | /// assert!(iter.next().is_none()); |
| 1225 | /// assert_eq!(iter.remainder(), &['m' ]); |
| 1226 | /// ``` |
| 1227 | /// |
| 1228 | /// [`chunks`]: slice::chunks |
| 1229 | /// [`rchunks_exact`]: slice::rchunks_exact |
| 1230 | #[stable (feature = "chunks_exact" , since = "1.31.0" )] |
| 1231 | #[inline ] |
| 1232 | #[track_caller ] |
| 1233 | pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> { |
| 1234 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1235 | ChunksExact::new(self, chunk_size) |
| 1236 | } |
| 1237 | |
| 1238 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the |
| 1239 | /// beginning of the slice. |
| 1240 | /// |
| 1241 | /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the |
| 1242 | /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be |
| 1243 | /// retrieved from the `into_remainder` function of the iterator. |
| 1244 | /// |
| 1245 | /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the |
| 1246 | /// resulting code better than in the case of [`chunks_mut`]. |
| 1247 | /// |
| 1248 | /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a |
| 1249 | /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of |
| 1250 | /// the slice. |
| 1251 | /// |
| 1252 | /// # Panics |
| 1253 | /// |
| 1254 | /// Panics if `chunk_size` is zero. |
| 1255 | /// |
| 1256 | /// # Examples |
| 1257 | /// |
| 1258 | /// ``` |
| 1259 | /// let v = &mut [0, 0, 0, 0, 0]; |
| 1260 | /// let mut count = 1; |
| 1261 | /// |
| 1262 | /// for chunk in v.chunks_exact_mut(2) { |
| 1263 | /// for elem in chunk.iter_mut() { |
| 1264 | /// *elem += count; |
| 1265 | /// } |
| 1266 | /// count += 1; |
| 1267 | /// } |
| 1268 | /// assert_eq!(v, &[1, 1, 2, 2, 0]); |
| 1269 | /// ``` |
| 1270 | /// |
| 1271 | /// [`chunks_mut`]: slice::chunks_mut |
| 1272 | /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut |
| 1273 | #[stable (feature = "chunks_exact" , since = "1.31.0" )] |
| 1274 | #[inline ] |
| 1275 | #[track_caller ] |
| 1276 | pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> { |
| 1277 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1278 | ChunksExactMut::new(self, chunk_size) |
| 1279 | } |
| 1280 | |
| 1281 | /// Splits the slice into a slice of `N`-element arrays, |
| 1282 | /// assuming that there's no remainder. |
| 1283 | /// |
| 1284 | /// # Safety |
| 1285 | /// |
| 1286 | /// This may only be called when |
| 1287 | /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`). |
| 1288 | /// - `N != 0`. |
| 1289 | /// |
| 1290 | /// # Examples |
| 1291 | /// |
| 1292 | /// ``` |
| 1293 | /// #![feature(slice_as_chunks)] |
| 1294 | /// let slice: &[char] = &['l' , 'o' , 'r' , 'e' , 'm' , '!' ]; |
| 1295 | /// let chunks: &[[char; 1]] = |
| 1296 | /// // SAFETY: 1-element chunks never have remainder |
| 1297 | /// unsafe { slice.as_chunks_unchecked() }; |
| 1298 | /// assert_eq!(chunks, &[['l' ], ['o' ], ['r' ], ['e' ], ['m' ], ['!' ]]); |
| 1299 | /// let chunks: &[[char; 3]] = |
| 1300 | /// // SAFETY: The slice length (6) is a multiple of 3 |
| 1301 | /// unsafe { slice.as_chunks_unchecked() }; |
| 1302 | /// assert_eq!(chunks, &[['l' , 'o' , 'r' ], ['e' , 'm' , '!' ]]); |
| 1303 | /// |
| 1304 | /// // These would be unsound: |
| 1305 | /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5 |
| 1306 | /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed |
| 1307 | /// ``` |
| 1308 | #[unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1309 | #[rustc_const_unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1310 | #[inline ] |
| 1311 | #[must_use ] |
| 1312 | pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] { |
| 1313 | assert_unsafe_precondition!( |
| 1314 | check_language_ub, |
| 1315 | "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks" , |
| 1316 | (n: usize = N, len: usize = self.len()) => n != 0 && len % n == 0, |
| 1317 | ); |
| 1318 | // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length |
| 1319 | let new_len = unsafe { exact_div(self.len(), N) }; |
| 1320 | // SAFETY: We cast a slice of `new_len * N` elements into |
| 1321 | // a slice of `new_len` many `N` elements chunks. |
| 1322 | unsafe { from_raw_parts(self.as_ptr().cast(), new_len) } |
| 1323 | } |
| 1324 | |
| 1325 | /// Splits the slice into a slice of `N`-element arrays, |
| 1326 | /// starting at the beginning of the slice, |
| 1327 | /// and a remainder slice with length strictly less than `N`. |
| 1328 | /// |
| 1329 | /// # Panics |
| 1330 | /// |
| 1331 | /// Panics if `N` is zero. This check will most probably get changed to a compile time |
| 1332 | /// error before this method gets stabilized. |
| 1333 | /// |
| 1334 | /// # Examples |
| 1335 | /// |
| 1336 | /// ``` |
| 1337 | /// #![feature(slice_as_chunks)] |
| 1338 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1339 | /// let (chunks, remainder) = slice.as_chunks(); |
| 1340 | /// assert_eq!(chunks, &[['l' , 'o' ], ['r' , 'e' ]]); |
| 1341 | /// assert_eq!(remainder, &['m' ]); |
| 1342 | /// ``` |
| 1343 | /// |
| 1344 | /// If you expect the slice to be an exact multiple, you can combine |
| 1345 | /// `let`-`else` with an empty slice pattern: |
| 1346 | /// ``` |
| 1347 | /// #![feature(slice_as_chunks)] |
| 1348 | /// let slice = ['R' , 'u' , 's' , 't' ]; |
| 1349 | /// let (chunks, []) = slice.as_chunks::<2>() else { |
| 1350 | /// panic!("slice didn't have even length" ) |
| 1351 | /// }; |
| 1352 | /// assert_eq!(chunks, &[['R' , 'u' ], ['s' , 't' ]]); |
| 1353 | /// ``` |
| 1354 | #[unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1355 | #[rustc_const_unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1356 | #[inline ] |
| 1357 | #[track_caller ] |
| 1358 | #[must_use ] |
| 1359 | pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) { |
| 1360 | assert!(N != 0, "chunk size must be non-zero" ); |
| 1361 | let len_rounded_down = self.len() / N * N; |
| 1362 | // SAFETY: The rounded-down value is always the same or smaller than the |
| 1363 | // original length, and thus must be in-bounds of the slice. |
| 1364 | let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) }; |
| 1365 | // SAFETY: We already panicked for zero, and ensured by construction |
| 1366 | // that the length of the subslice is a multiple of N. |
| 1367 | let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() }; |
| 1368 | (array_slice, remainder) |
| 1369 | } |
| 1370 | |
| 1371 | /// Splits the slice into a slice of `N`-element arrays, |
| 1372 | /// starting at the end of the slice, |
| 1373 | /// and a remainder slice with length strictly less than `N`. |
| 1374 | /// |
| 1375 | /// # Panics |
| 1376 | /// |
| 1377 | /// Panics if `N` is zero. This check will most probably get changed to a compile time |
| 1378 | /// error before this method gets stabilized. |
| 1379 | /// |
| 1380 | /// # Examples |
| 1381 | /// |
| 1382 | /// ``` |
| 1383 | /// #![feature(slice_as_chunks)] |
| 1384 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1385 | /// let (remainder, chunks) = slice.as_rchunks(); |
| 1386 | /// assert_eq!(remainder, &['l' ]); |
| 1387 | /// assert_eq!(chunks, &[['o' , 'r' ], ['e' , 'm' ]]); |
| 1388 | /// ``` |
| 1389 | #[unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1390 | #[rustc_const_unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1391 | #[inline ] |
| 1392 | #[track_caller ] |
| 1393 | #[must_use ] |
| 1394 | pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) { |
| 1395 | assert!(N != 0, "chunk size must be non-zero" ); |
| 1396 | let len = self.len() / N; |
| 1397 | let (remainder, multiple_of_n) = self.split_at(self.len() - len * N); |
| 1398 | // SAFETY: We already panicked for zero, and ensured by construction |
| 1399 | // that the length of the subslice is a multiple of N. |
| 1400 | let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() }; |
| 1401 | (remainder, array_slice) |
| 1402 | } |
| 1403 | |
| 1404 | /// Returns an iterator over `N` elements of the slice at a time, starting at the |
| 1405 | /// beginning of the slice. |
| 1406 | /// |
| 1407 | /// The chunks are array references and do not overlap. If `N` does not divide the |
| 1408 | /// length of the slice, then the last up to `N-1` elements will be omitted and can be |
| 1409 | /// retrieved from the `remainder` function of the iterator. |
| 1410 | /// |
| 1411 | /// This method is the const generic equivalent of [`chunks_exact`]. |
| 1412 | /// |
| 1413 | /// # Panics |
| 1414 | /// |
| 1415 | /// Panics if `N` is zero. This check will most probably get changed to a compile time |
| 1416 | /// error before this method gets stabilized. |
| 1417 | /// |
| 1418 | /// # Examples |
| 1419 | /// |
| 1420 | /// ``` |
| 1421 | /// #![feature(array_chunks)] |
| 1422 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1423 | /// let mut iter = slice.array_chunks(); |
| 1424 | /// assert_eq!(iter.next().unwrap(), &['l' , 'o' ]); |
| 1425 | /// assert_eq!(iter.next().unwrap(), &['r' , 'e' ]); |
| 1426 | /// assert!(iter.next().is_none()); |
| 1427 | /// assert_eq!(iter.remainder(), &['m' ]); |
| 1428 | /// ``` |
| 1429 | /// |
| 1430 | /// [`chunks_exact`]: slice::chunks_exact |
| 1431 | #[unstable (feature = "array_chunks" , issue = "74985" )] |
| 1432 | #[inline ] |
| 1433 | #[track_caller ] |
| 1434 | pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> { |
| 1435 | assert!(N != 0, "chunk size must be non-zero" ); |
| 1436 | ArrayChunks::new(self) |
| 1437 | } |
| 1438 | |
| 1439 | /// Splits the slice into a slice of `N`-element arrays, |
| 1440 | /// assuming that there's no remainder. |
| 1441 | /// |
| 1442 | /// # Safety |
| 1443 | /// |
| 1444 | /// This may only be called when |
| 1445 | /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`). |
| 1446 | /// - `N != 0`. |
| 1447 | /// |
| 1448 | /// # Examples |
| 1449 | /// |
| 1450 | /// ``` |
| 1451 | /// #![feature(slice_as_chunks)] |
| 1452 | /// let slice: &mut [char] = &mut ['l' , 'o' , 'r' , 'e' , 'm' , '!' ]; |
| 1453 | /// let chunks: &mut [[char; 1]] = |
| 1454 | /// // SAFETY: 1-element chunks never have remainder |
| 1455 | /// unsafe { slice.as_chunks_unchecked_mut() }; |
| 1456 | /// chunks[0] = ['L' ]; |
| 1457 | /// assert_eq!(chunks, &[['L' ], ['o' ], ['r' ], ['e' ], ['m' ], ['!' ]]); |
| 1458 | /// let chunks: &mut [[char; 3]] = |
| 1459 | /// // SAFETY: The slice length (6) is a multiple of 3 |
| 1460 | /// unsafe { slice.as_chunks_unchecked_mut() }; |
| 1461 | /// chunks[1] = ['a' , 'x' , '?' ]; |
| 1462 | /// assert_eq!(slice, &['L' , 'o' , 'r' , 'a' , 'x' , '?' ]); |
| 1463 | /// |
| 1464 | /// // These would be unsound: |
| 1465 | /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5 |
| 1466 | /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed |
| 1467 | /// ``` |
| 1468 | #[unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1469 | #[rustc_const_unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1470 | #[inline ] |
| 1471 | #[must_use ] |
| 1472 | pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] { |
| 1473 | assert_unsafe_precondition!( |
| 1474 | check_language_ub, |
| 1475 | "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks" , |
| 1476 | (n: usize = N, len: usize = self.len()) => n != 0 && len % n == 0 |
| 1477 | ); |
| 1478 | // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length |
| 1479 | let new_len = unsafe { exact_div(self.len(), N) }; |
| 1480 | // SAFETY: We cast a slice of `new_len * N` elements into |
| 1481 | // a slice of `new_len` many `N` elements chunks. |
| 1482 | unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) } |
| 1483 | } |
| 1484 | |
| 1485 | /// Splits the slice into a slice of `N`-element arrays, |
| 1486 | /// starting at the beginning of the slice, |
| 1487 | /// and a remainder slice with length strictly less than `N`. |
| 1488 | /// |
| 1489 | /// # Panics |
| 1490 | /// |
| 1491 | /// Panics if `N` is zero. This check will most probably get changed to a compile time |
| 1492 | /// error before this method gets stabilized. |
| 1493 | /// |
| 1494 | /// # Examples |
| 1495 | /// |
| 1496 | /// ``` |
| 1497 | /// #![feature(slice_as_chunks)] |
| 1498 | /// let v = &mut [0, 0, 0, 0, 0]; |
| 1499 | /// let mut count = 1; |
| 1500 | /// |
| 1501 | /// let (chunks, remainder) = v.as_chunks_mut(); |
| 1502 | /// remainder[0] = 9; |
| 1503 | /// for chunk in chunks { |
| 1504 | /// *chunk = [count; 2]; |
| 1505 | /// count += 1; |
| 1506 | /// } |
| 1507 | /// assert_eq!(v, &[1, 1, 2, 2, 9]); |
| 1508 | /// ``` |
| 1509 | #[unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1510 | #[rustc_const_unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1511 | #[inline ] |
| 1512 | #[track_caller ] |
| 1513 | #[must_use ] |
| 1514 | pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) { |
| 1515 | assert!(N != 0, "chunk size must be non-zero" ); |
| 1516 | let len_rounded_down = self.len() / N * N; |
| 1517 | // SAFETY: The rounded-down value is always the same or smaller than the |
| 1518 | // original length, and thus must be in-bounds of the slice. |
| 1519 | let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) }; |
| 1520 | // SAFETY: We already panicked for zero, and ensured by construction |
| 1521 | // that the length of the subslice is a multiple of N. |
| 1522 | let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() }; |
| 1523 | (array_slice, remainder) |
| 1524 | } |
| 1525 | |
| 1526 | /// Splits the slice into a slice of `N`-element arrays, |
| 1527 | /// starting at the end of the slice, |
| 1528 | /// and a remainder slice with length strictly less than `N`. |
| 1529 | /// |
| 1530 | /// # Panics |
| 1531 | /// |
| 1532 | /// Panics if `N` is zero. This check will most probably get changed to a compile time |
| 1533 | /// error before this method gets stabilized. |
| 1534 | /// |
| 1535 | /// # Examples |
| 1536 | /// |
| 1537 | /// ``` |
| 1538 | /// #![feature(slice_as_chunks)] |
| 1539 | /// let v = &mut [0, 0, 0, 0, 0]; |
| 1540 | /// let mut count = 1; |
| 1541 | /// |
| 1542 | /// let (remainder, chunks) = v.as_rchunks_mut(); |
| 1543 | /// remainder[0] = 9; |
| 1544 | /// for chunk in chunks { |
| 1545 | /// *chunk = [count; 2]; |
| 1546 | /// count += 1; |
| 1547 | /// } |
| 1548 | /// assert_eq!(v, &[9, 1, 1, 2, 2]); |
| 1549 | /// ``` |
| 1550 | #[unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1551 | #[rustc_const_unstable (feature = "slice_as_chunks" , issue = "74985" )] |
| 1552 | #[inline ] |
| 1553 | #[track_caller ] |
| 1554 | #[must_use ] |
| 1555 | pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) { |
| 1556 | assert!(N != 0, "chunk size must be non-zero" ); |
| 1557 | let len = self.len() / N; |
| 1558 | let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N); |
| 1559 | // SAFETY: We already panicked for zero, and ensured by construction |
| 1560 | // that the length of the subslice is a multiple of N. |
| 1561 | let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() }; |
| 1562 | (remainder, array_slice) |
| 1563 | } |
| 1564 | |
| 1565 | /// Returns an iterator over `N` elements of the slice at a time, starting at the |
| 1566 | /// beginning of the slice. |
| 1567 | /// |
| 1568 | /// The chunks are mutable array references and do not overlap. If `N` does not divide |
| 1569 | /// the length of the slice, then the last up to `N-1` elements will be omitted and |
| 1570 | /// can be retrieved from the `into_remainder` function of the iterator. |
| 1571 | /// |
| 1572 | /// This method is the const generic equivalent of [`chunks_exact_mut`]. |
| 1573 | /// |
| 1574 | /// # Panics |
| 1575 | /// |
| 1576 | /// Panics if `N` is zero. This check will most probably get changed to a compile time |
| 1577 | /// error before this method gets stabilized. |
| 1578 | /// |
| 1579 | /// # Examples |
| 1580 | /// |
| 1581 | /// ``` |
| 1582 | /// #![feature(array_chunks)] |
| 1583 | /// let v = &mut [0, 0, 0, 0, 0]; |
| 1584 | /// let mut count = 1; |
| 1585 | /// |
| 1586 | /// for chunk in v.array_chunks_mut() { |
| 1587 | /// *chunk = [count; 2]; |
| 1588 | /// count += 1; |
| 1589 | /// } |
| 1590 | /// assert_eq!(v, &[1, 1, 2, 2, 0]); |
| 1591 | /// ``` |
| 1592 | /// |
| 1593 | /// [`chunks_exact_mut`]: slice::chunks_exact_mut |
| 1594 | #[unstable (feature = "array_chunks" , issue = "74985" )] |
| 1595 | #[inline ] |
| 1596 | #[track_caller ] |
| 1597 | pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N> { |
| 1598 | assert!(N != 0, "chunk size must be non-zero" ); |
| 1599 | ArrayChunksMut::new(self) |
| 1600 | } |
| 1601 | |
| 1602 | /// Returns an iterator over overlapping windows of `N` elements of a slice, |
| 1603 | /// starting at the beginning of the slice. |
| 1604 | /// |
| 1605 | /// This is the const generic equivalent of [`windows`]. |
| 1606 | /// |
| 1607 | /// If `N` is greater than the size of the slice, it will return no windows. |
| 1608 | /// |
| 1609 | /// # Panics |
| 1610 | /// |
| 1611 | /// Panics if `N` is zero. This check will most probably get changed to a compile time |
| 1612 | /// error before this method gets stabilized. |
| 1613 | /// |
| 1614 | /// # Examples |
| 1615 | /// |
| 1616 | /// ``` |
| 1617 | /// #![feature(array_windows)] |
| 1618 | /// let slice = [0, 1, 2, 3]; |
| 1619 | /// let mut iter = slice.array_windows(); |
| 1620 | /// assert_eq!(iter.next().unwrap(), &[0, 1]); |
| 1621 | /// assert_eq!(iter.next().unwrap(), &[1, 2]); |
| 1622 | /// assert_eq!(iter.next().unwrap(), &[2, 3]); |
| 1623 | /// assert!(iter.next().is_none()); |
| 1624 | /// ``` |
| 1625 | /// |
| 1626 | /// [`windows`]: slice::windows |
| 1627 | #[unstable (feature = "array_windows" , issue = "75027" )] |
| 1628 | #[inline ] |
| 1629 | #[track_caller ] |
| 1630 | pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> { |
| 1631 | assert!(N != 0, "window size must be non-zero" ); |
| 1632 | ArrayWindows::new(self) |
| 1633 | } |
| 1634 | |
| 1635 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end |
| 1636 | /// of the slice. |
| 1637 | /// |
| 1638 | /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the |
| 1639 | /// slice, then the last chunk will not have length `chunk_size`. |
| 1640 | /// |
| 1641 | /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly |
| 1642 | /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning |
| 1643 | /// of the slice. |
| 1644 | /// |
| 1645 | /// # Panics |
| 1646 | /// |
| 1647 | /// Panics if `chunk_size` is zero. |
| 1648 | /// |
| 1649 | /// # Examples |
| 1650 | /// |
| 1651 | /// ``` |
| 1652 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1653 | /// let mut iter = slice.rchunks(2); |
| 1654 | /// assert_eq!(iter.next().unwrap(), &['e' , 'm' ]); |
| 1655 | /// assert_eq!(iter.next().unwrap(), &['o' , 'r' ]); |
| 1656 | /// assert_eq!(iter.next().unwrap(), &['l' ]); |
| 1657 | /// assert!(iter.next().is_none()); |
| 1658 | /// ``` |
| 1659 | /// |
| 1660 | /// [`rchunks_exact`]: slice::rchunks_exact |
| 1661 | /// [`chunks`]: slice::chunks |
| 1662 | #[stable (feature = "rchunks" , since = "1.31.0" )] |
| 1663 | #[inline ] |
| 1664 | #[track_caller ] |
| 1665 | pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> { |
| 1666 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1667 | RChunks::new(self, chunk_size) |
| 1668 | } |
| 1669 | |
| 1670 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end |
| 1671 | /// of the slice. |
| 1672 | /// |
| 1673 | /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the |
| 1674 | /// length of the slice, then the last chunk will not have length `chunk_size`. |
| 1675 | /// |
| 1676 | /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always |
| 1677 | /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the |
| 1678 | /// beginning of the slice. |
| 1679 | /// |
| 1680 | /// # Panics |
| 1681 | /// |
| 1682 | /// Panics if `chunk_size` is zero. |
| 1683 | /// |
| 1684 | /// # Examples |
| 1685 | /// |
| 1686 | /// ``` |
| 1687 | /// let v = &mut [0, 0, 0, 0, 0]; |
| 1688 | /// let mut count = 1; |
| 1689 | /// |
| 1690 | /// for chunk in v.rchunks_mut(2) { |
| 1691 | /// for elem in chunk.iter_mut() { |
| 1692 | /// *elem += count; |
| 1693 | /// } |
| 1694 | /// count += 1; |
| 1695 | /// } |
| 1696 | /// assert_eq!(v, &[3, 2, 2, 1, 1]); |
| 1697 | /// ``` |
| 1698 | /// |
| 1699 | /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut |
| 1700 | /// [`chunks_mut`]: slice::chunks_mut |
| 1701 | #[stable (feature = "rchunks" , since = "1.31.0" )] |
| 1702 | #[inline ] |
| 1703 | #[track_caller ] |
| 1704 | pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> { |
| 1705 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1706 | RChunksMut::new(self, chunk_size) |
| 1707 | } |
| 1708 | |
| 1709 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the |
| 1710 | /// end of the slice. |
| 1711 | /// |
| 1712 | /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the |
| 1713 | /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved |
| 1714 | /// from the `remainder` function of the iterator. |
| 1715 | /// |
| 1716 | /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the |
| 1717 | /// resulting code better than in the case of [`rchunks`]. |
| 1718 | /// |
| 1719 | /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller |
| 1720 | /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the |
| 1721 | /// slice. |
| 1722 | /// |
| 1723 | /// # Panics |
| 1724 | /// |
| 1725 | /// Panics if `chunk_size` is zero. |
| 1726 | /// |
| 1727 | /// # Examples |
| 1728 | /// |
| 1729 | /// ``` |
| 1730 | /// let slice = ['l' , 'o' , 'r' , 'e' , 'm' ]; |
| 1731 | /// let mut iter = slice.rchunks_exact(2); |
| 1732 | /// assert_eq!(iter.next().unwrap(), &['e' , 'm' ]); |
| 1733 | /// assert_eq!(iter.next().unwrap(), &['o' , 'r' ]); |
| 1734 | /// assert!(iter.next().is_none()); |
| 1735 | /// assert_eq!(iter.remainder(), &['l' ]); |
| 1736 | /// ``` |
| 1737 | /// |
| 1738 | /// [`chunks`]: slice::chunks |
| 1739 | /// [`rchunks`]: slice::rchunks |
| 1740 | /// [`chunks_exact`]: slice::chunks_exact |
| 1741 | #[stable (feature = "rchunks" , since = "1.31.0" )] |
| 1742 | #[inline ] |
| 1743 | #[track_caller ] |
| 1744 | pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> { |
| 1745 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1746 | RChunksExact::new(self, chunk_size) |
| 1747 | } |
| 1748 | |
| 1749 | /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end |
| 1750 | /// of the slice. |
| 1751 | /// |
| 1752 | /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the |
| 1753 | /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be |
| 1754 | /// retrieved from the `into_remainder` function of the iterator. |
| 1755 | /// |
| 1756 | /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the |
| 1757 | /// resulting code better than in the case of [`chunks_mut`]. |
| 1758 | /// |
| 1759 | /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a |
| 1760 | /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning |
| 1761 | /// of the slice. |
| 1762 | /// |
| 1763 | /// # Panics |
| 1764 | /// |
| 1765 | /// Panics if `chunk_size` is zero. |
| 1766 | /// |
| 1767 | /// # Examples |
| 1768 | /// |
| 1769 | /// ``` |
| 1770 | /// let v = &mut [0, 0, 0, 0, 0]; |
| 1771 | /// let mut count = 1; |
| 1772 | /// |
| 1773 | /// for chunk in v.rchunks_exact_mut(2) { |
| 1774 | /// for elem in chunk.iter_mut() { |
| 1775 | /// *elem += count; |
| 1776 | /// } |
| 1777 | /// count += 1; |
| 1778 | /// } |
| 1779 | /// assert_eq!(v, &[0, 2, 2, 1, 1]); |
| 1780 | /// ``` |
| 1781 | /// |
| 1782 | /// [`chunks_mut`]: slice::chunks_mut |
| 1783 | /// [`rchunks_mut`]: slice::rchunks_mut |
| 1784 | /// [`chunks_exact_mut`]: slice::chunks_exact_mut |
| 1785 | #[stable (feature = "rchunks" , since = "1.31.0" )] |
| 1786 | #[inline ] |
| 1787 | #[track_caller ] |
| 1788 | pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> { |
| 1789 | assert!(chunk_size != 0, "chunk size must be non-zero" ); |
| 1790 | RChunksExactMut::new(self, chunk_size) |
| 1791 | } |
| 1792 | |
| 1793 | /// Returns an iterator over the slice producing non-overlapping runs |
| 1794 | /// of elements using the predicate to separate them. |
| 1795 | /// |
| 1796 | /// The predicate is called for every pair of consecutive elements, |
| 1797 | /// meaning that it is called on `slice[0]` and `slice[1]`, |
| 1798 | /// followed by `slice[1]` and `slice[2]`, and so on. |
| 1799 | /// |
| 1800 | /// # Examples |
| 1801 | /// |
| 1802 | /// ``` |
| 1803 | /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2]; |
| 1804 | /// |
| 1805 | /// let mut iter = slice.chunk_by(|a, b| a == b); |
| 1806 | /// |
| 1807 | /// assert_eq!(iter.next(), Some(&[1, 1, 1][..])); |
| 1808 | /// assert_eq!(iter.next(), Some(&[3, 3][..])); |
| 1809 | /// assert_eq!(iter.next(), Some(&[2, 2, 2][..])); |
| 1810 | /// assert_eq!(iter.next(), None); |
| 1811 | /// ``` |
| 1812 | /// |
| 1813 | /// This method can be used to extract the sorted subslices: |
| 1814 | /// |
| 1815 | /// ``` |
| 1816 | /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4]; |
| 1817 | /// |
| 1818 | /// let mut iter = slice.chunk_by(|a, b| a <= b); |
| 1819 | /// |
| 1820 | /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..])); |
| 1821 | /// assert_eq!(iter.next(), Some(&[2, 3][..])); |
| 1822 | /// assert_eq!(iter.next(), Some(&[2, 3, 4][..])); |
| 1823 | /// assert_eq!(iter.next(), None); |
| 1824 | /// ``` |
| 1825 | #[stable (feature = "slice_group_by" , since = "1.77.0" )] |
| 1826 | #[inline ] |
| 1827 | pub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F> |
| 1828 | where |
| 1829 | F: FnMut(&T, &T) -> bool, |
| 1830 | { |
| 1831 | ChunkBy::new(self, pred) |
| 1832 | } |
| 1833 | |
| 1834 | /// Returns an iterator over the slice producing non-overlapping mutable |
| 1835 | /// runs of elements using the predicate to separate them. |
| 1836 | /// |
| 1837 | /// The predicate is called for every pair of consecutive elements, |
| 1838 | /// meaning that it is called on `slice[0]` and `slice[1]`, |
| 1839 | /// followed by `slice[1]` and `slice[2]`, and so on. |
| 1840 | /// |
| 1841 | /// # Examples |
| 1842 | /// |
| 1843 | /// ``` |
| 1844 | /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2]; |
| 1845 | /// |
| 1846 | /// let mut iter = slice.chunk_by_mut(|a, b| a == b); |
| 1847 | /// |
| 1848 | /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..])); |
| 1849 | /// assert_eq!(iter.next(), Some(&mut [3, 3][..])); |
| 1850 | /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..])); |
| 1851 | /// assert_eq!(iter.next(), None); |
| 1852 | /// ``` |
| 1853 | /// |
| 1854 | /// This method can be used to extract the sorted subslices: |
| 1855 | /// |
| 1856 | /// ``` |
| 1857 | /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4]; |
| 1858 | /// |
| 1859 | /// let mut iter = slice.chunk_by_mut(|a, b| a <= b); |
| 1860 | /// |
| 1861 | /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..])); |
| 1862 | /// assert_eq!(iter.next(), Some(&mut [2, 3][..])); |
| 1863 | /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..])); |
| 1864 | /// assert_eq!(iter.next(), None); |
| 1865 | /// ``` |
| 1866 | #[stable (feature = "slice_group_by" , since = "1.77.0" )] |
| 1867 | #[inline ] |
| 1868 | pub fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F> |
| 1869 | where |
| 1870 | F: FnMut(&T, &T) -> bool, |
| 1871 | { |
| 1872 | ChunkByMut::new(self, pred) |
| 1873 | } |
| 1874 | |
| 1875 | /// Divides one slice into two at an index. |
| 1876 | /// |
| 1877 | /// The first will contain all indices from `[0, mid)` (excluding |
| 1878 | /// the index `mid` itself) and the second will contain all |
| 1879 | /// indices from `[mid, len)` (excluding the index `len` itself). |
| 1880 | /// |
| 1881 | /// # Panics |
| 1882 | /// |
| 1883 | /// Panics if `mid > len`. For a non-panicking alternative see |
| 1884 | /// [`split_at_checked`](slice::split_at_checked). |
| 1885 | /// |
| 1886 | /// # Examples |
| 1887 | /// |
| 1888 | /// ``` |
| 1889 | /// let v = ['a' , 'b' , 'c' ]; |
| 1890 | /// |
| 1891 | /// { |
| 1892 | /// let (left, right) = v.split_at(0); |
| 1893 | /// assert_eq!(left, []); |
| 1894 | /// assert_eq!(right, ['a' , 'b' , 'c' ]); |
| 1895 | /// } |
| 1896 | /// |
| 1897 | /// { |
| 1898 | /// let (left, right) = v.split_at(2); |
| 1899 | /// assert_eq!(left, ['a' , 'b' ]); |
| 1900 | /// assert_eq!(right, ['c' ]); |
| 1901 | /// } |
| 1902 | /// |
| 1903 | /// { |
| 1904 | /// let (left, right) = v.split_at(3); |
| 1905 | /// assert_eq!(left, ['a' , 'b' , 'c' ]); |
| 1906 | /// assert_eq!(right, []); |
| 1907 | /// } |
| 1908 | /// ``` |
| 1909 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1910 | #[rustc_const_stable (feature = "const_slice_split_at_not_mut" , since = "1.71.0" )] |
| 1911 | #[inline ] |
| 1912 | #[track_caller ] |
| 1913 | #[must_use ] |
| 1914 | pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) { |
| 1915 | match self.split_at_checked(mid) { |
| 1916 | Some(pair) => pair, |
| 1917 | None => panic!("mid > len" ), |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | /// Divides one mutable slice into two at an index. |
| 1922 | /// |
| 1923 | /// The first will contain all indices from `[0, mid)` (excluding |
| 1924 | /// the index `mid` itself) and the second will contain all |
| 1925 | /// indices from `[mid, len)` (excluding the index `len` itself). |
| 1926 | /// |
| 1927 | /// # Panics |
| 1928 | /// |
| 1929 | /// Panics if `mid > len`. For a non-panicking alternative see |
| 1930 | /// [`split_at_mut_checked`](slice::split_at_mut_checked). |
| 1931 | /// |
| 1932 | /// # Examples |
| 1933 | /// |
| 1934 | /// ``` |
| 1935 | /// let mut v = [1, 0, 3, 0, 5, 6]; |
| 1936 | /// let (left, right) = v.split_at_mut(2); |
| 1937 | /// assert_eq!(left, [1, 0]); |
| 1938 | /// assert_eq!(right, [3, 0, 5, 6]); |
| 1939 | /// left[1] = 2; |
| 1940 | /// right[1] = 4; |
| 1941 | /// assert_eq!(v, [1, 2, 3, 4, 5, 6]); |
| 1942 | /// ``` |
| 1943 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1944 | #[inline ] |
| 1945 | #[track_caller ] |
| 1946 | #[must_use ] |
| 1947 | #[rustc_const_stable (feature = "const_slice_split_at_mut" , since = "1.83.0" )] |
| 1948 | pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { |
| 1949 | match self.split_at_mut_checked(mid) { |
| 1950 | Some(pair) => pair, |
| 1951 | None => panic!("mid > len" ), |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | /// Divides one slice into two at an index, without doing bounds checking. |
| 1956 | /// |
| 1957 | /// The first will contain all indices from `[0, mid)` (excluding |
| 1958 | /// the index `mid` itself) and the second will contain all |
| 1959 | /// indices from `[mid, len)` (excluding the index `len` itself). |
| 1960 | /// |
| 1961 | /// For a safe alternative see [`split_at`]. |
| 1962 | /// |
| 1963 | /// # Safety |
| 1964 | /// |
| 1965 | /// Calling this method with an out-of-bounds index is *[undefined behavior]* |
| 1966 | /// even if the resulting reference is not used. The caller has to ensure that |
| 1967 | /// `0 <= mid <= self.len()`. |
| 1968 | /// |
| 1969 | /// [`split_at`]: slice::split_at |
| 1970 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1971 | /// |
| 1972 | /// # Examples |
| 1973 | /// |
| 1974 | /// ``` |
| 1975 | /// let v = ['a' , 'b' , 'c' ]; |
| 1976 | /// |
| 1977 | /// unsafe { |
| 1978 | /// let (left, right) = v.split_at_unchecked(0); |
| 1979 | /// assert_eq!(left, []); |
| 1980 | /// assert_eq!(right, ['a' , 'b' , 'c' ]); |
| 1981 | /// } |
| 1982 | /// |
| 1983 | /// unsafe { |
| 1984 | /// let (left, right) = v.split_at_unchecked(2); |
| 1985 | /// assert_eq!(left, ['a' , 'b' ]); |
| 1986 | /// assert_eq!(right, ['c' ]); |
| 1987 | /// } |
| 1988 | /// |
| 1989 | /// unsafe { |
| 1990 | /// let (left, right) = v.split_at_unchecked(3); |
| 1991 | /// assert_eq!(left, ['a' , 'b' , 'c' ]); |
| 1992 | /// assert_eq!(right, []); |
| 1993 | /// } |
| 1994 | /// ``` |
| 1995 | #[stable (feature = "slice_split_at_unchecked" , since = "1.79.0" )] |
| 1996 | #[rustc_const_stable (feature = "const_slice_split_at_unchecked" , since = "1.77.0" )] |
| 1997 | #[inline ] |
| 1998 | #[must_use ] |
| 1999 | pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) { |
| 2000 | // FIXME(const-hack): the const function `from_raw_parts` is used to make this |
| 2001 | // function const; previously the implementation used |
| 2002 | // `(self.get_unchecked(..mid), self.get_unchecked(mid..))` |
| 2003 | |
| 2004 | let len = self.len(); |
| 2005 | let ptr = self.as_ptr(); |
| 2006 | |
| 2007 | assert_unsafe_precondition!( |
| 2008 | check_library_ub, |
| 2009 | "slice::split_at_unchecked requires the index to be within the slice" , |
| 2010 | (mid: usize = mid, len: usize = len) => mid <= len, |
| 2011 | ); |
| 2012 | |
| 2013 | // SAFETY: Caller has to check that `0 <= mid <= self.len()` |
| 2014 | unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) } |
| 2015 | } |
| 2016 | |
| 2017 | /// Divides one mutable slice into two at an index, without doing bounds checking. |
| 2018 | /// |
| 2019 | /// The first will contain all indices from `[0, mid)` (excluding |
| 2020 | /// the index `mid` itself) and the second will contain all |
| 2021 | /// indices from `[mid, len)` (excluding the index `len` itself). |
| 2022 | /// |
| 2023 | /// For a safe alternative see [`split_at_mut`]. |
| 2024 | /// |
| 2025 | /// # Safety |
| 2026 | /// |
| 2027 | /// Calling this method with an out-of-bounds index is *[undefined behavior]* |
| 2028 | /// even if the resulting reference is not used. The caller has to ensure that |
| 2029 | /// `0 <= mid <= self.len()`. |
| 2030 | /// |
| 2031 | /// [`split_at_mut`]: slice::split_at_mut |
| 2032 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2033 | /// |
| 2034 | /// # Examples |
| 2035 | /// |
| 2036 | /// ``` |
| 2037 | /// let mut v = [1, 0, 3, 0, 5, 6]; |
| 2038 | /// // scoped to restrict the lifetime of the borrows |
| 2039 | /// unsafe { |
| 2040 | /// let (left, right) = v.split_at_mut_unchecked(2); |
| 2041 | /// assert_eq!(left, [1, 0]); |
| 2042 | /// assert_eq!(right, [3, 0, 5, 6]); |
| 2043 | /// left[1] = 2; |
| 2044 | /// right[1] = 4; |
| 2045 | /// } |
| 2046 | /// assert_eq!(v, [1, 2, 3, 4, 5, 6]); |
| 2047 | /// ``` |
| 2048 | #[stable (feature = "slice_split_at_unchecked" , since = "1.79.0" )] |
| 2049 | #[rustc_const_stable (feature = "const_slice_split_at_mut" , since = "1.83.0" )] |
| 2050 | #[inline ] |
| 2051 | #[must_use ] |
| 2052 | pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) { |
| 2053 | let len = self.len(); |
| 2054 | let ptr = self.as_mut_ptr(); |
| 2055 | |
| 2056 | assert_unsafe_precondition!( |
| 2057 | check_library_ub, |
| 2058 | "slice::split_at_mut_unchecked requires the index to be within the slice" , |
| 2059 | (mid: usize = mid, len: usize = len) => mid <= len, |
| 2060 | ); |
| 2061 | |
| 2062 | // SAFETY: Caller has to check that `0 <= mid <= self.len()`. |
| 2063 | // |
| 2064 | // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference |
| 2065 | // is fine. |
| 2066 | unsafe { |
| 2067 | ( |
| 2068 | from_raw_parts_mut(ptr, mid), |
| 2069 | from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)), |
| 2070 | ) |
| 2071 | } |
| 2072 | } |
| 2073 | |
| 2074 | /// Divides one slice into two at an index, returning `None` if the slice is |
| 2075 | /// too short. |
| 2076 | /// |
| 2077 | /// If `mid ≤ len` returns a pair of slices where the first will contain all |
| 2078 | /// indices from `[0, mid)` (excluding the index `mid` itself) and the |
| 2079 | /// second will contain all indices from `[mid, len)` (excluding the index |
| 2080 | /// `len` itself). |
| 2081 | /// |
| 2082 | /// Otherwise, if `mid > len`, returns `None`. |
| 2083 | /// |
| 2084 | /// # Examples |
| 2085 | /// |
| 2086 | /// ``` |
| 2087 | /// let v = [1, -2, 3, -4, 5, -6]; |
| 2088 | /// |
| 2089 | /// { |
| 2090 | /// let (left, right) = v.split_at_checked(0).unwrap(); |
| 2091 | /// assert_eq!(left, []); |
| 2092 | /// assert_eq!(right, [1, -2, 3, -4, 5, -6]); |
| 2093 | /// } |
| 2094 | /// |
| 2095 | /// { |
| 2096 | /// let (left, right) = v.split_at_checked(2).unwrap(); |
| 2097 | /// assert_eq!(left, [1, -2]); |
| 2098 | /// assert_eq!(right, [3, -4, 5, -6]); |
| 2099 | /// } |
| 2100 | /// |
| 2101 | /// { |
| 2102 | /// let (left, right) = v.split_at_checked(6).unwrap(); |
| 2103 | /// assert_eq!(left, [1, -2, 3, -4, 5, -6]); |
| 2104 | /// assert_eq!(right, []); |
| 2105 | /// } |
| 2106 | /// |
| 2107 | /// assert_eq!(None, v.split_at_checked(7)); |
| 2108 | /// ``` |
| 2109 | #[stable (feature = "split_at_checked" , since = "1.80.0" )] |
| 2110 | #[rustc_const_stable (feature = "split_at_checked" , since = "1.80.0" )] |
| 2111 | #[inline ] |
| 2112 | #[must_use ] |
| 2113 | pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> { |
| 2114 | if mid <= self.len() { |
| 2115 | // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which |
| 2116 | // fulfills the requirements of `split_at_unchecked`. |
| 2117 | Some(unsafe { self.split_at_unchecked(mid) }) |
| 2118 | } else { |
| 2119 | None |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | /// Divides one mutable slice into two at an index, returning `None` if the |
| 2124 | /// slice is too short. |
| 2125 | /// |
| 2126 | /// If `mid ≤ len` returns a pair of slices where the first will contain all |
| 2127 | /// indices from `[0, mid)` (excluding the index `mid` itself) and the |
| 2128 | /// second will contain all indices from `[mid, len)` (excluding the index |
| 2129 | /// `len` itself). |
| 2130 | /// |
| 2131 | /// Otherwise, if `mid > len`, returns `None`. |
| 2132 | /// |
| 2133 | /// # Examples |
| 2134 | /// |
| 2135 | /// ``` |
| 2136 | /// let mut v = [1, 0, 3, 0, 5, 6]; |
| 2137 | /// |
| 2138 | /// if let Some((left, right)) = v.split_at_mut_checked(2) { |
| 2139 | /// assert_eq!(left, [1, 0]); |
| 2140 | /// assert_eq!(right, [3, 0, 5, 6]); |
| 2141 | /// left[1] = 2; |
| 2142 | /// right[1] = 4; |
| 2143 | /// } |
| 2144 | /// assert_eq!(v, [1, 2, 3, 4, 5, 6]); |
| 2145 | /// |
| 2146 | /// assert_eq!(None, v.split_at_mut_checked(7)); |
| 2147 | /// ``` |
| 2148 | #[stable (feature = "split_at_checked" , since = "1.80.0" )] |
| 2149 | #[rustc_const_stable (feature = "const_slice_split_at_mut" , since = "1.83.0" )] |
| 2150 | #[inline ] |
| 2151 | #[must_use ] |
| 2152 | pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> { |
| 2153 | if mid <= self.len() { |
| 2154 | // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which |
| 2155 | // fulfills the requirements of `split_at_unchecked`. |
| 2156 | Some(unsafe { self.split_at_mut_unchecked(mid) }) |
| 2157 | } else { |
| 2158 | None |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | /// Returns an iterator over subslices separated by elements that match |
| 2163 | /// `pred`. The matched element is not contained in the subslices. |
| 2164 | /// |
| 2165 | /// # Examples |
| 2166 | /// |
| 2167 | /// ``` |
| 2168 | /// let slice = [10, 40, 33, 20]; |
| 2169 | /// let mut iter = slice.split(|num| num % 3 == 0); |
| 2170 | /// |
| 2171 | /// assert_eq!(iter.next().unwrap(), &[10, 40]); |
| 2172 | /// assert_eq!(iter.next().unwrap(), &[20]); |
| 2173 | /// assert!(iter.next().is_none()); |
| 2174 | /// ``` |
| 2175 | /// |
| 2176 | /// If the first element is matched, an empty slice will be the first item |
| 2177 | /// returned by the iterator. Similarly, if the last element in the slice |
| 2178 | /// is matched, an empty slice will be the last item returned by the |
| 2179 | /// iterator: |
| 2180 | /// |
| 2181 | /// ``` |
| 2182 | /// let slice = [10, 40, 33]; |
| 2183 | /// let mut iter = slice.split(|num| num % 3 == 0); |
| 2184 | /// |
| 2185 | /// assert_eq!(iter.next().unwrap(), &[10, 40]); |
| 2186 | /// assert_eq!(iter.next().unwrap(), &[]); |
| 2187 | /// assert!(iter.next().is_none()); |
| 2188 | /// ``` |
| 2189 | /// |
| 2190 | /// If two matched elements are directly adjacent, an empty slice will be |
| 2191 | /// present between them: |
| 2192 | /// |
| 2193 | /// ``` |
| 2194 | /// let slice = [10, 6, 33, 20]; |
| 2195 | /// let mut iter = slice.split(|num| num % 3 == 0); |
| 2196 | /// |
| 2197 | /// assert_eq!(iter.next().unwrap(), &[10]); |
| 2198 | /// assert_eq!(iter.next().unwrap(), &[]); |
| 2199 | /// assert_eq!(iter.next().unwrap(), &[20]); |
| 2200 | /// assert!(iter.next().is_none()); |
| 2201 | /// ``` |
| 2202 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2203 | #[inline ] |
| 2204 | pub fn split<F>(&self, pred: F) -> Split<'_, T, F> |
| 2205 | where |
| 2206 | F: FnMut(&T) -> bool, |
| 2207 | { |
| 2208 | Split::new(self, pred) |
| 2209 | } |
| 2210 | |
| 2211 | /// Returns an iterator over mutable subslices separated by elements that |
| 2212 | /// match `pred`. The matched element is not contained in the subslices. |
| 2213 | /// |
| 2214 | /// # Examples |
| 2215 | /// |
| 2216 | /// ``` |
| 2217 | /// let mut v = [10, 40, 30, 20, 60, 50]; |
| 2218 | /// |
| 2219 | /// for group in v.split_mut(|num| *num % 3 == 0) { |
| 2220 | /// group[0] = 1; |
| 2221 | /// } |
| 2222 | /// assert_eq!(v, [1, 40, 30, 1, 60, 1]); |
| 2223 | /// ``` |
| 2224 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2225 | #[inline ] |
| 2226 | pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F> |
| 2227 | where |
| 2228 | F: FnMut(&T) -> bool, |
| 2229 | { |
| 2230 | SplitMut::new(self, pred) |
| 2231 | } |
| 2232 | |
| 2233 | /// Returns an iterator over subslices separated by elements that match |
| 2234 | /// `pred`. The matched element is contained in the end of the previous |
| 2235 | /// subslice as a terminator. |
| 2236 | /// |
| 2237 | /// # Examples |
| 2238 | /// |
| 2239 | /// ``` |
| 2240 | /// let slice = [10, 40, 33, 20]; |
| 2241 | /// let mut iter = slice.split_inclusive(|num| num % 3 == 0); |
| 2242 | /// |
| 2243 | /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]); |
| 2244 | /// assert_eq!(iter.next().unwrap(), &[20]); |
| 2245 | /// assert!(iter.next().is_none()); |
| 2246 | /// ``` |
| 2247 | /// |
| 2248 | /// If the last element of the slice is matched, |
| 2249 | /// that element will be considered the terminator of the preceding slice. |
| 2250 | /// That slice will be the last item returned by the iterator. |
| 2251 | /// |
| 2252 | /// ``` |
| 2253 | /// let slice = [3, 10, 40, 33]; |
| 2254 | /// let mut iter = slice.split_inclusive(|num| num % 3 == 0); |
| 2255 | /// |
| 2256 | /// assert_eq!(iter.next().unwrap(), &[3]); |
| 2257 | /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]); |
| 2258 | /// assert!(iter.next().is_none()); |
| 2259 | /// ``` |
| 2260 | #[stable (feature = "split_inclusive" , since = "1.51.0" )] |
| 2261 | #[inline ] |
| 2262 | pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F> |
| 2263 | where |
| 2264 | F: FnMut(&T) -> bool, |
| 2265 | { |
| 2266 | SplitInclusive::new(self, pred) |
| 2267 | } |
| 2268 | |
| 2269 | /// Returns an iterator over mutable subslices separated by elements that |
| 2270 | /// match `pred`. The matched element is contained in the previous |
| 2271 | /// subslice as a terminator. |
| 2272 | /// |
| 2273 | /// # Examples |
| 2274 | /// |
| 2275 | /// ``` |
| 2276 | /// let mut v = [10, 40, 30, 20, 60, 50]; |
| 2277 | /// |
| 2278 | /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) { |
| 2279 | /// let terminator_idx = group.len()-1; |
| 2280 | /// group[terminator_idx] = 1; |
| 2281 | /// } |
| 2282 | /// assert_eq!(v, [10, 40, 1, 20, 1, 1]); |
| 2283 | /// ``` |
| 2284 | #[stable (feature = "split_inclusive" , since = "1.51.0" )] |
| 2285 | #[inline ] |
| 2286 | pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F> |
| 2287 | where |
| 2288 | F: FnMut(&T) -> bool, |
| 2289 | { |
| 2290 | SplitInclusiveMut::new(self, pred) |
| 2291 | } |
| 2292 | |
| 2293 | /// Returns an iterator over subslices separated by elements that match |
| 2294 | /// `pred`, starting at the end of the slice and working backwards. |
| 2295 | /// The matched element is not contained in the subslices. |
| 2296 | /// |
| 2297 | /// # Examples |
| 2298 | /// |
| 2299 | /// ``` |
| 2300 | /// let slice = [11, 22, 33, 0, 44, 55]; |
| 2301 | /// let mut iter = slice.rsplit(|num| *num == 0); |
| 2302 | /// |
| 2303 | /// assert_eq!(iter.next().unwrap(), &[44, 55]); |
| 2304 | /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]); |
| 2305 | /// assert_eq!(iter.next(), None); |
| 2306 | /// ``` |
| 2307 | /// |
| 2308 | /// As with `split()`, if the first or last element is matched, an empty |
| 2309 | /// slice will be the first (or last) item returned by the iterator. |
| 2310 | /// |
| 2311 | /// ``` |
| 2312 | /// let v = &[0, 1, 1, 2, 3, 5, 8]; |
| 2313 | /// let mut it = v.rsplit(|n| *n % 2 == 0); |
| 2314 | /// assert_eq!(it.next().unwrap(), &[]); |
| 2315 | /// assert_eq!(it.next().unwrap(), &[3, 5]); |
| 2316 | /// assert_eq!(it.next().unwrap(), &[1, 1]); |
| 2317 | /// assert_eq!(it.next().unwrap(), &[]); |
| 2318 | /// assert_eq!(it.next(), None); |
| 2319 | /// ``` |
| 2320 | #[stable (feature = "slice_rsplit" , since = "1.27.0" )] |
| 2321 | #[inline ] |
| 2322 | pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F> |
| 2323 | where |
| 2324 | F: FnMut(&T) -> bool, |
| 2325 | { |
| 2326 | RSplit::new(self, pred) |
| 2327 | } |
| 2328 | |
| 2329 | /// Returns an iterator over mutable subslices separated by elements that |
| 2330 | /// match `pred`, starting at the end of the slice and working |
| 2331 | /// backwards. The matched element is not contained in the subslices. |
| 2332 | /// |
| 2333 | /// # Examples |
| 2334 | /// |
| 2335 | /// ``` |
| 2336 | /// let mut v = [100, 400, 300, 200, 600, 500]; |
| 2337 | /// |
| 2338 | /// let mut count = 0; |
| 2339 | /// for group in v.rsplit_mut(|num| *num % 3 == 0) { |
| 2340 | /// count += 1; |
| 2341 | /// group[0] = count; |
| 2342 | /// } |
| 2343 | /// assert_eq!(v, [3, 400, 300, 2, 600, 1]); |
| 2344 | /// ``` |
| 2345 | /// |
| 2346 | #[stable (feature = "slice_rsplit" , since = "1.27.0" )] |
| 2347 | #[inline ] |
| 2348 | pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F> |
| 2349 | where |
| 2350 | F: FnMut(&T) -> bool, |
| 2351 | { |
| 2352 | RSplitMut::new(self, pred) |
| 2353 | } |
| 2354 | |
| 2355 | /// Returns an iterator over subslices separated by elements that match |
| 2356 | /// `pred`, limited to returning at most `n` items. The matched element is |
| 2357 | /// not contained in the subslices. |
| 2358 | /// |
| 2359 | /// The last element returned, if any, will contain the remainder of the |
| 2360 | /// slice. |
| 2361 | /// |
| 2362 | /// # Examples |
| 2363 | /// |
| 2364 | /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`, |
| 2365 | /// `[20, 60, 50]`): |
| 2366 | /// |
| 2367 | /// ``` |
| 2368 | /// let v = [10, 40, 30, 20, 60, 50]; |
| 2369 | /// |
| 2370 | /// for group in v.splitn(2, |num| *num % 3 == 0) { |
| 2371 | /// println!("{group:?}" ); |
| 2372 | /// } |
| 2373 | /// ``` |
| 2374 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2375 | #[inline ] |
| 2376 | pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F> |
| 2377 | where |
| 2378 | F: FnMut(&T) -> bool, |
| 2379 | { |
| 2380 | SplitN::new(self.split(pred), n) |
| 2381 | } |
| 2382 | |
| 2383 | /// Returns an iterator over mutable subslices separated by elements that match |
| 2384 | /// `pred`, limited to returning at most `n` items. The matched element is |
| 2385 | /// not contained in the subslices. |
| 2386 | /// |
| 2387 | /// The last element returned, if any, will contain the remainder of the |
| 2388 | /// slice. |
| 2389 | /// |
| 2390 | /// # Examples |
| 2391 | /// |
| 2392 | /// ``` |
| 2393 | /// let mut v = [10, 40, 30, 20, 60, 50]; |
| 2394 | /// |
| 2395 | /// for group in v.splitn_mut(2, |num| *num % 3 == 0) { |
| 2396 | /// group[0] = 1; |
| 2397 | /// } |
| 2398 | /// assert_eq!(v, [1, 40, 30, 1, 60, 50]); |
| 2399 | /// ``` |
| 2400 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2401 | #[inline ] |
| 2402 | pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F> |
| 2403 | where |
| 2404 | F: FnMut(&T) -> bool, |
| 2405 | { |
| 2406 | SplitNMut::new(self.split_mut(pred), n) |
| 2407 | } |
| 2408 | |
| 2409 | /// Returns an iterator over subslices separated by elements that match |
| 2410 | /// `pred` limited to returning at most `n` items. This starts at the end of |
| 2411 | /// the slice and works backwards. The matched element is not contained in |
| 2412 | /// the subslices. |
| 2413 | /// |
| 2414 | /// The last element returned, if any, will contain the remainder of the |
| 2415 | /// slice. |
| 2416 | /// |
| 2417 | /// # Examples |
| 2418 | /// |
| 2419 | /// Print the slice split once, starting from the end, by numbers divisible |
| 2420 | /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`): |
| 2421 | /// |
| 2422 | /// ``` |
| 2423 | /// let v = [10, 40, 30, 20, 60, 50]; |
| 2424 | /// |
| 2425 | /// for group in v.rsplitn(2, |num| *num % 3 == 0) { |
| 2426 | /// println!("{group:?}" ); |
| 2427 | /// } |
| 2428 | /// ``` |
| 2429 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2430 | #[inline ] |
| 2431 | pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F> |
| 2432 | where |
| 2433 | F: FnMut(&T) -> bool, |
| 2434 | { |
| 2435 | RSplitN::new(self.rsplit(pred), n) |
| 2436 | } |
| 2437 | |
| 2438 | /// Returns an iterator over subslices separated by elements that match |
| 2439 | /// `pred` limited to returning at most `n` items. This starts at the end of |
| 2440 | /// the slice and works backwards. The matched element is not contained in |
| 2441 | /// the subslices. |
| 2442 | /// |
| 2443 | /// The last element returned, if any, will contain the remainder of the |
| 2444 | /// slice. |
| 2445 | /// |
| 2446 | /// # Examples |
| 2447 | /// |
| 2448 | /// ``` |
| 2449 | /// let mut s = [10, 40, 30, 20, 60, 50]; |
| 2450 | /// |
| 2451 | /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { |
| 2452 | /// group[0] = 1; |
| 2453 | /// } |
| 2454 | /// assert_eq!(s, [1, 40, 30, 20, 60, 1]); |
| 2455 | /// ``` |
| 2456 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2457 | #[inline ] |
| 2458 | pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F> |
| 2459 | where |
| 2460 | F: FnMut(&T) -> bool, |
| 2461 | { |
| 2462 | RSplitNMut::new(self.rsplit_mut(pred), n) |
| 2463 | } |
| 2464 | |
| 2465 | /// Splits the slice on the first element that matches the specified |
| 2466 | /// predicate. |
| 2467 | /// |
| 2468 | /// If any matching elements are present in the slice, returns the prefix |
| 2469 | /// before the match and suffix after. The matching element itself is not |
| 2470 | /// included. If no elements match, returns `None`. |
| 2471 | /// |
| 2472 | /// # Examples |
| 2473 | /// |
| 2474 | /// ``` |
| 2475 | /// #![feature(slice_split_once)] |
| 2476 | /// let s = [1, 2, 3, 2, 4]; |
| 2477 | /// assert_eq!(s.split_once(|&x| x == 2), Some(( |
| 2478 | /// &[1][..], |
| 2479 | /// &[3, 2, 4][..] |
| 2480 | /// ))); |
| 2481 | /// assert_eq!(s.split_once(|&x| x == 0), None); |
| 2482 | /// ``` |
| 2483 | #[unstable (feature = "slice_split_once" , reason = "newly added" , issue = "112811" )] |
| 2484 | #[inline ] |
| 2485 | pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])> |
| 2486 | where |
| 2487 | F: FnMut(&T) -> bool, |
| 2488 | { |
| 2489 | let index = self.iter().position(pred)?; |
| 2490 | Some((&self[..index], &self[index + 1..])) |
| 2491 | } |
| 2492 | |
| 2493 | /// Splits the slice on the last element that matches the specified |
| 2494 | /// predicate. |
| 2495 | /// |
| 2496 | /// If any matching elements are present in the slice, returns the prefix |
| 2497 | /// before the match and suffix after. The matching element itself is not |
| 2498 | /// included. If no elements match, returns `None`. |
| 2499 | /// |
| 2500 | /// # Examples |
| 2501 | /// |
| 2502 | /// ``` |
| 2503 | /// #![feature(slice_split_once)] |
| 2504 | /// let s = [1, 2, 3, 2, 4]; |
| 2505 | /// assert_eq!(s.rsplit_once(|&x| x == 2), Some(( |
| 2506 | /// &[1, 2, 3][..], |
| 2507 | /// &[4][..] |
| 2508 | /// ))); |
| 2509 | /// assert_eq!(s.rsplit_once(|&x| x == 0), None); |
| 2510 | /// ``` |
| 2511 | #[unstable (feature = "slice_split_once" , reason = "newly added" , issue = "112811" )] |
| 2512 | #[inline ] |
| 2513 | pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])> |
| 2514 | where |
| 2515 | F: FnMut(&T) -> bool, |
| 2516 | { |
| 2517 | let index = self.iter().rposition(pred)?; |
| 2518 | Some((&self[..index], &self[index + 1..])) |
| 2519 | } |
| 2520 | |
| 2521 | /// Returns `true` if the slice contains an element with the given value. |
| 2522 | /// |
| 2523 | /// This operation is *O*(*n*). |
| 2524 | /// |
| 2525 | /// Note that if you have a sorted slice, [`binary_search`] may be faster. |
| 2526 | /// |
| 2527 | /// [`binary_search`]: slice::binary_search |
| 2528 | /// |
| 2529 | /// # Examples |
| 2530 | /// |
| 2531 | /// ``` |
| 2532 | /// let v = [10, 40, 30]; |
| 2533 | /// assert!(v.contains(&30)); |
| 2534 | /// assert!(!v.contains(&50)); |
| 2535 | /// ``` |
| 2536 | /// |
| 2537 | /// If you do not have a `&T`, but some other value that you can compare |
| 2538 | /// with one (for example, `String` implements `PartialEq<str>`), you can |
| 2539 | /// use `iter().any`: |
| 2540 | /// |
| 2541 | /// ``` |
| 2542 | /// let v = [String::from("hello" ), String::from("world" )]; // slice of `String` |
| 2543 | /// assert!(v.iter().any(|e| e == "hello" )); // search with `&str` |
| 2544 | /// assert!(!v.iter().any(|e| e == "hi" )); |
| 2545 | /// ``` |
| 2546 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2547 | #[inline ] |
| 2548 | #[must_use ] |
| 2549 | pub fn contains(&self, x: &T) -> bool |
| 2550 | where |
| 2551 | T: PartialEq, |
| 2552 | { |
| 2553 | cmp::SliceContains::slice_contains(x, self) |
| 2554 | } |
| 2555 | |
| 2556 | /// Returns `true` if `needle` is a prefix of the slice or equal to the slice. |
| 2557 | /// |
| 2558 | /// # Examples |
| 2559 | /// |
| 2560 | /// ``` |
| 2561 | /// let v = [10, 40, 30]; |
| 2562 | /// assert!(v.starts_with(&[10])); |
| 2563 | /// assert!(v.starts_with(&[10, 40])); |
| 2564 | /// assert!(v.starts_with(&v)); |
| 2565 | /// assert!(!v.starts_with(&[50])); |
| 2566 | /// assert!(!v.starts_with(&[10, 50])); |
| 2567 | /// ``` |
| 2568 | /// |
| 2569 | /// Always returns `true` if `needle` is an empty slice: |
| 2570 | /// |
| 2571 | /// ``` |
| 2572 | /// let v = &[10, 40, 30]; |
| 2573 | /// assert!(v.starts_with(&[])); |
| 2574 | /// let v: &[u8] = &[]; |
| 2575 | /// assert!(v.starts_with(&[])); |
| 2576 | /// ``` |
| 2577 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2578 | #[must_use ] |
| 2579 | pub fn starts_with(&self, needle: &[T]) -> bool |
| 2580 | where |
| 2581 | T: PartialEq, |
| 2582 | { |
| 2583 | let n = needle.len(); |
| 2584 | self.len() >= n && needle == &self[..n] |
| 2585 | } |
| 2586 | |
| 2587 | /// Returns `true` if `needle` is a suffix of the slice or equal to the slice. |
| 2588 | /// |
| 2589 | /// # Examples |
| 2590 | /// |
| 2591 | /// ``` |
| 2592 | /// let v = [10, 40, 30]; |
| 2593 | /// assert!(v.ends_with(&[30])); |
| 2594 | /// assert!(v.ends_with(&[40, 30])); |
| 2595 | /// assert!(v.ends_with(&v)); |
| 2596 | /// assert!(!v.ends_with(&[50])); |
| 2597 | /// assert!(!v.ends_with(&[50, 30])); |
| 2598 | /// ``` |
| 2599 | /// |
| 2600 | /// Always returns `true` if `needle` is an empty slice: |
| 2601 | /// |
| 2602 | /// ``` |
| 2603 | /// let v = &[10, 40, 30]; |
| 2604 | /// assert!(v.ends_with(&[])); |
| 2605 | /// let v: &[u8] = &[]; |
| 2606 | /// assert!(v.ends_with(&[])); |
| 2607 | /// ``` |
| 2608 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2609 | #[must_use ] |
| 2610 | pub fn ends_with(&self, needle: &[T]) -> bool |
| 2611 | where |
| 2612 | T: PartialEq, |
| 2613 | { |
| 2614 | let (m, n) = (self.len(), needle.len()); |
| 2615 | m >= n && needle == &self[m - n..] |
| 2616 | } |
| 2617 | |
| 2618 | /// Returns a subslice with the prefix removed. |
| 2619 | /// |
| 2620 | /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`. |
| 2621 | /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the |
| 2622 | /// original slice, returns an empty slice. |
| 2623 | /// |
| 2624 | /// If the slice does not start with `prefix`, returns `None`. |
| 2625 | /// |
| 2626 | /// # Examples |
| 2627 | /// |
| 2628 | /// ``` |
| 2629 | /// let v = &[10, 40, 30]; |
| 2630 | /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..])); |
| 2631 | /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..])); |
| 2632 | /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..])); |
| 2633 | /// assert_eq!(v.strip_prefix(&[50]), None); |
| 2634 | /// assert_eq!(v.strip_prefix(&[10, 50]), None); |
| 2635 | /// |
| 2636 | /// let prefix : &str = "he" ; |
| 2637 | /// assert_eq!(b"hello" .strip_prefix(prefix.as_bytes()), |
| 2638 | /// Some(b"llo" .as_ref())); |
| 2639 | /// ``` |
| 2640 | #[must_use = "returns the subslice without modifying the original" ] |
| 2641 | #[stable (feature = "slice_strip" , since = "1.51.0" )] |
| 2642 | pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]> |
| 2643 | where |
| 2644 | T: PartialEq, |
| 2645 | { |
| 2646 | // This function will need rewriting if and when SlicePattern becomes more sophisticated. |
| 2647 | let prefix = prefix.as_slice(); |
| 2648 | let n = prefix.len(); |
| 2649 | if n <= self.len() { |
| 2650 | let (head, tail) = self.split_at(n); |
| 2651 | if head == prefix { |
| 2652 | return Some(tail); |
| 2653 | } |
| 2654 | } |
| 2655 | None |
| 2656 | } |
| 2657 | |
| 2658 | /// Returns a subslice with the suffix removed. |
| 2659 | /// |
| 2660 | /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`. |
| 2661 | /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the |
| 2662 | /// original slice, returns an empty slice. |
| 2663 | /// |
| 2664 | /// If the slice does not end with `suffix`, returns `None`. |
| 2665 | /// |
| 2666 | /// # Examples |
| 2667 | /// |
| 2668 | /// ``` |
| 2669 | /// let v = &[10, 40, 30]; |
| 2670 | /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..])); |
| 2671 | /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..])); |
| 2672 | /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..])); |
| 2673 | /// assert_eq!(v.strip_suffix(&[50]), None); |
| 2674 | /// assert_eq!(v.strip_suffix(&[50, 30]), None); |
| 2675 | /// ``` |
| 2676 | #[must_use = "returns the subslice without modifying the original" ] |
| 2677 | #[stable (feature = "slice_strip" , since = "1.51.0" )] |
| 2678 | pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]> |
| 2679 | where |
| 2680 | T: PartialEq, |
| 2681 | { |
| 2682 | // This function will need rewriting if and when SlicePattern becomes more sophisticated. |
| 2683 | let suffix = suffix.as_slice(); |
| 2684 | let (len, n) = (self.len(), suffix.len()); |
| 2685 | if n <= len { |
| 2686 | let (head, tail) = self.split_at(len - n); |
| 2687 | if tail == suffix { |
| 2688 | return Some(head); |
| 2689 | } |
| 2690 | } |
| 2691 | None |
| 2692 | } |
| 2693 | |
| 2694 | /// Binary searches this slice for a given element. |
| 2695 | /// If the slice is not sorted, the returned result is unspecified and |
| 2696 | /// meaningless. |
| 2697 | /// |
| 2698 | /// If the value is found then [`Result::Ok`] is returned, containing the |
| 2699 | /// index of the matching element. If there are multiple matches, then any |
| 2700 | /// one of the matches could be returned. The index is chosen |
| 2701 | /// deterministically, but is subject to change in future versions of Rust. |
| 2702 | /// If the value is not found then [`Result::Err`] is returned, containing |
| 2703 | /// the index where a matching element could be inserted while maintaining |
| 2704 | /// sorted order. |
| 2705 | /// |
| 2706 | /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`]. |
| 2707 | /// |
| 2708 | /// [`binary_search_by`]: slice::binary_search_by |
| 2709 | /// [`binary_search_by_key`]: slice::binary_search_by_key |
| 2710 | /// [`partition_point`]: slice::partition_point |
| 2711 | /// |
| 2712 | /// # Examples |
| 2713 | /// |
| 2714 | /// Looks up a series of four elements. The first is found, with a |
| 2715 | /// uniquely determined position; the second and third are not |
| 2716 | /// found; the fourth could match any position in `[1, 4]`. |
| 2717 | /// |
| 2718 | /// ``` |
| 2719 | /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; |
| 2720 | /// |
| 2721 | /// assert_eq!(s.binary_search(&13), Ok(9)); |
| 2722 | /// assert_eq!(s.binary_search(&4), Err(7)); |
| 2723 | /// assert_eq!(s.binary_search(&100), Err(13)); |
| 2724 | /// let r = s.binary_search(&1); |
| 2725 | /// assert!(match r { Ok(1..=4) => true, _ => false, }); |
| 2726 | /// ``` |
| 2727 | /// |
| 2728 | /// If you want to find that whole *range* of matching items, rather than |
| 2729 | /// an arbitrary matching one, that can be done using [`partition_point`]: |
| 2730 | /// ``` |
| 2731 | /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; |
| 2732 | /// |
| 2733 | /// let low = s.partition_point(|x| x < &1); |
| 2734 | /// assert_eq!(low, 1); |
| 2735 | /// let high = s.partition_point(|x| x <= &1); |
| 2736 | /// assert_eq!(high, 5); |
| 2737 | /// let r = s.binary_search(&1); |
| 2738 | /// assert!((low..high).contains(&r.unwrap())); |
| 2739 | /// |
| 2740 | /// assert!(s[..low].iter().all(|&x| x < 1)); |
| 2741 | /// assert!(s[low..high].iter().all(|&x| x == 1)); |
| 2742 | /// assert!(s[high..].iter().all(|&x| x > 1)); |
| 2743 | /// |
| 2744 | /// // For something not found, the "range" of equal items is empty |
| 2745 | /// assert_eq!(s.partition_point(|x| x < &11), 9); |
| 2746 | /// assert_eq!(s.partition_point(|x| x <= &11), 9); |
| 2747 | /// assert_eq!(s.binary_search(&11), Err(9)); |
| 2748 | /// ``` |
| 2749 | /// |
| 2750 | /// If you want to insert an item to a sorted vector, while maintaining |
| 2751 | /// sort order, consider using [`partition_point`]: |
| 2752 | /// |
| 2753 | /// ``` |
| 2754 | /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; |
| 2755 | /// let num = 42; |
| 2756 | /// let idx = s.partition_point(|&x| x <= num); |
| 2757 | /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to |
| 2758 | /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert` |
| 2759 | /// // to shift less elements. |
| 2760 | /// s.insert(idx, num); |
| 2761 | /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]); |
| 2762 | /// ``` |
| 2763 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2764 | pub fn binary_search(&self, x: &T) -> Result<usize, usize> |
| 2765 | where |
| 2766 | T: Ord, |
| 2767 | { |
| 2768 | self.binary_search_by(|p| p.cmp(x)) |
| 2769 | } |
| 2770 | |
| 2771 | /// Binary searches this slice with a comparator function. |
| 2772 | /// |
| 2773 | /// The comparator function should return an order code that indicates |
| 2774 | /// whether its argument is `Less`, `Equal` or `Greater` the desired |
| 2775 | /// target. |
| 2776 | /// If the slice is not sorted or if the comparator function does not |
| 2777 | /// implement an order consistent with the sort order of the underlying |
| 2778 | /// slice, the returned result is unspecified and meaningless. |
| 2779 | /// |
| 2780 | /// If the value is found then [`Result::Ok`] is returned, containing the |
| 2781 | /// index of the matching element. If there are multiple matches, then any |
| 2782 | /// one of the matches could be returned. The index is chosen |
| 2783 | /// deterministically, but is subject to change in future versions of Rust. |
| 2784 | /// If the value is not found then [`Result::Err`] is returned, containing |
| 2785 | /// the index where a matching element could be inserted while maintaining |
| 2786 | /// sorted order. |
| 2787 | /// |
| 2788 | /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`]. |
| 2789 | /// |
| 2790 | /// [`binary_search`]: slice::binary_search |
| 2791 | /// [`binary_search_by_key`]: slice::binary_search_by_key |
| 2792 | /// [`partition_point`]: slice::partition_point |
| 2793 | /// |
| 2794 | /// # Examples |
| 2795 | /// |
| 2796 | /// Looks up a series of four elements. The first is found, with a |
| 2797 | /// uniquely determined position; the second and third are not |
| 2798 | /// found; the fourth could match any position in `[1, 4]`. |
| 2799 | /// |
| 2800 | /// ``` |
| 2801 | /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; |
| 2802 | /// |
| 2803 | /// let seek = 13; |
| 2804 | /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); |
| 2805 | /// let seek = 4; |
| 2806 | /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); |
| 2807 | /// let seek = 100; |
| 2808 | /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); |
| 2809 | /// let seek = 1; |
| 2810 | /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); |
| 2811 | /// assert!(match r { Ok(1..=4) => true, _ => false, }); |
| 2812 | /// ``` |
| 2813 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2814 | #[inline ] |
| 2815 | pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize> |
| 2816 | where |
| 2817 | F: FnMut(&'a T) -> Ordering, |
| 2818 | { |
| 2819 | let mut size = self.len(); |
| 2820 | if size == 0 { |
| 2821 | return Err(0); |
| 2822 | } |
| 2823 | let mut base = 0usize; |
| 2824 | |
| 2825 | // This loop intentionally doesn't have an early exit if the comparison |
| 2826 | // returns Equal. We want the number of loop iterations to depend *only* |
| 2827 | // on the size of the input slice so that the CPU can reliably predict |
| 2828 | // the loop count. |
| 2829 | while size > 1 { |
| 2830 | let half = size / 2; |
| 2831 | let mid = base + half; |
| 2832 | |
| 2833 | // SAFETY: the call is made safe by the following inconstants: |
| 2834 | // - `mid >= 0`: by definition |
| 2835 | // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...` |
| 2836 | let cmp = f(unsafe { self.get_unchecked(mid) }); |
| 2837 | |
| 2838 | // Binary search interacts poorly with branch prediction, so force |
| 2839 | // the compiler to use conditional moves if supported by the target |
| 2840 | // architecture. |
| 2841 | base = (cmp == Greater).select_unpredictable(base, mid); |
| 2842 | |
| 2843 | // This is imprecise in the case where `size` is odd and the |
| 2844 | // comparison returns Greater: the mid element still gets included |
| 2845 | // by `size` even though it's known to be larger than the element |
| 2846 | // being searched for. |
| 2847 | // |
| 2848 | // This is fine though: we gain more performance by keeping the |
| 2849 | // loop iteration count invariant (and thus predictable) than we |
| 2850 | // lose from considering one additional element. |
| 2851 | size -= half; |
| 2852 | } |
| 2853 | |
| 2854 | // SAFETY: base is always in [0, size) because base <= mid. |
| 2855 | let cmp = f(unsafe { self.get_unchecked(base) }); |
| 2856 | if cmp == Equal { |
| 2857 | // SAFETY: same as the `get_unchecked` above. |
| 2858 | unsafe { hint::assert_unchecked(base < self.len()) }; |
| 2859 | Ok(base) |
| 2860 | } else { |
| 2861 | let result = base + (cmp == Less) as usize; |
| 2862 | // SAFETY: same as the `get_unchecked` above. |
| 2863 | // Note that this is `<=`, unlike the assume in the `Ok` path. |
| 2864 | unsafe { hint::assert_unchecked(result <= self.len()) }; |
| 2865 | Err(result) |
| 2866 | } |
| 2867 | } |
| 2868 | |
| 2869 | /// Binary searches this slice with a key extraction function. |
| 2870 | /// |
| 2871 | /// Assumes that the slice is sorted by the key, for instance with |
| 2872 | /// [`sort_by_key`] using the same key extraction function. |
| 2873 | /// If the slice is not sorted by the key, the returned result is |
| 2874 | /// unspecified and meaningless. |
| 2875 | /// |
| 2876 | /// If the value is found then [`Result::Ok`] is returned, containing the |
| 2877 | /// index of the matching element. If there are multiple matches, then any |
| 2878 | /// one of the matches could be returned. The index is chosen |
| 2879 | /// deterministically, but is subject to change in future versions of Rust. |
| 2880 | /// If the value is not found then [`Result::Err`] is returned, containing |
| 2881 | /// the index where a matching element could be inserted while maintaining |
| 2882 | /// sorted order. |
| 2883 | /// |
| 2884 | /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`]. |
| 2885 | /// |
| 2886 | /// [`sort_by_key`]: slice::sort_by_key |
| 2887 | /// [`binary_search`]: slice::binary_search |
| 2888 | /// [`binary_search_by`]: slice::binary_search_by |
| 2889 | /// [`partition_point`]: slice::partition_point |
| 2890 | /// |
| 2891 | /// # Examples |
| 2892 | /// |
| 2893 | /// Looks up a series of four elements in a slice of pairs sorted by |
| 2894 | /// their second elements. The first is found, with a uniquely |
| 2895 | /// determined position; the second and third are not found; the |
| 2896 | /// fourth could match any position in `[1, 4]`. |
| 2897 | /// |
| 2898 | /// ``` |
| 2899 | /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), |
| 2900 | /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), |
| 2901 | /// (1, 21), (2, 34), (4, 55)]; |
| 2902 | /// |
| 2903 | /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9)); |
| 2904 | /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7)); |
| 2905 | /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13)); |
| 2906 | /// let r = s.binary_search_by_key(&1, |&(a, b)| b); |
| 2907 | /// assert!(match r { Ok(1..=4) => true, _ => false, }); |
| 2908 | /// ``` |
| 2909 | // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is |
| 2910 | // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481. |
| 2911 | // This breaks links when slice is displayed in core, but changing it to use relative links |
| 2912 | // would break when the item is re-exported. So allow the core links to be broken for now. |
| 2913 | #[allow (rustdoc::broken_intra_doc_links)] |
| 2914 | #[stable (feature = "slice_binary_search_by_key" , since = "1.10.0" )] |
| 2915 | #[inline ] |
| 2916 | pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize> |
| 2917 | where |
| 2918 | F: FnMut(&'a T) -> B, |
| 2919 | B: Ord, |
| 2920 | { |
| 2921 | self.binary_search_by(|k| f(k).cmp(b)) |
| 2922 | } |
| 2923 | |
| 2924 | /// Sorts the slice **without** preserving the initial order of equal elements. |
| 2925 | /// |
| 2926 | /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not |
| 2927 | /// allocate), and *O*(*n* \* log(*n*)) worst-case. |
| 2928 | /// |
| 2929 | /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function |
| 2930 | /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| 2931 | /// is unspecified. See also the note on panicking below. |
| 2932 | /// |
| 2933 | /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor |
| 2934 | /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and |
| 2935 | /// examples see the [`Ord`] documentation. |
| 2936 | /// |
| 2937 | /// |
| 2938 | /// All original elements will remain in the slice and any possible modifications via interior |
| 2939 | /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics. |
| 2940 | /// |
| 2941 | /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require |
| 2942 | /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the |
| 2943 | /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with |
| 2944 | /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a |
| 2945 | /// [total order] users can sort slices containing floating-point values. Alternatively, if all |
| 2946 | /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] |
| 2947 | /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b| |
| 2948 | /// a.partial_cmp(b).unwrap())`. |
| 2949 | /// |
| 2950 | /// # Current implementation |
| 2951 | /// |
| 2952 | /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which |
| 2953 | /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving |
| 2954 | /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the |
| 2955 | /// expected time to sort the data is *O*(*n* \* log(*k*)). |
| 2956 | /// |
| 2957 | /// It is typically faster than stable sorting, except in a few special cases, e.g., when the |
| 2958 | /// slice is partially sorted. |
| 2959 | /// |
| 2960 | /// # Panics |
| 2961 | /// |
| 2962 | /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if |
| 2963 | /// the [`Ord`] implementation panics. |
| 2964 | /// |
| 2965 | /// # Examples |
| 2966 | /// |
| 2967 | /// ``` |
| 2968 | /// let mut v = [4, -5, 1, -3, 2]; |
| 2969 | /// |
| 2970 | /// v.sort_unstable(); |
| 2971 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| 2972 | /// ``` |
| 2973 | /// |
| 2974 | /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| 2975 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 2976 | #[stable (feature = "sort_unstable" , since = "1.20.0" )] |
| 2977 | #[inline ] |
| 2978 | pub fn sort_unstable(&mut self) |
| 2979 | where |
| 2980 | T: Ord, |
| 2981 | { |
| 2982 | sort::unstable::sort(self, &mut T::lt); |
| 2983 | } |
| 2984 | |
| 2985 | /// Sorts the slice with a comparison function, **without** preserving the initial order of |
| 2986 | /// equal elements. |
| 2987 | /// |
| 2988 | /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not |
| 2989 | /// allocate), and *O*(*n* \* log(*n*)) worst-case. |
| 2990 | /// |
| 2991 | /// If the comparison function `compare` does not implement a [total order], the function |
| 2992 | /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| 2993 | /// is unspecified. See also the note on panicking below. |
| 2994 | /// |
| 2995 | /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor |
| 2996 | /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and |
| 2997 | /// examples see the [`Ord`] documentation. |
| 2998 | /// |
| 2999 | /// All original elements will remain in the slice and any possible modifications via interior |
| 3000 | /// mutability are observed in the input. Same is true if `compare` panics. |
| 3001 | /// |
| 3002 | /// # Current implementation |
| 3003 | /// |
| 3004 | /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which |
| 3005 | /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving |
| 3006 | /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the |
| 3007 | /// expected time to sort the data is *O*(*n* \* log(*k*)). |
| 3008 | /// |
| 3009 | /// It is typically faster than stable sorting, except in a few special cases, e.g., when the |
| 3010 | /// slice is partially sorted. |
| 3011 | /// |
| 3012 | /// # Panics |
| 3013 | /// |
| 3014 | /// May panic if the `compare` does not implement a [total order], or if |
| 3015 | /// the `compare` itself panics. |
| 3016 | /// |
| 3017 | /// # Examples |
| 3018 | /// |
| 3019 | /// ``` |
| 3020 | /// let mut v = [4, -5, 1, -3, 2]; |
| 3021 | /// v.sort_unstable_by(|a, b| a.cmp(b)); |
| 3022 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| 3023 | /// |
| 3024 | /// // reverse sorting |
| 3025 | /// v.sort_unstable_by(|a, b| b.cmp(a)); |
| 3026 | /// assert_eq!(v, [4, 2, 1, -3, -5]); |
| 3027 | /// ``` |
| 3028 | /// |
| 3029 | /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| 3030 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 3031 | #[stable (feature = "sort_unstable" , since = "1.20.0" )] |
| 3032 | #[inline ] |
| 3033 | pub fn sort_unstable_by<F>(&mut self, mut compare: F) |
| 3034 | where |
| 3035 | F: FnMut(&T, &T) -> Ordering, |
| 3036 | { |
| 3037 | sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less); |
| 3038 | } |
| 3039 | |
| 3040 | /// Sorts the slice with a key extraction function, **without** preserving the initial order of |
| 3041 | /// equal elements. |
| 3042 | /// |
| 3043 | /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not |
| 3044 | /// allocate), and *O*(*n* \* log(*n*)) worst-case. |
| 3045 | /// |
| 3046 | /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function |
| 3047 | /// may panic; even if the function exits normally, the resulting order of elements in the slice |
| 3048 | /// is unspecified. See also the note on panicking below. |
| 3049 | /// |
| 3050 | /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor |
| 3051 | /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and |
| 3052 | /// examples see the [`Ord`] documentation. |
| 3053 | /// |
| 3054 | /// All original elements will remain in the slice and any possible modifications via interior |
| 3055 | /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics. |
| 3056 | /// |
| 3057 | /// # Current implementation |
| 3058 | /// |
| 3059 | /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which |
| 3060 | /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving |
| 3061 | /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the |
| 3062 | /// expected time to sort the data is *O*(*n* \* log(*k*)). |
| 3063 | /// |
| 3064 | /// It is typically faster than stable sorting, except in a few special cases, e.g., when the |
| 3065 | /// slice is partially sorted. |
| 3066 | /// |
| 3067 | /// # Panics |
| 3068 | /// |
| 3069 | /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if |
| 3070 | /// the [`Ord`] implementation panics. |
| 3071 | /// |
| 3072 | /// # Examples |
| 3073 | /// |
| 3074 | /// ``` |
| 3075 | /// let mut v = [4i32, -5, 1, -3, 2]; |
| 3076 | /// |
| 3077 | /// v.sort_unstable_by_key(|k| k.abs()); |
| 3078 | /// assert_eq!(v, [1, 2, -3, 4, -5]); |
| 3079 | /// ``` |
| 3080 | /// |
| 3081 | /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| 3082 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 3083 | #[stable (feature = "sort_unstable" , since = "1.20.0" )] |
| 3084 | #[inline ] |
| 3085 | pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F) |
| 3086 | where |
| 3087 | F: FnMut(&T) -> K, |
| 3088 | K: Ord, |
| 3089 | { |
| 3090 | sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b))); |
| 3091 | } |
| 3092 | |
| 3093 | /// Reorders the slice such that the element at `index` is at a sort-order position. All |
| 3094 | /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to |
| 3095 | /// it. |
| 3096 | /// |
| 3097 | /// This reordering is unstable (i.e. any element that compares equal to the nth element may end |
| 3098 | /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This |
| 3099 | /// function is also known as "kth element" in other libraries. |
| 3100 | /// |
| 3101 | /// Returns a triple that partitions the reordered slice: |
| 3102 | /// |
| 3103 | /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`. |
| 3104 | /// |
| 3105 | /// * The element at `index`. |
| 3106 | /// |
| 3107 | /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`. |
| 3108 | /// |
| 3109 | /// # Current implementation |
| 3110 | /// |
| 3111 | /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll |
| 3112 | /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is |
| 3113 | /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime |
| 3114 | /// for all inputs. |
| 3115 | /// |
| 3116 | /// [`sort_unstable`]: slice::sort_unstable |
| 3117 | /// |
| 3118 | /// # Panics |
| 3119 | /// |
| 3120 | /// Panics when `index >= len()`, and so always panics on empty slices. |
| 3121 | /// |
| 3122 | /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order]. |
| 3123 | /// |
| 3124 | /// # Examples |
| 3125 | /// |
| 3126 | /// ``` |
| 3127 | /// let mut v = [-5i32, 4, 2, -3, 1]; |
| 3128 | /// |
| 3129 | /// // Find the items `<=` to the median, the median itself, and the items `>=` to it. |
| 3130 | /// let (lesser, median, greater) = v.select_nth_unstable(2); |
| 3131 | /// |
| 3132 | /// assert!(lesser == [-3, -5] || lesser == [-5, -3]); |
| 3133 | /// assert_eq!(median, &mut 1); |
| 3134 | /// assert!(greater == [4, 2] || greater == [2, 4]); |
| 3135 | /// |
| 3136 | /// // We are only guaranteed the slice will be one of the following, based on the way we sort |
| 3137 | /// // about the specified index. |
| 3138 | /// assert!(v == [-3, -5, 1, 2, 4] || |
| 3139 | /// v == [-5, -3, 1, 2, 4] || |
| 3140 | /// v == [-3, -5, 1, 4, 2] || |
| 3141 | /// v == [-5, -3, 1, 4, 2]); |
| 3142 | /// ``` |
| 3143 | /// |
| 3144 | /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| 3145 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 3146 | #[stable (feature = "slice_select_nth_unstable" , since = "1.49.0" )] |
| 3147 | #[inline ] |
| 3148 | pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T]) |
| 3149 | where |
| 3150 | T: Ord, |
| 3151 | { |
| 3152 | sort::select::partition_at_index(self, index, T::lt) |
| 3153 | } |
| 3154 | |
| 3155 | /// Reorders the slice with a comparator function such that the element at `index` is at a |
| 3156 | /// sort-order position. All elements before `index` will be `<=` to this value, and all |
| 3157 | /// elements after will be `>=` to it, according to the comparator function. |
| 3158 | /// |
| 3159 | /// This reordering is unstable (i.e. any element that compares equal to the nth element may end |
| 3160 | /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This |
| 3161 | /// function is also known as "kth element" in other libraries. |
| 3162 | /// |
| 3163 | /// Returns a triple partitioning the reordered slice: |
| 3164 | /// |
| 3165 | /// * The unsorted subslice before `index`, whose elements all satisfy |
| 3166 | /// `compare(x, self[index]).is_le()`. |
| 3167 | /// |
| 3168 | /// * The element at `index`. |
| 3169 | /// |
| 3170 | /// * The unsorted subslice after `index`, whose elements all satisfy |
| 3171 | /// `compare(x, self[index]).is_ge()`. |
| 3172 | /// |
| 3173 | /// # Current implementation |
| 3174 | /// |
| 3175 | /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll |
| 3176 | /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is |
| 3177 | /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime |
| 3178 | /// for all inputs. |
| 3179 | /// |
| 3180 | /// [`sort_unstable`]: slice::sort_unstable |
| 3181 | /// |
| 3182 | /// # Panics |
| 3183 | /// |
| 3184 | /// Panics when `index >= len()`, and so always panics on empty slices. |
| 3185 | /// |
| 3186 | /// May panic if `compare` does not implement a [total order]. |
| 3187 | /// |
| 3188 | /// # Examples |
| 3189 | /// |
| 3190 | /// ``` |
| 3191 | /// let mut v = [-5i32, 4, 2, -3, 1]; |
| 3192 | /// |
| 3193 | /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using |
| 3194 | /// // a reversed comparator. |
| 3195 | /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a)); |
| 3196 | /// |
| 3197 | /// assert!(before == [4, 2] || before == [2, 4]); |
| 3198 | /// assert_eq!(median, &mut 1); |
| 3199 | /// assert!(after == [-3, -5] || after == [-5, -3]); |
| 3200 | /// |
| 3201 | /// // We are only guaranteed the slice will be one of the following, based on the way we sort |
| 3202 | /// // about the specified index. |
| 3203 | /// assert!(v == [2, 4, 1, -5, -3] || |
| 3204 | /// v == [2, 4, 1, -3, -5] || |
| 3205 | /// v == [4, 2, 1, -5, -3] || |
| 3206 | /// v == [4, 2, 1, -3, -5]); |
| 3207 | /// ``` |
| 3208 | /// |
| 3209 | /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| 3210 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 3211 | #[stable (feature = "slice_select_nth_unstable" , since = "1.49.0" )] |
| 3212 | #[inline ] |
| 3213 | pub fn select_nth_unstable_by<F>( |
| 3214 | &mut self, |
| 3215 | index: usize, |
| 3216 | mut compare: F, |
| 3217 | ) -> (&mut [T], &mut T, &mut [T]) |
| 3218 | where |
| 3219 | F: FnMut(&T, &T) -> Ordering, |
| 3220 | { |
| 3221 | sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less) |
| 3222 | } |
| 3223 | |
| 3224 | /// Reorders the slice with a key extraction function such that the element at `index` is at a |
| 3225 | /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`, |
| 3226 | /// and all elements after will have keys `>=` to it. |
| 3227 | /// |
| 3228 | /// This reordering is unstable (i.e. any element that compares equal to the nth element may end |
| 3229 | /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This |
| 3230 | /// function is also known as "kth element" in other libraries. |
| 3231 | /// |
| 3232 | /// Returns a triple partitioning the reordered slice: |
| 3233 | /// |
| 3234 | /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`. |
| 3235 | /// |
| 3236 | /// * The element at `index`. |
| 3237 | /// |
| 3238 | /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`. |
| 3239 | /// |
| 3240 | /// # Current implementation |
| 3241 | /// |
| 3242 | /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll |
| 3243 | /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is |
| 3244 | /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime |
| 3245 | /// for all inputs. |
| 3246 | /// |
| 3247 | /// [`sort_unstable`]: slice::sort_unstable |
| 3248 | /// |
| 3249 | /// # Panics |
| 3250 | /// |
| 3251 | /// Panics when `index >= len()`, meaning it always panics on empty slices. |
| 3252 | /// |
| 3253 | /// May panic if `K: Ord` does not implement a total order. |
| 3254 | /// |
| 3255 | /// # Examples |
| 3256 | /// |
| 3257 | /// ``` |
| 3258 | /// let mut v = [-5i32, 4, 1, -3, 2]; |
| 3259 | /// |
| 3260 | /// // Find the items `<=` to the absolute median, the absolute median itself, and the items |
| 3261 | /// // `>=` to it. |
| 3262 | /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs()); |
| 3263 | /// |
| 3264 | /// assert!(lesser == [1, 2] || lesser == [2, 1]); |
| 3265 | /// assert_eq!(median, &mut -3); |
| 3266 | /// assert!(greater == [4, -5] || greater == [-5, 4]); |
| 3267 | /// |
| 3268 | /// // We are only guaranteed the slice will be one of the following, based on the way we sort |
| 3269 | /// // about the specified index. |
| 3270 | /// assert!(v == [1, 2, -3, 4, -5] || |
| 3271 | /// v == [1, 2, -3, -5, 4] || |
| 3272 | /// v == [2, 1, -3, 4, -5] || |
| 3273 | /// v == [2, 1, -3, -5, 4]); |
| 3274 | /// ``` |
| 3275 | /// |
| 3276 | /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort |
| 3277 | /// [total order]: https://en.wikipedia.org/wiki/Total_order |
| 3278 | #[stable (feature = "slice_select_nth_unstable" , since = "1.49.0" )] |
| 3279 | #[inline ] |
| 3280 | pub fn select_nth_unstable_by_key<K, F>( |
| 3281 | &mut self, |
| 3282 | index: usize, |
| 3283 | mut f: F, |
| 3284 | ) -> (&mut [T], &mut T, &mut [T]) |
| 3285 | where |
| 3286 | F: FnMut(&T) -> K, |
| 3287 | K: Ord, |
| 3288 | { |
| 3289 | sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b))) |
| 3290 | } |
| 3291 | |
| 3292 | /// Moves all consecutive repeated elements to the end of the slice according to the |
| 3293 | /// [`PartialEq`] trait implementation. |
| 3294 | /// |
| 3295 | /// Returns two slices. The first contains no consecutive repeated elements. |
| 3296 | /// The second contains all the duplicates in no specified order. |
| 3297 | /// |
| 3298 | /// If the slice is sorted, the first returned slice contains no duplicates. |
| 3299 | /// |
| 3300 | /// # Examples |
| 3301 | /// |
| 3302 | /// ``` |
| 3303 | /// #![feature(slice_partition_dedup)] |
| 3304 | /// |
| 3305 | /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1]; |
| 3306 | /// |
| 3307 | /// let (dedup, duplicates) = slice.partition_dedup(); |
| 3308 | /// |
| 3309 | /// assert_eq!(dedup, [1, 2, 3, 2, 1]); |
| 3310 | /// assert_eq!(duplicates, [2, 3, 1]); |
| 3311 | /// ``` |
| 3312 | #[unstable (feature = "slice_partition_dedup" , issue = "54279" )] |
| 3313 | #[inline ] |
| 3314 | pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T]) |
| 3315 | where |
| 3316 | T: PartialEq, |
| 3317 | { |
| 3318 | self.partition_dedup_by(|a, b| a == b) |
| 3319 | } |
| 3320 | |
| 3321 | /// Moves all but the first of consecutive elements to the end of the slice satisfying |
| 3322 | /// a given equality relation. |
| 3323 | /// |
| 3324 | /// Returns two slices. The first contains no consecutive repeated elements. |
| 3325 | /// The second contains all the duplicates in no specified order. |
| 3326 | /// |
| 3327 | /// The `same_bucket` function is passed references to two elements from the slice and |
| 3328 | /// must determine if the elements compare equal. The elements are passed in opposite order |
| 3329 | /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved |
| 3330 | /// at the end of the slice. |
| 3331 | /// |
| 3332 | /// If the slice is sorted, the first returned slice contains no duplicates. |
| 3333 | /// |
| 3334 | /// # Examples |
| 3335 | /// |
| 3336 | /// ``` |
| 3337 | /// #![feature(slice_partition_dedup)] |
| 3338 | /// |
| 3339 | /// let mut slice = ["foo" , "Foo" , "BAZ" , "Bar" , "bar" , "baz" , "BAZ" ]; |
| 3340 | /// |
| 3341 | /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b)); |
| 3342 | /// |
| 3343 | /// assert_eq!(dedup, ["foo" , "BAZ" , "Bar" , "baz" ]); |
| 3344 | /// assert_eq!(duplicates, ["bar" , "Foo" , "BAZ" ]); |
| 3345 | /// ``` |
| 3346 | #[unstable (feature = "slice_partition_dedup" , issue = "54279" )] |
| 3347 | #[inline ] |
| 3348 | pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T]) |
| 3349 | where |
| 3350 | F: FnMut(&mut T, &mut T) -> bool, |
| 3351 | { |
| 3352 | // Although we have a mutable reference to `self`, we cannot make |
| 3353 | // *arbitrary* changes. The `same_bucket` calls could panic, so we |
| 3354 | // must ensure that the slice is in a valid state at all times. |
| 3355 | // |
| 3356 | // The way that we handle this is by using swaps; we iterate |
| 3357 | // over all the elements, swapping as we go so that at the end |
| 3358 | // the elements we wish to keep are in the front, and those we |
| 3359 | // wish to reject are at the back. We can then split the slice. |
| 3360 | // This operation is still `O(n)`. |
| 3361 | // |
| 3362 | // Example: We start in this state, where `r` represents "next |
| 3363 | // read" and `w` represents "next_write". |
| 3364 | // |
| 3365 | // r |
| 3366 | // +---+---+---+---+---+---+ |
| 3367 | // | 0 | 1 | 1 | 2 | 3 | 3 | |
| 3368 | // +---+---+---+---+---+---+ |
| 3369 | // w |
| 3370 | // |
| 3371 | // Comparing self[r] against self[w-1], this is not a duplicate, so |
| 3372 | // we swap self[r] and self[w] (no effect as r==w) and then increment both |
| 3373 | // r and w, leaving us with: |
| 3374 | // |
| 3375 | // r |
| 3376 | // +---+---+---+---+---+---+ |
| 3377 | // | 0 | 1 | 1 | 2 | 3 | 3 | |
| 3378 | // +---+---+---+---+---+---+ |
| 3379 | // w |
| 3380 | // |
| 3381 | // Comparing self[r] against self[w-1], this value is a duplicate, |
| 3382 | // so we increment `r` but leave everything else unchanged: |
| 3383 | // |
| 3384 | // r |
| 3385 | // +---+---+---+---+---+---+ |
| 3386 | // | 0 | 1 | 1 | 2 | 3 | 3 | |
| 3387 | // +---+---+---+---+---+---+ |
| 3388 | // w |
| 3389 | // |
| 3390 | // Comparing self[r] against self[w-1], this is not a duplicate, |
| 3391 | // so swap self[r] and self[w] and advance r and w: |
| 3392 | // |
| 3393 | // r |
| 3394 | // +---+---+---+---+---+---+ |
| 3395 | // | 0 | 1 | 2 | 1 | 3 | 3 | |
| 3396 | // +---+---+---+---+---+---+ |
| 3397 | // w |
| 3398 | // |
| 3399 | // Not a duplicate, repeat: |
| 3400 | // |
| 3401 | // r |
| 3402 | // +---+---+---+---+---+---+ |
| 3403 | // | 0 | 1 | 2 | 3 | 1 | 3 | |
| 3404 | // +---+---+---+---+---+---+ |
| 3405 | // w |
| 3406 | // |
| 3407 | // Duplicate, advance r. End of slice. Split at w. |
| 3408 | |
| 3409 | let len = self.len(); |
| 3410 | if len <= 1 { |
| 3411 | return (self, &mut []); |
| 3412 | } |
| 3413 | |
| 3414 | let ptr = self.as_mut_ptr(); |
| 3415 | let mut next_read: usize = 1; |
| 3416 | let mut next_write: usize = 1; |
| 3417 | |
| 3418 | // SAFETY: the `while` condition guarantees `next_read` and `next_write` |
| 3419 | // are less than `len`, thus are inside `self`. `prev_ptr_write` points to |
| 3420 | // one element before `ptr_write`, but `next_write` starts at 1, so |
| 3421 | // `prev_ptr_write` is never less than 0 and is inside the slice. |
| 3422 | // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write` |
| 3423 | // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)` |
| 3424 | // and `prev_ptr_write.offset(1)`. |
| 3425 | // |
| 3426 | // `next_write` is also incremented at most once per loop at most meaning |
| 3427 | // no element is skipped when it may need to be swapped. |
| 3428 | // |
| 3429 | // `ptr_read` and `prev_ptr_write` never point to the same element. This |
| 3430 | // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe. |
| 3431 | // The explanation is simply that `next_read >= next_write` is always true, |
| 3432 | // thus `next_read > next_write - 1` is too. |
| 3433 | unsafe { |
| 3434 | // Avoid bounds checks by using raw pointers. |
| 3435 | while next_read < len { |
| 3436 | let ptr_read = ptr.add(next_read); |
| 3437 | let prev_ptr_write = ptr.add(next_write - 1); |
| 3438 | if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) { |
| 3439 | if next_read != next_write { |
| 3440 | let ptr_write = prev_ptr_write.add(1); |
| 3441 | mem::swap(&mut *ptr_read, &mut *ptr_write); |
| 3442 | } |
| 3443 | next_write += 1; |
| 3444 | } |
| 3445 | next_read += 1; |
| 3446 | } |
| 3447 | } |
| 3448 | |
| 3449 | self.split_at_mut(next_write) |
| 3450 | } |
| 3451 | |
| 3452 | /// Moves all but the first of consecutive elements to the end of the slice that resolve |
| 3453 | /// to the same key. |
| 3454 | /// |
| 3455 | /// Returns two slices. The first contains no consecutive repeated elements. |
| 3456 | /// The second contains all the duplicates in no specified order. |
| 3457 | /// |
| 3458 | /// If the slice is sorted, the first returned slice contains no duplicates. |
| 3459 | /// |
| 3460 | /// # Examples |
| 3461 | /// |
| 3462 | /// ``` |
| 3463 | /// #![feature(slice_partition_dedup)] |
| 3464 | /// |
| 3465 | /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13]; |
| 3466 | /// |
| 3467 | /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10); |
| 3468 | /// |
| 3469 | /// assert_eq!(dedup, [10, 20, 30, 20, 11]); |
| 3470 | /// assert_eq!(duplicates, [21, 30, 13]); |
| 3471 | /// ``` |
| 3472 | #[unstable (feature = "slice_partition_dedup" , issue = "54279" )] |
| 3473 | #[inline ] |
| 3474 | pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T]) |
| 3475 | where |
| 3476 | F: FnMut(&mut T) -> K, |
| 3477 | K: PartialEq, |
| 3478 | { |
| 3479 | self.partition_dedup_by(|a, b| key(a) == key(b)) |
| 3480 | } |
| 3481 | |
| 3482 | /// Rotates the slice in-place such that the first `mid` elements of the |
| 3483 | /// slice move to the end while the last `self.len() - mid` elements move to |
| 3484 | /// the front. |
| 3485 | /// |
| 3486 | /// After calling `rotate_left`, the element previously at index `mid` will |
| 3487 | /// become the first element in the slice. |
| 3488 | /// |
| 3489 | /// # Panics |
| 3490 | /// |
| 3491 | /// This function will panic if `mid` is greater than the length of the |
| 3492 | /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op |
| 3493 | /// rotation. |
| 3494 | /// |
| 3495 | /// # Complexity |
| 3496 | /// |
| 3497 | /// Takes linear (in `self.len()`) time. |
| 3498 | /// |
| 3499 | /// # Examples |
| 3500 | /// |
| 3501 | /// ``` |
| 3502 | /// let mut a = ['a' , 'b' , 'c' , 'd' , 'e' , 'f' ]; |
| 3503 | /// a.rotate_left(2); |
| 3504 | /// assert_eq!(a, ['c' , 'd' , 'e' , 'f' , 'a' , 'b' ]); |
| 3505 | /// ``` |
| 3506 | /// |
| 3507 | /// Rotating a subslice: |
| 3508 | /// |
| 3509 | /// ``` |
| 3510 | /// let mut a = ['a' , 'b' , 'c' , 'd' , 'e' , 'f' ]; |
| 3511 | /// a[1..5].rotate_left(1); |
| 3512 | /// assert_eq!(a, ['a' , 'c' , 'd' , 'e' , 'b' , 'f' ]); |
| 3513 | /// ``` |
| 3514 | #[stable (feature = "slice_rotate" , since = "1.26.0" )] |
| 3515 | pub fn rotate_left(&mut self, mid: usize) { |
| 3516 | assert!(mid <= self.len()); |
| 3517 | let k = self.len() - mid; |
| 3518 | let p = self.as_mut_ptr(); |
| 3519 | |
| 3520 | // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially |
| 3521 | // valid for reading and writing, as required by `ptr_rotate`. |
| 3522 | unsafe { |
| 3523 | rotate::ptr_rotate(mid, p.add(mid), k); |
| 3524 | } |
| 3525 | } |
| 3526 | |
| 3527 | /// Rotates the slice in-place such that the first `self.len() - k` |
| 3528 | /// elements of the slice move to the end while the last `k` elements move |
| 3529 | /// to the front. |
| 3530 | /// |
| 3531 | /// After calling `rotate_right`, the element previously at index |
| 3532 | /// `self.len() - k` will become the first element in the slice. |
| 3533 | /// |
| 3534 | /// # Panics |
| 3535 | /// |
| 3536 | /// This function will panic if `k` is greater than the length of the |
| 3537 | /// slice. Note that `k == self.len()` does _not_ panic and is a no-op |
| 3538 | /// rotation. |
| 3539 | /// |
| 3540 | /// # Complexity |
| 3541 | /// |
| 3542 | /// Takes linear (in `self.len()`) time. |
| 3543 | /// |
| 3544 | /// # Examples |
| 3545 | /// |
| 3546 | /// ``` |
| 3547 | /// let mut a = ['a' , 'b' , 'c' , 'd' , 'e' , 'f' ]; |
| 3548 | /// a.rotate_right(2); |
| 3549 | /// assert_eq!(a, ['e' , 'f' , 'a' , 'b' , 'c' , 'd' ]); |
| 3550 | /// ``` |
| 3551 | /// |
| 3552 | /// Rotating a subslice: |
| 3553 | /// |
| 3554 | /// ``` |
| 3555 | /// let mut a = ['a' , 'b' , 'c' , 'd' , 'e' , 'f' ]; |
| 3556 | /// a[1..5].rotate_right(1); |
| 3557 | /// assert_eq!(a, ['a' , 'e' , 'b' , 'c' , 'd' , 'f' ]); |
| 3558 | /// ``` |
| 3559 | #[stable (feature = "slice_rotate" , since = "1.26.0" )] |
| 3560 | pub fn rotate_right(&mut self, k: usize) { |
| 3561 | assert!(k <= self.len()); |
| 3562 | let mid = self.len() - k; |
| 3563 | let p = self.as_mut_ptr(); |
| 3564 | |
| 3565 | // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially |
| 3566 | // valid for reading and writing, as required by `ptr_rotate`. |
| 3567 | unsafe { |
| 3568 | rotate::ptr_rotate(mid, p.add(mid), k); |
| 3569 | } |
| 3570 | } |
| 3571 | |
| 3572 | /// Fills `self` with elements by cloning `value`. |
| 3573 | /// |
| 3574 | /// # Examples |
| 3575 | /// |
| 3576 | /// ``` |
| 3577 | /// let mut buf = vec![0; 10]; |
| 3578 | /// buf.fill(1); |
| 3579 | /// assert_eq!(buf, vec![1; 10]); |
| 3580 | /// ``` |
| 3581 | #[doc (alias = "memset" )] |
| 3582 | #[stable (feature = "slice_fill" , since = "1.50.0" )] |
| 3583 | pub fn fill(&mut self, value: T) |
| 3584 | where |
| 3585 | T: Clone, |
| 3586 | { |
| 3587 | specialize::SpecFill::spec_fill(self, value); |
| 3588 | } |
| 3589 | |
| 3590 | /// Fills `self` with elements returned by calling a closure repeatedly. |
| 3591 | /// |
| 3592 | /// This method uses a closure to create new values. If you'd rather |
| 3593 | /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`] |
| 3594 | /// trait to generate values, you can pass [`Default::default`] as the |
| 3595 | /// argument. |
| 3596 | /// |
| 3597 | /// [`fill`]: slice::fill |
| 3598 | /// |
| 3599 | /// # Examples |
| 3600 | /// |
| 3601 | /// ``` |
| 3602 | /// let mut buf = vec![1; 10]; |
| 3603 | /// buf.fill_with(Default::default); |
| 3604 | /// assert_eq!(buf, vec![0; 10]); |
| 3605 | /// ``` |
| 3606 | #[stable (feature = "slice_fill_with" , since = "1.51.0" )] |
| 3607 | pub fn fill_with<F>(&mut self, mut f: F) |
| 3608 | where |
| 3609 | F: FnMut() -> T, |
| 3610 | { |
| 3611 | for el in self { |
| 3612 | *el = f(); |
| 3613 | } |
| 3614 | } |
| 3615 | |
| 3616 | /// Copies the elements from `src` into `self`. |
| 3617 | /// |
| 3618 | /// The length of `src` must be the same as `self`. |
| 3619 | /// |
| 3620 | /// # Panics |
| 3621 | /// |
| 3622 | /// This function will panic if the two slices have different lengths. |
| 3623 | /// |
| 3624 | /// # Examples |
| 3625 | /// |
| 3626 | /// Cloning two elements from a slice into another: |
| 3627 | /// |
| 3628 | /// ``` |
| 3629 | /// let src = [1, 2, 3, 4]; |
| 3630 | /// let mut dst = [0, 0]; |
| 3631 | /// |
| 3632 | /// // Because the slices have to be the same length, |
| 3633 | /// // we slice the source slice from four elements |
| 3634 | /// // to two. It will panic if we don't do this. |
| 3635 | /// dst.clone_from_slice(&src[2..]); |
| 3636 | /// |
| 3637 | /// assert_eq!(src, [1, 2, 3, 4]); |
| 3638 | /// assert_eq!(dst, [3, 4]); |
| 3639 | /// ``` |
| 3640 | /// |
| 3641 | /// Rust enforces that there can only be one mutable reference with no |
| 3642 | /// immutable references to a particular piece of data in a particular |
| 3643 | /// scope. Because of this, attempting to use `clone_from_slice` on a |
| 3644 | /// single slice will result in a compile failure: |
| 3645 | /// |
| 3646 | /// ```compile_fail |
| 3647 | /// let mut slice = [1, 2, 3, 4, 5]; |
| 3648 | /// |
| 3649 | /// slice[..2].clone_from_slice(&slice[3..]); // compile fail! |
| 3650 | /// ``` |
| 3651 | /// |
| 3652 | /// To work around this, we can use [`split_at_mut`] to create two distinct |
| 3653 | /// sub-slices from a slice: |
| 3654 | /// |
| 3655 | /// ``` |
| 3656 | /// let mut slice = [1, 2, 3, 4, 5]; |
| 3657 | /// |
| 3658 | /// { |
| 3659 | /// let (left, right) = slice.split_at_mut(2); |
| 3660 | /// left.clone_from_slice(&right[1..]); |
| 3661 | /// } |
| 3662 | /// |
| 3663 | /// assert_eq!(slice, [4, 5, 3, 4, 5]); |
| 3664 | /// ``` |
| 3665 | /// |
| 3666 | /// [`copy_from_slice`]: slice::copy_from_slice |
| 3667 | /// [`split_at_mut`]: slice::split_at_mut |
| 3668 | #[stable (feature = "clone_from_slice" , since = "1.7.0" )] |
| 3669 | #[track_caller ] |
| 3670 | pub fn clone_from_slice(&mut self, src: &[T]) |
| 3671 | where |
| 3672 | T: Clone, |
| 3673 | { |
| 3674 | self.spec_clone_from(src); |
| 3675 | } |
| 3676 | |
| 3677 | /// Copies all elements from `src` into `self`, using a memcpy. |
| 3678 | /// |
| 3679 | /// The length of `src` must be the same as `self`. |
| 3680 | /// |
| 3681 | /// If `T` does not implement `Copy`, use [`clone_from_slice`]. |
| 3682 | /// |
| 3683 | /// # Panics |
| 3684 | /// |
| 3685 | /// This function will panic if the two slices have different lengths. |
| 3686 | /// |
| 3687 | /// # Examples |
| 3688 | /// |
| 3689 | /// Copying two elements from a slice into another: |
| 3690 | /// |
| 3691 | /// ``` |
| 3692 | /// let src = [1, 2, 3, 4]; |
| 3693 | /// let mut dst = [0, 0]; |
| 3694 | /// |
| 3695 | /// // Because the slices have to be the same length, |
| 3696 | /// // we slice the source slice from four elements |
| 3697 | /// // to two. It will panic if we don't do this. |
| 3698 | /// dst.copy_from_slice(&src[2..]); |
| 3699 | /// |
| 3700 | /// assert_eq!(src, [1, 2, 3, 4]); |
| 3701 | /// assert_eq!(dst, [3, 4]); |
| 3702 | /// ``` |
| 3703 | /// |
| 3704 | /// Rust enforces that there can only be one mutable reference with no |
| 3705 | /// immutable references to a particular piece of data in a particular |
| 3706 | /// scope. Because of this, attempting to use `copy_from_slice` on a |
| 3707 | /// single slice will result in a compile failure: |
| 3708 | /// |
| 3709 | /// ```compile_fail |
| 3710 | /// let mut slice = [1, 2, 3, 4, 5]; |
| 3711 | /// |
| 3712 | /// slice[..2].copy_from_slice(&slice[3..]); // compile fail! |
| 3713 | /// ``` |
| 3714 | /// |
| 3715 | /// To work around this, we can use [`split_at_mut`] to create two distinct |
| 3716 | /// sub-slices from a slice: |
| 3717 | /// |
| 3718 | /// ``` |
| 3719 | /// let mut slice = [1, 2, 3, 4, 5]; |
| 3720 | /// |
| 3721 | /// { |
| 3722 | /// let (left, right) = slice.split_at_mut(2); |
| 3723 | /// left.copy_from_slice(&right[1..]); |
| 3724 | /// } |
| 3725 | /// |
| 3726 | /// assert_eq!(slice, [4, 5, 3, 4, 5]); |
| 3727 | /// ``` |
| 3728 | /// |
| 3729 | /// [`clone_from_slice`]: slice::clone_from_slice |
| 3730 | /// [`split_at_mut`]: slice::split_at_mut |
| 3731 | #[doc (alias = "memcpy" )] |
| 3732 | #[inline ] |
| 3733 | #[stable (feature = "copy_from_slice" , since = "1.9.0" )] |
| 3734 | #[rustc_const_stable (feature = "const_copy_from_slice" , since = "1.87.0" )] |
| 3735 | #[track_caller ] |
| 3736 | pub const fn copy_from_slice(&mut self, src: &[T]) |
| 3737 | where |
| 3738 | T: Copy, |
| 3739 | { |
| 3740 | // The panic code path was put into a cold function to not bloat the |
| 3741 | // call site. |
| 3742 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never), cold)] |
| 3743 | #[cfg_attr (feature = "panic_immediate_abort" , inline)] |
| 3744 | #[track_caller ] |
| 3745 | const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! { |
| 3746 | const_panic!( |
| 3747 | "copy_from_slice: source slice length does not match destination slice length" , |
| 3748 | "copy_from_slice: source slice length ( {src_len}) does not match destination slice length ( {dst_len})" , |
| 3749 | src_len: usize, |
| 3750 | dst_len: usize, |
| 3751 | ) |
| 3752 | } |
| 3753 | |
| 3754 | if self.len() != src.len() { |
| 3755 | len_mismatch_fail(self.len(), src.len()); |
| 3756 | } |
| 3757 | |
| 3758 | // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was |
| 3759 | // checked to have the same length. The slices cannot overlap because |
| 3760 | // mutable references are exclusive. |
| 3761 | unsafe { |
| 3762 | ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len()); |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | /// Copies elements from one part of the slice to another part of itself, |
| 3767 | /// using a memmove. |
| 3768 | /// |
| 3769 | /// `src` is the range within `self` to copy from. `dest` is the starting |
| 3770 | /// index of the range within `self` to copy to, which will have the same |
| 3771 | /// length as `src`. The two ranges may overlap. The ends of the two ranges |
| 3772 | /// must be less than or equal to `self.len()`. |
| 3773 | /// |
| 3774 | /// # Panics |
| 3775 | /// |
| 3776 | /// This function will panic if either range exceeds the end of the slice, |
| 3777 | /// or if the end of `src` is before the start. |
| 3778 | /// |
| 3779 | /// # Examples |
| 3780 | /// |
| 3781 | /// Copying four bytes within a slice: |
| 3782 | /// |
| 3783 | /// ``` |
| 3784 | /// let mut bytes = *b"Hello, World!" ; |
| 3785 | /// |
| 3786 | /// bytes.copy_within(1..5, 8); |
| 3787 | /// |
| 3788 | /// assert_eq!(&bytes, b"Hello, Wello!" ); |
| 3789 | /// ``` |
| 3790 | #[stable (feature = "copy_within" , since = "1.37.0" )] |
| 3791 | #[track_caller ] |
| 3792 | pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize) |
| 3793 | where |
| 3794 | T: Copy, |
| 3795 | { |
| 3796 | let Range { start: src_start, end: src_end } = slice::range(src, ..self.len()); |
| 3797 | let count = src_end - src_start; |
| 3798 | assert!(dest <= self.len() - count, "dest is out of bounds" ); |
| 3799 | // SAFETY: the conditions for `ptr::copy` have all been checked above, |
| 3800 | // as have those for `ptr::add`. |
| 3801 | unsafe { |
| 3802 | // Derive both `src_ptr` and `dest_ptr` from the same loan |
| 3803 | let ptr = self.as_mut_ptr(); |
| 3804 | let src_ptr = ptr.add(src_start); |
| 3805 | let dest_ptr = ptr.add(dest); |
| 3806 | ptr::copy(src_ptr, dest_ptr, count); |
| 3807 | } |
| 3808 | } |
| 3809 | |
| 3810 | /// Swaps all elements in `self` with those in `other`. |
| 3811 | /// |
| 3812 | /// The length of `other` must be the same as `self`. |
| 3813 | /// |
| 3814 | /// # Panics |
| 3815 | /// |
| 3816 | /// This function will panic if the two slices have different lengths. |
| 3817 | /// |
| 3818 | /// # Example |
| 3819 | /// |
| 3820 | /// Swapping two elements across slices: |
| 3821 | /// |
| 3822 | /// ``` |
| 3823 | /// let mut slice1 = [0, 0]; |
| 3824 | /// let mut slice2 = [1, 2, 3, 4]; |
| 3825 | /// |
| 3826 | /// slice1.swap_with_slice(&mut slice2[2..]); |
| 3827 | /// |
| 3828 | /// assert_eq!(slice1, [3, 4]); |
| 3829 | /// assert_eq!(slice2, [1, 2, 0, 0]); |
| 3830 | /// ``` |
| 3831 | /// |
| 3832 | /// Rust enforces that there can only be one mutable reference to a |
| 3833 | /// particular piece of data in a particular scope. Because of this, |
| 3834 | /// attempting to use `swap_with_slice` on a single slice will result in |
| 3835 | /// a compile failure: |
| 3836 | /// |
| 3837 | /// ```compile_fail |
| 3838 | /// let mut slice = [1, 2, 3, 4, 5]; |
| 3839 | /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail! |
| 3840 | /// ``` |
| 3841 | /// |
| 3842 | /// To work around this, we can use [`split_at_mut`] to create two distinct |
| 3843 | /// mutable sub-slices from a slice: |
| 3844 | /// |
| 3845 | /// ``` |
| 3846 | /// let mut slice = [1, 2, 3, 4, 5]; |
| 3847 | /// |
| 3848 | /// { |
| 3849 | /// let (left, right) = slice.split_at_mut(2); |
| 3850 | /// left.swap_with_slice(&mut right[1..]); |
| 3851 | /// } |
| 3852 | /// |
| 3853 | /// assert_eq!(slice, [4, 5, 3, 1, 2]); |
| 3854 | /// ``` |
| 3855 | /// |
| 3856 | /// [`split_at_mut`]: slice::split_at_mut |
| 3857 | #[stable (feature = "swap_with_slice" , since = "1.27.0" )] |
| 3858 | #[track_caller ] |
| 3859 | pub fn swap_with_slice(&mut self, other: &mut [T]) { |
| 3860 | assert!(self.len() == other.len(), "destination and source slices have different lengths" ); |
| 3861 | // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was |
| 3862 | // checked to have the same length. The slices cannot overlap because |
| 3863 | // mutable references are exclusive. |
| 3864 | unsafe { |
| 3865 | ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len()); |
| 3866 | } |
| 3867 | } |
| 3868 | |
| 3869 | /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`. |
| 3870 | fn align_to_offsets<U>(&self) -> (usize, usize) { |
| 3871 | // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a |
| 3872 | // lowest number of `T`s. And how many `T`s we need for each such "multiple". |
| 3873 | // |
| 3874 | // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider |
| 3875 | // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in |
| 3876 | // place of every 3 Ts in the `rest` slice. A bit more complicated. |
| 3877 | // |
| 3878 | // Formula to calculate this is: |
| 3879 | // |
| 3880 | // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U> |
| 3881 | // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T> |
| 3882 | // |
| 3883 | // Expanded and simplified: |
| 3884 | // |
| 3885 | // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>) |
| 3886 | // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>) |
| 3887 | // |
| 3888 | // Luckily since all this is constant-evaluated... performance here matters not! |
| 3889 | const fn gcd(a: usize, b: usize) -> usize { |
| 3890 | if b == 0 { a } else { gcd(b, a % b) } |
| 3891 | } |
| 3892 | |
| 3893 | // Explicitly wrap the function call in a const block so it gets |
| 3894 | // constant-evaluated even in debug mode. |
| 3895 | let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) }; |
| 3896 | let ts: usize = size_of::<U>() / gcd; |
| 3897 | let us: usize = size_of::<T>() / gcd; |
| 3898 | |
| 3899 | // Armed with this knowledge, we can find how many `U`s we can fit! |
| 3900 | let us_len = self.len() / ts * us; |
| 3901 | // And how many `T`s will be in the trailing slice! |
| 3902 | let ts_len = self.len() % ts; |
| 3903 | (us_len, ts_len) |
| 3904 | } |
| 3905 | |
| 3906 | /// Transmutes the slice to a slice of another type, ensuring alignment of the types is |
| 3907 | /// maintained. |
| 3908 | /// |
| 3909 | /// This method splits the slice into three distinct slices: prefix, correctly aligned middle |
| 3910 | /// slice of a new type, and the suffix slice. The middle part will be as big as possible under |
| 3911 | /// the given alignment constraint and element size. |
| 3912 | /// |
| 3913 | /// This method has no purpose when either input element `T` or output element `U` are |
| 3914 | /// zero-sized and will return the original slice without splitting anything. |
| 3915 | /// |
| 3916 | /// # Safety |
| 3917 | /// |
| 3918 | /// This method is essentially a `transmute` with respect to the elements in the returned |
| 3919 | /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here. |
| 3920 | /// |
| 3921 | /// # Examples |
| 3922 | /// |
| 3923 | /// Basic usage: |
| 3924 | /// |
| 3925 | /// ``` |
| 3926 | /// unsafe { |
| 3927 | /// let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; |
| 3928 | /// let (prefix, shorts, suffix) = bytes.align_to::<u16>(); |
| 3929 | /// // less_efficient_algorithm_for_bytes(prefix); |
| 3930 | /// // more_efficient_algorithm_for_aligned_shorts(shorts); |
| 3931 | /// // less_efficient_algorithm_for_bytes(suffix); |
| 3932 | /// } |
| 3933 | /// ``` |
| 3934 | #[stable (feature = "slice_align_to" , since = "1.30.0" )] |
| 3935 | #[must_use ] |
| 3936 | pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) { |
| 3937 | // Note that most of this function will be constant-evaluated, |
| 3938 | if U::IS_ZST || T::IS_ZST { |
| 3939 | // handle ZSTs specially, which is – don't handle them at all. |
| 3940 | return (self, &[], &[]); |
| 3941 | } |
| 3942 | |
| 3943 | // First, find at what point do we split between the first and 2nd slice. Easy with |
| 3944 | // ptr.align_offset. |
| 3945 | let ptr = self.as_ptr(); |
| 3946 | // SAFETY: See the `align_to_mut` method for the detailed safety comment. |
| 3947 | let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) }; |
| 3948 | if offset > self.len() { |
| 3949 | (self, &[], &[]) |
| 3950 | } else { |
| 3951 | let (left, rest) = self.split_at(offset); |
| 3952 | let (us_len, ts_len) = rest.align_to_offsets::<U>(); |
| 3953 | // Inform Miri that we want to consider the "middle" pointer to be suitably aligned. |
| 3954 | #[cfg (miri)] |
| 3955 | crate::intrinsics::miri_promise_symbolic_alignment( |
| 3956 | rest.as_ptr().cast(), |
| 3957 | align_of::<U>(), |
| 3958 | ); |
| 3959 | // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay, |
| 3960 | // since the caller guarantees that we can transmute `T` to `U` safely. |
| 3961 | unsafe { |
| 3962 | ( |
| 3963 | left, |
| 3964 | from_raw_parts(rest.as_ptr() as *const U, us_len), |
| 3965 | from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len), |
| 3966 | ) |
| 3967 | } |
| 3968 | } |
| 3969 | } |
| 3970 | |
| 3971 | /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the |
| 3972 | /// types is maintained. |
| 3973 | /// |
| 3974 | /// This method splits the slice into three distinct slices: prefix, correctly aligned middle |
| 3975 | /// slice of a new type, and the suffix slice. The middle part will be as big as possible under |
| 3976 | /// the given alignment constraint and element size. |
| 3977 | /// |
| 3978 | /// This method has no purpose when either input element `T` or output element `U` are |
| 3979 | /// zero-sized and will return the original slice without splitting anything. |
| 3980 | /// |
| 3981 | /// # Safety |
| 3982 | /// |
| 3983 | /// This method is essentially a `transmute` with respect to the elements in the returned |
| 3984 | /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here. |
| 3985 | /// |
| 3986 | /// # Examples |
| 3987 | /// |
| 3988 | /// Basic usage: |
| 3989 | /// |
| 3990 | /// ``` |
| 3991 | /// unsafe { |
| 3992 | /// let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; |
| 3993 | /// let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>(); |
| 3994 | /// // less_efficient_algorithm_for_bytes(prefix); |
| 3995 | /// // more_efficient_algorithm_for_aligned_shorts(shorts); |
| 3996 | /// // less_efficient_algorithm_for_bytes(suffix); |
| 3997 | /// } |
| 3998 | /// ``` |
| 3999 | #[stable (feature = "slice_align_to" , since = "1.30.0" )] |
| 4000 | #[must_use ] |
| 4001 | pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) { |
| 4002 | // Note that most of this function will be constant-evaluated, |
| 4003 | if U::IS_ZST || T::IS_ZST { |
| 4004 | // handle ZSTs specially, which is – don't handle them at all. |
| 4005 | return (self, &mut [], &mut []); |
| 4006 | } |
| 4007 | |
| 4008 | // First, find at what point do we split between the first and 2nd slice. Easy with |
| 4009 | // ptr.align_offset. |
| 4010 | let ptr = self.as_ptr(); |
| 4011 | // SAFETY: Here we are ensuring we will use aligned pointers for U for the |
| 4012 | // rest of the method. This is done by passing a pointer to &[T] with an |
| 4013 | // alignment targeted for U. |
| 4014 | // `crate::ptr::align_offset` is called with a correctly aligned and |
| 4015 | // valid pointer `ptr` (it comes from a reference to `self`) and with |
| 4016 | // a size that is a power of two (since it comes from the alignment for U), |
| 4017 | // satisfying its safety constraints. |
| 4018 | let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) }; |
| 4019 | if offset > self.len() { |
| 4020 | (self, &mut [], &mut []) |
| 4021 | } else { |
| 4022 | let (left, rest) = self.split_at_mut(offset); |
| 4023 | let (us_len, ts_len) = rest.align_to_offsets::<U>(); |
| 4024 | let rest_len = rest.len(); |
| 4025 | let mut_ptr = rest.as_mut_ptr(); |
| 4026 | // Inform Miri that we want to consider the "middle" pointer to be suitably aligned. |
| 4027 | #[cfg (miri)] |
| 4028 | crate::intrinsics::miri_promise_symbolic_alignment( |
| 4029 | mut_ptr.cast() as *const (), |
| 4030 | align_of::<U>(), |
| 4031 | ); |
| 4032 | // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`! |
| 4033 | // SAFETY: see comments for `align_to`. |
| 4034 | unsafe { |
| 4035 | ( |
| 4036 | left, |
| 4037 | from_raw_parts_mut(mut_ptr as *mut U, us_len), |
| 4038 | from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len), |
| 4039 | ) |
| 4040 | } |
| 4041 | } |
| 4042 | } |
| 4043 | |
| 4044 | /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix. |
| 4045 | /// |
| 4046 | /// This is a safe wrapper around [`slice::align_to`], so inherits the same |
| 4047 | /// guarantees as that method. |
| 4048 | /// |
| 4049 | /// # Panics |
| 4050 | /// |
| 4051 | /// This will panic if the size of the SIMD type is different from |
| 4052 | /// `LANES` times that of the scalar. |
| 4053 | /// |
| 4054 | /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps |
| 4055 | /// that from ever happening, as only power-of-two numbers of lanes are |
| 4056 | /// supported. It's possible that, in the future, those restrictions might |
| 4057 | /// be lifted in a way that would make it possible to see panics from this |
| 4058 | /// method for something like `LANES == 3`. |
| 4059 | /// |
| 4060 | /// # Examples |
| 4061 | /// |
| 4062 | /// ``` |
| 4063 | /// #![feature(portable_simd)] |
| 4064 | /// use core::simd::prelude::*; |
| 4065 | /// |
| 4066 | /// let short = &[1, 2, 3]; |
| 4067 | /// let (prefix, middle, suffix) = short.as_simd::<4>(); |
| 4068 | /// assert_eq!(middle, []); // Not enough elements for anything in the middle |
| 4069 | /// |
| 4070 | /// // They might be split in any possible way between prefix and suffix |
| 4071 | /// let it = prefix.iter().chain(suffix).copied(); |
| 4072 | /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]); |
| 4073 | /// |
| 4074 | /// fn basic_simd_sum(x: &[f32]) -> f32 { |
| 4075 | /// use std::ops::Add; |
| 4076 | /// let (prefix, middle, suffix) = x.as_simd(); |
| 4077 | /// let sums = f32x4::from_array([ |
| 4078 | /// prefix.iter().copied().sum(), |
| 4079 | /// 0.0, |
| 4080 | /// 0.0, |
| 4081 | /// suffix.iter().copied().sum(), |
| 4082 | /// ]); |
| 4083 | /// let sums = middle.iter().copied().fold(sums, f32x4::add); |
| 4084 | /// sums.reduce_sum() |
| 4085 | /// } |
| 4086 | /// |
| 4087 | /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect(); |
| 4088 | /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0); |
| 4089 | /// ``` |
| 4090 | #[unstable (feature = "portable_simd" , issue = "86656" )] |
| 4091 | #[must_use ] |
| 4092 | pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]) |
| 4093 | where |
| 4094 | Simd<T, LANES>: AsRef<[T; LANES]>, |
| 4095 | T: simd::SimdElement, |
| 4096 | simd::LaneCount<LANES>: simd::SupportedLaneCount, |
| 4097 | { |
| 4098 | // These are expected to always match, as vector types are laid out like |
| 4099 | // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we |
| 4100 | // might as well double-check since it'll optimize away anyhow. |
| 4101 | assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>()); |
| 4102 | |
| 4103 | // SAFETY: The simd types have the same layout as arrays, just with |
| 4104 | // potentially-higher alignment, so the de-facto transmutes are sound. |
| 4105 | unsafe { self.align_to() } |
| 4106 | } |
| 4107 | |
| 4108 | /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types, |
| 4109 | /// and a mutable suffix. |
| 4110 | /// |
| 4111 | /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same |
| 4112 | /// guarantees as that method. |
| 4113 | /// |
| 4114 | /// This is the mutable version of [`slice::as_simd`]; see that for examples. |
| 4115 | /// |
| 4116 | /// # Panics |
| 4117 | /// |
| 4118 | /// This will panic if the size of the SIMD type is different from |
| 4119 | /// `LANES` times that of the scalar. |
| 4120 | /// |
| 4121 | /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps |
| 4122 | /// that from ever happening, as only power-of-two numbers of lanes are |
| 4123 | /// supported. It's possible that, in the future, those restrictions might |
| 4124 | /// be lifted in a way that would make it possible to see panics from this |
| 4125 | /// method for something like `LANES == 3`. |
| 4126 | #[unstable (feature = "portable_simd" , issue = "86656" )] |
| 4127 | #[must_use ] |
| 4128 | pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]) |
| 4129 | where |
| 4130 | Simd<T, LANES>: AsMut<[T; LANES]>, |
| 4131 | T: simd::SimdElement, |
| 4132 | simd::LaneCount<LANES>: simd::SupportedLaneCount, |
| 4133 | { |
| 4134 | // These are expected to always match, as vector types are laid out like |
| 4135 | // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we |
| 4136 | // might as well double-check since it'll optimize away anyhow. |
| 4137 | assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>()); |
| 4138 | |
| 4139 | // SAFETY: The simd types have the same layout as arrays, just with |
| 4140 | // potentially-higher alignment, so the de-facto transmutes are sound. |
| 4141 | unsafe { self.align_to_mut() } |
| 4142 | } |
| 4143 | |
| 4144 | /// Checks if the elements of this slice are sorted. |
| 4145 | /// |
| 4146 | /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the |
| 4147 | /// slice yields exactly zero or one element, `true` is returned. |
| 4148 | /// |
| 4149 | /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition |
| 4150 | /// implies that this function returns `false` if any two consecutive items are not |
| 4151 | /// comparable. |
| 4152 | /// |
| 4153 | /// # Examples |
| 4154 | /// |
| 4155 | /// ``` |
| 4156 | /// let empty: [i32; 0] = []; |
| 4157 | /// |
| 4158 | /// assert!([1, 2, 2, 9].is_sorted()); |
| 4159 | /// assert!(![1, 3, 2, 4].is_sorted()); |
| 4160 | /// assert!([0].is_sorted()); |
| 4161 | /// assert!(empty.is_sorted()); |
| 4162 | /// assert!(![0.0, 1.0, f32::NAN].is_sorted()); |
| 4163 | /// ``` |
| 4164 | #[inline ] |
| 4165 | #[stable (feature = "is_sorted" , since = "1.82.0" )] |
| 4166 | #[must_use ] |
| 4167 | pub fn is_sorted(&self) -> bool |
| 4168 | where |
| 4169 | T: PartialOrd, |
| 4170 | { |
| 4171 | // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries. |
| 4172 | const CHUNK_SIZE: usize = 33; |
| 4173 | if self.len() < CHUNK_SIZE { |
| 4174 | return self.windows(2).all(|w| w[0] <= w[1]); |
| 4175 | } |
| 4176 | let mut i = 0; |
| 4177 | // Check in chunks for autovectorization. |
| 4178 | while i < self.len() - CHUNK_SIZE { |
| 4179 | let chunk = &self[i..i + CHUNK_SIZE]; |
| 4180 | if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) { |
| 4181 | return false; |
| 4182 | } |
| 4183 | // We need to ensure that chunk boundaries are also sorted. |
| 4184 | // Overlap the next chunk with the last element of our last chunk. |
| 4185 | i += CHUNK_SIZE - 1; |
| 4186 | } |
| 4187 | self[i..].windows(2).all(|w| w[0] <= w[1]) |
| 4188 | } |
| 4189 | |
| 4190 | /// Checks if the elements of this slice are sorted using the given comparator function. |
| 4191 | /// |
| 4192 | /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare` |
| 4193 | /// function to determine whether two elements are to be considered in sorted order. |
| 4194 | /// |
| 4195 | /// # Examples |
| 4196 | /// |
| 4197 | /// ``` |
| 4198 | /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b)); |
| 4199 | /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b)); |
| 4200 | /// |
| 4201 | /// assert!([0].is_sorted_by(|a, b| true)); |
| 4202 | /// assert!([0].is_sorted_by(|a, b| false)); |
| 4203 | /// |
| 4204 | /// let empty: [i32; 0] = []; |
| 4205 | /// assert!(empty.is_sorted_by(|a, b| false)); |
| 4206 | /// assert!(empty.is_sorted_by(|a, b| true)); |
| 4207 | /// ``` |
| 4208 | #[stable (feature = "is_sorted" , since = "1.82.0" )] |
| 4209 | #[must_use ] |
| 4210 | pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool |
| 4211 | where |
| 4212 | F: FnMut(&'a T, &'a T) -> bool, |
| 4213 | { |
| 4214 | self.array_windows().all(|[a, b]| compare(a, b)) |
| 4215 | } |
| 4216 | |
| 4217 | /// Checks if the elements of this slice are sorted using the given key extraction function. |
| 4218 | /// |
| 4219 | /// Instead of comparing the slice's elements directly, this function compares the keys of the |
| 4220 | /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its |
| 4221 | /// documentation for more information. |
| 4222 | /// |
| 4223 | /// [`is_sorted`]: slice::is_sorted |
| 4224 | /// |
| 4225 | /// # Examples |
| 4226 | /// |
| 4227 | /// ``` |
| 4228 | /// assert!(["c" , "bb" , "aaa" ].is_sorted_by_key(|s| s.len())); |
| 4229 | /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs())); |
| 4230 | /// ``` |
| 4231 | #[inline ] |
| 4232 | #[stable (feature = "is_sorted" , since = "1.82.0" )] |
| 4233 | #[must_use ] |
| 4234 | pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool |
| 4235 | where |
| 4236 | F: FnMut(&'a T) -> K, |
| 4237 | K: PartialOrd, |
| 4238 | { |
| 4239 | self.iter().is_sorted_by_key(f) |
| 4240 | } |
| 4241 | |
| 4242 | /// Returns the index of the partition point according to the given predicate |
| 4243 | /// (the index of the first element of the second partition). |
| 4244 | /// |
| 4245 | /// The slice is assumed to be partitioned according to the given predicate. |
| 4246 | /// This means that all elements for which the predicate returns true are at the start of the slice |
| 4247 | /// and all elements for which the predicate returns false are at the end. |
| 4248 | /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0` |
| 4249 | /// (all odd numbers are at the start, all even at the end). |
| 4250 | /// |
| 4251 | /// If this slice is not partitioned, the returned result is unspecified and meaningless, |
| 4252 | /// as this method performs a kind of binary search. |
| 4253 | /// |
| 4254 | /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`]. |
| 4255 | /// |
| 4256 | /// [`binary_search`]: slice::binary_search |
| 4257 | /// [`binary_search_by`]: slice::binary_search_by |
| 4258 | /// [`binary_search_by_key`]: slice::binary_search_by_key |
| 4259 | /// |
| 4260 | /// # Examples |
| 4261 | /// |
| 4262 | /// ``` |
| 4263 | /// let v = [1, 2, 3, 3, 5, 6, 7]; |
| 4264 | /// let i = v.partition_point(|&x| x < 5); |
| 4265 | /// |
| 4266 | /// assert_eq!(i, 4); |
| 4267 | /// assert!(v[..i].iter().all(|&x| x < 5)); |
| 4268 | /// assert!(v[i..].iter().all(|&x| !(x < 5))); |
| 4269 | /// ``` |
| 4270 | /// |
| 4271 | /// If all elements of the slice match the predicate, including if the slice |
| 4272 | /// is empty, then the length of the slice will be returned: |
| 4273 | /// |
| 4274 | /// ``` |
| 4275 | /// let a = [2, 4, 8]; |
| 4276 | /// assert_eq!(a.partition_point(|x| x < &100), a.len()); |
| 4277 | /// let a: [i32; 0] = []; |
| 4278 | /// assert_eq!(a.partition_point(|x| x < &100), 0); |
| 4279 | /// ``` |
| 4280 | /// |
| 4281 | /// If you want to insert an item to a sorted vector, while maintaining |
| 4282 | /// sort order: |
| 4283 | /// |
| 4284 | /// ``` |
| 4285 | /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; |
| 4286 | /// let num = 42; |
| 4287 | /// let idx = s.partition_point(|&x| x <= num); |
| 4288 | /// s.insert(idx, num); |
| 4289 | /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]); |
| 4290 | /// ``` |
| 4291 | #[stable (feature = "partition_point" , since = "1.52.0" )] |
| 4292 | #[must_use ] |
| 4293 | pub fn partition_point<P>(&self, mut pred: P) -> usize |
| 4294 | where |
| 4295 | P: FnMut(&T) -> bool, |
| 4296 | { |
| 4297 | self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i) |
| 4298 | } |
| 4299 | |
| 4300 | /// Removes the subslice corresponding to the given range |
| 4301 | /// and returns a reference to it. |
| 4302 | /// |
| 4303 | /// Returns `None` and does not modify the slice if the given |
| 4304 | /// range is out of bounds. |
| 4305 | /// |
| 4306 | /// Note that this method only accepts one-sided ranges such as |
| 4307 | /// `2..` or `..6`, but not `2..6`. |
| 4308 | /// |
| 4309 | /// # Examples |
| 4310 | /// |
| 4311 | /// Splitting off the first three elements of a slice: |
| 4312 | /// |
| 4313 | /// ``` |
| 4314 | /// let mut slice: &[_] = &['a' , 'b' , 'c' , 'd' ]; |
| 4315 | /// let mut first_three = slice.split_off(..3).unwrap(); |
| 4316 | /// |
| 4317 | /// assert_eq!(slice, &['d' ]); |
| 4318 | /// assert_eq!(first_three, &['a' , 'b' , 'c' ]); |
| 4319 | /// ``` |
| 4320 | /// |
| 4321 | /// Splitting off the last two elements of a slice: |
| 4322 | /// |
| 4323 | /// ``` |
| 4324 | /// let mut slice: &[_] = &['a' , 'b' , 'c' , 'd' ]; |
| 4325 | /// let mut tail = slice.split_off(2..).unwrap(); |
| 4326 | /// |
| 4327 | /// assert_eq!(slice, &['a' , 'b' ]); |
| 4328 | /// assert_eq!(tail, &['c' , 'd' ]); |
| 4329 | /// ``` |
| 4330 | /// |
| 4331 | /// Getting `None` when `range` is out of bounds: |
| 4332 | /// |
| 4333 | /// ``` |
| 4334 | /// let mut slice: &[_] = &['a' , 'b' , 'c' , 'd' ]; |
| 4335 | /// |
| 4336 | /// assert_eq!(None, slice.split_off(5..)); |
| 4337 | /// assert_eq!(None, slice.split_off(..5)); |
| 4338 | /// assert_eq!(None, slice.split_off(..=4)); |
| 4339 | /// let expected: &[char] = &['a' , 'b' , 'c' , 'd' ]; |
| 4340 | /// assert_eq!(Some(expected), slice.split_off(..4)); |
| 4341 | /// ``` |
| 4342 | #[inline ] |
| 4343 | #[must_use = "method does not modify the slice if the range is out of bounds" ] |
| 4344 | #[stable (feature = "slice_take" , since = "1.87.0" )] |
| 4345 | pub fn split_off<'a, R: OneSidedRange<usize>>( |
| 4346 | self: &mut &'a Self, |
| 4347 | range: R, |
| 4348 | ) -> Option<&'a Self> { |
| 4349 | let (direction, split_index) = split_point_of(range)?; |
| 4350 | if split_index > self.len() { |
| 4351 | return None; |
| 4352 | } |
| 4353 | let (front, back) = self.split_at(split_index); |
| 4354 | match direction { |
| 4355 | Direction::Front => { |
| 4356 | *self = back; |
| 4357 | Some(front) |
| 4358 | } |
| 4359 | Direction::Back => { |
| 4360 | *self = front; |
| 4361 | Some(back) |
| 4362 | } |
| 4363 | } |
| 4364 | } |
| 4365 | |
| 4366 | /// Removes the subslice corresponding to the given range |
| 4367 | /// and returns a mutable reference to it. |
| 4368 | /// |
| 4369 | /// Returns `None` and does not modify the slice if the given |
| 4370 | /// range is out of bounds. |
| 4371 | /// |
| 4372 | /// Note that this method only accepts one-sided ranges such as |
| 4373 | /// `2..` or `..6`, but not `2..6`. |
| 4374 | /// |
| 4375 | /// # Examples |
| 4376 | /// |
| 4377 | /// Splitting off the first three elements of a slice: |
| 4378 | /// |
| 4379 | /// ``` |
| 4380 | /// let mut slice: &mut [_] = &mut ['a' , 'b' , 'c' , 'd' ]; |
| 4381 | /// let mut first_three = slice.split_off_mut(..3).unwrap(); |
| 4382 | /// |
| 4383 | /// assert_eq!(slice, &mut ['d' ]); |
| 4384 | /// assert_eq!(first_three, &mut ['a' , 'b' , 'c' ]); |
| 4385 | /// ``` |
| 4386 | /// |
| 4387 | /// Taking the last two elements of a slice: |
| 4388 | /// |
| 4389 | /// ``` |
| 4390 | /// let mut slice: &mut [_] = &mut ['a' , 'b' , 'c' , 'd' ]; |
| 4391 | /// let mut tail = slice.split_off_mut(2..).unwrap(); |
| 4392 | /// |
| 4393 | /// assert_eq!(slice, &mut ['a' , 'b' ]); |
| 4394 | /// assert_eq!(tail, &mut ['c' , 'd' ]); |
| 4395 | /// ``` |
| 4396 | /// |
| 4397 | /// Getting `None` when `range` is out of bounds: |
| 4398 | /// |
| 4399 | /// ``` |
| 4400 | /// let mut slice: &mut [_] = &mut ['a' , 'b' , 'c' , 'd' ]; |
| 4401 | /// |
| 4402 | /// assert_eq!(None, slice.split_off_mut(5..)); |
| 4403 | /// assert_eq!(None, slice.split_off_mut(..5)); |
| 4404 | /// assert_eq!(None, slice.split_off_mut(..=4)); |
| 4405 | /// let expected: &mut [_] = &mut ['a' , 'b' , 'c' , 'd' ]; |
| 4406 | /// assert_eq!(Some(expected), slice.split_off_mut(..4)); |
| 4407 | /// ``` |
| 4408 | #[inline ] |
| 4409 | #[must_use = "method does not modify the slice if the range is out of bounds" ] |
| 4410 | #[stable (feature = "slice_take" , since = "1.87.0" )] |
| 4411 | pub fn split_off_mut<'a, R: OneSidedRange<usize>>( |
| 4412 | self: &mut &'a mut Self, |
| 4413 | range: R, |
| 4414 | ) -> Option<&'a mut Self> { |
| 4415 | let (direction, split_index) = split_point_of(range)?; |
| 4416 | if split_index > self.len() { |
| 4417 | return None; |
| 4418 | } |
| 4419 | let (front, back) = mem::take(self).split_at_mut(split_index); |
| 4420 | match direction { |
| 4421 | Direction::Front => { |
| 4422 | *self = back; |
| 4423 | Some(front) |
| 4424 | } |
| 4425 | Direction::Back => { |
| 4426 | *self = front; |
| 4427 | Some(back) |
| 4428 | } |
| 4429 | } |
| 4430 | } |
| 4431 | |
| 4432 | /// Removes the first element of the slice and returns a reference |
| 4433 | /// to it. |
| 4434 | /// |
| 4435 | /// Returns `None` if the slice is empty. |
| 4436 | /// |
| 4437 | /// # Examples |
| 4438 | /// |
| 4439 | /// ``` |
| 4440 | /// let mut slice: &[_] = &['a' , 'b' , 'c' ]; |
| 4441 | /// let first = slice.split_off_first().unwrap(); |
| 4442 | /// |
| 4443 | /// assert_eq!(slice, &['b' , 'c' ]); |
| 4444 | /// assert_eq!(first, &'a' ); |
| 4445 | /// ``` |
| 4446 | #[inline ] |
| 4447 | #[stable (feature = "slice_take" , since = "1.87.0" )] |
| 4448 | #[rustc_const_unstable (feature = "const_split_off_first_last" , issue = "138539" )] |
| 4449 | pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> { |
| 4450 | // FIXME(const-hack): Use `?` when available in const instead of `let-else`. |
| 4451 | let Some((first, rem)) = self.split_first() else { return None }; |
| 4452 | *self = rem; |
| 4453 | Some(first) |
| 4454 | } |
| 4455 | |
| 4456 | /// Removes the first element of the slice and returns a mutable |
| 4457 | /// reference to it. |
| 4458 | /// |
| 4459 | /// Returns `None` if the slice is empty. |
| 4460 | /// |
| 4461 | /// # Examples |
| 4462 | /// |
| 4463 | /// ``` |
| 4464 | /// let mut slice: &mut [_] = &mut ['a' , 'b' , 'c' ]; |
| 4465 | /// let first = slice.split_off_first_mut().unwrap(); |
| 4466 | /// *first = 'd' ; |
| 4467 | /// |
| 4468 | /// assert_eq!(slice, &['b' , 'c' ]); |
| 4469 | /// assert_eq!(first, &'d' ); |
| 4470 | /// ``` |
| 4471 | #[inline ] |
| 4472 | #[stable (feature = "slice_take" , since = "1.87.0" )] |
| 4473 | #[rustc_const_unstable (feature = "const_split_off_first_last" , issue = "138539" )] |
| 4474 | pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> { |
| 4475 | // FIXME(const-hack): Use `mem::take` and `?` when available in const. |
| 4476 | // Original: `mem::take(self).split_first_mut()?` |
| 4477 | let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None }; |
| 4478 | *self = rem; |
| 4479 | Some(first) |
| 4480 | } |
| 4481 | |
| 4482 | /// Removes the last element of the slice and returns a reference |
| 4483 | /// to it. |
| 4484 | /// |
| 4485 | /// Returns `None` if the slice is empty. |
| 4486 | /// |
| 4487 | /// # Examples |
| 4488 | /// |
| 4489 | /// ``` |
| 4490 | /// let mut slice: &[_] = &['a' , 'b' , 'c' ]; |
| 4491 | /// let last = slice.split_off_last().unwrap(); |
| 4492 | /// |
| 4493 | /// assert_eq!(slice, &['a' , 'b' ]); |
| 4494 | /// assert_eq!(last, &'c' ); |
| 4495 | /// ``` |
| 4496 | #[inline ] |
| 4497 | #[stable (feature = "slice_take" , since = "1.87.0" )] |
| 4498 | #[rustc_const_unstable (feature = "const_split_off_first_last" , issue = "138539" )] |
| 4499 | pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> { |
| 4500 | // FIXME(const-hack): Use `?` when available in const instead of `let-else`. |
| 4501 | let Some((last, rem)) = self.split_last() else { return None }; |
| 4502 | *self = rem; |
| 4503 | Some(last) |
| 4504 | } |
| 4505 | |
| 4506 | /// Removes the last element of the slice and returns a mutable |
| 4507 | /// reference to it. |
| 4508 | /// |
| 4509 | /// Returns `None` if the slice is empty. |
| 4510 | /// |
| 4511 | /// # Examples |
| 4512 | /// |
| 4513 | /// ``` |
| 4514 | /// let mut slice: &mut [_] = &mut ['a' , 'b' , 'c' ]; |
| 4515 | /// let last = slice.split_off_last_mut().unwrap(); |
| 4516 | /// *last = 'd' ; |
| 4517 | /// |
| 4518 | /// assert_eq!(slice, &['a' , 'b' ]); |
| 4519 | /// assert_eq!(last, &'d' ); |
| 4520 | /// ``` |
| 4521 | #[inline ] |
| 4522 | #[stable (feature = "slice_take" , since = "1.87.0" )] |
| 4523 | #[rustc_const_unstable (feature = "const_split_off_first_last" , issue = "138539" )] |
| 4524 | pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> { |
| 4525 | // FIXME(const-hack): Use `mem::take` and `?` when available in const. |
| 4526 | // Original: `mem::take(self).split_last_mut()?` |
| 4527 | let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None }; |
| 4528 | *self = rem; |
| 4529 | Some(last) |
| 4530 | } |
| 4531 | |
| 4532 | /// Returns mutable references to many indices at once, without doing any checks. |
| 4533 | /// |
| 4534 | /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note |
| 4535 | /// that this method takes an array, so all indices must be of the same type. |
| 4536 | /// If passed an array of `usize`s this method gives back an array of mutable references |
| 4537 | /// to single elements, while if passed an array of ranges it gives back an array of |
| 4538 | /// mutable references to slices. |
| 4539 | /// |
| 4540 | /// For a safe alternative see [`get_disjoint_mut`]. |
| 4541 | /// |
| 4542 | /// # Safety |
| 4543 | /// |
| 4544 | /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]* |
| 4545 | /// even if the resulting references are not used. |
| 4546 | /// |
| 4547 | /// # Examples |
| 4548 | /// |
| 4549 | /// ``` |
| 4550 | /// let x = &mut [1, 2, 4]; |
| 4551 | /// |
| 4552 | /// unsafe { |
| 4553 | /// let [a, b] = x.get_disjoint_unchecked_mut([0, 2]); |
| 4554 | /// *a *= 10; |
| 4555 | /// *b *= 100; |
| 4556 | /// } |
| 4557 | /// assert_eq!(x, &[10, 2, 400]); |
| 4558 | /// |
| 4559 | /// unsafe { |
| 4560 | /// let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]); |
| 4561 | /// a[0] = 8; |
| 4562 | /// b[0] = 88; |
| 4563 | /// b[1] = 888; |
| 4564 | /// } |
| 4565 | /// assert_eq!(x, &[8, 88, 888]); |
| 4566 | /// |
| 4567 | /// unsafe { |
| 4568 | /// let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]); |
| 4569 | /// a[0] = 11; |
| 4570 | /// a[1] = 111; |
| 4571 | /// b[0] = 1; |
| 4572 | /// } |
| 4573 | /// assert_eq!(x, &[1, 11, 111]); |
| 4574 | /// ``` |
| 4575 | /// |
| 4576 | /// [`get_disjoint_mut`]: slice::get_disjoint_mut |
| 4577 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 4578 | #[stable (feature = "get_many_mut" , since = "1.86.0" )] |
| 4579 | #[inline ] |
| 4580 | pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>( |
| 4581 | &mut self, |
| 4582 | indices: [I; N], |
| 4583 | ) -> [&mut I::Output; N] |
| 4584 | where |
| 4585 | I: GetDisjointMutIndex + SliceIndex<Self>, |
| 4586 | { |
| 4587 | // NB: This implementation is written as it is because any variation of |
| 4588 | // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy, |
| 4589 | // or generate worse code otherwise. This is also why we need to go |
| 4590 | // through a raw pointer here. |
| 4591 | let slice: *mut [T] = self; |
| 4592 | let mut arr: mem::MaybeUninit<[&mut I::Output; N]> = mem::MaybeUninit::uninit(); |
| 4593 | let arr_ptr = arr.as_mut_ptr(); |
| 4594 | |
| 4595 | // SAFETY: We expect `indices` to contain disjunct values that are |
| 4596 | // in bounds of `self`. |
| 4597 | unsafe { |
| 4598 | for i in 0..N { |
| 4599 | let idx = indices.get_unchecked(i).clone(); |
| 4600 | arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx)); |
| 4601 | } |
| 4602 | arr.assume_init() |
| 4603 | } |
| 4604 | } |
| 4605 | |
| 4606 | /// Returns mutable references to many indices at once. |
| 4607 | /// |
| 4608 | /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note |
| 4609 | /// that this method takes an array, so all indices must be of the same type. |
| 4610 | /// If passed an array of `usize`s this method gives back an array of mutable references |
| 4611 | /// to single elements, while if passed an array of ranges it gives back an array of |
| 4612 | /// mutable references to slices. |
| 4613 | /// |
| 4614 | /// Returns an error if any index is out-of-bounds, or if there are overlapping indices. |
| 4615 | /// An empty range is not considered to overlap if it is located at the beginning or at |
| 4616 | /// the end of another range, but is considered to overlap if it is located in the middle. |
| 4617 | /// |
| 4618 | /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful |
| 4619 | /// when passing many indices. |
| 4620 | /// |
| 4621 | /// # Examples |
| 4622 | /// |
| 4623 | /// ``` |
| 4624 | /// let v = &mut [1, 2, 3]; |
| 4625 | /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) { |
| 4626 | /// *a = 413; |
| 4627 | /// *b = 612; |
| 4628 | /// } |
| 4629 | /// assert_eq!(v, &[413, 2, 612]); |
| 4630 | /// |
| 4631 | /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) { |
| 4632 | /// a[0] = 8; |
| 4633 | /// b[0] = 88; |
| 4634 | /// b[1] = 888; |
| 4635 | /// } |
| 4636 | /// assert_eq!(v, &[8, 88, 888]); |
| 4637 | /// |
| 4638 | /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) { |
| 4639 | /// a[0] = 11; |
| 4640 | /// a[1] = 111; |
| 4641 | /// b[0] = 1; |
| 4642 | /// } |
| 4643 | /// assert_eq!(v, &[1, 11, 111]); |
| 4644 | /// ``` |
| 4645 | #[stable (feature = "get_many_mut" , since = "1.86.0" )] |
| 4646 | #[inline ] |
| 4647 | pub fn get_disjoint_mut<I, const N: usize>( |
| 4648 | &mut self, |
| 4649 | indices: [I; N], |
| 4650 | ) -> Result<[&mut I::Output; N], GetDisjointMutError> |
| 4651 | where |
| 4652 | I: GetDisjointMutIndex + SliceIndex<Self>, |
| 4653 | { |
| 4654 | get_disjoint_check_valid(&indices, self.len())?; |
| 4655 | // SAFETY: The `get_disjoint_check_valid()` call checked that all indices |
| 4656 | // are disjunct and in bounds. |
| 4657 | unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) } |
| 4658 | } |
| 4659 | |
| 4660 | /// Returns the index that an element reference points to. |
| 4661 | /// |
| 4662 | /// Returns `None` if `element` does not point to the start of an element within the slice. |
| 4663 | /// |
| 4664 | /// This method is useful for extending slice iterators like [`slice::split`]. |
| 4665 | /// |
| 4666 | /// Note that this uses pointer arithmetic and **does not compare elements**. |
| 4667 | /// To find the index of an element via comparison, use |
| 4668 | /// [`.iter().position()`](crate::iter::Iterator::position) instead. |
| 4669 | /// |
| 4670 | /// # Panics |
| 4671 | /// Panics if `T` is zero-sized. |
| 4672 | /// |
| 4673 | /// # Examples |
| 4674 | /// Basic usage: |
| 4675 | /// ``` |
| 4676 | /// #![feature(substr_range)] |
| 4677 | /// |
| 4678 | /// let nums: &[u32] = &[1, 7, 1, 1]; |
| 4679 | /// let num = &nums[2]; |
| 4680 | /// |
| 4681 | /// assert_eq!(num, &1); |
| 4682 | /// assert_eq!(nums.element_offset(num), Some(2)); |
| 4683 | /// ``` |
| 4684 | /// Returning `None` with an unaligned element: |
| 4685 | /// ``` |
| 4686 | /// #![feature(substr_range)] |
| 4687 | /// |
| 4688 | /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]]; |
| 4689 | /// let flat_arr: &[u32] = arr.as_flattened(); |
| 4690 | /// |
| 4691 | /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap(); |
| 4692 | /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap(); |
| 4693 | /// |
| 4694 | /// assert_eq!(ok_elm, &[0, 1]); |
| 4695 | /// assert_eq!(weird_elm, &[1, 2]); |
| 4696 | /// |
| 4697 | /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0 |
| 4698 | /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1 |
| 4699 | /// ``` |
| 4700 | #[must_use ] |
| 4701 | #[unstable (feature = "substr_range" , issue = "126769" )] |
| 4702 | pub fn element_offset(&self, element: &T) -> Option<usize> { |
| 4703 | if T::IS_ZST { |
| 4704 | panic!("elements are zero-sized" ); |
| 4705 | } |
| 4706 | |
| 4707 | let self_start = self.as_ptr().addr(); |
| 4708 | let elem_start = ptr::from_ref(element).addr(); |
| 4709 | |
| 4710 | let byte_offset = elem_start.wrapping_sub(self_start); |
| 4711 | |
| 4712 | if byte_offset % size_of::<T>() != 0 { |
| 4713 | return None; |
| 4714 | } |
| 4715 | |
| 4716 | let offset = byte_offset / size_of::<T>(); |
| 4717 | |
| 4718 | if offset < self.len() { Some(offset) } else { None } |
| 4719 | } |
| 4720 | |
| 4721 | /// Returns the range of indices that a subslice points to. |
| 4722 | /// |
| 4723 | /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the |
| 4724 | /// elements in the slice. |
| 4725 | /// |
| 4726 | /// This method **does not compare elements**. Instead, this method finds the location in the slice that |
| 4727 | /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use |
| 4728 | /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position). |
| 4729 | /// |
| 4730 | /// This method is useful for extending slice iterators like [`slice::split`]. |
| 4731 | /// |
| 4732 | /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`) |
| 4733 | /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice. |
| 4734 | /// |
| 4735 | /// # Panics |
| 4736 | /// Panics if `T` is zero-sized. |
| 4737 | /// |
| 4738 | /// # Examples |
| 4739 | /// Basic usage: |
| 4740 | /// ``` |
| 4741 | /// #![feature(substr_range)] |
| 4742 | /// |
| 4743 | /// let nums = &[0, 5, 10, 0, 0, 5]; |
| 4744 | /// |
| 4745 | /// let mut iter = nums |
| 4746 | /// .split(|t| *t == 0) |
| 4747 | /// .map(|n| nums.subslice_range(n).unwrap()); |
| 4748 | /// |
| 4749 | /// assert_eq!(iter.next(), Some(0..0)); |
| 4750 | /// assert_eq!(iter.next(), Some(1..3)); |
| 4751 | /// assert_eq!(iter.next(), Some(4..4)); |
| 4752 | /// assert_eq!(iter.next(), Some(5..6)); |
| 4753 | /// ``` |
| 4754 | #[must_use ] |
| 4755 | #[unstable (feature = "substr_range" , issue = "126769" )] |
| 4756 | pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> { |
| 4757 | if T::IS_ZST { |
| 4758 | panic!("elements are zero-sized" ); |
| 4759 | } |
| 4760 | |
| 4761 | let self_start = self.as_ptr().addr(); |
| 4762 | let subslice_start = subslice.as_ptr().addr(); |
| 4763 | |
| 4764 | let byte_start = subslice_start.wrapping_sub(self_start); |
| 4765 | |
| 4766 | if byte_start % size_of::<T>() != 0 { |
| 4767 | return None; |
| 4768 | } |
| 4769 | |
| 4770 | let start = byte_start / size_of::<T>(); |
| 4771 | let end = start.wrapping_add(subslice.len()); |
| 4772 | |
| 4773 | if start <= self.len() && end <= self.len() { Some(start..end) } else { None } |
| 4774 | } |
| 4775 | } |
| 4776 | |
| 4777 | impl<T, const N: usize> [[T; N]] { |
| 4778 | /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`. |
| 4779 | /// |
| 4780 | /// # Panics |
| 4781 | /// |
| 4782 | /// This panics if the length of the resulting slice would overflow a `usize`. |
| 4783 | /// |
| 4784 | /// This is only possible when flattening a slice of arrays of zero-sized |
| 4785 | /// types, and thus tends to be irrelevant in practice. If |
| 4786 | /// `size_of::<T>() > 0`, this will never panic. |
| 4787 | /// |
| 4788 | /// # Examples |
| 4789 | /// |
| 4790 | /// ``` |
| 4791 | /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]); |
| 4792 | /// |
| 4793 | /// assert_eq!( |
| 4794 | /// [[1, 2, 3], [4, 5, 6]].as_flattened(), |
| 4795 | /// [[1, 2], [3, 4], [5, 6]].as_flattened(), |
| 4796 | /// ); |
| 4797 | /// |
| 4798 | /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []]; |
| 4799 | /// assert!(slice_of_empty_arrays.as_flattened().is_empty()); |
| 4800 | /// |
| 4801 | /// let empty_slice_of_arrays: &[[u32; 10]] = &[]; |
| 4802 | /// assert!(empty_slice_of_arrays.as_flattened().is_empty()); |
| 4803 | /// ``` |
| 4804 | #[stable (feature = "slice_flatten" , since = "1.80.0" )] |
| 4805 | #[rustc_const_stable (feature = "const_slice_flatten" , since = "1.87.0" )] |
| 4806 | pub const fn as_flattened(&self) -> &[T] { |
| 4807 | let len = if T::IS_ZST { |
| 4808 | self.len().checked_mul(N).expect("slice len overflow" ) |
| 4809 | } else { |
| 4810 | // SAFETY: `self.len() * N` cannot overflow because `self` is |
| 4811 | // already in the address space. |
| 4812 | unsafe { self.len().unchecked_mul(N) } |
| 4813 | }; |
| 4814 | // SAFETY: `[T]` is layout-identical to `[T; N]` |
| 4815 | unsafe { from_raw_parts(self.as_ptr().cast(), len) } |
| 4816 | } |
| 4817 | |
| 4818 | /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`. |
| 4819 | /// |
| 4820 | /// # Panics |
| 4821 | /// |
| 4822 | /// This panics if the length of the resulting slice would overflow a `usize`. |
| 4823 | /// |
| 4824 | /// This is only possible when flattening a slice of arrays of zero-sized |
| 4825 | /// types, and thus tends to be irrelevant in practice. If |
| 4826 | /// `size_of::<T>() > 0`, this will never panic. |
| 4827 | /// |
| 4828 | /// # Examples |
| 4829 | /// |
| 4830 | /// ``` |
| 4831 | /// fn add_5_to_all(slice: &mut [i32]) { |
| 4832 | /// for i in slice { |
| 4833 | /// *i += 5; |
| 4834 | /// } |
| 4835 | /// } |
| 4836 | /// |
| 4837 | /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]; |
| 4838 | /// add_5_to_all(array.as_flattened_mut()); |
| 4839 | /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]); |
| 4840 | /// ``` |
| 4841 | #[stable (feature = "slice_flatten" , since = "1.80.0" )] |
| 4842 | #[rustc_const_stable (feature = "const_slice_flatten" , since = "1.87.0" )] |
| 4843 | pub const fn as_flattened_mut(&mut self) -> &mut [T] { |
| 4844 | let len = if T::IS_ZST { |
| 4845 | self.len().checked_mul(N).expect("slice len overflow" ) |
| 4846 | } else { |
| 4847 | // SAFETY: `self.len() * N` cannot overflow because `self` is |
| 4848 | // already in the address space. |
| 4849 | unsafe { self.len().unchecked_mul(N) } |
| 4850 | }; |
| 4851 | // SAFETY: `[T]` is layout-identical to `[T; N]` |
| 4852 | unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) } |
| 4853 | } |
| 4854 | } |
| 4855 | |
| 4856 | impl [f32] { |
| 4857 | /// Sorts the slice of floats. |
| 4858 | /// |
| 4859 | /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses |
| 4860 | /// the ordering defined by [`f32::total_cmp`]. |
| 4861 | /// |
| 4862 | /// # Current implementation |
| 4863 | /// |
| 4864 | /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by). |
| 4865 | /// |
| 4866 | /// # Examples |
| 4867 | /// |
| 4868 | /// ``` |
| 4869 | /// #![feature(sort_floats)] |
| 4870 | /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0]; |
| 4871 | /// |
| 4872 | /// v.sort_floats(); |
| 4873 | /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN]; |
| 4874 | /// assert_eq!(&v[..8], &sorted[..8]); |
| 4875 | /// assert!(v[8].is_nan()); |
| 4876 | /// ``` |
| 4877 | #[unstable (feature = "sort_floats" , issue = "93396" )] |
| 4878 | #[inline ] |
| 4879 | pub fn sort_floats(&mut self) { |
| 4880 | self.sort_unstable_by(f32::total_cmp); |
| 4881 | } |
| 4882 | } |
| 4883 | |
| 4884 | impl [f64] { |
| 4885 | /// Sorts the slice of floats. |
| 4886 | /// |
| 4887 | /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses |
| 4888 | /// the ordering defined by [`f64::total_cmp`]. |
| 4889 | /// |
| 4890 | /// # Current implementation |
| 4891 | /// |
| 4892 | /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by). |
| 4893 | /// |
| 4894 | /// # Examples |
| 4895 | /// |
| 4896 | /// ``` |
| 4897 | /// #![feature(sort_floats)] |
| 4898 | /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0]; |
| 4899 | /// |
| 4900 | /// v.sort_floats(); |
| 4901 | /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN]; |
| 4902 | /// assert_eq!(&v[..8], &sorted[..8]); |
| 4903 | /// assert!(v[8].is_nan()); |
| 4904 | /// ``` |
| 4905 | #[unstable (feature = "sort_floats" , issue = "93396" )] |
| 4906 | #[inline ] |
| 4907 | pub fn sort_floats(&mut self) { |
| 4908 | self.sort_unstable_by(f64::total_cmp); |
| 4909 | } |
| 4910 | } |
| 4911 | |
| 4912 | trait CloneFromSpec<T> { |
| 4913 | fn spec_clone_from(&mut self, src: &[T]); |
| 4914 | } |
| 4915 | |
| 4916 | impl<T> CloneFromSpec<T> for [T] |
| 4917 | where |
| 4918 | T: Clone, |
| 4919 | { |
| 4920 | #[track_caller ] |
| 4921 | default fn spec_clone_from(&mut self, src: &[T]) { |
| 4922 | assert!(self.len() == src.len(), "destination and source slices have different lengths" ); |
| 4923 | // NOTE: We need to explicitly slice them to the same length |
| 4924 | // to make it easier for the optimizer to elide bounds checking. |
| 4925 | // But since it can't be relied on we also have an explicit specialization for T: Copy. |
| 4926 | let len: usize = self.len(); |
| 4927 | let src: &[T] = &src[..len]; |
| 4928 | for i: usize in 0..len { |
| 4929 | self[i].clone_from(&src[i]); |
| 4930 | } |
| 4931 | } |
| 4932 | } |
| 4933 | |
| 4934 | impl<T> CloneFromSpec<T> for [T] |
| 4935 | where |
| 4936 | T: Copy, |
| 4937 | { |
| 4938 | #[track_caller ] |
| 4939 | fn spec_clone_from(&mut self, src: &[T]) { |
| 4940 | self.copy_from_slice(src); |
| 4941 | } |
| 4942 | } |
| 4943 | |
| 4944 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 4945 | impl<T> Default for &[T] { |
| 4946 | /// Creates an empty slice. |
| 4947 | fn default() -> Self { |
| 4948 | &[] |
| 4949 | } |
| 4950 | } |
| 4951 | |
| 4952 | #[stable (feature = "mut_slice_default" , since = "1.5.0" )] |
| 4953 | impl<T> Default for &mut [T] { |
| 4954 | /// Creates a mutable empty slice. |
| 4955 | fn default() -> Self { |
| 4956 | &mut [] |
| 4957 | } |
| 4958 | } |
| 4959 | |
| 4960 | #[unstable (feature = "slice_pattern" , reason = "stopgap trait for slice patterns" , issue = "56345" )] |
| 4961 | /// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`. At a future |
| 4962 | /// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to |
| 4963 | /// `str`) to slices, and then this trait will be replaced or abolished. |
| 4964 | pub trait SlicePattern { |
| 4965 | /// The element type of the slice being matched on. |
| 4966 | type Item; |
| 4967 | |
| 4968 | /// Currently, the consumers of `SlicePattern` need a slice. |
| 4969 | fn as_slice(&self) -> &[Self::Item]; |
| 4970 | } |
| 4971 | |
| 4972 | #[stable (feature = "slice_strip" , since = "1.51.0" )] |
| 4973 | impl<T> SlicePattern for [T] { |
| 4974 | type Item = T; |
| 4975 | |
| 4976 | #[inline ] |
| 4977 | fn as_slice(&self) -> &[Self::Item] { |
| 4978 | self |
| 4979 | } |
| 4980 | } |
| 4981 | |
| 4982 | #[stable (feature = "slice_strip" , since = "1.51.0" )] |
| 4983 | impl<T, const N: usize> SlicePattern for [T; N] { |
| 4984 | type Item = T; |
| 4985 | |
| 4986 | #[inline ] |
| 4987 | fn as_slice(&self) -> &[Self::Item] { |
| 4988 | self |
| 4989 | } |
| 4990 | } |
| 4991 | |
| 4992 | /// This checks every index against each other, and against `len`. |
| 4993 | /// |
| 4994 | /// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..` |
| 4995 | /// comparison operations. |
| 4996 | #[inline ] |
| 4997 | fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>( |
| 4998 | indices: &[I; N], |
| 4999 | len: usize, |
| 5000 | ) -> Result<(), GetDisjointMutError> { |
| 5001 | // NB: The optimizer should inline the loops into a sequence |
| 5002 | // of instructions without additional branching. |
| 5003 | for (i: usize, idx: &I) in indices.iter().enumerate() { |
| 5004 | if !idx.is_in_bounds(len) { |
| 5005 | return Err(GetDisjointMutError::IndexOutOfBounds); |
| 5006 | } |
| 5007 | for idx2: &I in &indices[..i] { |
| 5008 | if idx.is_overlapping(idx2) { |
| 5009 | return Err(GetDisjointMutError::OverlappingIndices); |
| 5010 | } |
| 5011 | } |
| 5012 | } |
| 5013 | Ok(()) |
| 5014 | } |
| 5015 | |
| 5016 | /// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`]. |
| 5017 | /// |
| 5018 | /// It indicates one of two possible errors: |
| 5019 | /// - An index is out-of-bounds. |
| 5020 | /// - The same index appeared multiple times in the array |
| 5021 | /// (or different but overlapping indices when ranges are provided). |
| 5022 | /// |
| 5023 | /// # Examples |
| 5024 | /// |
| 5025 | /// ``` |
| 5026 | /// use std::slice::GetDisjointMutError; |
| 5027 | /// |
| 5028 | /// let v = &mut [1, 2, 3]; |
| 5029 | /// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds)); |
| 5030 | /// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices)); |
| 5031 | /// ``` |
| 5032 | #[stable (feature = "get_many_mut" , since = "1.86.0" )] |
| 5033 | #[derive (Debug, Clone, PartialEq, Eq)] |
| 5034 | pub enum GetDisjointMutError { |
| 5035 | /// An index provided was out-of-bounds for the slice. |
| 5036 | IndexOutOfBounds, |
| 5037 | /// Two indices provided were overlapping. |
| 5038 | OverlappingIndices, |
| 5039 | } |
| 5040 | |
| 5041 | #[stable (feature = "get_many_mut" , since = "1.86.0" )] |
| 5042 | impl fmt::Display for GetDisjointMutError { |
| 5043 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 5044 | let msg: &'static str = match self { |
| 5045 | GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds" , |
| 5046 | GetDisjointMutError::OverlappingIndices => "there were overlapping indices" , |
| 5047 | }; |
| 5048 | fmt::Display::fmt(self:msg, f) |
| 5049 | } |
| 5050 | } |
| 5051 | |
| 5052 | mod private_get_disjoint_mut_index { |
| 5053 | use super::{Range, RangeInclusive, range}; |
| 5054 | |
| 5055 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5056 | pub trait Sealed {} |
| 5057 | |
| 5058 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5059 | impl Sealed for usize {} |
| 5060 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5061 | impl Sealed for Range<usize> {} |
| 5062 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5063 | impl Sealed for RangeInclusive<usize> {} |
| 5064 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5065 | impl Sealed for range::Range<usize> {} |
| 5066 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5067 | impl Sealed for range::RangeInclusive<usize> {} |
| 5068 | } |
| 5069 | |
| 5070 | /// A helper trait for `<[T]>::get_disjoint_mut()`. |
| 5071 | /// |
| 5072 | /// # Safety |
| 5073 | /// |
| 5074 | /// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`, |
| 5075 | /// it must be safe to index the slice with the indices. |
| 5076 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5077 | pub unsafe trait GetDisjointMutIndex: |
| 5078 | Clone + private_get_disjoint_mut_index::Sealed |
| 5079 | { |
| 5080 | /// Returns `true` if `self` is in bounds for `len` slice elements. |
| 5081 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5082 | fn is_in_bounds(&self, len: usize) -> bool; |
| 5083 | |
| 5084 | /// Returns `true` if `self` overlaps with `other`. |
| 5085 | /// |
| 5086 | /// Note that we don't consider zero-length ranges to overlap at the beginning or the end, |
| 5087 | /// but do consider them to overlap in the middle. |
| 5088 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5089 | fn is_overlapping(&self, other: &Self) -> bool; |
| 5090 | } |
| 5091 | |
| 5092 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5093 | // SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly. |
| 5094 | unsafe impl GetDisjointMutIndex for usize { |
| 5095 | #[inline ] |
| 5096 | fn is_in_bounds(&self, len: usize) -> bool { |
| 5097 | *self < len |
| 5098 | } |
| 5099 | |
| 5100 | #[inline ] |
| 5101 | fn is_overlapping(&self, other: &Self) -> bool { |
| 5102 | *self == *other |
| 5103 | } |
| 5104 | } |
| 5105 | |
| 5106 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5107 | // SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly. |
| 5108 | unsafe impl GetDisjointMutIndex for Range<usize> { |
| 5109 | #[inline ] |
| 5110 | fn is_in_bounds(&self, len: usize) -> bool { |
| 5111 | (self.start <= self.end) & (self.end <= len) |
| 5112 | } |
| 5113 | |
| 5114 | #[inline ] |
| 5115 | fn is_overlapping(&self, other: &Self) -> bool { |
| 5116 | (self.start < other.end) & (other.start < self.end) |
| 5117 | } |
| 5118 | } |
| 5119 | |
| 5120 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5121 | // SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly. |
| 5122 | unsafe impl GetDisjointMutIndex for RangeInclusive<usize> { |
| 5123 | #[inline ] |
| 5124 | fn is_in_bounds(&self, len: usize) -> bool { |
| 5125 | (self.start <= self.end) & (self.end < len) |
| 5126 | } |
| 5127 | |
| 5128 | #[inline ] |
| 5129 | fn is_overlapping(&self, other: &Self) -> bool { |
| 5130 | (self.start <= other.end) & (other.start <= self.end) |
| 5131 | } |
| 5132 | } |
| 5133 | |
| 5134 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5135 | // SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly. |
| 5136 | unsafe impl GetDisjointMutIndex for range::Range<usize> { |
| 5137 | #[inline ] |
| 5138 | fn is_in_bounds(&self, len: usize) -> bool { |
| 5139 | Range::from(*self).is_in_bounds(len) |
| 5140 | } |
| 5141 | |
| 5142 | #[inline ] |
| 5143 | fn is_overlapping(&self, other: &Self) -> bool { |
| 5144 | Range::from(*self).is_overlapping(&Range::from(*other)) |
| 5145 | } |
| 5146 | } |
| 5147 | |
| 5148 | #[unstable (feature = "get_disjoint_mut_helpers" , issue = "none" )] |
| 5149 | // SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly. |
| 5150 | unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> { |
| 5151 | #[inline ] |
| 5152 | fn is_in_bounds(&self, len: usize) -> bool { |
| 5153 | RangeInclusive::from(*self).is_in_bounds(len) |
| 5154 | } |
| 5155 | |
| 5156 | #[inline ] |
| 5157 | fn is_overlapping(&self, other: &Self) -> bool { |
| 5158 | RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other)) |
| 5159 | } |
| 5160 | } |
| 5161 | |