1 | //! Operations on ASCII `[u8]`. |
2 | |
3 | use core::ascii::EscapeDefault; |
4 | |
5 | use crate::fmt::{self, Write}; |
6 | #[cfg (not(all(target_arch = "x86_64" , target_feature = "sse2" )))] |
7 | use crate::intrinsics::const_eval_select; |
8 | use crate::{ascii, iter, ops}; |
9 | |
10 | impl [u8] { |
11 | /// Checks if all bytes in this slice are within the ASCII range. |
12 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
13 | #[rustc_const_stable (feature = "const_slice_is_ascii" , since = "1.74.0" )] |
14 | #[must_use ] |
15 | #[inline ] |
16 | pub const fn is_ascii(&self) -> bool { |
17 | is_ascii(self) |
18 | } |
19 | |
20 | /// If this slice [`is_ascii`](Self::is_ascii), returns it as a slice of |
21 | /// [ASCII characters](`ascii::Char`), otherwise returns `None`. |
22 | #[unstable (feature = "ascii_char" , issue = "110998" )] |
23 | #[must_use ] |
24 | #[inline ] |
25 | pub const fn as_ascii(&self) -> Option<&[ascii::Char]> { |
26 | if self.is_ascii() { |
27 | // SAFETY: Just checked that it's ASCII |
28 | Some(unsafe { self.as_ascii_unchecked() }) |
29 | } else { |
30 | None |
31 | } |
32 | } |
33 | |
34 | /// Converts this slice of bytes into a slice of ASCII characters, |
35 | /// without checking whether they're valid. |
36 | /// |
37 | /// # Safety |
38 | /// |
39 | /// Every byte in the slice must be in `0..=127`, or else this is UB. |
40 | #[unstable (feature = "ascii_char" , issue = "110998" )] |
41 | #[must_use ] |
42 | #[inline ] |
43 | pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] { |
44 | let byte_ptr: *const [u8] = self; |
45 | let ascii_ptr = byte_ptr as *const [ascii::Char]; |
46 | // SAFETY: The caller promised all the bytes are ASCII |
47 | unsafe { &*ascii_ptr } |
48 | } |
49 | |
50 | /// Checks that two slices are an ASCII case-insensitive match. |
51 | /// |
52 | /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, |
53 | /// but without allocating and copying temporaries. |
54 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
55 | #[rustc_const_unstable (feature = "const_eq_ignore_ascii_case" , issue = "131719" )] |
56 | #[must_use ] |
57 | #[inline ] |
58 | pub const fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool { |
59 | if self.len() != other.len() { |
60 | return false; |
61 | } |
62 | |
63 | // FIXME(const-hack): This implementation can be reverted when |
64 | // `core::iter::zip` is allowed in const. The original implementation: |
65 | // self.len() == other.len() && iter::zip(self, other).all(|(a, b)| a.eq_ignore_ascii_case(b)) |
66 | let mut a = self; |
67 | let mut b = other; |
68 | |
69 | while let ([first_a, rest_a @ ..], [first_b, rest_b @ ..]) = (a, b) { |
70 | if first_a.eq_ignore_ascii_case(&first_b) { |
71 | a = rest_a; |
72 | b = rest_b; |
73 | } else { |
74 | return false; |
75 | } |
76 | } |
77 | |
78 | true |
79 | } |
80 | |
81 | /// Converts this slice to its ASCII upper case equivalent in-place. |
82 | /// |
83 | /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
84 | /// but non-ASCII letters are unchanged. |
85 | /// |
86 | /// To return a new uppercased value without modifying the existing one, use |
87 | /// [`to_ascii_uppercase`]. |
88 | /// |
89 | /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase |
90 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
91 | #[rustc_const_stable (feature = "const_make_ascii" , since = "1.84.0" )] |
92 | #[inline ] |
93 | pub const fn make_ascii_uppercase(&mut self) { |
94 | // FIXME(const-hack): We would like to simply iterate using `for` loops but this isn't currently allowed in constant expressions. |
95 | let mut i = 0; |
96 | while i < self.len() { |
97 | let byte = &mut self[i]; |
98 | byte.make_ascii_uppercase(); |
99 | i += 1; |
100 | } |
101 | } |
102 | |
103 | /// Converts this slice to its ASCII lower case equivalent in-place. |
104 | /// |
105 | /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
106 | /// but non-ASCII letters are unchanged. |
107 | /// |
108 | /// To return a new lowercased value without modifying the existing one, use |
109 | /// [`to_ascii_lowercase`]. |
110 | /// |
111 | /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase |
112 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
113 | #[rustc_const_stable (feature = "const_make_ascii" , since = "1.84.0" )] |
114 | #[inline ] |
115 | pub const fn make_ascii_lowercase(&mut self) { |
116 | // FIXME(const-hack): We would like to simply iterate using `for` loops but this isn't currently allowed in constant expressions. |
117 | let mut i = 0; |
118 | while i < self.len() { |
119 | let byte = &mut self[i]; |
120 | byte.make_ascii_lowercase(); |
121 | i += 1; |
122 | } |
123 | } |
124 | |
125 | /// Returns an iterator that produces an escaped version of this slice, |
126 | /// treating it as an ASCII string. |
127 | /// |
128 | /// # Examples |
129 | /// |
130 | /// ``` |
131 | /// |
132 | /// let s = b"0 \t\r\n' \"\\\x9d" ; |
133 | /// let escaped = s.escape_ascii().to_string(); |
134 | /// assert_eq!(escaped, "0 \\t \\r \\n \\' \\\"\\\\\\x9d" ); |
135 | /// ``` |
136 | #[must_use = "this returns the escaped bytes as an iterator, \ |
137 | without modifying the original" ] |
138 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
139 | pub fn escape_ascii(&self) -> EscapeAscii<'_> { |
140 | EscapeAscii { inner: self.iter().flat_map(EscapeByte) } |
141 | } |
142 | |
143 | /// Returns a byte slice with leading ASCII whitespace bytes removed. |
144 | /// |
145 | /// 'Whitespace' refers to the definition used by |
146 | /// [`u8::is_ascii_whitespace`]. |
147 | /// |
148 | /// # Examples |
149 | /// |
150 | /// ``` |
151 | /// assert_eq!(b" \t hello world \n" .trim_ascii_start(), b"hello world \n" ); |
152 | /// assert_eq!(b" " .trim_ascii_start(), b"" ); |
153 | /// assert_eq!(b"" .trim_ascii_start(), b"" ); |
154 | /// ``` |
155 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
156 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
157 | #[inline ] |
158 | pub const fn trim_ascii_start(&self) -> &[u8] { |
159 | let mut bytes = self; |
160 | // Note: A pattern matching based approach (instead of indexing) allows |
161 | // making the function const. |
162 | while let [first, rest @ ..] = bytes { |
163 | if first.is_ascii_whitespace() { |
164 | bytes = rest; |
165 | } else { |
166 | break; |
167 | } |
168 | } |
169 | bytes |
170 | } |
171 | |
172 | /// Returns a byte slice with trailing ASCII whitespace bytes removed. |
173 | /// |
174 | /// 'Whitespace' refers to the definition used by |
175 | /// [`u8::is_ascii_whitespace`]. |
176 | /// |
177 | /// # Examples |
178 | /// |
179 | /// ``` |
180 | /// assert_eq!(b" \r hello world \n " .trim_ascii_end(), b" \r hello world" ); |
181 | /// assert_eq!(b" " .trim_ascii_end(), b"" ); |
182 | /// assert_eq!(b"" .trim_ascii_end(), b"" ); |
183 | /// ``` |
184 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
185 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
186 | #[inline ] |
187 | pub const fn trim_ascii_end(&self) -> &[u8] { |
188 | let mut bytes = self; |
189 | // Note: A pattern matching based approach (instead of indexing) allows |
190 | // making the function const. |
191 | while let [rest @ .., last] = bytes { |
192 | if last.is_ascii_whitespace() { |
193 | bytes = rest; |
194 | } else { |
195 | break; |
196 | } |
197 | } |
198 | bytes |
199 | } |
200 | |
201 | /// Returns a byte slice with leading and trailing ASCII whitespace bytes |
202 | /// removed. |
203 | /// |
204 | /// 'Whitespace' refers to the definition used by |
205 | /// [`u8::is_ascii_whitespace`]. |
206 | /// |
207 | /// # Examples |
208 | /// |
209 | /// ``` |
210 | /// assert_eq!(b" \r hello world \n " .trim_ascii(), b"hello world" ); |
211 | /// assert_eq!(b" " .trim_ascii(), b"" ); |
212 | /// assert_eq!(b"" .trim_ascii(), b"" ); |
213 | /// ``` |
214 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
215 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
216 | #[inline ] |
217 | pub const fn trim_ascii(&self) -> &[u8] { |
218 | self.trim_ascii_start().trim_ascii_end() |
219 | } |
220 | } |
221 | |
222 | impl_fn_for_zst! { |
223 | #[derive (Clone)] |
224 | struct EscapeByte impl Fn = |byte: &u8| -> ascii::EscapeDefault { |
225 | ascii::escape_default(*byte) |
226 | }; |
227 | } |
228 | |
229 | /// An iterator over the escaped version of a byte slice. |
230 | /// |
231 | /// This `struct` is created by the [`slice::escape_ascii`] method. See its |
232 | /// documentation for more information. |
233 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
234 | #[derive (Clone)] |
235 | #[must_use = "iterators are lazy and do nothing unless consumed" ] |
236 | pub struct EscapeAscii<'a> { |
237 | inner: iter::FlatMap<super::Iter<'a, u8>, ascii::EscapeDefault, EscapeByte>, |
238 | } |
239 | |
240 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
241 | impl<'a> iter::Iterator for EscapeAscii<'a> { |
242 | type Item = u8; |
243 | #[inline ] |
244 | fn next(&mut self) -> Option<u8> { |
245 | self.inner.next() |
246 | } |
247 | #[inline ] |
248 | fn size_hint(&self) -> (usize, Option<usize>) { |
249 | self.inner.size_hint() |
250 | } |
251 | #[inline ] |
252 | fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R |
253 | where |
254 | Fold: FnMut(Acc, Self::Item) -> R, |
255 | R: ops::Try<Output = Acc>, |
256 | { |
257 | self.inner.try_fold(init, fold) |
258 | } |
259 | #[inline ] |
260 | fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc |
261 | where |
262 | Fold: FnMut(Acc, Self::Item) -> Acc, |
263 | { |
264 | self.inner.fold(init, fold) |
265 | } |
266 | #[inline ] |
267 | fn last(mut self) -> Option<u8> { |
268 | self.next_back() |
269 | } |
270 | } |
271 | |
272 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
273 | impl<'a> iter::DoubleEndedIterator for EscapeAscii<'a> { |
274 | fn next_back(&mut self) -> Option<u8> { |
275 | self.inner.next_back() |
276 | } |
277 | } |
278 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
279 | impl<'a> iter::FusedIterator for EscapeAscii<'a> {} |
280 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
281 | impl<'a> fmt::Display for EscapeAscii<'a> { |
282 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
283 | // disassemble iterator, including front/back parts of flatmap in case it has been partially consumed |
284 | let (front, slice, back) = self.clone().inner.into_parts(); |
285 | let front = front.unwrap_or(EscapeDefault::empty()); |
286 | let mut bytes = slice.unwrap_or_default().as_slice(); |
287 | let back = back.unwrap_or(EscapeDefault::empty()); |
288 | |
289 | // usually empty, so the formatter won't have to do any work |
290 | for byte in front { |
291 | f.write_char(byte as char)?; |
292 | } |
293 | |
294 | fn needs_escape(b: u8) -> bool { |
295 | b > 0x7E || b < 0x20 || b == b' \\' || b == b' \'' || b == b'"' |
296 | } |
297 | |
298 | while bytes.len() > 0 { |
299 | // fast path for the printable, non-escaped subset of ascii |
300 | let prefix = bytes.iter().take_while(|&&b| !needs_escape(b)).count(); |
301 | // SAFETY: prefix length was derived by counting bytes in the same splice, so it's in-bounds |
302 | let (prefix, remainder) = unsafe { bytes.split_at_unchecked(prefix) }; |
303 | // SAFETY: prefix is a valid utf8 sequence, as it's a subset of ASCII |
304 | let prefix = unsafe { crate::str::from_utf8_unchecked(prefix) }; |
305 | |
306 | f.write_str(prefix)?; // the fast part |
307 | |
308 | bytes = remainder; |
309 | |
310 | if let Some(&b) = bytes.first() { |
311 | // guaranteed to be non-empty, better to write it as a str |
312 | f.write_str(ascii::escape_default(b).as_str())?; |
313 | bytes = &bytes[1..]; |
314 | } |
315 | } |
316 | |
317 | // also usually empty |
318 | for byte in back { |
319 | f.write_char(byte as char)?; |
320 | } |
321 | Ok(()) |
322 | } |
323 | } |
324 | #[stable (feature = "inherent_ascii_escape" , since = "1.60.0" )] |
325 | impl<'a> fmt::Debug for EscapeAscii<'a> { |
326 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
327 | f.debug_struct(name:"EscapeAscii" ).finish_non_exhaustive() |
328 | } |
329 | } |
330 | |
331 | /// ASCII test *without* the chunk-at-a-time optimizations. |
332 | /// |
333 | /// This is carefully structured to produce nice small code -- it's smaller in |
334 | /// `-O` than what the "obvious" ways produces under `-C opt-level=s`. If you |
335 | /// touch it, be sure to run (and update if needed) the assembly test. |
336 | #[unstable (feature = "str_internals" , issue = "none" )] |
337 | #[doc (hidden)] |
338 | #[inline ] |
339 | pub const fn is_ascii_simple(mut bytes: &[u8]) -> bool { |
340 | while let [rest: &[u8] @ .., last: &u8] = bytes { |
341 | if !last.is_ascii() { |
342 | break; |
343 | } |
344 | bytes = rest; |
345 | } |
346 | bytes.is_empty() |
347 | } |
348 | |
349 | /// Optimized ASCII test that will use usize-at-a-time operations instead of |
350 | /// byte-at-a-time operations (when possible). |
351 | /// |
352 | /// The algorithm we use here is pretty simple. If `s` is too short, we just |
353 | /// check each byte and be done with it. Otherwise: |
354 | /// |
355 | /// - Read the first word with an unaligned load. |
356 | /// - Align the pointer, read subsequent words until end with aligned loads. |
357 | /// - Read the last `usize` from `s` with an unaligned load. |
358 | /// |
359 | /// If any of these loads produces something for which `contains_nonascii` |
360 | /// (above) returns true, then we know the answer is false. |
361 | #[cfg (not(all(target_arch = "x86_64" , target_feature = "sse2" )))] |
362 | #[inline ] |
363 | #[rustc_allow_const_fn_unstable (const_eval_select)] // fallback impl has same behavior |
364 | const fn is_ascii(s: &[u8]) -> bool { |
365 | // The runtime version behaves the same as the compiletime version, it's |
366 | // just more optimized. |
367 | const_eval_select!( |
368 | @capture { s: &[u8] } -> bool: |
369 | if const { |
370 | is_ascii_simple(s) |
371 | } else { |
372 | /// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed |
373 | /// from `../str/mod.rs`, which does something similar for utf8 validation. |
374 | const fn contains_nonascii(v: usize) -> bool { |
375 | const NONASCII_MASK: usize = usize::repeat_u8(0x80); |
376 | (NONASCII_MASK & v) != 0 |
377 | } |
378 | |
379 | const USIZE_SIZE: usize = size_of::<usize>(); |
380 | |
381 | let len = s.len(); |
382 | let align_offset = s.as_ptr().align_offset(USIZE_SIZE); |
383 | |
384 | // If we wouldn't gain anything from the word-at-a-time implementation, fall |
385 | // back to a scalar loop. |
386 | // |
387 | // We also do this for architectures where `size_of::<usize>()` isn't |
388 | // sufficient alignment for `usize`, because it's a weird edge case. |
389 | if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < align_of::<usize>() { |
390 | return is_ascii_simple(s); |
391 | } |
392 | |
393 | // We always read the first word unaligned, which means `align_offset` is |
394 | // 0, we'd read the same value again for the aligned read. |
395 | let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset }; |
396 | |
397 | let start = s.as_ptr(); |
398 | // SAFETY: We verify `len < USIZE_SIZE` above. |
399 | let first_word = unsafe { (start as *const usize).read_unaligned() }; |
400 | |
401 | if contains_nonascii(first_word) { |
402 | return false; |
403 | } |
404 | // We checked this above, somewhat implicitly. Note that `offset_to_aligned` |
405 | // is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked |
406 | // above. |
407 | debug_assert!(offset_to_aligned <= len); |
408 | |
409 | // SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the |
410 | // middle chunk of the slice. |
411 | let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize }; |
412 | |
413 | // `byte_pos` is the byte index of `word_ptr`, used for loop end checks. |
414 | let mut byte_pos = offset_to_aligned; |
415 | |
416 | // Paranoia check about alignment, since we're about to do a bunch of |
417 | // unaligned loads. In practice this should be impossible barring a bug in |
418 | // `align_offset` though. |
419 | // While this method is allowed to spuriously fail in CTFE, if it doesn't |
420 | // have alignment information it should have given a `usize::MAX` for |
421 | // `align_offset` earlier, sending things through the scalar path instead of |
422 | // this one, so this check should pass if it's reachable. |
423 | debug_assert!(word_ptr.is_aligned_to(align_of::<usize>())); |
424 | |
425 | // Read subsequent words until the last aligned word, excluding the last |
426 | // aligned word by itself to be done in tail check later, to ensure that |
427 | // tail is always one `usize` at most to extra branch `byte_pos == len`. |
428 | while byte_pos < len - USIZE_SIZE { |
429 | // Sanity check that the read is in bounds |
430 | debug_assert!(byte_pos + USIZE_SIZE <= len); |
431 | // And that our assumptions about `byte_pos` hold. |
432 | debug_assert!(word_ptr.cast::<u8>() == start.wrapping_add(byte_pos)); |
433 | |
434 | // SAFETY: We know `word_ptr` is properly aligned (because of |
435 | // `align_offset`), and we know that we have enough bytes between `word_ptr` and the end |
436 | let word = unsafe { word_ptr.read() }; |
437 | if contains_nonascii(word) { |
438 | return false; |
439 | } |
440 | |
441 | byte_pos += USIZE_SIZE; |
442 | // SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that |
443 | // after this `add`, `word_ptr` will be at most one-past-the-end. |
444 | word_ptr = unsafe { word_ptr.add(1) }; |
445 | } |
446 | |
447 | // Sanity check to ensure there really is only one `usize` left. This should |
448 | // be guaranteed by our loop condition. |
449 | debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE); |
450 | |
451 | // SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start. |
452 | let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() }; |
453 | |
454 | !contains_nonascii(last_word) |
455 | } |
456 | ) |
457 | } |
458 | |
459 | /// ASCII test optimized to use the `pmovmskb` instruction available on `x86-64` |
460 | /// platforms. |
461 | /// |
462 | /// Other platforms are not likely to benefit from this code structure, so they |
463 | /// use SWAR techniques to test for ASCII in `usize`-sized chunks. |
464 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
465 | #[inline ] |
466 | const fn is_ascii(bytes: &[u8]) -> bool { |
467 | // Process chunks of 32 bytes at a time in the fast path to enable |
468 | // auto-vectorization and use of `pmovmskb`. Two 128-bit vector registers |
469 | // can be OR'd together and then the resulting vector can be tested for |
470 | // non-ASCII bytes. |
471 | const CHUNK_SIZE: usize = 32; |
472 | |
473 | let mut i = 0; |
474 | |
475 | while i + CHUNK_SIZE <= bytes.len() { |
476 | let chunk_end = i + CHUNK_SIZE; |
477 | |
478 | // Get LLVM to produce a `pmovmskb` instruction on x86-64 which |
479 | // creates a mask from the most significant bit of each byte. |
480 | // ASCII bytes are less than 128 (0x80), so their most significant |
481 | // bit is unset. |
482 | let mut count = 0; |
483 | while i < chunk_end { |
484 | count += bytes[i].is_ascii() as u8; |
485 | i += 1; |
486 | } |
487 | |
488 | // All bytes should be <= 127 so count is equal to chunk size. |
489 | if count != CHUNK_SIZE as u8 { |
490 | return false; |
491 | } |
492 | } |
493 | |
494 | // Process the remaining `bytes.len() % N` bytes. |
495 | let mut is_ascii = true; |
496 | while i < bytes.len() { |
497 | is_ascii &= bytes[i].is_ascii(); |
498 | i += 1; |
499 | } |
500 | |
501 | is_ascii |
502 | } |
503 | |