1 | //! Utilities for the array primitive type. |
2 | //! |
3 | //! *[See also the array primitive type](array).* |
4 | |
5 | #![stable (feature = "core_array" , since = "1.35.0" )] |
6 | |
7 | use crate::borrow::{Borrow, BorrowMut}; |
8 | use crate::cmp::Ordering; |
9 | use crate::convert::Infallible; |
10 | use crate::error::Error; |
11 | use crate::fmt; |
12 | use crate::hash::{self, Hash}; |
13 | use crate::intrinsics::transmute_unchecked; |
14 | use crate::iter::{UncheckedIterator, repeat_n}; |
15 | use crate::mem::{self, MaybeUninit}; |
16 | use crate::ops::{ |
17 | ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try, |
18 | }; |
19 | use crate::ptr::{null, null_mut}; |
20 | use crate::slice::{Iter, IterMut}; |
21 | |
22 | mod ascii; |
23 | mod drain; |
24 | mod equality; |
25 | mod iter; |
26 | |
27 | pub(crate) use drain::drain_array_with; |
28 | #[stable (feature = "array_value_iter" , since = "1.51.0" )] |
29 | pub use iter::IntoIter; |
30 | |
31 | /// Creates an array of type `[T; N]` by repeatedly cloning a value. |
32 | /// |
33 | /// This is the same as `[val; N]`, but it also works for types that do not |
34 | /// implement [`Copy`]. |
35 | /// |
36 | /// The provided value will be used as an element of the resulting array and |
37 | /// will be cloned N - 1 times to fill up the rest. If N is zero, the value |
38 | /// will be dropped. |
39 | /// |
40 | /// # Example |
41 | /// |
42 | /// Creating multiple copies of a `String`: |
43 | /// ```rust |
44 | /// #![feature(array_repeat)] |
45 | /// |
46 | /// use std::array; |
47 | /// |
48 | /// let string = "Hello there!" .to_string(); |
49 | /// let strings = array::repeat(string); |
50 | /// assert_eq!(strings, ["Hello there!" , "Hello there!" ]); |
51 | /// ``` |
52 | #[inline ] |
53 | #[unstable (feature = "array_repeat" , issue = "126695" )] |
54 | pub fn repeat<T: Clone, const N: usize>(val: T) -> [T; N] { |
55 | from_trusted_iterator(iter:repeat_n(element:val, N)) |
56 | } |
57 | |
58 | /// Creates an array of type [T; N], where each element `T` is the returned value from `cb` |
59 | /// using that element's index. |
60 | /// |
61 | /// # Arguments |
62 | /// |
63 | /// * `cb`: Callback where the passed argument is the current array index. |
64 | /// |
65 | /// # Example |
66 | /// |
67 | /// ```rust |
68 | /// // type inference is helping us here, the way `from_fn` knows how many |
69 | /// // elements to produce is the length of array down there: only arrays of |
70 | /// // equal lengths can be compared, so the const generic parameter `N` is |
71 | /// // inferred to be 5, thus creating array of 5 elements. |
72 | /// |
73 | /// let array = core::array::from_fn(|i| i); |
74 | /// // indexes are: 0 1 2 3 4 |
75 | /// assert_eq!(array, [0, 1, 2, 3, 4]); |
76 | /// |
77 | /// let array2: [usize; 8] = core::array::from_fn(|i| i * 2); |
78 | /// // indexes are: 0 1 2 3 4 5 6 7 |
79 | /// assert_eq!(array2, [0, 2, 4, 6, 8, 10, 12, 14]); |
80 | /// |
81 | /// let bool_arr = core::array::from_fn::<_, 5, _>(|i| i % 2 == 0); |
82 | /// // indexes are: 0 1 2 3 4 |
83 | /// assert_eq!(bool_arr, [true, false, true, false, true]); |
84 | /// ``` |
85 | #[inline ] |
86 | #[stable (feature = "array_from_fn" , since = "1.63.0" )] |
87 | pub fn from_fn<T, const N: usize, F>(cb: F) -> [T; N] |
88 | where |
89 | F: FnMut(usize) -> T, |
90 | { |
91 | try_from_fn(cb:NeverShortCircuit::wrap_mut_1(cb)).0 |
92 | } |
93 | |
94 | /// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call. |
95 | /// Unlike [`from_fn`], where the element creation can't fail, this version will return an error |
96 | /// if any element creation was unsuccessful. |
97 | /// |
98 | /// The return type of this function depends on the return type of the closure. |
99 | /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`. |
100 | /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`. |
101 | /// |
102 | /// # Arguments |
103 | /// |
104 | /// * `cb`: Callback where the passed argument is the current array index. |
105 | /// |
106 | /// # Example |
107 | /// |
108 | /// ```rust |
109 | /// #![feature(array_try_from_fn)] |
110 | /// |
111 | /// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into()); |
112 | /// assert_eq!(array, Ok([0, 1, 2, 3, 4])); |
113 | /// |
114 | /// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into()); |
115 | /// assert!(array.is_err()); |
116 | /// |
117 | /// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100)); |
118 | /// assert_eq!(array, Some([100, 101, 102, 103])); |
119 | /// |
120 | /// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100)); |
121 | /// assert_eq!(array, None); |
122 | /// ``` |
123 | #[inline ] |
124 | #[unstable (feature = "array_try_from_fn" , issue = "89379" )] |
125 | pub fn try_from_fn<R, const N: usize, F>(cb: F) -> ChangeOutputType<R, [R::Output; N]> |
126 | where |
127 | F: FnMut(usize) -> R, |
128 | R: Try, |
129 | R::Residual: Residual<[R::Output; N]>, |
130 | { |
131 | let mut array: [MaybeUninit>; N] = [const { MaybeUninit::uninit() }; N]; |
132 | match try_from_fn_erased(&mut array, generator:cb) { |
133 | ControlFlow::Break(r: impl Residual<[impl Residual<…>; N]>) => FromResidual::from_residual(r), |
134 | ControlFlow::Continue(()) => { |
135 | // SAFETY: All elements of the array were populated. |
136 | try { unsafe { MaybeUninit::array_assume_init(array) } } |
137 | } |
138 | } |
139 | } |
140 | |
141 | /// Converts a reference to `T` into a reference to an array of length 1 (without copying). |
142 | #[stable (feature = "array_from_ref" , since = "1.53.0" )] |
143 | #[rustc_const_stable (feature = "const_array_from_ref_shared" , since = "1.63.0" )] |
144 | pub const fn from_ref<T>(s: &T) -> &[T; 1] { |
145 | // SAFETY: Converting `&T` to `&[T; 1]` is sound. |
146 | unsafe { &*(s as *const T).cast::<[T; 1]>() } |
147 | } |
148 | |
149 | /// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying). |
150 | #[stable (feature = "array_from_ref" , since = "1.53.0" )] |
151 | #[rustc_const_stable (feature = "const_array_from_ref" , since = "1.83.0" )] |
152 | pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] { |
153 | // SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound. |
154 | unsafe { &mut *(s as *mut T).cast::<[T; 1]>() } |
155 | } |
156 | |
157 | /// The error type returned when a conversion from a slice to an array fails. |
158 | #[stable (feature = "try_from" , since = "1.34.0" )] |
159 | #[derive (Debug, Copy, Clone)] |
160 | pub struct TryFromSliceError(()); |
161 | |
162 | #[stable (feature = "core_array" , since = "1.35.0" )] |
163 | impl fmt::Display for TryFromSliceError { |
164 | #[inline ] |
165 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
166 | #[allow (deprecated)] |
167 | self.description().fmt(f) |
168 | } |
169 | } |
170 | |
171 | #[stable (feature = "try_from" , since = "1.34.0" )] |
172 | impl Error for TryFromSliceError { |
173 | #[allow (deprecated)] |
174 | fn description(&self) -> &str { |
175 | "could not convert slice to array" |
176 | } |
177 | } |
178 | |
179 | #[stable (feature = "try_from_slice_error" , since = "1.36.0" )] |
180 | impl From<Infallible> for TryFromSliceError { |
181 | fn from(x: Infallible) -> TryFromSliceError { |
182 | match x {} |
183 | } |
184 | } |
185 | |
186 | #[stable (feature = "rust1" , since = "1.0.0" )] |
187 | impl<T, const N: usize> AsRef<[T]> for [T; N] { |
188 | #[inline ] |
189 | fn as_ref(&self) -> &[T] { |
190 | &self[..] |
191 | } |
192 | } |
193 | |
194 | #[stable (feature = "rust1" , since = "1.0.0" )] |
195 | impl<T, const N: usize> AsMut<[T]> for [T; N] { |
196 | #[inline ] |
197 | fn as_mut(&mut self) -> &mut [T] { |
198 | &mut self[..] |
199 | } |
200 | } |
201 | |
202 | #[stable (feature = "array_borrow" , since = "1.4.0" )] |
203 | impl<T, const N: usize> Borrow<[T]> for [T; N] { |
204 | fn borrow(&self) -> &[T] { |
205 | self |
206 | } |
207 | } |
208 | |
209 | #[stable (feature = "array_borrow" , since = "1.4.0" )] |
210 | impl<T, const N: usize> BorrowMut<[T]> for [T; N] { |
211 | fn borrow_mut(&mut self) -> &mut [T] { |
212 | self |
213 | } |
214 | } |
215 | |
216 | /// Tries to create an array `[T; N]` by copying from a slice `&[T]`. |
217 | /// Succeeds if `slice.len() == N`. |
218 | /// |
219 | /// ``` |
220 | /// let bytes: [u8; 3] = [1, 0, 2]; |
221 | /// |
222 | /// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap(); |
223 | /// assert_eq!(1, u16::from_le_bytes(bytes_head)); |
224 | /// |
225 | /// let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap(); |
226 | /// assert_eq!(512, u16::from_le_bytes(bytes_tail)); |
227 | /// ``` |
228 | #[stable (feature = "try_from" , since = "1.34.0" )] |
229 | impl<T, const N: usize> TryFrom<&[T]> for [T; N] |
230 | where |
231 | T: Copy, |
232 | { |
233 | type Error = TryFromSliceError; |
234 | |
235 | #[inline ] |
236 | fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> { |
237 | <&Self>::try_from(slice).copied() |
238 | } |
239 | } |
240 | |
241 | /// Tries to create an array `[T; N]` by copying from a mutable slice `&mut [T]`. |
242 | /// Succeeds if `slice.len() == N`. |
243 | /// |
244 | /// ``` |
245 | /// let mut bytes: [u8; 3] = [1, 0, 2]; |
246 | /// |
247 | /// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap(); |
248 | /// assert_eq!(1, u16::from_le_bytes(bytes_head)); |
249 | /// |
250 | /// let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap(); |
251 | /// assert_eq!(512, u16::from_le_bytes(bytes_tail)); |
252 | /// ``` |
253 | #[stable (feature = "try_from_mut_slice_to_array" , since = "1.59.0" )] |
254 | impl<T, const N: usize> TryFrom<&mut [T]> for [T; N] |
255 | where |
256 | T: Copy, |
257 | { |
258 | type Error = TryFromSliceError; |
259 | |
260 | #[inline ] |
261 | fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> { |
262 | <Self>::try_from(&*slice) |
263 | } |
264 | } |
265 | |
266 | /// Tries to create an array ref `&[T; N]` from a slice ref `&[T]`. Succeeds if |
267 | /// `slice.len() == N`. |
268 | /// |
269 | /// ``` |
270 | /// let bytes: [u8; 3] = [1, 0, 2]; |
271 | /// |
272 | /// let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap(); |
273 | /// assert_eq!(1, u16::from_le_bytes(*bytes_head)); |
274 | /// |
275 | /// let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap(); |
276 | /// assert_eq!(512, u16::from_le_bytes(*bytes_tail)); |
277 | /// ``` |
278 | #[stable (feature = "try_from" , since = "1.34.0" )] |
279 | impl<'a, T, const N: usize> TryFrom<&'a [T]> for &'a [T; N] { |
280 | type Error = TryFromSliceError; |
281 | |
282 | #[inline ] |
283 | fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError> { |
284 | slice.as_array().ok_or(err:TryFromSliceError(())) |
285 | } |
286 | } |
287 | |
288 | /// Tries to create a mutable array ref `&mut [T; N]` from a mutable slice ref |
289 | /// `&mut [T]`. Succeeds if `slice.len() == N`. |
290 | /// |
291 | /// ``` |
292 | /// let mut bytes: [u8; 3] = [1, 0, 2]; |
293 | /// |
294 | /// let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap(); |
295 | /// assert_eq!(1, u16::from_le_bytes(*bytes_head)); |
296 | /// |
297 | /// let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap(); |
298 | /// assert_eq!(512, u16::from_le_bytes(*bytes_tail)); |
299 | /// ``` |
300 | #[stable (feature = "try_from" , since = "1.34.0" )] |
301 | impl<'a, T, const N: usize> TryFrom<&'a mut [T]> for &'a mut [T; N] { |
302 | type Error = TryFromSliceError; |
303 | |
304 | #[inline ] |
305 | fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError> { |
306 | slice.as_mut_array().ok_or(err:TryFromSliceError(())) |
307 | } |
308 | } |
309 | |
310 | /// The hash of an array is the same as that of the corresponding slice, |
311 | /// as required by the `Borrow` implementation. |
312 | /// |
313 | /// ``` |
314 | /// use std::hash::BuildHasher; |
315 | /// |
316 | /// let b = std::hash::RandomState::new(); |
317 | /// let a: [u8; 3] = [0xa8, 0x3c, 0x09]; |
318 | /// let s: &[u8] = &[0xa8, 0x3c, 0x09]; |
319 | /// assert_eq!(b.hash_one(a), b.hash_one(s)); |
320 | /// ``` |
321 | #[stable (feature = "rust1" , since = "1.0.0" )] |
322 | impl<T: Hash, const N: usize> Hash for [T; N] { |
323 | fn hash<H: hash::Hasher>(&self, state: &mut H) { |
324 | Hash::hash(&self[..], state) |
325 | } |
326 | } |
327 | |
328 | #[stable (feature = "rust1" , since = "1.0.0" )] |
329 | impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] { |
330 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
331 | fmt::Debug::fmt(&&self[..], f) |
332 | } |
333 | } |
334 | |
335 | #[stable (feature = "rust1" , since = "1.0.0" )] |
336 | impl<'a, T, const N: usize> IntoIterator for &'a [T; N] { |
337 | type Item = &'a T; |
338 | type IntoIter = Iter<'a, T>; |
339 | |
340 | fn into_iter(self) -> Iter<'a, T> { |
341 | self.iter() |
342 | } |
343 | } |
344 | |
345 | #[stable (feature = "rust1" , since = "1.0.0" )] |
346 | impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] { |
347 | type Item = &'a mut T; |
348 | type IntoIter = IterMut<'a, T>; |
349 | |
350 | fn into_iter(self) -> IterMut<'a, T> { |
351 | self.iter_mut() |
352 | } |
353 | } |
354 | |
355 | #[stable (feature = "index_trait_on_arrays" , since = "1.50.0" )] |
356 | impl<T, I, const N: usize> Index<I> for [T; N] |
357 | where |
358 | [T]: Index<I>, |
359 | { |
360 | type Output = <[T] as Index<I>>::Output; |
361 | |
362 | #[inline ] |
363 | fn index(&self, index: I) -> &Self::Output { |
364 | Index::index(self as &[T], index) |
365 | } |
366 | } |
367 | |
368 | #[stable (feature = "index_trait_on_arrays" , since = "1.50.0" )] |
369 | impl<T, I, const N: usize> IndexMut<I> for [T; N] |
370 | where |
371 | [T]: IndexMut<I>, |
372 | { |
373 | #[inline ] |
374 | fn index_mut(&mut self, index: I) -> &mut Self::Output { |
375 | IndexMut::index_mut(self as &mut [T], index) |
376 | } |
377 | } |
378 | |
379 | /// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison). |
380 | #[stable (feature = "rust1" , since = "1.0.0" )] |
381 | impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] { |
382 | #[inline ] |
383 | fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> { |
384 | PartialOrd::partial_cmp(&&self[..], &&other[..]) |
385 | } |
386 | #[inline ] |
387 | fn lt(&self, other: &[T; N]) -> bool { |
388 | PartialOrd::lt(&&self[..], &&other[..]) |
389 | } |
390 | #[inline ] |
391 | fn le(&self, other: &[T; N]) -> bool { |
392 | PartialOrd::le(&&self[..], &&other[..]) |
393 | } |
394 | #[inline ] |
395 | fn ge(&self, other: &[T; N]) -> bool { |
396 | PartialOrd::ge(&&self[..], &&other[..]) |
397 | } |
398 | #[inline ] |
399 | fn gt(&self, other: &[T; N]) -> bool { |
400 | PartialOrd::gt(&&self[..], &&other[..]) |
401 | } |
402 | } |
403 | |
404 | /// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison). |
405 | #[stable (feature = "rust1" , since = "1.0.0" )] |
406 | impl<T: Ord, const N: usize> Ord for [T; N] { |
407 | #[inline ] |
408 | fn cmp(&self, other: &[T; N]) -> Ordering { |
409 | Ord::cmp(&&self[..], &&other[..]) |
410 | } |
411 | } |
412 | |
413 | #[stable (feature = "copy_clone_array_lib" , since = "1.58.0" )] |
414 | impl<T: Copy, const N: usize> Copy for [T; N] {} |
415 | |
416 | #[stable (feature = "copy_clone_array_lib" , since = "1.58.0" )] |
417 | impl<T: Clone, const N: usize> Clone for [T; N] { |
418 | #[inline ] |
419 | fn clone(&self) -> Self { |
420 | SpecArrayClone::clone(self) |
421 | } |
422 | |
423 | #[inline ] |
424 | fn clone_from(&mut self, other: &Self) { |
425 | self.clone_from_slice(src:other); |
426 | } |
427 | } |
428 | |
429 | trait SpecArrayClone: Clone { |
430 | fn clone<const N: usize>(array: &[Self; N]) -> [Self; N]; |
431 | } |
432 | |
433 | impl<T: Clone> SpecArrayClone for T { |
434 | #[inline ] |
435 | default fn clone<const N: usize>(array: &[T; N]) -> [T; N] { |
436 | from_trusted_iterator(iter:array.iter().cloned()) |
437 | } |
438 | } |
439 | |
440 | impl<T: Copy> SpecArrayClone for T { |
441 | #[inline ] |
442 | fn clone<const N: usize>(array: &[T; N]) -> [T; N] { |
443 | *array |
444 | } |
445 | } |
446 | |
447 | // The Default impls cannot be done with const generics because `[T; 0]` doesn't |
448 | // require Default to be implemented, and having different impl blocks for |
449 | // different numbers isn't supported yet. |
450 | |
451 | macro_rules! array_impl_default { |
452 | {$n:expr, $t:ident $($ts:ident)*} => { |
453 | #[stable(since = "1.4.0" , feature = "array_default" )] |
454 | impl<T> Default for [T; $n] where T: Default { |
455 | fn default() -> [T; $n] { |
456 | [$t::default(), $($ts::default()),*] |
457 | } |
458 | } |
459 | array_impl_default!{($n - 1), $($ts)*} |
460 | }; |
461 | {$n:expr,} => { |
462 | #[stable(since = "1.4.0" , feature = "array_default" )] |
463 | impl<T> Default for [T; $n] { |
464 | fn default() -> [T; $n] { [] } |
465 | } |
466 | }; |
467 | } |
468 | |
469 | array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T} |
470 | |
471 | impl<T, const N: usize> [T; N] { |
472 | /// Returns an array of the same size as `self`, with function `f` applied to each element |
473 | /// in order. |
474 | /// |
475 | /// If you don't necessarily need a new fixed-size array, consider using |
476 | /// [`Iterator::map`] instead. |
477 | /// |
478 | /// |
479 | /// # Note on performance and stack usage |
480 | /// |
481 | /// Unfortunately, usages of this method are currently not always optimized |
482 | /// as well as they could be. This mainly concerns large arrays, as mapping |
483 | /// over small arrays seem to be optimized just fine. Also note that in |
484 | /// debug mode (i.e. without any optimizations), this method can use a lot |
485 | /// of stack space (a few times the size of the array or more). |
486 | /// |
487 | /// Therefore, in performance-critical code, try to avoid using this method |
488 | /// on large arrays or check the emitted code. Also try to avoid chained |
489 | /// maps (e.g. `arr.map(...).map(...)`). |
490 | /// |
491 | /// In many cases, you can instead use [`Iterator::map`] by calling `.iter()` |
492 | /// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you |
493 | /// really need a new array of the same size as the result. Rust's lazy |
494 | /// iterators tend to get optimized very well. |
495 | /// |
496 | /// |
497 | /// # Examples |
498 | /// |
499 | /// ``` |
500 | /// let x = [1, 2, 3]; |
501 | /// let y = x.map(|v| v + 1); |
502 | /// assert_eq!(y, [2, 3, 4]); |
503 | /// |
504 | /// let x = [1, 2, 3]; |
505 | /// let mut temp = 0; |
506 | /// let y = x.map(|v| { temp += 1; v * temp }); |
507 | /// assert_eq!(y, [1, 4, 9]); |
508 | /// |
509 | /// let x = ["Ferris" , "Bueller's" , "Day" , "Off" ]; |
510 | /// let y = x.map(|v| v.len()); |
511 | /// assert_eq!(y, [6, 9, 3, 3]); |
512 | /// ``` |
513 | #[stable (feature = "array_map" , since = "1.55.0" )] |
514 | pub fn map<F, U>(self, f: F) -> [U; N] |
515 | where |
516 | F: FnMut(T) -> U, |
517 | { |
518 | self.try_map(NeverShortCircuit::wrap_mut_1(f)).0 |
519 | } |
520 | |
521 | /// A fallible function `f` applied to each element on array `self` in order to |
522 | /// return an array the same size as `self` or the first error encountered. |
523 | /// |
524 | /// The return type of this function depends on the return type of the closure. |
525 | /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`. |
526 | /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`. |
527 | /// |
528 | /// # Examples |
529 | /// |
530 | /// ``` |
531 | /// #![feature(array_try_map)] |
532 | /// |
533 | /// let a = ["1" , "2" , "3" ]; |
534 | /// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1); |
535 | /// assert_eq!(b, [2, 3, 4]); |
536 | /// |
537 | /// let a = ["1" , "2a" , "3" ]; |
538 | /// let b = a.try_map(|v| v.parse::<u32>()); |
539 | /// assert!(b.is_err()); |
540 | /// |
541 | /// use std::num::NonZero; |
542 | /// |
543 | /// let z = [1, 2, 0, 3, 4]; |
544 | /// assert_eq!(z.try_map(NonZero::new), None); |
545 | /// |
546 | /// let a = [1, 2, 3]; |
547 | /// let b = a.try_map(NonZero::new); |
548 | /// let c = b.map(|x| x.map(NonZero::get)); |
549 | /// assert_eq!(c, Some(a)); |
550 | /// ``` |
551 | #[unstable (feature = "array_try_map" , issue = "79711" )] |
552 | pub fn try_map<R>(self, f: impl FnMut(T) -> R) -> ChangeOutputType<R, [R::Output; N]> |
553 | where |
554 | R: Try<Residual: Residual<[R::Output; N]>>, |
555 | { |
556 | drain_array_with(self, |iter| try_from_trusted_iterator(iter.map(f))) |
557 | } |
558 | |
559 | /// Returns a slice containing the entire array. Equivalent to `&s[..]`. |
560 | #[stable (feature = "array_as_slice" , since = "1.57.0" )] |
561 | #[rustc_const_stable (feature = "array_as_slice" , since = "1.57.0" )] |
562 | pub const fn as_slice(&self) -> &[T] { |
563 | self |
564 | } |
565 | |
566 | /// Returns a mutable slice containing the entire array. Equivalent to |
567 | /// `&mut s[..]`. |
568 | #[stable (feature = "array_as_slice" , since = "1.57.0" )] |
569 | #[rustc_const_unstable (feature = "const_array_as_mut_slice" , issue = "133333" )] |
570 | pub const fn as_mut_slice(&mut self) -> &mut [T] { |
571 | self |
572 | } |
573 | |
574 | /// Borrows each element and returns an array of references with the same |
575 | /// size as `self`. |
576 | /// |
577 | /// |
578 | /// # Example |
579 | /// |
580 | /// ``` |
581 | /// let floats = [3.1, 2.7, -1.0]; |
582 | /// let float_refs: [&f64; 3] = floats.each_ref(); |
583 | /// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]); |
584 | /// ``` |
585 | /// |
586 | /// This method is particularly useful if combined with other methods, like |
587 | /// [`map`](#method.map). This way, you can avoid moving the original |
588 | /// array if its elements are not [`Copy`]. |
589 | /// |
590 | /// ``` |
591 | /// let strings = ["Ferris" .to_string(), "♥" .to_string(), "Rust" .to_string()]; |
592 | /// let is_ascii = strings.each_ref().map(|s| s.is_ascii()); |
593 | /// assert_eq!(is_ascii, [true, false, true]); |
594 | /// |
595 | /// // We can still access the original array: it has not been moved. |
596 | /// assert_eq!(strings.len(), 3); |
597 | /// ``` |
598 | #[stable (feature = "array_methods" , since = "1.77.0" )] |
599 | #[rustc_const_unstable (feature = "const_array_each_ref" , issue = "133289" )] |
600 | pub const fn each_ref(&self) -> [&T; N] { |
601 | let mut buf = [null::<T>(); N]; |
602 | |
603 | // FIXME(const-hack): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions. |
604 | let mut i = 0; |
605 | while i < N { |
606 | buf[i] = &raw const self[i]; |
607 | |
608 | i += 1; |
609 | } |
610 | |
611 | // SAFETY: `*const T` has the same layout as `&T`, and we've also initialised each pointer as a valid reference. |
612 | unsafe { transmute_unchecked(buf) } |
613 | } |
614 | |
615 | /// Borrows each element mutably and returns an array of mutable references |
616 | /// with the same size as `self`. |
617 | /// |
618 | /// |
619 | /// # Example |
620 | /// |
621 | /// ``` |
622 | /// |
623 | /// let mut floats = [3.1, 2.7, -1.0]; |
624 | /// let float_refs: [&mut f64; 3] = floats.each_mut(); |
625 | /// *float_refs[0] = 0.0; |
626 | /// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]); |
627 | /// assert_eq!(floats, [0.0, 2.7, -1.0]); |
628 | /// ``` |
629 | #[stable (feature = "array_methods" , since = "1.77.0" )] |
630 | #[rustc_const_unstable (feature = "const_array_each_ref" , issue = "133289" )] |
631 | pub const fn each_mut(&mut self) -> [&mut T; N] { |
632 | let mut buf = [null_mut::<T>(); N]; |
633 | |
634 | // FIXME(const-hack): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions. |
635 | let mut i = 0; |
636 | while i < N { |
637 | buf[i] = &raw mut self[i]; |
638 | |
639 | i += 1; |
640 | } |
641 | |
642 | // SAFETY: `*mut T` has the same layout as `&mut T`, and we've also initialised each pointer as a valid reference. |
643 | unsafe { transmute_unchecked(buf) } |
644 | } |
645 | |
646 | /// Divides one array reference into two at an index. |
647 | /// |
648 | /// The first will contain all indices from `[0, M)` (excluding |
649 | /// the index `M` itself) and the second will contain all |
650 | /// indices from `[M, N)` (excluding the index `N` itself). |
651 | /// |
652 | /// # Panics |
653 | /// |
654 | /// Panics if `M > N`. |
655 | /// |
656 | /// # Examples |
657 | /// |
658 | /// ``` |
659 | /// #![feature(split_array)] |
660 | /// |
661 | /// let v = [1, 2, 3, 4, 5, 6]; |
662 | /// |
663 | /// { |
664 | /// let (left, right) = v.split_array_ref::<0>(); |
665 | /// assert_eq!(left, &[]); |
666 | /// assert_eq!(right, &[1, 2, 3, 4, 5, 6]); |
667 | /// } |
668 | /// |
669 | /// { |
670 | /// let (left, right) = v.split_array_ref::<2>(); |
671 | /// assert_eq!(left, &[1, 2]); |
672 | /// assert_eq!(right, &[3, 4, 5, 6]); |
673 | /// } |
674 | /// |
675 | /// { |
676 | /// let (left, right) = v.split_array_ref::<6>(); |
677 | /// assert_eq!(left, &[1, 2, 3, 4, 5, 6]); |
678 | /// assert_eq!(right, &[]); |
679 | /// } |
680 | /// ``` |
681 | #[unstable ( |
682 | feature = "split_array" , |
683 | reason = "return type should have array as 2nd element" , |
684 | issue = "90091" |
685 | )] |
686 | #[inline ] |
687 | pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) { |
688 | (&self[..]).split_first_chunk::<M>().unwrap() |
689 | } |
690 | |
691 | /// Divides one mutable array reference into two at an index. |
692 | /// |
693 | /// The first will contain all indices from `[0, M)` (excluding |
694 | /// the index `M` itself) and the second will contain all |
695 | /// indices from `[M, N)` (excluding the index `N` itself). |
696 | /// |
697 | /// # Panics |
698 | /// |
699 | /// Panics if `M > N`. |
700 | /// |
701 | /// # Examples |
702 | /// |
703 | /// ``` |
704 | /// #![feature(split_array)] |
705 | /// |
706 | /// let mut v = [1, 0, 3, 0, 5, 6]; |
707 | /// let (left, right) = v.split_array_mut::<2>(); |
708 | /// assert_eq!(left, &mut [1, 0][..]); |
709 | /// assert_eq!(right, &mut [3, 0, 5, 6]); |
710 | /// left[1] = 2; |
711 | /// right[1] = 4; |
712 | /// assert_eq!(v, [1, 2, 3, 4, 5, 6]); |
713 | /// ``` |
714 | #[unstable ( |
715 | feature = "split_array" , |
716 | reason = "return type should have array as 2nd element" , |
717 | issue = "90091" |
718 | )] |
719 | #[inline ] |
720 | pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) { |
721 | (&mut self[..]).split_first_chunk_mut::<M>().unwrap() |
722 | } |
723 | |
724 | /// Divides one array reference into two at an index from the end. |
725 | /// |
726 | /// The first will contain all indices from `[0, N - M)` (excluding |
727 | /// the index `N - M` itself) and the second will contain all |
728 | /// indices from `[N - M, N)` (excluding the index `N` itself). |
729 | /// |
730 | /// # Panics |
731 | /// |
732 | /// Panics if `M > N`. |
733 | /// |
734 | /// # Examples |
735 | /// |
736 | /// ``` |
737 | /// #![feature(split_array)] |
738 | /// |
739 | /// let v = [1, 2, 3, 4, 5, 6]; |
740 | /// |
741 | /// { |
742 | /// let (left, right) = v.rsplit_array_ref::<0>(); |
743 | /// assert_eq!(left, &[1, 2, 3, 4, 5, 6]); |
744 | /// assert_eq!(right, &[]); |
745 | /// } |
746 | /// |
747 | /// { |
748 | /// let (left, right) = v.rsplit_array_ref::<2>(); |
749 | /// assert_eq!(left, &[1, 2, 3, 4]); |
750 | /// assert_eq!(right, &[5, 6]); |
751 | /// } |
752 | /// |
753 | /// { |
754 | /// let (left, right) = v.rsplit_array_ref::<6>(); |
755 | /// assert_eq!(left, &[]); |
756 | /// assert_eq!(right, &[1, 2, 3, 4, 5, 6]); |
757 | /// } |
758 | /// ``` |
759 | #[unstable ( |
760 | feature = "split_array" , |
761 | reason = "return type should have array as 2nd element" , |
762 | issue = "90091" |
763 | )] |
764 | #[inline ] |
765 | pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) { |
766 | (&self[..]).split_last_chunk::<M>().unwrap() |
767 | } |
768 | |
769 | /// Divides one mutable array reference into two at an index from the end. |
770 | /// |
771 | /// The first will contain all indices from `[0, N - M)` (excluding |
772 | /// the index `N - M` itself) and the second will contain all |
773 | /// indices from `[N - M, N)` (excluding the index `N` itself). |
774 | /// |
775 | /// # Panics |
776 | /// |
777 | /// Panics if `M > N`. |
778 | /// |
779 | /// # Examples |
780 | /// |
781 | /// ``` |
782 | /// #![feature(split_array)] |
783 | /// |
784 | /// let mut v = [1, 0, 3, 0, 5, 6]; |
785 | /// let (left, right) = v.rsplit_array_mut::<4>(); |
786 | /// assert_eq!(left, &mut [1, 0]); |
787 | /// assert_eq!(right, &mut [3, 0, 5, 6][..]); |
788 | /// left[1] = 2; |
789 | /// right[1] = 4; |
790 | /// assert_eq!(v, [1, 2, 3, 4, 5, 6]); |
791 | /// ``` |
792 | #[unstable ( |
793 | feature = "split_array" , |
794 | reason = "return type should have array as 2nd element" , |
795 | issue = "90091" |
796 | )] |
797 | #[inline ] |
798 | pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) { |
799 | (&mut self[..]).split_last_chunk_mut::<M>().unwrap() |
800 | } |
801 | } |
802 | |
803 | /// Populate an array from the first `N` elements of `iter` |
804 | /// |
805 | /// # Panics |
806 | /// |
807 | /// If the iterator doesn't actually have enough items. |
808 | /// |
809 | /// By depending on `TrustedLen`, however, we can do that check up-front (where |
810 | /// it easily optimizes away) so it doesn't impact the loop that fills the array. |
811 | #[inline ] |
812 | fn from_trusted_iterator<T, const N: usize>(iter: impl UncheckedIterator<Item = T>) -> [T; N] { |
813 | try_from_trusted_iterator(iter.map(NeverShortCircuit)).0 |
814 | } |
815 | |
816 | #[inline ] |
817 | fn try_from_trusted_iterator<T, R, const N: usize>( |
818 | iter: impl UncheckedIterator<Item = R>, |
819 | ) -> ChangeOutputType<R, [T; N]> |
820 | where |
821 | R: Try<Output = T>, |
822 | R::Residual: Residual<[T; N]>, |
823 | { |
824 | assert!(iter.size_hint().0 >= N); |
825 | fn next<T>(mut iter: impl UncheckedIterator<Item = T>) -> impl FnMut(usize) -> T { |
826 | move |_| { |
827 | // SAFETY: We know that `from_fn` will call this at most N times, |
828 | // and we checked to ensure that we have at least that many items. |
829 | unsafe { iter.next_unchecked() } |
830 | } |
831 | } |
832 | |
833 | try_from_fn(cb:next(iter)) |
834 | } |
835 | |
836 | /// Version of [`try_from_fn`] using a passed-in slice in order to avoid |
837 | /// needing to monomorphize for every array length. |
838 | /// |
839 | /// This takes a generator rather than an iterator so that *at the type level* |
840 | /// it never needs to worry about running out of items. When combined with |
841 | /// an infallible `Try` type, that means the loop canonicalizes easily, allowing |
842 | /// it to optimize well. |
843 | /// |
844 | /// It would be *possible* to unify this and [`iter_next_chunk_erased`] into one |
845 | /// function that does the union of both things, but last time it was that way |
846 | /// it resulted in poor codegen from the "are there enough source items?" checks |
847 | /// not optimizing away. So if you give it a shot, make sure to watch what |
848 | /// happens in the codegen tests. |
849 | #[inline ] |
850 | fn try_from_fn_erased<T, R>( |
851 | buffer: &mut [MaybeUninit<T>], |
852 | mut generator: impl FnMut(usize) -> R, |
853 | ) -> ControlFlow<R::Residual> |
854 | where |
855 | R: Try<Output = T>, |
856 | { |
857 | let mut guard: Guard<'_, T> = Guard { array_mut: buffer, initialized: 0 }; |
858 | |
859 | while guard.initialized < guard.array_mut.len() { |
860 | let item: T = generator(guard.initialized).branch()?; |
861 | |
862 | // SAFETY: The loop condition ensures we have space to push the item |
863 | unsafe { guard.push_unchecked(item) }; |
864 | } |
865 | |
866 | mem::forget(guard); |
867 | ControlFlow::Continue(()) |
868 | } |
869 | |
870 | /// Panic guard for incremental initialization of arrays. |
871 | /// |
872 | /// Disarm the guard with `mem::forget` once the array has been initialized. |
873 | /// |
874 | /// # Safety |
875 | /// |
876 | /// All write accesses to this structure are unsafe and must maintain a correct |
877 | /// count of `initialized` elements. |
878 | /// |
879 | /// To minimize indirection fields are still pub but callers should at least use |
880 | /// `push_unchecked` to signal that something unsafe is going on. |
881 | struct Guard<'a, T> { |
882 | /// The array to be initialized. |
883 | pub array_mut: &'a mut [MaybeUninit<T>], |
884 | /// The number of items that have been initialized so far. |
885 | pub initialized: usize, |
886 | } |
887 | |
888 | impl<T> Guard<'_, T> { |
889 | /// Adds an item to the array and updates the initialized item counter. |
890 | /// |
891 | /// # Safety |
892 | /// |
893 | /// No more than N elements must be initialized. |
894 | #[inline ] |
895 | pub(crate) unsafe fn push_unchecked(&mut self, item: T) { |
896 | // SAFETY: If `initialized` was correct before and the caller does not |
897 | // invoke this method more than N times then writes will be in-bounds |
898 | // and slots will not be initialized more than once. |
899 | unsafe { |
900 | self.array_mut.get_unchecked_mut(self.initialized).write(val:item); |
901 | self.initialized = self.initialized.unchecked_add(1); |
902 | } |
903 | } |
904 | } |
905 | |
906 | impl<T> Drop for Guard<'_, T> { |
907 | #[inline ] |
908 | fn drop(&mut self) { |
909 | debug_assert!(self.initialized <= self.array_mut.len()); |
910 | |
911 | // SAFETY: this slice will contain only initialized objects. |
912 | unsafe { |
913 | self.array_mut.get_unchecked_mut(..self.initialized).assume_init_drop(); |
914 | } |
915 | } |
916 | } |
917 | |
918 | /// Pulls `N` items from `iter` and returns them as an array. If the iterator |
919 | /// yields fewer than `N` items, `Err` is returned containing an iterator over |
920 | /// the already yielded items. |
921 | /// |
922 | /// Since the iterator is passed as a mutable reference and this function calls |
923 | /// `next` at most `N` times, the iterator can still be used afterwards to |
924 | /// retrieve the remaining items. |
925 | /// |
926 | /// If `iter.next()` panicks, all items already yielded by the iterator are |
927 | /// dropped. |
928 | /// |
929 | /// Used for [`Iterator::next_chunk`]. |
930 | #[inline ] |
931 | pub(crate) fn iter_next_chunk<T, const N: usize>( |
932 | iter: &mut impl Iterator<Item = T>, |
933 | ) -> Result<[T; N], IntoIter<T, N>> { |
934 | let mut array: [MaybeUninit; N] = [const { MaybeUninit::uninit() }; N]; |
935 | let r: Result<(), usize> = iter_next_chunk_erased(&mut array, iter); |
936 | match r { |
937 | Ok(()) => { |
938 | // SAFETY: All elements of `array` were populated. |
939 | Ok(unsafe { MaybeUninit::array_assume_init(array) }) |
940 | } |
941 | Err(initialized: usize) => { |
942 | // SAFETY: Only the first `initialized` elements were populated |
943 | Err(unsafe { IntoIter::new_unchecked(buffer:array, initialized:0..initialized) }) |
944 | } |
945 | } |
946 | } |
947 | |
948 | /// Version of [`iter_next_chunk`] using a passed-in slice in order to avoid |
949 | /// needing to monomorphize for every array length. |
950 | /// |
951 | /// Unfortunately this loop has two exit conditions, the buffer filling up |
952 | /// or the iterator running out of items, making it tend to optimize poorly. |
953 | #[inline ] |
954 | fn iter_next_chunk_erased<T>( |
955 | buffer: &mut [MaybeUninit<T>], |
956 | iter: &mut impl Iterator<Item = T>, |
957 | ) -> Result<(), usize> { |
958 | let mut guard: Guard<'_, T> = Guard { array_mut: buffer, initialized: 0 }; |
959 | while guard.initialized < guard.array_mut.len() { |
960 | let Some(item: T) = iter.next() else { |
961 | // Unlike `try_from_fn_erased`, we want to keep the partial results, |
962 | // so we need to defuse the guard instead of using `?`. |
963 | let initialized: usize = guard.initialized; |
964 | mem::forget(guard); |
965 | return Err(initialized); |
966 | }; |
967 | |
968 | // SAFETY: The loop condition ensures we have space to push the item |
969 | unsafe { guard.push_unchecked(item) }; |
970 | } |
971 | |
972 | mem::forget(guard); |
973 | Ok(()) |
974 | } |
975 | |