| 1 | use crate::simd::{ |
| 2 | LaneCount, Mask, MaskElement, SupportedLaneCount, Swizzle, |
| 3 | cmp::SimdPartialOrd, |
| 4 | num::SimdUint, |
| 5 | ptr::{SimdConstPtr, SimdMutPtr}, |
| 6 | }; |
| 7 | |
| 8 | /// A SIMD vector with the shape of `[T; N]` but the operations of `T`. |
| 9 | /// |
| 10 | /// `Simd<T, N>` supports the operators (+, *, etc.) that `T` does in "elementwise" fashion. |
| 11 | /// These take the element at each index from the left-hand side and right-hand side, |
| 12 | /// perform the operation, then return the result in the same index in a vector of equal size. |
| 13 | /// However, `Simd` differs from normal iteration and normal arrays: |
| 14 | /// - `Simd<T, N>` executes `N` operations in a single step with no `break`s |
| 15 | /// - `Simd<T, N>` can have an alignment greater than `T`, for better mechanical sympathy |
| 16 | /// |
| 17 | /// By always imposing these constraints on `Simd`, it is easier to compile elementwise operations |
| 18 | /// into machine instructions that can themselves be executed in parallel. |
| 19 | /// |
| 20 | /// ```rust |
| 21 | /// # #![feature (portable_simd)] |
| 22 | /// # use core::simd::{Simd}; |
| 23 | /// # use core::array; |
| 24 | /// let a: [i32; 4] = [-2, 0, 2, 4]; |
| 25 | /// let b = [10, 9, 8, 7]; |
| 26 | /// let sum = array::from_fn(|i| a[i] + b[i]); |
| 27 | /// let prod = array::from_fn(|i| a[i] * b[i]); |
| 28 | /// |
| 29 | /// // `Simd<T, N>` implements `From<[T; N]>` |
| 30 | /// let (v, w) = (Simd::from(a), Simd::from(b)); |
| 31 | /// // Which means arrays implement `Into<Simd<T, N>>`. |
| 32 | /// assert_eq!(v + w, sum.into()); |
| 33 | /// assert_eq!(v * w, prod.into()); |
| 34 | /// ``` |
| 35 | /// |
| 36 | /// |
| 37 | /// `Simd` with integer elements treats operators as wrapping, as if `T` was [`Wrapping<T>`]. |
| 38 | /// Thus, `Simd` does not implement `wrapping_add`, because that is the default behavior. |
| 39 | /// This means there is no warning on overflows, even in "debug" builds. |
| 40 | /// For most applications where `Simd` is appropriate, it is "not a bug" to wrap, |
| 41 | /// and even "debug builds" are unlikely to tolerate the loss of performance. |
| 42 | /// You may want to consider using explicitly checked arithmetic if such is required. |
| 43 | /// Division by zero on integers still causes a panic, so |
| 44 | /// you may want to consider using `f32` or `f64` if that is unacceptable. |
| 45 | /// |
| 46 | /// [`Wrapping<T>`]: core::num::Wrapping |
| 47 | /// |
| 48 | /// # Layout |
| 49 | /// `Simd<T, N>` has a layout similar to `[T; N]` (identical "shapes"), with a greater alignment. |
| 50 | /// `[T; N]` is aligned to `T`, but `Simd<T, N>` will have an alignment based on both `T` and `N`. |
| 51 | /// Thus it is sound to [`transmute`] `Simd<T, N>` to `[T; N]` and should optimize to "zero cost", |
| 52 | /// but the reverse transmutation may require a copy the compiler cannot simply elide. |
| 53 | /// |
| 54 | /// # ABI "Features" |
| 55 | /// Due to Rust's safety guarantees, `Simd<T, N>` is currently passed and returned via memory, |
| 56 | /// not SIMD registers, except as an optimization. Using `#[inline]` on functions that accept |
| 57 | /// `Simd<T, N>` or return it is recommended, at the cost of code generation time, as |
| 58 | /// inlining SIMD-using functions can omit a large function prolog or epilog and thus |
| 59 | /// improve both speed and code size. The need for this may be corrected in the future. |
| 60 | /// |
| 61 | /// Using `#[inline(always)]` still requires additional care. |
| 62 | /// |
| 63 | /// # Safe SIMD with Unsafe Rust |
| 64 | /// |
| 65 | /// Operations with `Simd` are typically safe, but there are many reasons to want to combine SIMD with `unsafe` code. |
| 66 | /// Care must be taken to respect differences between `Simd` and other types it may be transformed into or derived from. |
| 67 | /// In particular, the layout of `Simd<T, N>` may be similar to `[T; N]`, and may allow some transmutations, |
| 68 | /// but references to `[T; N]` are not interchangeable with those to `Simd<T, N>`. |
| 69 | /// Thus, when using `unsafe` Rust to read and write `Simd<T, N>` through [raw pointers], it is a good idea to first try with |
| 70 | /// [`read_unaligned`] and [`write_unaligned`]. This is because: |
| 71 | /// - [`read`] and [`write`] require full alignment (in this case, `Simd<T, N>`'s alignment) |
| 72 | /// - `Simd<T, N>` is often read from or written to [`[T]`](slice) and other types aligned to `T` |
| 73 | /// - combining these actions violates the `unsafe` contract and explodes the program into |
| 74 | /// a puff of **undefined behavior** |
| 75 | /// - the compiler can implicitly adjust layouts to make unaligned reads or writes fully aligned |
| 76 | /// if it sees the optimization |
| 77 | /// - most contemporary processors with "aligned" and "unaligned" read and write instructions |
| 78 | /// exhibit no performance difference if the "unaligned" variant is aligned at runtime |
| 79 | /// |
| 80 | /// Less obligations mean unaligned reads and writes are less likely to make the program unsound, |
| 81 | /// and may be just as fast as stricter alternatives. |
| 82 | /// When trying to guarantee alignment, [`[T]::as_simd`][as_simd] is an option for |
| 83 | /// converting `[T]` to `[Simd<T, N>]`, and allows soundly operating on an aligned SIMD body, |
| 84 | /// but it may cost more time when handling the scalar head and tail. |
| 85 | /// If these are not enough, it is most ideal to design data structures to be already aligned |
| 86 | /// to `align_of::<Simd<T, N>>()` before using `unsafe` Rust to read or write. |
| 87 | /// Other ways to compensate for these facts, like materializing `Simd` to or from an array first, |
| 88 | /// are handled by safe methods like [`Simd::from_array`] and [`Simd::from_slice`]. |
| 89 | /// |
| 90 | /// [`transmute`]: core::mem::transmute |
| 91 | /// [raw pointers]: pointer |
| 92 | /// [`read_unaligned`]: pointer::read_unaligned |
| 93 | /// [`write_unaligned`]: pointer::write_unaligned |
| 94 | /// [`read`]: pointer::read |
| 95 | /// [`write`]: pointer::write |
| 96 | /// [as_simd]: slice::as_simd |
| 97 | // |
| 98 | // NOTE: Accessing the inner array directly in any way (e.g. by using the `.0` field syntax) or |
| 99 | // directly constructing an instance of the type (i.e. `let vector = Simd(array)`) should be |
| 100 | // avoided, as it will likely become illegal on `#[repr(simd)]` structs in the future. It also |
| 101 | // causes rustc to emit illegal LLVM IR in some cases. |
| 102 | #[repr (simd, packed)] |
| 103 | pub struct Simd<T, const N: usize>([T; N]) |
| 104 | where |
| 105 | LaneCount<N>: SupportedLaneCount, |
| 106 | T: SimdElement; |
| 107 | |
| 108 | impl<T, const N: usize> Simd<T, N> |
| 109 | where |
| 110 | LaneCount<N>: SupportedLaneCount, |
| 111 | T: SimdElement, |
| 112 | { |
| 113 | /// Number of elements in this vector. |
| 114 | pub const LEN: usize = N; |
| 115 | |
| 116 | /// Returns the number of elements in this SIMD vector. |
| 117 | /// |
| 118 | /// # Examples |
| 119 | /// |
| 120 | /// ``` |
| 121 | /// # #![feature (portable_simd)] |
| 122 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 123 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 124 | /// # use simd::u32x4; |
| 125 | /// let v = u32x4::splat(0); |
| 126 | /// assert_eq!(v.len(), 4); |
| 127 | /// ``` |
| 128 | #[inline ] |
| 129 | #[allow (clippy::len_without_is_empty)] |
| 130 | pub const fn len(&self) -> usize { |
| 131 | Self::LEN |
| 132 | } |
| 133 | |
| 134 | /// Constructs a new SIMD vector with all elements set to the given value. |
| 135 | /// |
| 136 | /// # Examples |
| 137 | /// |
| 138 | /// ``` |
| 139 | /// # #![feature (portable_simd)] |
| 140 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 141 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 142 | /// # use simd::u32x4; |
| 143 | /// let v = u32x4::splat(8); |
| 144 | /// assert_eq!(v.as_array(), &[8, 8, 8, 8]); |
| 145 | /// ``` |
| 146 | #[inline ] |
| 147 | #[rustc_const_unstable (feature = "portable_simd" , issue = "86656" )] |
| 148 | pub const fn splat(value: T) -> Self { |
| 149 | const fn splat_const<T, const N: usize>(value: T) -> Simd<T, N> |
| 150 | where |
| 151 | T: SimdElement, |
| 152 | LaneCount<N>: SupportedLaneCount, |
| 153 | { |
| 154 | Simd::from_array([value; N]) |
| 155 | } |
| 156 | |
| 157 | fn splat_rt<T, const N: usize>(value: T) -> Simd<T, N> |
| 158 | where |
| 159 | T: SimdElement, |
| 160 | LaneCount<N>: SupportedLaneCount, |
| 161 | { |
| 162 | // This is preferred over `[value; N]`, since it's explicitly a splat: |
| 163 | // https://github.com/rust-lang/rust/issues/97804 |
| 164 | struct Splat; |
| 165 | impl<const N: usize> Swizzle<N> for Splat { |
| 166 | const INDEX: [usize; N] = [0; N]; |
| 167 | } |
| 168 | |
| 169 | Splat::swizzle::<T, 1>(Simd::<T, 1>::from([value])) |
| 170 | } |
| 171 | |
| 172 | core::intrinsics::const_eval_select((value,), splat_const, splat_rt) |
| 173 | } |
| 174 | |
| 175 | /// Returns an array reference containing the entire SIMD vector. |
| 176 | /// |
| 177 | /// # Examples |
| 178 | /// |
| 179 | /// ``` |
| 180 | /// # #![feature (portable_simd)] |
| 181 | /// # use core::simd::{Simd, u64x4}; |
| 182 | /// let v: u64x4 = Simd::from_array([0, 1, 2, 3]); |
| 183 | /// assert_eq!(v.as_array(), &[0, 1, 2, 3]); |
| 184 | /// ``` |
| 185 | #[inline ] |
| 186 | pub const fn as_array(&self) -> &[T; N] { |
| 187 | // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with |
| 188 | // potential padding at the end, so pointer casting to a |
| 189 | // `&[T; N]` is safe. |
| 190 | // |
| 191 | // NOTE: This deliberately doesn't just use `&self.0`, see the comment |
| 192 | // on the struct definition for details. |
| 193 | unsafe { &*(self as *const Self as *const [T; N]) } |
| 194 | } |
| 195 | |
| 196 | /// Returns a mutable array reference containing the entire SIMD vector. |
| 197 | #[inline ] |
| 198 | pub fn as_mut_array(&mut self) -> &mut [T; N] { |
| 199 | // SAFETY: `Simd<T, N>` is just an overaligned `[T; N]` with |
| 200 | // potential padding at the end, so pointer casting to a |
| 201 | // `&mut [T; N]` is safe. |
| 202 | // |
| 203 | // NOTE: This deliberately doesn't just use `&mut self.0`, see the comment |
| 204 | // on the struct definition for details. |
| 205 | unsafe { &mut *(self as *mut Self as *mut [T; N]) } |
| 206 | } |
| 207 | |
| 208 | /// Loads a vector from an array of `T`. |
| 209 | /// |
| 210 | /// This function is necessary since `repr(simd)` has padding for non-power-of-2 vectors (at the time of writing). |
| 211 | /// With padding, `read_unaligned` will read past the end of an array of N elements. |
| 212 | /// |
| 213 | /// # Safety |
| 214 | /// Reading `ptr` must be safe, as if by `<*const [T; N]>::read`. |
| 215 | #[inline ] |
| 216 | const unsafe fn load(ptr: *const [T; N]) -> Self { |
| 217 | // There are potentially simpler ways to write this function, but this should result in |
| 218 | // LLVM `load <N x T>` |
| 219 | |
| 220 | let mut tmp = core::mem::MaybeUninit::<Self>::uninit(); |
| 221 | // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`. It may have padding |
| 222 | // which does not need to be initialized. The safety of reading `ptr` is ensured by the |
| 223 | // caller. |
| 224 | unsafe { |
| 225 | core::ptr::copy_nonoverlapping(ptr, tmp.as_mut_ptr().cast(), 1); |
| 226 | tmp.assume_init() |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | /// Store a vector to an array of `T`. |
| 231 | /// |
| 232 | /// See `load` as to why this function is necessary. |
| 233 | /// |
| 234 | /// # Safety |
| 235 | /// Writing to `ptr` must be safe, as if by `<*mut [T; N]>::write`. |
| 236 | #[inline ] |
| 237 | const unsafe fn store(self, ptr: *mut [T; N]) { |
| 238 | // There are potentially simpler ways to write this function, but this should result in |
| 239 | // LLVM `store <N x T>` |
| 240 | |
| 241 | // Creating a temporary helps LLVM turn the memcpy into a store. |
| 242 | let tmp = self; |
| 243 | // SAFETY: `Simd<T, N>` always contains `N` elements of type `T`. The safety of writing |
| 244 | // `ptr` is ensured by the caller. |
| 245 | unsafe { core::ptr::copy_nonoverlapping(tmp.as_array(), ptr, 1) } |
| 246 | } |
| 247 | |
| 248 | /// Converts an array to a SIMD vector. |
| 249 | #[inline ] |
| 250 | pub const fn from_array(array: [T; N]) -> Self { |
| 251 | // SAFETY: `&array` is safe to read. |
| 252 | // |
| 253 | // FIXME: We currently use a pointer load instead of `transmute_copy` because `repr(simd)` |
| 254 | // results in padding for non-power-of-2 vectors (so vectors are larger than arrays). |
| 255 | // |
| 256 | // NOTE: This deliberately doesn't just use `Self(array)`, see the comment |
| 257 | // on the struct definition for details. |
| 258 | unsafe { Self::load(&array) } |
| 259 | } |
| 260 | |
| 261 | /// Converts a SIMD vector to an array. |
| 262 | #[inline ] |
| 263 | pub const fn to_array(self) -> [T; N] { |
| 264 | let mut tmp = core::mem::MaybeUninit::uninit(); |
| 265 | // SAFETY: writing to `tmp` is safe and initializes it. |
| 266 | // |
| 267 | // FIXME: We currently use a pointer store instead of `transmute_copy` because `repr(simd)` |
| 268 | // results in padding for non-power-of-2 vectors (so vectors are larger than arrays). |
| 269 | // |
| 270 | // NOTE: This deliberately doesn't just use `self.0`, see the comment |
| 271 | // on the struct definition for details. |
| 272 | unsafe { |
| 273 | self.store(tmp.as_mut_ptr()); |
| 274 | tmp.assume_init() |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /// Converts a slice to a SIMD vector containing `slice[..N]`. |
| 279 | /// |
| 280 | /// # Panics |
| 281 | /// |
| 282 | /// Panics if the slice's length is less than the vector's `Simd::N`. |
| 283 | /// Use `load_or_default` for an alternative that does not panic. |
| 284 | /// |
| 285 | /// # Example |
| 286 | /// |
| 287 | /// ``` |
| 288 | /// # #![feature (portable_simd)] |
| 289 | /// # use core::simd::u32x4; |
| 290 | /// let source = vec![1, 2, 3, 4, 5, 6]; |
| 291 | /// let v = u32x4::from_slice(&source); |
| 292 | /// assert_eq!(v.as_array(), &[1, 2, 3, 4]); |
| 293 | /// ``` |
| 294 | #[must_use ] |
| 295 | #[inline ] |
| 296 | #[track_caller ] |
| 297 | pub const fn from_slice(slice: &[T]) -> Self { |
| 298 | assert!( |
| 299 | slice.len() >= Self::LEN, |
| 300 | "slice length must be at least the number of elements" |
| 301 | ); |
| 302 | // SAFETY: We just checked that the slice contains |
| 303 | // at least `N` elements. |
| 304 | unsafe { Self::load(slice.as_ptr().cast()) } |
| 305 | } |
| 306 | |
| 307 | /// Writes a SIMD vector to the first `N` elements of a slice. |
| 308 | /// |
| 309 | /// # Panics |
| 310 | /// |
| 311 | /// Panics if the slice's length is less than the vector's `Simd::N`. |
| 312 | /// |
| 313 | /// # Example |
| 314 | /// |
| 315 | /// ``` |
| 316 | /// # #![feature (portable_simd)] |
| 317 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 318 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 319 | /// # use simd::u32x4; |
| 320 | /// let mut dest = vec![0; 6]; |
| 321 | /// let v = u32x4::from_array([1, 2, 3, 4]); |
| 322 | /// v.copy_to_slice(&mut dest); |
| 323 | /// assert_eq!(&dest, &[1, 2, 3, 4, 0, 0]); |
| 324 | /// ``` |
| 325 | #[inline ] |
| 326 | #[track_caller ] |
| 327 | pub fn copy_to_slice(self, slice: &mut [T]) { |
| 328 | assert!( |
| 329 | slice.len() >= Self::LEN, |
| 330 | "slice length must be at least the number of elements" |
| 331 | ); |
| 332 | // SAFETY: We just checked that the slice contains |
| 333 | // at least `N` elements. |
| 334 | unsafe { self.store(slice.as_mut_ptr().cast()) } |
| 335 | } |
| 336 | |
| 337 | /// Reads contiguous elements from `slice`. Elements are read so long as they're in-bounds for |
| 338 | /// the `slice`. Otherwise, the default value for the element type is returned. |
| 339 | /// |
| 340 | /// # Examples |
| 341 | /// ``` |
| 342 | /// # #![feature (portable_simd)] |
| 343 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 344 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 345 | /// # use simd::Simd; |
| 346 | /// let vec: Vec<i32> = vec![10, 11]; |
| 347 | /// |
| 348 | /// let result = Simd::<i32, 4>::load_or_default(&vec); |
| 349 | /// assert_eq!(result, Simd::from_array([10, 11, 0, 0])); |
| 350 | /// ``` |
| 351 | #[must_use ] |
| 352 | #[inline ] |
| 353 | pub fn load_or_default(slice: &[T]) -> Self |
| 354 | where |
| 355 | T: Default, |
| 356 | { |
| 357 | Self::load_or(slice, Default::default()) |
| 358 | } |
| 359 | |
| 360 | /// Reads contiguous elements from `slice`. Elements are read so long as they're in-bounds for |
| 361 | /// the `slice`. Otherwise, the corresponding value from `or` is passed through. |
| 362 | /// |
| 363 | /// # Examples |
| 364 | /// ``` |
| 365 | /// # #![feature (portable_simd)] |
| 366 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 367 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 368 | /// # use simd::Simd; |
| 369 | /// let vec: Vec<i32> = vec![10, 11]; |
| 370 | /// let or = Simd::from_array([-5, -4, -3, -2]); |
| 371 | /// |
| 372 | /// let result = Simd::load_or(&vec, or); |
| 373 | /// assert_eq!(result, Simd::from_array([10, 11, -3, -2])); |
| 374 | /// ``` |
| 375 | #[must_use ] |
| 376 | #[inline ] |
| 377 | pub fn load_or(slice: &[T], or: Self) -> Self { |
| 378 | Self::load_select(slice, Mask::splat(true), or) |
| 379 | } |
| 380 | |
| 381 | /// Reads contiguous elements from `slice`. Each element is read from memory if its |
| 382 | /// corresponding element in `enable` is `true`. |
| 383 | /// |
| 384 | /// When the element is disabled or out of bounds for the slice, that memory location |
| 385 | /// is not accessed and the corresponding value from `or` is passed through. |
| 386 | /// |
| 387 | /// # Examples |
| 388 | /// ``` |
| 389 | /// # #![feature (portable_simd)] |
| 390 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 391 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 392 | /// # use simd::{Simd, Mask}; |
| 393 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 394 | /// let enable = Mask::from_array([true, true, false, true]); |
| 395 | /// let or = Simd::from_array([-5, -4, -3, -2]); |
| 396 | /// |
| 397 | /// let result = Simd::load_select(&vec, enable, or); |
| 398 | /// assert_eq!(result, Simd::from_array([10, 11, -3, 13])); |
| 399 | /// ``` |
| 400 | #[must_use ] |
| 401 | #[inline ] |
| 402 | pub fn load_select_or_default(slice: &[T], enable: Mask<<T as SimdElement>::Mask, N>) -> Self |
| 403 | where |
| 404 | T: Default, |
| 405 | { |
| 406 | Self::load_select(slice, enable, Default::default()) |
| 407 | } |
| 408 | |
| 409 | /// Reads contiguous elements from `slice`. Each element is read from memory if its |
| 410 | /// corresponding element in `enable` is `true`. |
| 411 | /// |
| 412 | /// When the element is disabled or out of bounds for the slice, that memory location |
| 413 | /// is not accessed and the corresponding value from `or` is passed through. |
| 414 | /// |
| 415 | /// # Examples |
| 416 | /// ``` |
| 417 | /// # #![feature (portable_simd)] |
| 418 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 419 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 420 | /// # use simd::{Simd, Mask}; |
| 421 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 422 | /// let enable = Mask::from_array([true, true, false, true]); |
| 423 | /// let or = Simd::from_array([-5, -4, -3, -2]); |
| 424 | /// |
| 425 | /// let result = Simd::load_select(&vec, enable, or); |
| 426 | /// assert_eq!(result, Simd::from_array([10, 11, -3, 13])); |
| 427 | /// ``` |
| 428 | #[must_use ] |
| 429 | #[inline ] |
| 430 | pub fn load_select( |
| 431 | slice: &[T], |
| 432 | mut enable: Mask<<T as SimdElement>::Mask, N>, |
| 433 | or: Self, |
| 434 | ) -> Self { |
| 435 | enable &= mask_up_to(slice.len()); |
| 436 | // SAFETY: We performed the bounds check by updating the mask. &[T] is properly aligned to |
| 437 | // the element. |
| 438 | unsafe { Self::load_select_ptr(slice.as_ptr(), enable, or) } |
| 439 | } |
| 440 | |
| 441 | /// Reads contiguous elements from `slice`. Each element is read from memory if its |
| 442 | /// corresponding element in `enable` is `true`. |
| 443 | /// |
| 444 | /// When the element is disabled, that memory location is not accessed and the corresponding |
| 445 | /// value from `or` is passed through. |
| 446 | /// |
| 447 | /// # Safety |
| 448 | /// Enabled loads must not exceed the length of `slice`. |
| 449 | #[must_use ] |
| 450 | #[inline ] |
| 451 | pub unsafe fn load_select_unchecked( |
| 452 | slice: &[T], |
| 453 | enable: Mask<<T as SimdElement>::Mask, N>, |
| 454 | or: Self, |
| 455 | ) -> Self { |
| 456 | let ptr = slice.as_ptr(); |
| 457 | // SAFETY: The safety of reading elements from `slice` is ensured by the caller. |
| 458 | unsafe { Self::load_select_ptr(ptr, enable, or) } |
| 459 | } |
| 460 | |
| 461 | /// Reads contiguous elements starting at `ptr`. Each element is read from memory if its |
| 462 | /// corresponding element in `enable` is `true`. |
| 463 | /// |
| 464 | /// When the element is disabled, that memory location is not accessed and the corresponding |
| 465 | /// value from `or` is passed through. |
| 466 | /// |
| 467 | /// # Safety |
| 468 | /// Enabled `ptr` elements must be safe to read as if by `std::ptr::read`. |
| 469 | #[must_use ] |
| 470 | #[inline ] |
| 471 | pub unsafe fn load_select_ptr( |
| 472 | ptr: *const T, |
| 473 | enable: Mask<<T as SimdElement>::Mask, N>, |
| 474 | or: Self, |
| 475 | ) -> Self { |
| 476 | // SAFETY: The safety of reading elements through `ptr` is ensured by the caller. |
| 477 | unsafe { core::intrinsics::simd::simd_masked_load(enable.to_int(), ptr, or) } |
| 478 | } |
| 479 | |
| 480 | /// Reads from potentially discontiguous indices in `slice` to construct a SIMD vector. |
| 481 | /// If an index is out-of-bounds, the element is instead selected from the `or` vector. |
| 482 | /// |
| 483 | /// # Examples |
| 484 | /// ``` |
| 485 | /// # #![feature (portable_simd)] |
| 486 | /// # use core::simd::Simd; |
| 487 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 488 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Note the index that is out-of-bounds |
| 489 | /// let alt = Simd::from_array([-5, -4, -3, -2]); |
| 490 | /// |
| 491 | /// let result = Simd::gather_or(&vec, idxs, alt); |
| 492 | /// assert_eq!(result, Simd::from_array([-5, 13, 10, 15])); |
| 493 | /// ``` |
| 494 | #[must_use ] |
| 495 | #[inline ] |
| 496 | pub fn gather_or(slice: &[T], idxs: Simd<usize, N>, or: Self) -> Self { |
| 497 | Self::gather_select(slice, Mask::splat(true), idxs, or) |
| 498 | } |
| 499 | |
| 500 | /// Reads from indices in `slice` to construct a SIMD vector. |
| 501 | /// If an index is out-of-bounds, the element is set to the default given by `T: Default`. |
| 502 | /// |
| 503 | /// # Examples |
| 504 | /// ``` |
| 505 | /// # #![feature (portable_simd)] |
| 506 | /// # use core::simd::Simd; |
| 507 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 508 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Note the index that is out-of-bounds |
| 509 | /// |
| 510 | /// let result = Simd::gather_or_default(&vec, idxs); |
| 511 | /// assert_eq!(result, Simd::from_array([0, 13, 10, 15])); |
| 512 | /// ``` |
| 513 | #[must_use ] |
| 514 | #[inline ] |
| 515 | pub fn gather_or_default(slice: &[T], idxs: Simd<usize, N>) -> Self |
| 516 | where |
| 517 | T: Default, |
| 518 | { |
| 519 | Self::gather_or(slice, idxs, Self::splat(T::default())) |
| 520 | } |
| 521 | |
| 522 | /// Reads from indices in `slice` to construct a SIMD vector. |
| 523 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
| 524 | /// If an index is disabled or is out-of-bounds, the element is selected from the `or` vector. |
| 525 | /// |
| 526 | /// # Examples |
| 527 | /// ``` |
| 528 | /// # #![feature (portable_simd)] |
| 529 | /// # use core::simd::{Simd, Mask}; |
| 530 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 531 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index |
| 532 | /// let alt = Simd::from_array([-5, -4, -3, -2]); |
| 533 | /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element |
| 534 | /// |
| 535 | /// let result = Simd::gather_select(&vec, enable, idxs, alt); |
| 536 | /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2])); |
| 537 | /// ``` |
| 538 | #[must_use ] |
| 539 | #[inline ] |
| 540 | pub fn gather_select( |
| 541 | slice: &[T], |
| 542 | enable: Mask<isize, N>, |
| 543 | idxs: Simd<usize, N>, |
| 544 | or: Self, |
| 545 | ) -> Self { |
| 546 | let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len())); |
| 547 | // Safety: We have masked-off out-of-bounds indices. |
| 548 | unsafe { Self::gather_select_unchecked(slice, enable, idxs, or) } |
| 549 | } |
| 550 | |
| 551 | /// Reads from indices in `slice` to construct a SIMD vector. |
| 552 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
| 553 | /// If an index is disabled, the element is selected from the `or` vector. |
| 554 | /// |
| 555 | /// # Safety |
| 556 | /// |
| 557 | /// Calling this function with an `enable`d out-of-bounds index is *[undefined behavior]* |
| 558 | /// even if the resulting value is not used. |
| 559 | /// |
| 560 | /// # Examples |
| 561 | /// ``` |
| 562 | /// # #![feature (portable_simd)] |
| 563 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 564 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 565 | /// # use simd::{Simd, cmp::SimdPartialOrd, Mask}; |
| 566 | /// let vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 567 | /// let idxs = Simd::from_array([9, 3, 0, 5]); // Includes an out-of-bounds index |
| 568 | /// let alt = Simd::from_array([-5, -4, -3, -2]); |
| 569 | /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element |
| 570 | /// // If this mask was used to gather, it would be unsound. Let's fix that. |
| 571 | /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len())); |
| 572 | /// |
| 573 | /// // The out-of-bounds index has been masked, so it's safe to gather now. |
| 574 | /// let result = unsafe { Simd::gather_select_unchecked(&vec, enable, idxs, alt) }; |
| 575 | /// assert_eq!(result, Simd::from_array([-5, 13, 10, -2])); |
| 576 | /// ``` |
| 577 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 578 | #[must_use ] |
| 579 | #[inline ] |
| 580 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 581 | pub unsafe fn gather_select_unchecked( |
| 582 | slice: &[T], |
| 583 | enable: Mask<isize, N>, |
| 584 | idxs: Simd<usize, N>, |
| 585 | or: Self, |
| 586 | ) -> Self { |
| 587 | let base_ptr = Simd::<*const T, N>::splat(slice.as_ptr()); |
| 588 | // Ferris forgive me, I have done pointer arithmetic here. |
| 589 | let ptrs = base_ptr.wrapping_add(idxs); |
| 590 | // Safety: The caller is responsible for determining the indices are okay to read |
| 591 | unsafe { Self::gather_select_ptr(ptrs, enable, or) } |
| 592 | } |
| 593 | |
| 594 | /// Reads elementwise from pointers into a SIMD vector. |
| 595 | /// |
| 596 | /// # Safety |
| 597 | /// |
| 598 | /// Each read must satisfy the same conditions as [`core::ptr::read`]. |
| 599 | /// |
| 600 | /// # Example |
| 601 | /// ``` |
| 602 | /// # #![feature (portable_simd)] |
| 603 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 604 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 605 | /// # use simd::prelude::*; |
| 606 | /// let values = [6, 2, 4, 9]; |
| 607 | /// let offsets = Simd::from_array([1, 0, 0, 3]); |
| 608 | /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets); |
| 609 | /// let gathered = unsafe { Simd::gather_ptr(source) }; |
| 610 | /// assert_eq!(gathered, Simd::from_array([2, 6, 6, 9])); |
| 611 | /// ``` |
| 612 | #[must_use ] |
| 613 | #[inline ] |
| 614 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 615 | pub unsafe fn gather_ptr(source: Simd<*const T, N>) -> Self |
| 616 | where |
| 617 | T: Default, |
| 618 | { |
| 619 | // TODO: add an intrinsic that doesn't use a passthru vector, and remove the T: Default bound |
| 620 | // Safety: The caller is responsible for upholding all invariants |
| 621 | unsafe { Self::gather_select_ptr(source, Mask::splat(true), Self::default()) } |
| 622 | } |
| 623 | |
| 624 | /// Conditionally read elementwise from pointers into a SIMD vector. |
| 625 | /// The mask `enable`s all `true` pointers and disables all `false` pointers. |
| 626 | /// If a pointer is disabled, the element is selected from the `or` vector, |
| 627 | /// and no read is performed. |
| 628 | /// |
| 629 | /// # Safety |
| 630 | /// |
| 631 | /// Enabled elements must satisfy the same conditions as [`core::ptr::read`]. |
| 632 | /// |
| 633 | /// # Example |
| 634 | /// ``` |
| 635 | /// # #![feature (portable_simd)] |
| 636 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 637 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 638 | /// # use simd::prelude::*; |
| 639 | /// let values = [6, 2, 4, 9]; |
| 640 | /// let enable = Mask::from_array([true, true, false, true]); |
| 641 | /// let offsets = Simd::from_array([1, 0, 0, 3]); |
| 642 | /// let source = Simd::splat(values.as_ptr()).wrapping_add(offsets); |
| 643 | /// let gathered = unsafe { Simd::gather_select_ptr(source, enable, Simd::splat(0)) }; |
| 644 | /// assert_eq!(gathered, Simd::from_array([2, 6, 0, 9])); |
| 645 | /// ``` |
| 646 | #[must_use ] |
| 647 | #[inline ] |
| 648 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 649 | pub unsafe fn gather_select_ptr( |
| 650 | source: Simd<*const T, N>, |
| 651 | enable: Mask<isize, N>, |
| 652 | or: Self, |
| 653 | ) -> Self { |
| 654 | // Safety: The caller is responsible for upholding all invariants |
| 655 | unsafe { core::intrinsics::simd::simd_gather(or, source, enable.to_int()) } |
| 656 | } |
| 657 | |
| 658 | /// Conditionally write contiguous elements to `slice`. The `enable` mask controls |
| 659 | /// which elements are written, as long as they're in-bounds of the `slice`. |
| 660 | /// If the element is disabled or out of bounds, no memory access to that location |
| 661 | /// is made. |
| 662 | /// |
| 663 | /// # Examples |
| 664 | /// ``` |
| 665 | /// # #![feature (portable_simd)] |
| 666 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 667 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 668 | /// # use simd::{Simd, Mask}; |
| 669 | /// let mut arr = [0i32; 4]; |
| 670 | /// let write = Simd::from_array([-5, -4, -3, -2]); |
| 671 | /// let enable = Mask::from_array([false, true, true, true]); |
| 672 | /// |
| 673 | /// write.store_select(&mut arr[..3], enable); |
| 674 | /// assert_eq!(arr, [0, -4, -3, 0]); |
| 675 | /// ``` |
| 676 | #[inline ] |
| 677 | pub fn store_select(self, slice: &mut [T], mut enable: Mask<<T as SimdElement>::Mask, N>) { |
| 678 | enable &= mask_up_to(slice.len()); |
| 679 | // SAFETY: We performed the bounds check by updating the mask. &[T] is properly aligned to |
| 680 | // the element. |
| 681 | unsafe { self.store_select_ptr(slice.as_mut_ptr(), enable) } |
| 682 | } |
| 683 | |
| 684 | /// Conditionally write contiguous elements to `slice`. The `enable` mask controls |
| 685 | /// which elements are written. |
| 686 | /// |
| 687 | /// # Safety |
| 688 | /// |
| 689 | /// Every enabled element must be in bounds for the `slice`. |
| 690 | /// |
| 691 | /// # Examples |
| 692 | /// ``` |
| 693 | /// # #![feature (portable_simd)] |
| 694 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 695 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 696 | /// # use simd::{Simd, Mask}; |
| 697 | /// let mut arr = [0i32; 4]; |
| 698 | /// let write = Simd::from_array([-5, -4, -3, -2]); |
| 699 | /// let enable = Mask::from_array([false, true, true, true]); |
| 700 | /// |
| 701 | /// unsafe { write.store_select_unchecked(&mut arr, enable) }; |
| 702 | /// assert_eq!(arr, [0, -4, -3, -2]); |
| 703 | /// ``` |
| 704 | #[inline ] |
| 705 | pub unsafe fn store_select_unchecked( |
| 706 | self, |
| 707 | slice: &mut [T], |
| 708 | enable: Mask<<T as SimdElement>::Mask, N>, |
| 709 | ) { |
| 710 | let ptr = slice.as_mut_ptr(); |
| 711 | // SAFETY: The safety of writing elements in `slice` is ensured by the caller. |
| 712 | unsafe { self.store_select_ptr(ptr, enable) } |
| 713 | } |
| 714 | |
| 715 | /// Conditionally write contiguous elements starting from `ptr`. |
| 716 | /// The `enable` mask controls which elements are written. |
| 717 | /// When disabled, the memory location corresponding to that element is not accessed. |
| 718 | /// |
| 719 | /// # Safety |
| 720 | /// |
| 721 | /// Memory addresses for element are calculated [`pointer::wrapping_offset`] and |
| 722 | /// each enabled element must satisfy the same conditions as [`core::ptr::write`]. |
| 723 | #[inline ] |
| 724 | pub unsafe fn store_select_ptr(self, ptr: *mut T, enable: Mask<<T as SimdElement>::Mask, N>) { |
| 725 | // SAFETY: The safety of writing elements through `ptr` is ensured by the caller. |
| 726 | unsafe { core::intrinsics::simd::simd_masked_store(enable.to_int(), ptr, self) } |
| 727 | } |
| 728 | |
| 729 | /// Writes the values in a SIMD vector to potentially discontiguous indices in `slice`. |
| 730 | /// If an index is out-of-bounds, the write is suppressed without panicking. |
| 731 | /// If two elements in the scattered vector would write to the same index |
| 732 | /// only the last element is guaranteed to actually be written. |
| 733 | /// |
| 734 | /// # Examples |
| 735 | /// ``` |
| 736 | /// # #![feature (portable_simd)] |
| 737 | /// # use core::simd::Simd; |
| 738 | /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 739 | /// let idxs = Simd::from_array([9, 3, 0, 0]); // Note the duplicate index. |
| 740 | /// let vals = Simd::from_array([-27, 82, -41, 124]); |
| 741 | /// |
| 742 | /// vals.scatter(&mut vec, idxs); // two logical writes means the last wins. |
| 743 | /// assert_eq!(vec, vec![124, 11, 12, 82, 14, 15, 16, 17, 18]); |
| 744 | /// ``` |
| 745 | #[inline ] |
| 746 | pub fn scatter(self, slice: &mut [T], idxs: Simd<usize, N>) { |
| 747 | self.scatter_select(slice, Mask::splat(true), idxs) |
| 748 | } |
| 749 | |
| 750 | /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`. |
| 751 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
| 752 | /// If an enabled index is out-of-bounds, the write is suppressed without panicking. |
| 753 | /// If two enabled elements in the scattered vector would write to the same index, |
| 754 | /// only the last element is guaranteed to actually be written. |
| 755 | /// |
| 756 | /// # Examples |
| 757 | /// ``` |
| 758 | /// # #![feature (portable_simd)] |
| 759 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 760 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 761 | /// # use simd::{Simd, Mask}; |
| 762 | /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 763 | /// let idxs = Simd::from_array([9, 3, 0, 0]); // Includes an out-of-bounds index |
| 764 | /// let vals = Simd::from_array([-27, 82, -41, 124]); |
| 765 | /// let enable = Mask::from_array([true, true, true, false]); // Includes a masked element |
| 766 | /// |
| 767 | /// vals.scatter_select(&mut vec, enable, idxs); // The last write is masked, thus omitted. |
| 768 | /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]); |
| 769 | /// ``` |
| 770 | #[inline ] |
| 771 | pub fn scatter_select(self, slice: &mut [T], enable: Mask<isize, N>, idxs: Simd<usize, N>) { |
| 772 | let enable: Mask<isize, N> = enable & idxs.simd_lt(Simd::splat(slice.len())); |
| 773 | // Safety: We have masked-off out-of-bounds indices. |
| 774 | unsafe { self.scatter_select_unchecked(slice, enable, idxs) } |
| 775 | } |
| 776 | |
| 777 | /// Writes values from a SIMD vector to multiple potentially discontiguous indices in `slice`. |
| 778 | /// The mask `enable`s all `true` indices and disables all `false` indices. |
| 779 | /// If two enabled elements in the scattered vector would write to the same index, |
| 780 | /// only the last element is guaranteed to actually be written. |
| 781 | /// |
| 782 | /// # Safety |
| 783 | /// |
| 784 | /// Calling this function with an enabled out-of-bounds index is *[undefined behavior]*, |
| 785 | /// and may lead to memory corruption. |
| 786 | /// |
| 787 | /// # Examples |
| 788 | /// ``` |
| 789 | /// # #![feature (portable_simd)] |
| 790 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 791 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 792 | /// # use simd::{Simd, cmp::SimdPartialOrd, Mask}; |
| 793 | /// let mut vec: Vec<i32> = vec![10, 11, 12, 13, 14, 15, 16, 17, 18]; |
| 794 | /// let idxs = Simd::from_array([9, 3, 0, 0]); |
| 795 | /// let vals = Simd::from_array([-27, 82, -41, 124]); |
| 796 | /// let enable = Mask::from_array([true, true, true, false]); // Masks the final index |
| 797 | /// // If this mask was used to scatter, it would be unsound. Let's fix that. |
| 798 | /// let enable = enable & idxs.simd_lt(Simd::splat(vec.len())); |
| 799 | /// |
| 800 | /// // We have masked the OOB index, so it's safe to scatter now. |
| 801 | /// unsafe { vals.scatter_select_unchecked(&mut vec, enable, idxs); } |
| 802 | /// // The second write to index 0 was masked, thus omitted. |
| 803 | /// assert_eq!(vec, vec![-41, 11, 12, 82, 14, 15, 16, 17, 18]); |
| 804 | /// ``` |
| 805 | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 806 | #[inline ] |
| 807 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 808 | pub unsafe fn scatter_select_unchecked( |
| 809 | self, |
| 810 | slice: &mut [T], |
| 811 | enable: Mask<isize, N>, |
| 812 | idxs: Simd<usize, N>, |
| 813 | ) { |
| 814 | // Safety: This block works with *mut T derived from &mut 'a [T], |
| 815 | // which means it is delicate in Rust's borrowing model, circa 2021: |
| 816 | // &mut 'a [T] asserts uniqueness, so deriving &'a [T] invalidates live *mut Ts! |
| 817 | // Even though this block is largely safe methods, it must be exactly this way |
| 818 | // to prevent invalidating the raw ptrs while they're live. |
| 819 | // Thus, entering this block requires all values to use being already ready: |
| 820 | // 0. idxs we want to write to, which are used to construct the mask. |
| 821 | // 1. enable, which depends on an initial &'a [T] and the idxs. |
| 822 | // 2. actual values to scatter (self). |
| 823 | // 3. &mut [T] which will become our base ptr. |
| 824 | unsafe { |
| 825 | // Now Entering ☢️ *mut T Zone |
| 826 | let base_ptr = Simd::<*mut T, N>::splat(slice.as_mut_ptr()); |
| 827 | // Ferris forgive me, I have done pointer arithmetic here. |
| 828 | let ptrs = base_ptr.wrapping_add(idxs); |
| 829 | // The ptrs have been bounds-masked to prevent memory-unsafe writes insha'allah |
| 830 | self.scatter_select_ptr(ptrs, enable); |
| 831 | // Cleared ☢️ *mut T Zone |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | /// Writes pointers elementwise into a SIMD vector. |
| 836 | /// |
| 837 | /// # Safety |
| 838 | /// |
| 839 | /// Each write must satisfy the same conditions as [`core::ptr::write`]. |
| 840 | /// |
| 841 | /// # Example |
| 842 | /// ``` |
| 843 | /// # #![feature (portable_simd)] |
| 844 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 845 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 846 | /// # use simd::{Simd, ptr::SimdMutPtr}; |
| 847 | /// let mut values = [0; 4]; |
| 848 | /// let offset = Simd::from_array([3, 2, 1, 0]); |
| 849 | /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset); |
| 850 | /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_ptr(ptrs); } |
| 851 | /// assert_eq!(values, [7, 5, 3, 6]); |
| 852 | /// ``` |
| 853 | #[inline ] |
| 854 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 855 | pub unsafe fn scatter_ptr(self, dest: Simd<*mut T, N>) { |
| 856 | // Safety: The caller is responsible for upholding all invariants |
| 857 | unsafe { self.scatter_select_ptr(dest, Mask::splat(true)) } |
| 858 | } |
| 859 | |
| 860 | /// Conditionally write pointers elementwise into a SIMD vector. |
| 861 | /// The mask `enable`s all `true` pointers and disables all `false` pointers. |
| 862 | /// If a pointer is disabled, the write to its pointee is skipped. |
| 863 | /// |
| 864 | /// # Safety |
| 865 | /// |
| 866 | /// Enabled pointers must satisfy the same conditions as [`core::ptr::write`]. |
| 867 | /// |
| 868 | /// # Example |
| 869 | /// ``` |
| 870 | /// # #![feature (portable_simd)] |
| 871 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
| 872 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
| 873 | /// # use simd::{Mask, Simd, ptr::SimdMutPtr}; |
| 874 | /// let mut values = [0; 4]; |
| 875 | /// let offset = Simd::from_array([3, 2, 1, 0]); |
| 876 | /// let ptrs = Simd::splat(values.as_mut_ptr()).wrapping_add(offset); |
| 877 | /// let enable = Mask::from_array([true, true, false, false]); |
| 878 | /// unsafe { Simd::from_array([6, 3, 5, 7]).scatter_select_ptr(ptrs, enable); } |
| 879 | /// assert_eq!(values, [0, 0, 3, 6]); |
| 880 | /// ``` |
| 881 | #[inline ] |
| 882 | #[cfg_attr (miri, track_caller)] // even without panics, this helps for Miri backtraces |
| 883 | pub unsafe fn scatter_select_ptr(self, dest: Simd<*mut T, N>, enable: Mask<isize, N>) { |
| 884 | // Safety: The caller is responsible for upholding all invariants |
| 885 | unsafe { core::intrinsics::simd::simd_scatter(self, dest, enable.to_int()) } |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | impl<T, const N: usize> Copy for Simd<T, N> |
| 890 | where |
| 891 | LaneCount<N>: SupportedLaneCount, |
| 892 | T: SimdElement, |
| 893 | { |
| 894 | } |
| 895 | |
| 896 | impl<T, const N: usize> Clone for Simd<T, N> |
| 897 | where |
| 898 | LaneCount<N>: SupportedLaneCount, |
| 899 | T: SimdElement, |
| 900 | { |
| 901 | #[inline ] |
| 902 | fn clone(&self) -> Self { |
| 903 | *self |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | impl<T, const N: usize> Default for Simd<T, N> |
| 908 | where |
| 909 | LaneCount<N>: SupportedLaneCount, |
| 910 | T: SimdElement + Default, |
| 911 | { |
| 912 | #[inline ] |
| 913 | fn default() -> Self { |
| 914 | Self::splat(T::default()) |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | impl<T, const N: usize> PartialEq for Simd<T, N> |
| 919 | where |
| 920 | LaneCount<N>: SupportedLaneCount, |
| 921 | T: SimdElement + PartialEq, |
| 922 | { |
| 923 | #[inline ] |
| 924 | fn eq(&self, other: &Self) -> bool { |
| 925 | // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask. |
| 926 | let mask = unsafe { |
| 927 | let tfvec: Simd<<T as SimdElement>::Mask, N> = |
| 928 | core::intrinsics::simd::simd_eq(*self, *other); |
| 929 | Mask::from_int_unchecked(tfvec) |
| 930 | }; |
| 931 | |
| 932 | // Two vectors are equal if all elements are equal when compared elementwise |
| 933 | mask.all() |
| 934 | } |
| 935 | |
| 936 | #[allow (clippy::partialeq_ne_impl)] |
| 937 | #[inline ] |
| 938 | fn ne(&self, other: &Self) -> bool { |
| 939 | // Safety: All SIMD vectors are SimdPartialEq, and the comparison produces a valid mask. |
| 940 | let mask = unsafe { |
| 941 | let tfvec: Simd<<T as SimdElement>::Mask, N> = |
| 942 | core::intrinsics::simd::simd_ne(*self, *other); |
| 943 | Mask::from_int_unchecked(tfvec) |
| 944 | }; |
| 945 | |
| 946 | // Two vectors are non-equal if any elements are non-equal when compared elementwise |
| 947 | mask.any() |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | /// Lexicographic order. For the SIMD elementwise minimum and maximum, use simd_min and simd_max instead. |
| 952 | impl<T, const N: usize> PartialOrd for Simd<T, N> |
| 953 | where |
| 954 | LaneCount<N>: SupportedLaneCount, |
| 955 | T: SimdElement + PartialOrd, |
| 956 | { |
| 957 | #[inline ] |
| 958 | fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { |
| 959 | // TODO use SIMD equality |
| 960 | self.to_array().partial_cmp(other.as_ref()) |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | impl<T, const N: usize> Eq for Simd<T, N> |
| 965 | where |
| 966 | LaneCount<N>: SupportedLaneCount, |
| 967 | T: SimdElement + Eq, |
| 968 | { |
| 969 | } |
| 970 | |
| 971 | /// Lexicographic order. For the SIMD elementwise minimum and maximum, use simd_min and simd_max instead. |
| 972 | impl<T, const N: usize> Ord for Simd<T, N> |
| 973 | where |
| 974 | LaneCount<N>: SupportedLaneCount, |
| 975 | T: SimdElement + Ord, |
| 976 | { |
| 977 | #[inline ] |
| 978 | fn cmp(&self, other: &Self) -> core::cmp::Ordering { |
| 979 | // TODO use SIMD equality |
| 980 | self.to_array().cmp(other.as_ref()) |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | impl<T, const N: usize> core::hash::Hash for Simd<T, N> |
| 985 | where |
| 986 | LaneCount<N>: SupportedLaneCount, |
| 987 | T: SimdElement + core::hash::Hash, |
| 988 | { |
| 989 | #[inline ] |
| 990 | fn hash<H>(&self, state: &mut H) |
| 991 | where |
| 992 | H: core::hash::Hasher, |
| 993 | { |
| 994 | self.as_array().hash(state) |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | // array references |
| 999 | impl<T, const N: usize> AsRef<[T; N]> for Simd<T, N> |
| 1000 | where |
| 1001 | LaneCount<N>: SupportedLaneCount, |
| 1002 | T: SimdElement, |
| 1003 | { |
| 1004 | #[inline ] |
| 1005 | fn as_ref(&self) -> &[T; N] { |
| 1006 | self.as_array() |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | impl<T, const N: usize> AsMut<[T; N]> for Simd<T, N> |
| 1011 | where |
| 1012 | LaneCount<N>: SupportedLaneCount, |
| 1013 | T: SimdElement, |
| 1014 | { |
| 1015 | #[inline ] |
| 1016 | fn as_mut(&mut self) -> &mut [T; N] { |
| 1017 | self.as_mut_array() |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | // slice references |
| 1022 | impl<T, const N: usize> AsRef<[T]> for Simd<T, N> |
| 1023 | where |
| 1024 | LaneCount<N>: SupportedLaneCount, |
| 1025 | T: SimdElement, |
| 1026 | { |
| 1027 | #[inline ] |
| 1028 | fn as_ref(&self) -> &[T] { |
| 1029 | self.as_array() |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | impl<T, const N: usize> AsMut<[T]> for Simd<T, N> |
| 1034 | where |
| 1035 | LaneCount<N>: SupportedLaneCount, |
| 1036 | T: SimdElement, |
| 1037 | { |
| 1038 | #[inline ] |
| 1039 | fn as_mut(&mut self) -> &mut [T] { |
| 1040 | self.as_mut_array() |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | // vector/array conversion |
| 1045 | impl<T, const N: usize> From<[T; N]> for Simd<T, N> |
| 1046 | where |
| 1047 | LaneCount<N>: SupportedLaneCount, |
| 1048 | T: SimdElement, |
| 1049 | { |
| 1050 | #[inline ] |
| 1051 | fn from(array: [T; N]) -> Self { |
| 1052 | Self::from_array(array) |
| 1053 | } |
| 1054 | } |
| 1055 | |
| 1056 | impl<T, const N: usize> From<Simd<T, N>> for [T; N] |
| 1057 | where |
| 1058 | LaneCount<N>: SupportedLaneCount, |
| 1059 | T: SimdElement, |
| 1060 | { |
| 1061 | #[inline ] |
| 1062 | fn from(vector: Simd<T, N>) -> Self { |
| 1063 | vector.to_array() |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | impl<T, const N: usize> TryFrom<&[T]> for Simd<T, N> |
| 1068 | where |
| 1069 | LaneCount<N>: SupportedLaneCount, |
| 1070 | T: SimdElement, |
| 1071 | { |
| 1072 | type Error = core::array::TryFromSliceError; |
| 1073 | |
| 1074 | #[inline ] |
| 1075 | fn try_from(slice: &[T]) -> Result<Self, core::array::TryFromSliceError> { |
| 1076 | Ok(Self::from_array(slice.try_into()?)) |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | impl<T, const N: usize> TryFrom<&mut [T]> for Simd<T, N> |
| 1081 | where |
| 1082 | LaneCount<N>: SupportedLaneCount, |
| 1083 | T: SimdElement, |
| 1084 | { |
| 1085 | type Error = core::array::TryFromSliceError; |
| 1086 | |
| 1087 | #[inline ] |
| 1088 | fn try_from(slice: &mut [T]) -> Result<Self, core::array::TryFromSliceError> { |
| 1089 | Ok(Self::from_array(slice.try_into()?)) |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | mod sealed { |
| 1094 | pub trait Sealed {} |
| 1095 | } |
| 1096 | use sealed::Sealed; |
| 1097 | |
| 1098 | /// Marker trait for types that may be used as SIMD vector elements. |
| 1099 | /// |
| 1100 | /// # Safety |
| 1101 | /// This trait, when implemented, asserts the compiler can monomorphize |
| 1102 | /// `#[repr(simd)]` structs with the marked type as an element. |
| 1103 | /// Strictly, it is valid to impl if the vector will not be miscompiled. |
| 1104 | /// Practically, it is user-unfriendly to impl it if the vector won't compile, |
| 1105 | /// even when no soundness guarantees are broken by allowing the user to try. |
| 1106 | pub unsafe trait SimdElement: Sealed + Copy { |
| 1107 | /// The mask element type corresponding to this element type. |
| 1108 | type Mask: MaskElement; |
| 1109 | } |
| 1110 | |
| 1111 | impl Sealed for u8 {} |
| 1112 | |
| 1113 | // Safety: u8 is a valid SIMD element type, and is supported by this API |
| 1114 | unsafe impl SimdElement for u8 { |
| 1115 | type Mask = i8; |
| 1116 | } |
| 1117 | |
| 1118 | impl Sealed for u16 {} |
| 1119 | |
| 1120 | // Safety: u16 is a valid SIMD element type, and is supported by this API |
| 1121 | unsafe impl SimdElement for u16 { |
| 1122 | type Mask = i16; |
| 1123 | } |
| 1124 | |
| 1125 | impl Sealed for u32 {} |
| 1126 | |
| 1127 | // Safety: u32 is a valid SIMD element type, and is supported by this API |
| 1128 | unsafe impl SimdElement for u32 { |
| 1129 | type Mask = i32; |
| 1130 | } |
| 1131 | |
| 1132 | impl Sealed for u64 {} |
| 1133 | |
| 1134 | // Safety: u64 is a valid SIMD element type, and is supported by this API |
| 1135 | unsafe impl SimdElement for u64 { |
| 1136 | type Mask = i64; |
| 1137 | } |
| 1138 | |
| 1139 | impl Sealed for usize {} |
| 1140 | |
| 1141 | // Safety: usize is a valid SIMD element type, and is supported by this API |
| 1142 | unsafe impl SimdElement for usize { |
| 1143 | type Mask = isize; |
| 1144 | } |
| 1145 | |
| 1146 | impl Sealed for i8 {} |
| 1147 | |
| 1148 | // Safety: i8 is a valid SIMD element type, and is supported by this API |
| 1149 | unsafe impl SimdElement for i8 { |
| 1150 | type Mask = i8; |
| 1151 | } |
| 1152 | |
| 1153 | impl Sealed for i16 {} |
| 1154 | |
| 1155 | // Safety: i16 is a valid SIMD element type, and is supported by this API |
| 1156 | unsafe impl SimdElement for i16 { |
| 1157 | type Mask = i16; |
| 1158 | } |
| 1159 | |
| 1160 | impl Sealed for i32 {} |
| 1161 | |
| 1162 | // Safety: i32 is a valid SIMD element type, and is supported by this API |
| 1163 | unsafe impl SimdElement for i32 { |
| 1164 | type Mask = i32; |
| 1165 | } |
| 1166 | |
| 1167 | impl Sealed for i64 {} |
| 1168 | |
| 1169 | // Safety: i64 is a valid SIMD element type, and is supported by this API |
| 1170 | unsafe impl SimdElement for i64 { |
| 1171 | type Mask = i64; |
| 1172 | } |
| 1173 | |
| 1174 | impl Sealed for isize {} |
| 1175 | |
| 1176 | // Safety: isize is a valid SIMD element type, and is supported by this API |
| 1177 | unsafe impl SimdElement for isize { |
| 1178 | type Mask = isize; |
| 1179 | } |
| 1180 | |
| 1181 | impl Sealed for f32 {} |
| 1182 | |
| 1183 | // Safety: f32 is a valid SIMD element type, and is supported by this API |
| 1184 | unsafe impl SimdElement for f32 { |
| 1185 | type Mask = i32; |
| 1186 | } |
| 1187 | |
| 1188 | impl Sealed for f64 {} |
| 1189 | |
| 1190 | // Safety: f64 is a valid SIMD element type, and is supported by this API |
| 1191 | unsafe impl SimdElement for f64 { |
| 1192 | type Mask = i64; |
| 1193 | } |
| 1194 | |
| 1195 | impl<T> Sealed for *const T {} |
| 1196 | |
| 1197 | // Safety: (thin) const pointers are valid SIMD element types, and are supported by this API |
| 1198 | // |
| 1199 | // Fat pointers may be supported in the future. |
| 1200 | unsafe impl<T> SimdElement for *const T |
| 1201 | where |
| 1202 | T: core::ptr::Pointee<Metadata = ()>, |
| 1203 | { |
| 1204 | type Mask = isize; |
| 1205 | } |
| 1206 | |
| 1207 | impl<T> Sealed for *mut T {} |
| 1208 | |
| 1209 | // Safety: (thin) mut pointers are valid SIMD element types, and are supported by this API |
| 1210 | // |
| 1211 | // Fat pointers may be supported in the future. |
| 1212 | unsafe impl<T> SimdElement for *mut T |
| 1213 | where |
| 1214 | T: core::ptr::Pointee<Metadata = ()>, |
| 1215 | { |
| 1216 | type Mask = isize; |
| 1217 | } |
| 1218 | |
| 1219 | #[inline ] |
| 1220 | fn lane_indices<const N: usize>() -> Simd<usize, N> |
| 1221 | where |
| 1222 | LaneCount<N>: SupportedLaneCount, |
| 1223 | { |
| 1224 | #![allow (clippy::needless_range_loop)] |
| 1225 | let mut index: [usize; N] = [0; N]; |
| 1226 | for i: usize in 0..N { |
| 1227 | index[i] = i; |
| 1228 | } |
| 1229 | Simd::from_array(index) |
| 1230 | } |
| 1231 | |
| 1232 | #[inline ] |
| 1233 | fn mask_up_to<M, const N: usize>(len: usize) -> Mask<M, N> |
| 1234 | where |
| 1235 | LaneCount<N>: SupportedLaneCount, |
| 1236 | M: MaskElement, |
| 1237 | { |
| 1238 | let index: Simd = lane_indices::<N>(); |
| 1239 | let max_value: u64 = M::max_unsigned(); |
| 1240 | macro_rules! case { |
| 1241 | ($ty:ty) => { |
| 1242 | if N < <$ty>::MAX as usize && max_value as $ty as u64 == max_value { |
| 1243 | return index.cast().simd_lt(Simd::splat(len.min(N) as $ty)).cast(); |
| 1244 | } |
| 1245 | }; |
| 1246 | } |
| 1247 | case!(u8); |
| 1248 | case!(u16); |
| 1249 | case!(u32); |
| 1250 | case!(u64); |
| 1251 | index.simd_lt(Simd::splat(len)).cast() |
| 1252 | } |
| 1253 | |