1 | use crate::simd::{ |
2 | LaneCount, Mask, MaskElement, SupportedLaneCount, Swizzle, |
3 | cmp::SimdPartialOrd, |
4 | num::SimdUint, |
5 | ptr::{SimdConstPtr, SimdMutPtr}, |
6 | }; |
7 | |
8 | /// A SIMD vector with the shape of `[T; N]` but the operations of `T`. |
9 | /// |
10 | /// `Simd<T, N>` supports the operators (+, *, etc.) that `T` does in "elementwise" fashion. |
11 | /// These take the element at each index from the left-hand side and right-hand side, |
12 | /// perform the operation, then return the result in the same index in a vector of equal size. |
13 | /// However, `Simd` differs from normal iteration and normal arrays: |
14 | /// - `Simd<T, N>` executes `N` operations in a single step with no `break`s |
15 | /// - `Simd<T, N>` can have an alignment greater than `T`, for better mechanical sympathy |
16 | /// |
17 | /// By always imposing these constraints on `Simd`, it is easier to compile elementwise operations |
18 | /// into machine instructions that can themselves be executed in parallel. |
19 | /// |
20 | /// ```rust |
21 | /// # #![feature (portable_simd)] |
22 | /// # use core::simd::{Simd}; |
23 | /// # use core::array; |
24 | /// let a: [i32; 4] = [-2, 0, 2, 4]; |
25 | /// let b = [10, 9, 8, 7]; |
26 | /// let sum = array::from_fn(|i| a[i] + b[i]); |
27 | /// let prod = array::from_fn(|i| a[i] * b[i]); |
28 | /// |
29 | /// // `Simd<T, N>` implements `From<[T; N]>` |
30 | /// let (v, w) = (Simd::from(a), Simd::from(b)); |
31 | /// // Which means arrays implement `Into<Simd<T, N>>`. |
32 | /// assert_eq!(v + w, sum.into()); |
33 | /// assert_eq!(v * w, prod.into()); |
34 | /// ``` |
35 | /// |
36 | /// |
37 | /// `Simd` with integer elements treats operators as wrapping, as if `T` was [`Wrapping<T>`]. |
38 | /// Thus, `Simd` does not implement `wrapping_add`, because that is the default behavior. |
39 | /// This means there is no warning on overflows, even in "debug" builds. |
40 | /// For most applications where `Simd` is appropriate, it is "not a bug" to wrap, |
41 | /// and even "debug builds" are unlikely to tolerate the loss of performance. |
42 | /// You may want to consider using explicitly checked arithmetic if such is required. |
43 | /// Division by zero on integers still causes a panic, so |
44 | /// you may want to consider using `f32` or `f64` if that is unacceptable. |
45 | /// |
46 | /// [`Wrapping<T>`]: core::num::Wrapping |
47 | /// |
48 | /// # Layout |
49 | /// `Simd<T, N>` has a layout similar to `[T; N]` (identical "shapes"), with a greater alignment. |
50 | /// `[T; N]` is aligned to `T`, but `Simd<T, N>` will have an alignment based on both `T` and `N`. |
51 | /// Thus it is sound to [`transmute`] `Simd<T, N>` to `[T; N]` and should optimize to "zero cost", |
52 | /// but the reverse transmutation may require a copy the compiler cannot simply elide. |
53 | /// |
54 | /// # ABI "Features" |
55 | /// Due to Rust's safety guarantees, `Simd<T, N>` is currently passed and returned via memory, |
56 | /// not SIMD registers, except as an optimization. Using `#[inline]` on functions that accept |
57 | /// `Simd<T, N>` or return it is recommended, at the cost of code generation time, as |
58 | /// inlining SIMD-using functions can omit a large function prolog or epilog and thus |
59 | /// improve both speed and code size. The need for this may be corrected in the future. |
60 | /// |
61 | /// Using `#[inline(always)]` still requires additional care. |
62 | /// |
63 | /// # Safe SIMD with Unsafe Rust |
64 | /// |
65 | /// Operations with `Simd` are typically safe, but there are many reasons to want to combine SIMD with `unsafe` code. |
66 | /// Care must be taken to respect differences between `Simd` and other types it may be transformed into or derived from. |
67 | /// In particular, the layout of `Simd<T, N>` may be similar to `[T; N]`, and may allow some transmutations, |
68 | /// but references to `[T; N]` are not interchangeable with those to `Simd<T, N>`. |
69 | /// Thus, when using `unsafe` Rust to read and write `Simd<T, N>` through [raw pointers], it is a good idea to first try with |
70 | /// [`read_unaligned`] and [`write_unaligned`]. This is because: |
71 | /// - [`read`] and [`write`] require full alignment (in this case, `Simd<T, N>`'s alignment) |
72 | /// - `Simd<T, N>` is often read from or written to [`[T]`](slice) and other types aligned to `T` |
73 | /// - combining these actions violates the `unsafe` contract and explodes the program into |
74 | /// a puff of **undefined behavior** |
75 | /// - the compiler can implicitly adjust layouts to make unaligned reads or writes fully aligned |
76 | /// if it sees the optimization |
77 | /// - most contemporary processors with "aligned" and "unaligned" read and write instructions |
78 | /// exhibit no performance difference if the "unaligned" variant is aligned at runtime |
79 | /// |
80 | /// Less obligations mean unaligned reads and writes are less likely to make the program unsound, |
81 | /// and may be just as fast as stricter alternatives. |
82 | /// When trying to guarantee alignment, [`[T]::as_simd`][as_simd] is an option for |
83 | /// converting `[T]` to `[Simd<T, N>]`, and allows soundly operating on an aligned SIMD body, |
84 | /// but it may cost more time when handling the scalar head and tail. |
85 | /// If these are not enough, it is most ideal to design data structures to be already aligned |
86 | /// to `align_of::<Simd<T, N>>()` before using `unsafe` Rust to read or write. |
87 | /// Other ways to compensate for these facts, like materializing `Simd` to or from an array first, |
88 | /// are handled by safe methods like [`Simd::from_array`] and [`Simd::from_slice`]. |
89 | /// |
90 | /// [`transmute`]: core::mem::transmute |
91 | /// [raw pointers]: pointer |
92 | /// [`read_unaligned`]: pointer::read_unaligned |
93 | /// [`write_unaligned`]: pointer::write_unaligned |
94 | /// [`read`]: pointer::read |
95 | /// [`write`]: pointer::write |
96 | /// [as_simd]: slice::as_simd |
97 | // |
98 | // NOTE: Accessing the inner array directly in any way (e.g. by using the `.0` field syntax) or |
99 | // directly constructing an instance of the type (i.e. `let vector = Simd(array)`) should be |
100 | // avoided, as it will likely become illegal on `#[repr(simd)]` structs in the future. It also |
101 | // causes rustc to emit illegal LLVM IR in some cases. |
102 | #[repr (simd, packed)] |
103 | pub struct Simd<T, const N: usize>([T; N]) |
104 | where |
105 | LaneCount<N>: SupportedLaneCount, |
106 | T: SimdElement; |
107 | |
108 | impl<T, const N: usize> Simd<T, N> |
109 | where |
110 | LaneCount<N>: SupportedLaneCount, |
111 | T: SimdElement, |
112 | { |
113 | /// Number of elements in this vector. |
114 | pub const LEN: usize = N; |
115 | |
116 | /// Returns the number of elements in this SIMD vector. |
117 | /// |
118 | /// # Examples |
119 | /// |
120 | /// ``` |
121 | /// # #![feature (portable_simd)] |
122 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
123 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
124 | /// # use simd::u32x4; |
125 | /// let v = u32x4::splat(0); |
126 | /// assert_eq!(v.len(), 4); |
127 | /// ``` |
128 | #[inline ] |
129 | #[allow (clippy::len_without_is_empty)] |
130 | pub const fn len(&self) -> usize { |
131 | Self::LEN |
132 | } |
133 | |
134 | /// Constructs a new SIMD vector with all elements set to the given value. |
135 | /// |
136 | /// # Examples |
137 | /// |
138 | /// ``` |
139 | /// # #![feature (portable_simd)] |
140 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
141 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
142 | /// # use simd::u32x4; |
143 | /// let v = u32x4::splat(8); |
144 | /// assert_eq!(v.as_array(), &[8, 8, 8, 8]); |
145 | /// ``` |
146 | #[inline ] |
147 | #[rustc_const_unstable (feature = "portable_simd" , issue = "86656" )] |
148 | pub const fn splat(value: T) -> Self { |
149 | const fn splat_const<T, const N: usize>(value: T) -> Simd<T, N> |
150 | where |
151 | T: SimdElement, |
152 | LaneCount<N>: SupportedLaneCount, |
153 | { |
154 | Simd::from_array([value; N]) |
155 | } |
156 | |
157 | fn splat_rt<T, const N: usize>(value: T) -> Simd<T, N> |
158 | where |
159 | T: SimdElement, |
160 | LaneCount<N>: SupportedLaneCount, |
161 | { |
162 | // This is preferred over `[value; N]`, since it's explicitly a splat: |
163 | // https://github.com/rust-lang/rust/issues/97804 |
164 | struct Splat; |
165 | impl<const N: usize> Swizzle<N> for Splat { |
166 | const INDEX: [usize; N] = [0; N]; |
167 | } |
168 | |
169 | Splat::swizzle::<T, 1>(Simd::<T, 1>::from([value])) |
170 | } |
171 | |
172 | core::intrinsics::const_eval_select((value,), splat_const, splat_rt) |
173 | } |
174 | |
175 | /// Returns an array reference containing the entire SIMD vector. |
176 | /// |
177 | /// # Examples |
178 | /// |
179 | /// ``` |
180 | /// # #![feature (portable_simd)] |
181 | /// # use core::simd::{Simd, u64x4}; |
182 | /// let v: u64x4 = Simd::from_array([0, 1, 2, 3]); |
183 | /// assert_eq!(v.as_array(), &[0, 1, 2, 3]); |
184 | /// ``` |
185 | #[inline ] |
186 | pub const fn as_array(&self) -> &[T; N] { |
187 | // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with |
188 | // potential padding at the end, so pointer casting to a |
189 | // `&[T; N]` is safe. |
190 | // |
191 | // NOTE: This deliberately doesn't just use `&self.0`, see the comment |
192 | // on the struct definition for details. |
193 | unsafe { &*(self as *const Self as *const [T; N]) } |
194 | } |
195 | |
196 | /// Returns a mutable array reference containing the entire SIMD vector. |
197 | #[inline ] |
198 | pub fn as_mut_array(&mut self) -> &mut [T; N] { |
199 | // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with |
200 | // potential padding at the end, so pointer casting to a |
201 | // `&mut [T; N]` is safe. |
202 | // |
203 | // NOTE: This deliberately doesn't just use `&mut self.0`, see the comment |
204 | // on the struct definition for details. |
205 | unsafe { &mut *(self as *mut Self as *mut [T; N]) } |
206 | } |
207 | |
208 | /// Loads a vector from an array of `T`. |
209 | /// |
210 | /// This function is necessary since `repr(simd)` has padding for non-power-of-2 vectors (at the time of writing). |
211 | /// With padding, `read_unaligned` will read past the end of an array of N elements. |
212 | /// |
213 | /// # Safety |
214 | /// Reading `ptr` must be safe, as if by `<*const [T; N]>::read`. |
215 | #[inline ] |
216 | const unsafe fn load(ptr: *const [T; N]) -> Self { |
217 | // There are potentially simpler ways to write this function, but this should result in |
218 | // LLVM `load <N x T>` |
219 | |
220 | let mut tmp = core::mem::MaybeUninit::<Self>::uninit(); |
221 | // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`. It may have padding |
222 | // which does not need to be initialized. The safety of reading `ptr` is ensured by the |
223 | // caller. |
224 | unsafe { |
225 | core::ptr::copy_nonoverlapping(ptr, tmp.as_mut_ptr().cast(), 1); |
226 | tmp.assume_init() |
227 | } |
228 | } |
229 | |
230 | /// Store a vector to an array of `T`. |
231 | /// |
232 | /// See `load` as to why this function is necessary. |
233 | /// |
234 | /// # Safety |
235 | /// Writing to `ptr` must be safe, as if by `<*mut [T; N]>::write`. |
236 | #[inline ] |
237 | const unsafe fn store(self, ptr: *mut [T; N]) { |
238 | // There are potentially simpler ways to write this function, but this should result in |
239 | // LLVM `store <N x T>` |
240 | |
241 | // Creating a temporary helps LLVM turn the memcpy into a store. |
242 | let tmp = self; |
243 | // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`. The safety of writing |
244 | // `ptr` is ensured by the caller. |
245 | unsafe { core::ptr::copy_nonoverlapping(tmp.as_array(), ptr, 1) } |
246 | } |
247 | |
248 | /// Converts an array to a SIMD vector. |
249 | #[inline ] |
250 | pub const fn from_array(array: [T; N]) -> Self { |
251 | // SAFETY: `&array` is safe to read. |
252 | // |
253 | // FIXME: We currently use a pointer load instead of `transmute_copy` because `repr(simd)` |
254 | // results in padding for non-power-of-2 vectors (so vectors are larger than arrays). |
255 | // |
256 | // NOTE: This deliberately doesn't just use `Self(array)`, see the comment |
257 | // on the struct definition for details. |
258 | unsafe { Self::load(&array) } |
259 | } |
260 | |
261 | /// Converts a SIMD vector to an array. |
262 | #[inline ] |
263 | pub const fn to_array(self) -> [T; N] { |
264 | let mut tmp = core::mem::MaybeUninit::uninit(); |
265 | // SAFETY: writing to `tmp` is safe and initializes it. |
266 | // |
267 | // FIXME: We currently use a pointer store instead of `transmute_copy` because `repr(simd)` |
268 | // results in padding for non-power-of-2 vectors (so vectors are larger than arrays). |
269 | // |
270 | // NOTE: This deliberately doesn't just use `self.0`, see the comment |
271 | // on the struct definition for details. |
272 | unsafe { |
273 | self.store(tmp.as_mut_ptr()); |
274 | tmp.assume_init() |
275 | } |
276 | } |
277 | |
278 | /// Converts a slice to a SIMD vector containing `slice[..N]`. |
279 | /// |
280 | /// # Panics |
281 | /// |
282 | /// Panics if the slice's length is less than the vector's `Simd::N`. |
283 | /// Use `load_or_default` for an alternative that does not panic. |
284 | /// |
285 | /// # Example |
286 | /// |
287 | /// ``` |
288 | /// # #![feature (portable_simd)] |
289 | /// # use core::simd::u32x4; |
290 | /// let source = vec![1, 2, 3, 4, 5, 6]; |
291 | /// let v = u32x4::from_slice(&source); |
292 | /// assert_eq!(v.as_array(), &[1, 2, 3, 4]); |
293 | /// ``` |
294 | #[must_use ] |
295 | #[inline ] |
296 | #[track_caller ] |
297 | pub const fn from_slice(slice: &[T]) -> Self { |
298 | assert!( |
299 | slice.len() >= Self::LEN, |
300 | "slice length must be at least the number of elements" |
301 | ); |
302 | // SAFETY: We just checked that the slice contains |
303 | // at least `N` elements. |
304 | unsafe { Self::load(slice.as_ptr().cast()) } |
305 | } |
306 | |
307 | /// Writes a SIMD vector to the first `N` elements of a slice. |
308 | /// |
309 | /// # Panics |
310 | /// |
311 | /// Panics if the slice's length is less than the vector's `Simd::N`. |
312 | /// |
313 | /// # Example |
314 | /// |
315 | /// ``` |
316 | /// # #![feature (portable_simd)] |
317 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
318 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
319 | /// # use simd::u32x4; |
320 | /// let mut dest = vec![0; 6]; |
321 | /// let v = u32x4::from_array([1, 2, 3, 4]); |
322 | /// v.copy_to_slice(&mut dest); |
323 | /// assert_eq!(&dest, &[1, 2, 3, 4, 0, 0]); |
324 | /// ``` |
325 | #[inline ] |
326 | #[track_caller ] |
327 | pub fn copy_to_slice(self, slice: &mut [T]) { |
328 | assert!( |
329 | slice.len() >= Self::LEN, |
330 | "slice length must be at least the number of elements" |
331 | ); |
332 | // SAFETY: We just checked that the slice contains |
333 | // at least `N` elements. |
334 | unsafe { self.store(slice.as_mut_ptr().cast()) } |
335 | } |
336 | |
337 | /// Reads contiguous elements from `slice`. Elements are read so long as they're in-bounds for |
338 | /// the `slice`. Otherwise, the default value for the element type is returned. |
339 | /// |
340 | /// # Examples |
341 | /// ``` |
342 | /// # #![feature (portable_simd)] |
343 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
344 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
345 | /// # use simd::Simd; |
346 | /// let vec: Vec<i32> = vec![10, 11]; |
347 | /// |
348 | /// let result = Simd::<i32, 4>::load_or_default(&vec); |
349 | /// assert_eq!(result, Simd::from_array([10, 11, 0, 0])); |
350 | /// ``` |
351 | #[must_use ] |
352 | #[inline ] |
353 | pub fn load_or_default(slice: &[T]) -> Self |
354 | where |
355 | T: Default, |
356 | { |
357 | Self::load_or(slice, Default::default()) |
358 | } |
359 | |
360 | /// Reads contiguous elements from `slice`. Elements are read so long as they're in-bounds for |
361 | /// the `slice`. Otherwise, the corresponding value from `or` is passed through. |
362 | /// |
363 | /// # Examples |
364 | /// ``` |
365 | /// # #![feature (portable_simd)] |
366 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
367 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
368 | /// # use simd::Simd; |
369 | /// let vec: Vec<i32> = vec![10, 11]; |
370 | /// let or = Simd::from_array([-5, -4, -3, -2]); |
371 | /// |
372 | /// let result = Simd::load_or(&vec, or); |
373 | /// assert_eq!(result, Simd::from_array([10, 11, -3, -2])); |
374 | /// ``` |
375 | #[must_use ] |
376 | #[inline ] |
377 | pub fn load_or(slice: &[T], or: Self) -> Self { |
378 | Self::load_select(slice, Mask::splat(true), or) |
379 | } |
380 | |
381 | /// Reads contiguous elements from `slice`. Each element is read from memory if its |
382 | /// corresponding element in `enable` is `true`. |
383 | /// |
384 | /// When the element is disabled or out of bounds for the slice, that memory location |
385 | /// is not accessed and the corresponding value from `or` is passed through. |
386 | /// |
387 | /// # Examples |
388 | /// ``` |
389 | /// # #![feature (portable_simd)] |
390 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
391 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
392 | /// # use simd::{Simd, Mask}; |
393 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
394 | /// let enable = Mask::from_array([true, true, false, true]); |
395 | /// let or = Simd::from_array([-5, -4, -3, -2]); |
396 | /// |
397 | /// let result = Simd::load_select(&vec, enable, or); |
398 | /// assert_eq!(result, Simd::from_array([10, 11, -3, 13])); |
399 | /// ``` |
400 | #[must_use ] |
401 | #[inline ] |
402 | pub fn load_select_or_default(slice: &[T], enable: Mask<<T as SimdElement>::Mask, N>) -> Self |
403 | where |
404 | T: Default, |
405 | { |
406 | Self::load_select(slice, enable, Default::default()) |
407 | } |
408 | |
409 | /// Reads contiguous elements from `slice`. Each element is read from memory if its |
410 | /// corresponding element in `enable` is `true`. |
411 | /// |
412 | /// When the element is disabled or out of bounds for the slice, that memory location |
413 | /// is not accessed and the corresponding value from `or` is passed through. |
414 | /// |
415 | /// # Examples |
416 | /// ``` |
417 | /// # #![feature (portable_simd)] |
418 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
419 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
420 | /// # use simd::{Simd, Mask}; |
421 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
422 | /// let enable = Mask::from_array([true, true, false, true]); |
423 | /// let or = Simd::from_array([-5, -4, -3, -2]); |
424 | /// |
425 | /// let result = Simd::load_select(&vec, enable, or); |
426 | /// assert_eq!(result, Simd::from_array([10, 11, -3, 13])); |
427 | /// ``` |
428 | #[must_use ] |
429 | #[inline ] |
430 | pub fn load_select( |
431 | slice: &[T], |
432 | mut enable: Mask<<T as SimdElement>::Mask, N>, |
433 | or: Self, |
434 | ) -> Self { |
435 | enable &= mask_up_to(slice.len()); |
436 | // SAFETY: We performed the bounds check by updating the mask. &[T] is properly aligned to |
437 | // the element. |
438 | unsafe { Self::load_select_ptr(slice.as_ptr(), enable, or) } |
439 | } |
440 | |
441 | /// Reads contiguous elements from `slice`. Each element is read from memory if its |
442 | /// corresponding element in `enable` is `true`. |
443 | /// |
444 | /// When the element is disabled, that memory location is not accessed and the corresponding |
445 | /// value from `or` is passed through. |
446 | /// |
447 | /// # Safety |
448 | /// Enabled loads must not exceed the length of `slice`. |
449 | #[must_use ] |
450 | #[inline ] |
451 | pub unsafe fn load_select_unchecked( |
452 | slice: &[T], |
453 | enable: Mask<<T as SimdElement>::Mask, N>, |
454 | or: Self, |
455 | ) -> Self { |
456 | let ptr = slice.as_ptr(); |
457 | // SAFETY: The safety of reading elements from `slice` is ensured by the caller. |
458 | unsafe { Self::load_select_ptr(ptr, enable, or) } |
459 | } |
460 | |
461 | /// Reads contiguous elements starting at `ptr`. Each element is read from memory if its |
462 | /// corresponding element in `enable` is `true`. |
463 | /// |
464 | /// When the element is disabled, that memory location is not accessed and the corresponding |
465 | /// value from `or` is passed through. |
466 | /// |
467 | /// # Safety |
468 | /// Enabled `ptr` elements must be safe to read as if by `std::ptr::read`. |
469 | #[must_use ] |
470 | #[inline ] |
471 | pub unsafe fn load_select_ptr( |
472 | ptr: *const T, |
473 | enable: Mask<<T as SimdElement>::Mask, N>, |
474 | or: Self, |
475 | ) -> Self { |
476 | // SAFETY: The safety of reading elements through `ptr` is ensured by the caller. |
477 | unsafe { core::intrinsics::simd::simd_masked_load(enable.to_int(), ptr, or) } |
478 | } |
479 | |
480 | /// Reads from potentially discontiguous indices in `slice` to construct a SIMD vector. |
481 | /// If an index is out-of-bounds, the element is instead selected from the `or` vector. |
482 | /// |
483 | /// # Examples |
484 | /// ``` |
485 | /// # #![feature (portable_simd)] |
486 | /// # use core::simd::Simd; |
487 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
488 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Note the index that is out-of-bounds |
489 | /// let alt = Simd::from_array([-5, -4, -3, -2]); |
490 | /// |
491 | /// let result = Simd::gather_or(&vec, idxs, alt); |
492 | /// assert_eq!(result, Simd::from_array([-5, 13, 10, 15])); |
493 | /// ``` |
494 | #[must_use ] |
495 | #[inline ] |
496 | pub fn gather_or(slice: &[T], idxs: Simd<usize, N>, or: Self) -> Self { |
497 | Self::gather_select(slice, Mask::splat(true), idxs, or) |
498 | } |
499 | |
500 | /// Reads from indices in `slice` to construct a SIMD vector. |
501 | /// If an index is out-of-bounds, the element is set to the default given by `T: Default`. |
502 | /// |
503 | /// # Examples |
504 | /// ``` |
505 | /// # #![feature (portable_simd)] |
506 | /// # use core::simd::Simd; |
507 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
508 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Note the index that is out-of-bounds |
509 | /// |
510 | /// let result = Simd::gather_or_default(&vec, idxs); |
511 | /// assert_eq!(result, Simd::from_array([0, 13, 10, 15])); |
512 | /// ``` |
513 | #[must_use ] |
514 | #[inline ] |
515 | pub fn gather_or_default(slice: &[T], idxs: Simd<usize, N>) -> Self |
516 | where |
517 | T: Default, |
518 | { |
519 | Self::gather_or(slice, idxs, Self::splat(T::default())) |
520 | } |
521 | |
522 | /// Reads from indices in `slice` to construct a SIMD vector. |
523 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
524 | /// If an index is disabled or is out-of-bounds, the element is selected from the `or` vector. |
525 | /// |
526 | /// # Examples |
527 | /// ``` |
528 | /// # #![feature (portable_simd)] |
529 | /// # use core::simd::{Simd, Mask}; |
530 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
531 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index |
532 | /// let alt = Simd::from_array([-5, -4, -3, -2]); |
533 | /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element |
534 | /// |
535 | /// let result = Simd::gather_select(&vec, enable, idxs, alt); |
536 | /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2])); |
537 | /// ``` |
538 | #[must_use ] |
539 | #[inline ] |
540 | pub fn gather_select( |
541 | slice: &[T], |
542 | enable: Mask<isize, N>, |
543 | idxs: Simd<usize, N>, |
544 | or: Self, |
545 | ) -> Self { |
546 | let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len())); |
547 | // Safety: We have masked-off out-of-bounds indices. |
548 | unsafe { Self::gather_select_unchecked(slice, enable, idxs, or) } |
549 | } |
550 | |
551 | /// Reads from indices in `slice` to construct a SIMD vector. |
552 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
553 | /// If an index is disabled, the element is selected from the `or` vector. |
554 | /// |
555 | /// # Safety |
556 | /// |
557 | /// Calling this function with an `enable`d out-of-bounds index is *[undefined behavior]* |
558 | /// even if the resulting value is not used. |
559 | /// |
560 | /// # Examples |
561 | /// ``` |
562 | /// # #![feature (portable_simd)] |
563 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
564 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
565 | /// # use simd::{Simd, cmp::SimdPartialOrd, Mask}; |
566 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
567 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index |
568 | /// let alt = Simd::from_array([-5, -4, -3, -2]); |
569 | /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element |
570 | /// // If this mask was used to gather, it would be unsound. Let's fix that. |
571 | /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len())); |
572 | /// |
573 | /// // The out-of-bounds index has been masked, so it's safe to gather now. |
574 | /// let result = unsafe { Simd::gather_select_unchecked(&vec, enable, idxs, alt) }; |
575 | /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2])); |
576 | /// ``` |
577 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
578 | #[must_use ] |
579 | #[inline ] |
580 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
581 | pub unsafe fn gather_select_unchecked( |
582 | slice: &[T], |
583 | enable: Mask<isize, N>, |
584 | idxs: Simd<usize, N>, |
585 | or: Self, |
586 | ) -> Self { |
587 | let base_ptr = Simd::<*const T, N>::splat(slice.as_ptr()); |
588 | // Ferris forgive me, I have done pointer arithmetic here. |
589 | let ptrs = base_ptr.wrapping_add(idxs); |
590 | // Safety: The caller is responsible for determining the indices are okay to read |
591 | unsafe { Self::gather_select_ptr(ptrs, enable, or) } |
592 | } |
593 | |
594 | /// Reads elementwise from pointers into a SIMD vector. |
595 | /// |
596 | /// # Safety |
597 | /// |
598 | /// Each read must satisfy the same conditions as [`core::ptr::read`]. |
599 | /// |
600 | /// # Example |
601 | /// ``` |
602 | /// # #![feature (portable_simd)] |
603 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
604 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
605 | /// # use simd::prelude::*; |
606 | /// let values = [6, 2, 4, 9]; |
607 | /// let offsets = Simd::from_array([1, 0, 0, 3]); |
608 | /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets); |
609 | /// let gathered = unsafe { Simd::gather_ptr(source) }; |
610 | /// assert_eq!(gathered, Simd::from_array([2, 6, 6, 9])); |
611 | /// ``` |
612 | #[must_use ] |
613 | #[inline ] |
614 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
615 | pub unsafe fn gather_ptr(source: Simd<*const T, N>) -> Self |
616 | where |
617 | T: Default, |
618 | { |
619 | // TODO: add an intrinsic that doesn't use a passthru vector, and remove the T: Default bound |
620 | // Safety: The caller is responsible for upholding all invariants |
621 | unsafe { Self::gather_select_ptr(source, Mask::splat(true), Self::default()) } |
622 | } |
623 | |
624 | /// Conditionally read elementwise from pointers into a SIMD vector. |
625 | /// The mask `enable`s all `true` pointers and disables all `false` pointers. |
626 | /// If a pointer is disabled, the element is selected from the `or` vector, |
627 | /// and no read is performed. |
628 | /// |
629 | /// # Safety |
630 | /// |
631 | /// Enabled elements must satisfy the same conditions as [`core::ptr::read`]. |
632 | /// |
633 | /// # Example |
634 | /// ``` |
635 | /// # #![feature (portable_simd)] |
636 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
637 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
638 | /// # use simd::prelude::*; |
639 | /// let values = [6, 2, 4, 9]; |
640 | /// let enable = Mask::from_array([true, true, false, true]); |
641 | /// let offsets = Simd::from_array([1, 0, 0, 3]); |
642 | /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets); |
643 | /// let gathered = unsafe { Simd::gather_select_ptr(source, enable, Simd::splat(0)) }; |
644 | /// assert_eq!(gathered, Simd::from_array([2, 6, 0, 9])); |
645 | /// ``` |
646 | #[must_use ] |
647 | #[inline ] |
648 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
649 | pub unsafe fn gather_select_ptr( |
650 | source: Simd<*const T, N>, |
651 | enable: Mask<isize, N>, |
652 | or: Self, |
653 | ) -> Self { |
654 | // Safety: The caller is responsible for upholding all invariants |
655 | unsafe { core::intrinsics::simd::simd_gather(or, source, enable.to_int()) } |
656 | } |
657 | |
658 | /// Conditionally write contiguous elements to `slice`. The `enable` mask controls |
659 | /// which elements are written, as long as they're in-bounds of the `slice`. |
660 | /// If the element is disabled or out of bounds, no memory access to that location |
661 | /// is made. |
662 | /// |
663 | /// # Examples |
664 | /// ``` |
665 | /// # #![feature (portable_simd)] |
666 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
667 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
668 | /// # use simd::{Simd, Mask}; |
669 | /// let mut arr = [0i32; 4]; |
670 | /// let write = Simd::from_array([-5, -4, -3, -2]); |
671 | /// let enable = Mask::from_array([false, true, true, true]); |
672 | /// |
673 | /// write.store_select(&mut arr[..3], enable); |
674 | /// assert_eq!(arr, [0, -4, -3, 0]); |
675 | /// ``` |
676 | #[inline ] |
677 | pub fn store_select(self, slice: &mut [T], mut enable: Mask<<T as SimdElement>::Mask, N>) { |
678 | enable &= mask_up_to(slice.len()); |
679 | // SAFETY: We performed the bounds check by updating the mask. &[T] is properly aligned to |
680 | // the element. |
681 | unsafe { self.store_select_ptr(slice.as_mut_ptr(), enable) } |
682 | } |
683 | |
684 | /// Conditionally write contiguous elements to `slice`. The `enable` mask controls |
685 | /// which elements are written. |
686 | /// |
687 | /// # Safety |
688 | /// |
689 | /// Every enabled element must be in bounds for the `slice`. |
690 | /// |
691 | /// # Examples |
692 | /// ``` |
693 | /// # #![feature (portable_simd)] |
694 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
695 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
696 | /// # use simd::{Simd, Mask}; |
697 | /// let mut arr = [0i32; 4]; |
698 | /// let write = Simd::from_array([-5, -4, -3, -2]); |
699 | /// let enable = Mask::from_array([false, true, true, true]); |
700 | /// |
701 | /// unsafe { write.store_select_unchecked(&mut arr, enable) }; |
702 | /// assert_eq!(arr, [0, -4, -3, -2]); |
703 | /// ``` |
704 | #[inline ] |
705 | pub unsafe fn store_select_unchecked( |
706 | self, |
707 | slice: &mut [T], |
708 | enable: Mask<<T as SimdElement>::Mask, N>, |
709 | ) { |
710 | let ptr = slice.as_mut_ptr(); |
711 | // SAFETY: The safety of writing elements in `slice` is ensured by the caller. |
712 | unsafe { self.store_select_ptr(ptr, enable) } |
713 | } |
714 | |
715 | /// Conditionally write contiguous elements starting from `ptr`. |
716 | /// The `enable` mask controls which elements are written. |
717 | /// When disabled, the memory location corresponding to that element is not accessed. |
718 | /// |
719 | /// # Safety |
720 | /// |
721 | /// Memory addresses for element are calculated [`pointer::wrapping_offset`] and |
722 | /// each enabled element must satisfy the same conditions as [`core::ptr::write`]. |
723 | #[inline ] |
724 | pub unsafe fn store_select_ptr(self, ptr: *mut T, enable: Mask<<T as SimdElement>::Mask, N>) { |
725 | // SAFETY: The safety of writing elements through `ptr` is ensured by the caller. |
726 | unsafe { core::intrinsics::simd::simd_masked_store(enable.to_int(), ptr, self) } |
727 | } |
728 | |
729 | /// Writes the values in a SIMD vector to potentially discontiguous indices in `slice`. |
730 | /// If an index is out-of-bounds, the write is suppressed without panicking. |
731 | /// If two elements in the scattered vector would write to the same index |
732 | /// only the last element is guaranteed to actually be written. |
733 | /// |
734 | /// # Examples |
735 | /// ``` |
736 | /// # #![feature (portable_simd)] |
737 | /// # use core::simd::Simd; |
738 | /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
739 | /// let idxs = Simd::from_array([9, 3, 0, 0]); // Note the duplicate index. |
740 | /// let vals = Simd::from_array([-27, 82, -41, 124]); |
741 | /// |
742 | /// vals.scatter(&mut vec, idxs); // two logical writes means the last wins. |
743 | /// assert_eq!(vec, vec![124, 11, 12, 82, 14, 15, 16, 17, 18]); |
744 | /// ``` |
745 | #[inline ] |
746 | pub fn scatter(self, slice: &mut [T], idxs: Simd<usize, N>) { |
747 | self.scatter_select(slice, Mask::splat(true), idxs) |
748 | } |
749 | |
750 | /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`. |
751 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
752 | /// If an enabled index is out-of-bounds, the write is suppressed without panicking. |
753 | /// If two enabled elements in the scattered vector would write to the same index, |
754 | /// only the last element is guaranteed to actually be written. |
755 | /// |
756 | /// # Examples |
757 | /// ``` |
758 | /// # #![feature (portable_simd)] |
759 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
760 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
761 | /// # use simd::{Simd, Mask}; |
762 | /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
763 | /// let idxs = Simd::from_array([9, 3, 0, 0]); // Includes an out-of-bounds index |
764 | /// let vals = Simd::from_array([-27, 82, -41, 124]); |
765 | /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element |
766 | /// |
767 | /// vals.scatter_select(&mut vec, enable, idxs); // The last write is masked, thus omitted. |
768 | /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]); |
769 | /// ``` |
770 | #[inline ] |
771 | pub fn scatter_select(self, slice: &mut [T], enable: Mask<isize, N>, idxs: Simd<usize, N>) { |
772 | let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len())); |
773 | // Safety: We have masked-off out-of-bounds indices. |
774 | unsafe { self.scatter_select_unchecked(slice, enable, idxs) } |
775 | } |
776 | |
777 | /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`. |
778 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
779 | /// If two enabled elements in the scattered vector would write to the same index, |
780 | /// only the last element is guaranteed to actually be written. |
781 | /// |
782 | /// # Safety |
783 | /// |
784 | /// Calling this function with an enabled out-of-bounds index is *[undefined behavior]*, |
785 | /// and may lead to memory corruption. |
786 | /// |
787 | /// # Examples |
788 | /// ``` |
789 | /// # #![feature (portable_simd)] |
790 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
791 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
792 | /// # use simd::{Simd, cmp::SimdPartialOrd, Mask}; |
793 | /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
794 | /// let idxs = Simd::from_array([9, 3, 0, 0]); |
795 | /// let vals = Simd::from_array([-27, 82, -41, 124]); |
796 | /// let enable = Mask::from_array([true, true, true, false]); // Masks the final index |
797 | /// // If this mask was used to scatter, it would be unsound. Let's fix that. |
798 | /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len())); |
799 | /// |
800 | /// // We have masked the OOB index, so it's safe to scatter now. |
801 | /// unsafe { vals.scatter_select_unchecked(&mut vec, enable, idxs); } |
802 | /// // The second write to index 0 was masked, thus omitted. |
803 | /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]); |
804 | /// ``` |
805 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
806 | #[inline ] |
807 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
808 | pub unsafe fn scatter_select_unchecked( |
809 | self, |
810 | slice: &mut [T], |
811 | enable: Mask<isize, N>, |
812 | idxs: Simd<usize, N>, |
813 | ) { |
814 | // Safety: This block works with *mut T derived from &mut 'a [T], |
815 | // which means it is delicate in Rust's borrowing model, circa 2021: |
816 | // &mut 'a [T] asserts uniqueness, so deriving &'a [T] invalidates live *mut Ts! |
817 | // Even though this block is largely safe methods, it must be exactly this way |
818 | // to prevent invalidating the raw ptrs while they're live. |
819 | // Thus, entering this block requires all values to use being already ready: |
820 | // 0. idxs we want to write to, which are used to construct the mask. |
821 | // 1. enable, which depends on an initial &'a [T] and the idxs. |
822 | // 2. actual values to scatter (self). |
823 | // 3. &mut [T] which will become our base ptr. |
824 | unsafe { |
825 | // Now Entering ☢️ *mut T Zone |
826 | let base_ptr = Simd::<*mut T, N>::splat(slice.as_mut_ptr()); |
827 | // Ferris forgive me, I have done pointer arithmetic here. |
828 | let ptrs = base_ptr.wrapping_add(idxs); |
829 | // The ptrs have been bounds-masked to prevent memory-unsafe writes insha'allah |
830 | self.scatter_select_ptr(ptrs, enable); |
831 | // Cleared ☢️ *mut T Zone |
832 | } |
833 | } |
834 | |
835 | /// Writes pointers elementwise into a SIMD vector. |
836 | /// |
837 | /// # Safety |
838 | /// |
839 | /// Each write must satisfy the same conditions as [`core::ptr::write`]. |
840 | /// |
841 | /// # Example |
842 | /// ``` |
843 | /// # #![feature (portable_simd)] |
844 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
845 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
846 | /// # use simd::{Simd, ptr::SimdMutPtr}; |
847 | /// let mut values = [0; 4]; |
848 | /// let offset = Simd::from_array([3, 2, 1, 0]); |
849 | /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset); |
850 | /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_ptr(ptrs); } |
851 | /// assert_eq!(values, [7, 5, 3, 6]); |
852 | /// ``` |
853 | #[inline ] |
854 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
855 | pub unsafe fn scatter_ptr(self, dest: Simd<*mut T, N>) { |
856 | // Safety: The caller is responsible for upholding all invariants |
857 | unsafe { self.scatter_select_ptr(dest, Mask::splat(true)) } |
858 | } |
859 | |
860 | /// Conditionally write pointers elementwise into a SIMD vector. |
861 | /// The mask `enable`s all `true` pointers and disables all `false` pointers. |
862 | /// If a pointer is disabled, the write to its pointee is skipped. |
863 | /// |
864 | /// # Safety |
865 | /// |
866 | /// Enabled pointers must satisfy the same conditions as [`core::ptr::write`]. |
867 | /// |
868 | /// # Example |
869 | /// ``` |
870 | /// # #![feature (portable_simd)] |
871 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
872 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
873 | /// # use simd::{Mask, Simd, ptr::SimdMutPtr}; |
874 | /// let mut values = [0; 4]; |
875 | /// let offset = Simd::from_array([3, 2, 1, 0]); |
876 | /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset); |
877 | /// let enable = Mask::from_array([true, true, false, false]); |
878 | /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_select_ptr(ptrs, enable); } |
879 | /// assert_eq!(values, [0, 0, 3, 6]); |
880 | /// ``` |
881 | #[inline ] |
882 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
883 | pub unsafe fn scatter_select_ptr(self, dest: Simd<*mut T, N>, enable: Mask<isize, N>) { |
884 | // Safety: The caller is responsible for upholding all invariants |
885 | unsafe { core::intrinsics::simd::simd_scatter(self, dest, enable.to_int()) } |
886 | } |
887 | } |
888 | |
889 | impl<T, const N: usize> Copy for Simd<T, N> |
890 | where |
891 | LaneCount<N>: SupportedLaneCount, |
892 | T: SimdElement, |
893 | { |
894 | } |
895 | |
896 | impl<T, const N: usize> Clone for Simd<T, N> |
897 | where |
898 | LaneCount<N>: SupportedLaneCount, |
899 | T: SimdElement, |
900 | { |
901 | #[inline ] |
902 | fn clone(&self) -> Self { |
903 | *self |
904 | } |
905 | } |
906 | |
907 | impl<T, const N: usize> Default for Simd<T, N> |
908 | where |
909 | LaneCount<N>: SupportedLaneCount, |
910 | T: SimdElement + Default, |
911 | { |
912 | #[inline ] |
913 | fn default() -> Self { |
914 | Self::splat(T::default()) |
915 | } |
916 | } |
917 | |
918 | impl<T, const N: usize> PartialEq for Simd<T, N> |
919 | where |
920 | LaneCount<N>: SupportedLaneCount, |
921 | T: SimdElement + PartialEq, |
922 | { |
923 | #[inline ] |
924 | fn eq(&self, other: &Self) -> bool { |
925 | // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask. |
926 | let mask = unsafe { |
927 | let tfvec: Simd<<T as SimdElement>::Mask, N> = |
928 | core::intrinsics::simd::simd_eq(*self, *other); |
929 | Mask::from_int_unchecked(tfvec) |
930 | }; |
931 | |
932 | // Two vectors are equal if all elements are equal when compared elementwise |
933 | mask.all() |
934 | } |
935 | |
936 | #[allow (clippy::partialeq_ne_impl)] |
937 | #[inline ] |
938 | fn ne(&self, other: &Self) -> bool { |
939 | // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask. |
940 | let mask = unsafe { |
941 | let tfvec: Simd<<T as SimdElement>::Mask, N> = |
942 | core::intrinsics::simd::simd_ne(*self, *other); |
943 | Mask::from_int_unchecked(tfvec) |
944 | }; |
945 | |
946 | // Two vectors are non-equal if any elements are non-equal when compared elementwise |
947 | mask.any() |
948 | } |
949 | } |
950 | |
951 | /// Lexicographic order. For the SIMD elementwise minimum and maximum, use simd_min and simd_max instead. |
952 | impl<T, const N: usize> PartialOrd for Simd<T, N> |
953 | where |
954 | LaneCount<N>: SupportedLaneCount, |
955 | T: SimdElement + PartialOrd, |
956 | { |
957 | #[inline ] |
958 | fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { |
959 | // TODO use SIMD equality |
960 | self.to_array().partial_cmp(other.as_ref()) |
961 | } |
962 | } |
963 | |
964 | impl<T, const N: usize> Eq for Simd<T, N> |
965 | where |
966 | LaneCount<N>: SupportedLaneCount, |
967 | T: SimdElement + Eq, |
968 | { |
969 | } |
970 | |
971 | /// Lexicographic order. For the SIMD elementwise minimum and maximum, use simd_min and simd_max instead. |
972 | impl<T, const N: usize> Ord for Simd<T, N> |
973 | where |
974 | LaneCount<N>: SupportedLaneCount, |
975 | T: SimdElement + Ord, |
976 | { |
977 | #[inline ] |
978 | fn cmp(&self, other: &Self) -> core::cmp::Ordering { |
979 | // TODO use SIMD equality |
980 | self.to_array().cmp(other.as_ref()) |
981 | } |
982 | } |
983 | |
984 | impl<T, const N: usize> core::hash::Hash for Simd<T, N> |
985 | where |
986 | LaneCount<N>: SupportedLaneCount, |
987 | T: SimdElement + core::hash::Hash, |
988 | { |
989 | #[inline ] |
990 | fn hash<H>(&self, state: &mut H) |
991 | where |
992 | H: core::hash::Hasher, |
993 | { |
994 | self.as_array().hash(state) |
995 | } |
996 | } |
997 | |
998 | // array references |
999 | impl<T, const N: usize> AsRef<[T; N]> for Simd<T, N> |
1000 | where |
1001 | LaneCount<N>: SupportedLaneCount, |
1002 | T: SimdElement, |
1003 | { |
1004 | #[inline ] |
1005 | fn as_ref(&self) -> &[T; N] { |
1006 | self.as_array() |
1007 | } |
1008 | } |
1009 | |
1010 | impl<T, const N: usize> AsMut<[T; N]> for Simd<T, N> |
1011 | where |
1012 | LaneCount<N>: SupportedLaneCount, |
1013 | T: SimdElement, |
1014 | { |
1015 | #[inline ] |
1016 | fn as_mut(&mut self) -> &mut [T; N] { |
1017 | self.as_mut_array() |
1018 | } |
1019 | } |
1020 | |
1021 | // slice references |
1022 | impl<T, const N: usize> AsRef<[T]> for Simd<T, N> |
1023 | where |
1024 | LaneCount<N>: SupportedLaneCount, |
1025 | T: SimdElement, |
1026 | { |
1027 | #[inline ] |
1028 | fn as_ref(&self) -> &[T] { |
1029 | self.as_array() |
1030 | } |
1031 | } |
1032 | |
1033 | impl<T, const N: usize> AsMut<[T]> for Simd<T, N> |
1034 | where |
1035 | LaneCount<N>: SupportedLaneCount, |
1036 | T: SimdElement, |
1037 | { |
1038 | #[inline ] |
1039 | fn as_mut(&mut self) -> &mut [T] { |
1040 | self.as_mut_array() |
1041 | } |
1042 | } |
1043 | |
1044 | // vector/array conversion |
1045 | impl<T, const N: usize> From<[T; N]> for Simd<T, N> |
1046 | where |
1047 | LaneCount<N>: SupportedLaneCount, |
1048 | T: SimdElement, |
1049 | { |
1050 | #[inline ] |
1051 | fn from(array: [T; N]) -> Self { |
1052 | Self::from_array(array) |
1053 | } |
1054 | } |
1055 | |
1056 | impl<T, const N: usize> From<Simd<T, N>> for [T; N] |
1057 | where |
1058 | LaneCount<N>: SupportedLaneCount, |
1059 | T: SimdElement, |
1060 | { |
1061 | #[inline ] |
1062 | fn from(vector: Simd<T, N>) -> Self { |
1063 | vector.to_array() |
1064 | } |
1065 | } |
1066 | |
1067 | impl<T, const N: usize> TryFrom<&[T]> for Simd<T, N> |
1068 | where |
1069 | LaneCount<N>: SupportedLaneCount, |
1070 | T: SimdElement, |
1071 | { |
1072 | type Error = core::array::TryFromSliceError; |
1073 | |
1074 | #[inline ] |
1075 | fn try_from(slice: &[T]) -> Result<Self, core::array::TryFromSliceError> { |
1076 | Ok(Self::from_array(slice.try_into()?)) |
1077 | } |
1078 | } |
1079 | |
1080 | impl<T, const N: usize> TryFrom<&mut [T]> for Simd<T, N> |
1081 | where |
1082 | LaneCount<N>: SupportedLaneCount, |
1083 | T: SimdElement, |
1084 | { |
1085 | type Error = core::array::TryFromSliceError; |
1086 | |
1087 | #[inline ] |
1088 | fn try_from(slice: &mut [T]) -> Result<Self, core::array::TryFromSliceError> { |
1089 | Ok(Self::from_array(slice.try_into()?)) |
1090 | } |
1091 | } |
1092 | |
1093 | mod sealed { |
1094 | pub trait Sealed {} |
1095 | } |
1096 | use sealed::Sealed; |
1097 | |
1098 | /// Marker trait for types that may be used as SIMD vector elements. |
1099 | /// |
1100 | /// # Safety |
1101 | /// This trait, when implemented, asserts the compiler can monomorphize |
1102 | /// `#[repr(simd)]` structs with the marked type as an element. |
1103 | /// Strictly, it is valid to impl if the vector will not be miscompiled. |
1104 | /// Practically, it is user-unfriendly to impl it if the vector won't compile, |
1105 | /// even when no soundness guarantees are broken by allowing the user to try. |
1106 | pub unsafe trait SimdElement: Sealed + Copy { |
1107 | /// The mask element type corresponding to this element type. |
1108 | type Mask: MaskElement; |
1109 | } |
1110 | |
1111 | impl Sealed for u8 {} |
1112 | |
1113 | // Safety: u8 is a valid SIMD element type, and is supported by this API |
1114 | unsafe impl SimdElement for u8 { |
1115 | type Mask = i8; |
1116 | } |
1117 | |
1118 | impl Sealed for u16 {} |
1119 | |
1120 | // Safety: u16 is a valid SIMD element type, and is supported by this API |
1121 | unsafe impl SimdElement for u16 { |
1122 | type Mask = i16; |
1123 | } |
1124 | |
1125 | impl Sealed for u32 {} |
1126 | |
1127 | // Safety: u32 is a valid SIMD element type, and is supported by this API |
1128 | unsafe impl SimdElement for u32 { |
1129 | type Mask = i32; |
1130 | } |
1131 | |
1132 | impl Sealed for u64 {} |
1133 | |
1134 | // Safety: u64 is a valid SIMD element type, and is supported by this API |
1135 | unsafe impl SimdElement for u64 { |
1136 | type Mask = i64; |
1137 | } |
1138 | |
1139 | impl Sealed for usize {} |
1140 | |
1141 | // Safety: usize is a valid SIMD element type, and is supported by this API |
1142 | unsafe impl SimdElement for usize { |
1143 | type Mask = isize; |
1144 | } |
1145 | |
1146 | impl Sealed for i8 {} |
1147 | |
1148 | // Safety: i8 is a valid SIMD element type, and is supported by this API |
1149 | unsafe impl SimdElement for i8 { |
1150 | type Mask = i8; |
1151 | } |
1152 | |
1153 | impl Sealed for i16 {} |
1154 | |
1155 | // Safety: i16 is a valid SIMD element type, and is supported by this API |
1156 | unsafe impl SimdElement for i16 { |
1157 | type Mask = i16; |
1158 | } |
1159 | |
1160 | impl Sealed for i32 {} |
1161 | |
1162 | // Safety: i32 is a valid SIMD element type, and is supported by this API |
1163 | unsafe impl SimdElement for i32 { |
1164 | type Mask = i32; |
1165 | } |
1166 | |
1167 | impl Sealed for i64 {} |
1168 | |
1169 | // Safety: i64 is a valid SIMD element type, and is supported by this API |
1170 | unsafe impl SimdElement for i64 { |
1171 | type Mask = i64; |
1172 | } |
1173 | |
1174 | impl Sealed for isize {} |
1175 | |
1176 | // Safety: isize is a valid SIMD element type, and is supported by this API |
1177 | unsafe impl SimdElement for isize { |
1178 | type Mask = isize; |
1179 | } |
1180 | |
1181 | impl Sealed for f32 {} |
1182 | |
1183 | // Safety: f32 is a valid SIMD element type, and is supported by this API |
1184 | unsafe impl SimdElement for f32 { |
1185 | type Mask = i32; |
1186 | } |
1187 | |
1188 | impl Sealed for f64 {} |
1189 | |
1190 | // Safety: f64 is a valid SIMD element type, and is supported by this API |
1191 | unsafe impl SimdElement for f64 { |
1192 | type Mask = i64; |
1193 | } |
1194 | |
1195 | impl<T> Sealed for *const T {} |
1196 | |
1197 | // Safety: (thin) const pointers are valid SIMD element types, and are supported by this API |
1198 | // |
1199 | // Fat pointers may be supported in the future. |
1200 | unsafe impl<T> SimdElement for *const T |
1201 | where |
1202 | T: core::ptr::Pointee<Metadata = ()>, |
1203 | { |
1204 | type Mask = isize; |
1205 | } |
1206 | |
1207 | impl<T> Sealed for *mut T {} |
1208 | |
1209 | // Safety: (thin) mut pointers are valid SIMD element types, and are supported by this API |
1210 | // |
1211 | // Fat pointers may be supported in the future. |
1212 | unsafe impl<T> SimdElement for *mut T |
1213 | where |
1214 | T: core::ptr::Pointee<Metadata = ()>, |
1215 | { |
1216 | type Mask = isize; |
1217 | } |
1218 | |
1219 | #[inline ] |
1220 | fn lane_indices<const N: usize>() -> Simd<usize, N> |
1221 | where |
1222 | LaneCount<N>: SupportedLaneCount, |
1223 | { |
1224 | #![allow (clippy::needless_range_loop)] |
1225 | let mut index: [usize; N] = [0; N]; |
1226 | for i: usize in 0..N { |
1227 | index[i] = i; |
1228 | } |
1229 | Simd::from_array(index) |
1230 | } |
1231 | |
1232 | #[inline ] |
1233 | fn mask_up_to<M, const N: usize>(len: usize) -> Mask<M, N> |
1234 | where |
1235 | LaneCount<N>: SupportedLaneCount, |
1236 | M: MaskElement, |
1237 | { |
1238 | let index: Simd = lane_indices::<N>(); |
1239 | let max_value: u64 = M::max_unsigned(); |
1240 | macro_rules! case { |
1241 | ($ty:ty) => { |
1242 | if N < <$ty>::MAX as usize && max_value as $ty as u64 == max_value { |
1243 | return index.cast().simd_lt(Simd::splat(len.min(N) as $ty)).cast(); |
1244 | } |
1245 | }; |
1246 | } |
1247 | case!(u8); |
1248 | case!(u16); |
1249 | case!(u32); |
1250 | case!(u64); |
1251 | index.simd_lt(Simd::splat(len)).cast() |
1252 | } |
1253 | |