1 | //! String manipulation. |
2 | //! |
3 | //! For more details, see the [`std::str`] module. |
4 | //! |
5 | //! [`std::str`]: ../../std/str/index.html |
6 | |
7 | #![stable (feature = "rust1" , since = "1.0.0" )] |
8 | |
9 | mod converts; |
10 | mod count; |
11 | mod error; |
12 | mod iter; |
13 | mod traits; |
14 | mod validations; |
15 | |
16 | use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher}; |
17 | use crate::char::{self, EscapeDebugExtArgs}; |
18 | use crate::ops::Range; |
19 | use crate::slice::{self, SliceIndex}; |
20 | use crate::{ascii, mem}; |
21 | |
22 | pub mod pattern; |
23 | |
24 | mod lossy; |
25 | #[unstable (feature = "str_from_raw_parts" , issue = "119206" )] |
26 | pub use converts::{from_raw_parts, from_raw_parts_mut}; |
27 | #[stable (feature = "rust1" , since = "1.0.0" )] |
28 | pub use converts::{from_utf8, from_utf8_unchecked}; |
29 | #[stable (feature = "str_mut_extras" , since = "1.20.0" )] |
30 | pub use converts::{from_utf8_mut, from_utf8_unchecked_mut}; |
31 | #[stable (feature = "rust1" , since = "1.0.0" )] |
32 | pub use error::{ParseBoolError, Utf8Error}; |
33 | #[stable (feature = "encode_utf16" , since = "1.8.0" )] |
34 | pub use iter::EncodeUtf16; |
35 | #[stable (feature = "rust1" , since = "1.0.0" )] |
36 | #[allow (deprecated)] |
37 | pub use iter::LinesAny; |
38 | #[stable (feature = "split_ascii_whitespace" , since = "1.34.0" )] |
39 | pub use iter::SplitAsciiWhitespace; |
40 | #[stable (feature = "split_inclusive" , since = "1.51.0" )] |
41 | pub use iter::SplitInclusive; |
42 | #[stable (feature = "rust1" , since = "1.0.0" )] |
43 | pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace}; |
44 | #[stable (feature = "str_escape" , since = "1.34.0" )] |
45 | pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode}; |
46 | #[stable (feature = "str_match_indices" , since = "1.5.0" )] |
47 | pub use iter::{MatchIndices, RMatchIndices}; |
48 | use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal}; |
49 | #[stable (feature = "str_matches" , since = "1.2.0" )] |
50 | pub use iter::{Matches, RMatches}; |
51 | #[stable (feature = "rust1" , since = "1.0.0" )] |
52 | pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator}; |
53 | #[stable (feature = "rust1" , since = "1.0.0" )] |
54 | pub use iter::{RSplitN, SplitN}; |
55 | #[stable (feature = "utf8_chunks" , since = "1.79.0" )] |
56 | pub use lossy::{Utf8Chunk, Utf8Chunks}; |
57 | #[stable (feature = "rust1" , since = "1.0.0" )] |
58 | pub use traits::FromStr; |
59 | #[unstable (feature = "str_internals" , issue = "none" )] |
60 | pub use validations::{next_code_point, utf8_char_width}; |
61 | |
62 | #[inline (never)] |
63 | #[cold ] |
64 | #[track_caller ] |
65 | #[rustc_allow_const_fn_unstable (const_eval_select)] |
66 | #[cfg (not(feature = "panic_immediate_abort" ))] |
67 | const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { |
68 | crate::intrinsics::const_eval_select((s, begin, end), _called_in_const:slice_error_fail_ct, _called_at_rt:slice_error_fail_rt) |
69 | } |
70 | |
71 | #[cfg (feature = "panic_immediate_abort" )] |
72 | const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { |
73 | slice_error_fail_ct(s, begin, end) |
74 | } |
75 | |
76 | #[track_caller ] |
77 | const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! { |
78 | panic!("failed to slice string" ); |
79 | } |
80 | |
81 | #[track_caller ] |
82 | fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! { |
83 | const MAX_DISPLAY_LENGTH: usize = 256; |
84 | let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH); |
85 | let s_trunc = &s[..trunc_len]; |
86 | let ellipsis = if trunc_len < s.len() { "[...]" } else { "" }; |
87 | |
88 | // 1. out of bounds |
89 | if begin > s.len() || end > s.len() { |
90 | let oob_index = if begin > s.len() { begin } else { end }; |
91 | panic!("byte index {oob_index} is out of bounds of ` {s_trunc}` {ellipsis}" ); |
92 | } |
93 | |
94 | // 2. begin <= end |
95 | assert!( |
96 | begin <= end, |
97 | "begin <= end ( {} <= {}) when slicing ` {}` {}" , |
98 | begin, |
99 | end, |
100 | s_trunc, |
101 | ellipsis |
102 | ); |
103 | |
104 | // 3. character boundary |
105 | let index = if !s.is_char_boundary(begin) { begin } else { end }; |
106 | // find the character |
107 | let char_start = s.floor_char_boundary(index); |
108 | // `char_start` must be less than len and a char boundary |
109 | let ch = s[char_start..].chars().next().unwrap(); |
110 | let char_range = char_start..char_start + ch.len_utf8(); |
111 | panic!( |
112 | "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of ` {}` {}" , |
113 | index, ch, char_range, s_trunc, ellipsis |
114 | ); |
115 | } |
116 | |
117 | impl str { |
118 | /// Returns the length of `self`. |
119 | /// |
120 | /// This length is in bytes, not [`char`]s or graphemes. In other words, |
121 | /// it might not be what a human considers the length of the string. |
122 | /// |
123 | /// [`char`]: prim@char |
124 | /// |
125 | /// # Examples |
126 | /// |
127 | /// ``` |
128 | /// let len = "foo" .len(); |
129 | /// assert_eq!(3, len); |
130 | /// |
131 | /// assert_eq!("ƒoo" .len(), 4); // fancy f! |
132 | /// assert_eq!("ƒoo" .chars().count(), 3); |
133 | /// ``` |
134 | #[stable (feature = "rust1" , since = "1.0.0" )] |
135 | #[rustc_const_stable (feature = "const_str_len" , since = "1.39.0" )] |
136 | #[rustc_diagnostic_item = "str_len" ] |
137 | #[must_use ] |
138 | #[inline ] |
139 | pub const fn len(&self) -> usize { |
140 | self.as_bytes().len() |
141 | } |
142 | |
143 | /// Returns `true` if `self` has a length of zero bytes. |
144 | /// |
145 | /// # Examples |
146 | /// |
147 | /// ``` |
148 | /// let s = "" ; |
149 | /// assert!(s.is_empty()); |
150 | /// |
151 | /// let s = "not empty" ; |
152 | /// assert!(!s.is_empty()); |
153 | /// ``` |
154 | #[stable (feature = "rust1" , since = "1.0.0" )] |
155 | #[rustc_const_stable (feature = "const_str_is_empty" , since = "1.39.0" )] |
156 | #[must_use ] |
157 | #[inline ] |
158 | pub const fn is_empty(&self) -> bool { |
159 | self.len() == 0 |
160 | } |
161 | |
162 | /// Converts a slice of bytes to a string slice. |
163 | /// |
164 | /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice |
165 | /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between |
166 | /// the two. Not all byte slices are valid string slices, however: [`&str`] requires |
167 | /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid |
168 | /// UTF-8, and then does the conversion. |
169 | /// |
170 | /// [`&str`]: str |
171 | /// [byteslice]: prim@slice |
172 | /// |
173 | /// If you are sure that the byte slice is valid UTF-8, and you don't want to |
174 | /// incur the overhead of the validity check, there is an unsafe version of |
175 | /// this function, [`from_utf8_unchecked`], which has the same |
176 | /// behavior but skips the check. |
177 | /// |
178 | /// If you need a `String` instead of a `&str`, consider |
179 | /// [`String::from_utf8`][string]. |
180 | /// |
181 | /// [string]: ../std/string/struct.String.html#method.from_utf8 |
182 | /// |
183 | /// Because you can stack-allocate a `[u8; N]`, and you can take a |
184 | /// [`&[u8]`][byteslice] of it, this function is one way to have a |
185 | /// stack-allocated string. There is an example of this in the |
186 | /// examples section below. |
187 | /// |
188 | /// [byteslice]: slice |
189 | /// |
190 | /// # Errors |
191 | /// |
192 | /// Returns `Err` if the slice is not UTF-8 with a description as to why the |
193 | /// provided slice is not UTF-8. |
194 | /// |
195 | /// # Examples |
196 | /// |
197 | /// Basic usage: |
198 | /// |
199 | /// ``` |
200 | /// // some bytes, in a vector |
201 | /// let sparkle_heart = vec![240, 159, 146, 150]; |
202 | /// |
203 | /// // We can use the ? (try) operator to check if the bytes are valid |
204 | /// let sparkle_heart = str::from_utf8(&sparkle_heart)?; |
205 | /// |
206 | /// assert_eq!("💖" , sparkle_heart); |
207 | /// # Ok::<_, std::str::Utf8Error>(()) |
208 | /// ``` |
209 | /// |
210 | /// Incorrect bytes: |
211 | /// |
212 | /// ``` |
213 | /// // some invalid bytes, in a vector |
214 | /// let sparkle_heart = vec![0, 159, 146, 150]; |
215 | /// |
216 | /// assert!(str::from_utf8(&sparkle_heart).is_err()); |
217 | /// ``` |
218 | /// |
219 | /// See the docs for [`Utf8Error`] for more details on the kinds of |
220 | /// errors that can be returned. |
221 | /// |
222 | /// A "stack allocated string": |
223 | /// |
224 | /// ``` |
225 | /// // some bytes, in a stack-allocated array |
226 | /// let sparkle_heart = [240, 159, 146, 150]; |
227 | /// |
228 | /// // We know these bytes are valid, so just use `unwrap()`. |
229 | /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap(); |
230 | /// |
231 | /// assert_eq!("💖" , sparkle_heart); |
232 | /// ``` |
233 | #[stable (feature = "inherent_str_constructors" , since = "1.87.0" )] |
234 | #[rustc_const_stable (feature = "inherent_str_constructors" , since = "1.87.0" )] |
235 | #[rustc_diagnostic_item = "str_inherent_from_utf8" ] |
236 | pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> { |
237 | converts::from_utf8(v) |
238 | } |
239 | |
240 | /// Converts a mutable slice of bytes to a mutable string slice. |
241 | /// |
242 | /// # Examples |
243 | /// |
244 | /// Basic usage: |
245 | /// |
246 | /// ``` |
247 | /// // "Hello, Rust!" as a mutable vector |
248 | /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33]; |
249 | /// |
250 | /// // As we know these bytes are valid, we can use `unwrap()` |
251 | /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap(); |
252 | /// |
253 | /// assert_eq!("Hello, Rust!" , outstr); |
254 | /// ``` |
255 | /// |
256 | /// Incorrect bytes: |
257 | /// |
258 | /// ``` |
259 | /// // Some invalid bytes in a mutable vector |
260 | /// let mut invalid = vec![128, 223]; |
261 | /// |
262 | /// assert!(str::from_utf8_mut(&mut invalid).is_err()); |
263 | /// ``` |
264 | /// See the docs for [`Utf8Error`] for more details on the kinds of |
265 | /// errors that can be returned. |
266 | #[stable (feature = "inherent_str_constructors" , since = "1.87.0" )] |
267 | #[rustc_const_stable (feature = "const_str_from_utf8" , since = "1.87.0" )] |
268 | #[rustc_diagnostic_item = "str_inherent_from_utf8_mut" ] |
269 | pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> { |
270 | converts::from_utf8_mut(v) |
271 | } |
272 | |
273 | /// Converts a slice of bytes to a string slice without checking |
274 | /// that the string contains valid UTF-8. |
275 | /// |
276 | /// See the safe version, [`from_utf8`], for more information. |
277 | /// |
278 | /// # Safety |
279 | /// |
280 | /// The bytes passed in must be valid UTF-8. |
281 | /// |
282 | /// # Examples |
283 | /// |
284 | /// Basic usage: |
285 | /// |
286 | /// ``` |
287 | /// // some bytes, in a vector |
288 | /// let sparkle_heart = vec![240, 159, 146, 150]; |
289 | /// |
290 | /// let sparkle_heart = unsafe { |
291 | /// str::from_utf8_unchecked(&sparkle_heart) |
292 | /// }; |
293 | /// |
294 | /// assert_eq!("💖" , sparkle_heart); |
295 | /// ``` |
296 | #[inline ] |
297 | #[must_use ] |
298 | #[stable (feature = "inherent_str_constructors" , since = "1.87.0" )] |
299 | #[rustc_const_stable (feature = "inherent_str_constructors" , since = "1.87.0" )] |
300 | #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked" ] |
301 | pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str { |
302 | // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function. |
303 | unsafe { converts::from_utf8_unchecked(v) } |
304 | } |
305 | |
306 | /// Converts a slice of bytes to a string slice without checking |
307 | /// that the string contains valid UTF-8; mutable version. |
308 | /// |
309 | /// See the immutable version, [`from_utf8_unchecked()`] for more information. |
310 | /// |
311 | /// # Examples |
312 | /// |
313 | /// Basic usage: |
314 | /// |
315 | /// ``` |
316 | /// let mut heart = vec![240, 159, 146, 150]; |
317 | /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) }; |
318 | /// |
319 | /// assert_eq!("💖" , heart); |
320 | /// ``` |
321 | #[inline ] |
322 | #[must_use ] |
323 | #[stable (feature = "inherent_str_constructors" , since = "1.87.0" )] |
324 | #[rustc_const_stable (feature = "inherent_str_constructors" , since = "1.87.0" )] |
325 | #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut" ] |
326 | pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str { |
327 | // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function. |
328 | unsafe { converts::from_utf8_unchecked_mut(v) } |
329 | } |
330 | |
331 | /// Checks that `index`-th byte is the first byte in a UTF-8 code point |
332 | /// sequence or the end of the string. |
333 | /// |
334 | /// The start and end of the string (when `index == self.len()`) are |
335 | /// considered to be boundaries. |
336 | /// |
337 | /// Returns `false` if `index` is greater than `self.len()`. |
338 | /// |
339 | /// # Examples |
340 | /// |
341 | /// ``` |
342 | /// let s = "Löwe 老虎 Léopard" ; |
343 | /// assert!(s.is_char_boundary(0)); |
344 | /// // start of `老` |
345 | /// assert!(s.is_char_boundary(6)); |
346 | /// assert!(s.is_char_boundary(s.len())); |
347 | /// |
348 | /// // second byte of `ö` |
349 | /// assert!(!s.is_char_boundary(2)); |
350 | /// |
351 | /// // third byte of `老` |
352 | /// assert!(!s.is_char_boundary(8)); |
353 | /// ``` |
354 | #[must_use ] |
355 | #[stable (feature = "is_char_boundary" , since = "1.9.0" )] |
356 | #[rustc_const_stable (feature = "const_is_char_boundary" , since = "1.86.0" )] |
357 | #[inline ] |
358 | pub const fn is_char_boundary(&self, index: usize) -> bool { |
359 | // 0 is always ok. |
360 | // Test for 0 explicitly so that it can optimize out the check |
361 | // easily and skip reading string data for that case. |
362 | // Note that optimizing `self.get(..index)` relies on this. |
363 | if index == 0 { |
364 | return true; |
365 | } |
366 | |
367 | if index >= self.len() { |
368 | // For `true` we have two options: |
369 | // |
370 | // - index == self.len() |
371 | // Empty strings are valid, so return true |
372 | // - index > self.len() |
373 | // In this case return false |
374 | // |
375 | // The check is placed exactly here, because it improves generated |
376 | // code on higher opt-levels. See PR #84751 for more details. |
377 | index == self.len() |
378 | } else { |
379 | self.as_bytes()[index].is_utf8_char_boundary() |
380 | } |
381 | } |
382 | |
383 | /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`. |
384 | /// |
385 | /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't |
386 | /// exceed a given number of bytes. Note that this is done purely at the character level |
387 | /// and can still visually split graphemes, even though the underlying characters aren't |
388 | /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only |
389 | /// includes 🧑 (person) instead. |
390 | /// |
391 | /// [`is_char_boundary(x)`]: Self::is_char_boundary |
392 | /// |
393 | /// # Examples |
394 | /// |
395 | /// ``` |
396 | /// #![feature(round_char_boundary)] |
397 | /// let s = "❤️🧡💛💚💙💜" ; |
398 | /// assert_eq!(s.len(), 26); |
399 | /// assert!(!s.is_char_boundary(13)); |
400 | /// |
401 | /// let closest = s.floor_char_boundary(13); |
402 | /// assert_eq!(closest, 10); |
403 | /// assert_eq!(&s[..closest], "❤️🧡" ); |
404 | /// ``` |
405 | #[unstable (feature = "round_char_boundary" , issue = "93743" )] |
406 | #[inline ] |
407 | pub fn floor_char_boundary(&self, index: usize) -> usize { |
408 | if index >= self.len() { |
409 | self.len() |
410 | } else { |
411 | let lower_bound = index.saturating_sub(3); |
412 | let new_index = self.as_bytes()[lower_bound..=index] |
413 | .iter() |
414 | .rposition(|b| b.is_utf8_char_boundary()); |
415 | |
416 | // SAFETY: we know that the character boundary will be within four bytes |
417 | unsafe { lower_bound + new_index.unwrap_unchecked() } |
418 | } |
419 | } |
420 | |
421 | /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`. |
422 | /// |
423 | /// If `index` is greater than the length of the string, this returns the length of the string. |
424 | /// |
425 | /// This method is the natural complement to [`floor_char_boundary`]. See that method |
426 | /// for more details. |
427 | /// |
428 | /// [`floor_char_boundary`]: str::floor_char_boundary |
429 | /// [`is_char_boundary(x)`]: Self::is_char_boundary |
430 | /// |
431 | /// # Examples |
432 | /// |
433 | /// ``` |
434 | /// #![feature(round_char_boundary)] |
435 | /// let s = "❤️🧡💛💚💙💜" ; |
436 | /// assert_eq!(s.len(), 26); |
437 | /// assert!(!s.is_char_boundary(13)); |
438 | /// |
439 | /// let closest = s.ceil_char_boundary(13); |
440 | /// assert_eq!(closest, 14); |
441 | /// assert_eq!(&s[..closest], "❤️🧡💛" ); |
442 | /// ``` |
443 | #[unstable (feature = "round_char_boundary" , issue = "93743" )] |
444 | #[inline ] |
445 | pub fn ceil_char_boundary(&self, index: usize) -> usize { |
446 | if index > self.len() { |
447 | self.len() |
448 | } else { |
449 | let upper_bound = Ord::min(index + 4, self.len()); |
450 | self.as_bytes()[index..upper_bound] |
451 | .iter() |
452 | .position(|b| b.is_utf8_char_boundary()) |
453 | .map_or(upper_bound, |pos| pos + index) |
454 | } |
455 | } |
456 | |
457 | /// Converts a string slice to a byte slice. To convert the byte slice back |
458 | /// into a string slice, use the [`from_utf8`] function. |
459 | /// |
460 | /// # Examples |
461 | /// |
462 | /// ``` |
463 | /// let bytes = "bors" .as_bytes(); |
464 | /// assert_eq!(b"bors" , bytes); |
465 | /// ``` |
466 | #[stable (feature = "rust1" , since = "1.0.0" )] |
467 | #[rustc_const_stable (feature = "str_as_bytes" , since = "1.39.0" )] |
468 | #[must_use ] |
469 | #[inline (always)] |
470 | #[allow (unused_attributes)] |
471 | pub const fn as_bytes(&self) -> &[u8] { |
472 | // SAFETY: const sound because we transmute two types with the same layout |
473 | unsafe { mem::transmute(self) } |
474 | } |
475 | |
476 | /// Converts a mutable string slice to a mutable byte slice. |
477 | /// |
478 | /// # Safety |
479 | /// |
480 | /// The caller must ensure that the content of the slice is valid UTF-8 |
481 | /// before the borrow ends and the underlying `str` is used. |
482 | /// |
483 | /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior. |
484 | /// |
485 | /// # Examples |
486 | /// |
487 | /// Basic usage: |
488 | /// |
489 | /// ``` |
490 | /// let mut s = String::from("Hello" ); |
491 | /// let bytes = unsafe { s.as_bytes_mut() }; |
492 | /// |
493 | /// assert_eq!(b"Hello" , bytes); |
494 | /// ``` |
495 | /// |
496 | /// Mutability: |
497 | /// |
498 | /// ``` |
499 | /// let mut s = String::from("🗻∈🌏" ); |
500 | /// |
501 | /// unsafe { |
502 | /// let bytes = s.as_bytes_mut(); |
503 | /// |
504 | /// bytes[0] = 0xF0; |
505 | /// bytes[1] = 0x9F; |
506 | /// bytes[2] = 0x8D; |
507 | /// bytes[3] = 0x94; |
508 | /// } |
509 | /// |
510 | /// assert_eq!("🍔∈🌏" , s); |
511 | /// ``` |
512 | #[stable (feature = "str_mut_extras" , since = "1.20.0" )] |
513 | #[rustc_const_stable (feature = "const_str_as_mut" , since = "1.83.0" )] |
514 | #[must_use ] |
515 | #[inline (always)] |
516 | pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { |
517 | // SAFETY: the cast from `&str` to `&[u8]` is safe since `str` |
518 | // has the same layout as `&[u8]` (only std can make this guarantee). |
519 | // The pointer dereference is safe since it comes from a mutable reference which |
520 | // is guaranteed to be valid for writes. |
521 | unsafe { &mut *(self as *mut str as *mut [u8]) } |
522 | } |
523 | |
524 | /// Converts a string slice to a raw pointer. |
525 | /// |
526 | /// As string slices are a slice of bytes, the raw pointer points to a |
527 | /// [`u8`]. This pointer will be pointing to the first byte of the string |
528 | /// slice. |
529 | /// |
530 | /// The caller must ensure that the returned pointer is never written to. |
531 | /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`]. |
532 | /// |
533 | /// [`as_mut_ptr`]: str::as_mut_ptr |
534 | /// |
535 | /// # Examples |
536 | /// |
537 | /// ``` |
538 | /// let s = "Hello" ; |
539 | /// let ptr = s.as_ptr(); |
540 | /// ``` |
541 | #[stable (feature = "rust1" , since = "1.0.0" )] |
542 | #[rustc_const_stable (feature = "rustc_str_as_ptr" , since = "1.32.0" )] |
543 | #[rustc_never_returns_null_ptr ] |
544 | #[rustc_as_ptr] |
545 | #[must_use ] |
546 | #[inline (always)] |
547 | pub const fn as_ptr(&self) -> *const u8 { |
548 | self as *const str as *const u8 |
549 | } |
550 | |
551 | /// Converts a mutable string slice to a raw pointer. |
552 | /// |
553 | /// As string slices are a slice of bytes, the raw pointer points to a |
554 | /// [`u8`]. This pointer will be pointing to the first byte of the string |
555 | /// slice. |
556 | /// |
557 | /// It is your responsibility to make sure that the string slice only gets |
558 | /// modified in a way that it remains valid UTF-8. |
559 | #[stable (feature = "str_as_mut_ptr" , since = "1.36.0" )] |
560 | #[rustc_const_stable (feature = "const_str_as_mut" , since = "1.83.0" )] |
561 | #[rustc_never_returns_null_ptr ] |
562 | #[rustc_as_ptr] |
563 | #[must_use ] |
564 | #[inline (always)] |
565 | pub const fn as_mut_ptr(&mut self) -> *mut u8 { |
566 | self as *mut str as *mut u8 |
567 | } |
568 | |
569 | /// Returns a subslice of `str`. |
570 | /// |
571 | /// This is the non-panicking alternative to indexing the `str`. Returns |
572 | /// [`None`] whenever equivalent indexing operation would panic. |
573 | /// |
574 | /// # Examples |
575 | /// |
576 | /// ``` |
577 | /// let v = String::from("🗻∈🌏" ); |
578 | /// |
579 | /// assert_eq!(Some("🗻" ), v.get(0..4)); |
580 | /// |
581 | /// // indices not on UTF-8 sequence boundaries |
582 | /// assert!(v.get(1..).is_none()); |
583 | /// assert!(v.get(..8).is_none()); |
584 | /// |
585 | /// // out of bounds |
586 | /// assert!(v.get(..42).is_none()); |
587 | /// ``` |
588 | #[stable (feature = "str_checked_slicing" , since = "1.20.0" )] |
589 | #[inline ] |
590 | pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> { |
591 | i.get(self) |
592 | } |
593 | |
594 | /// Returns a mutable subslice of `str`. |
595 | /// |
596 | /// This is the non-panicking alternative to indexing the `str`. Returns |
597 | /// [`None`] whenever equivalent indexing operation would panic. |
598 | /// |
599 | /// # Examples |
600 | /// |
601 | /// ``` |
602 | /// let mut v = String::from("hello" ); |
603 | /// // correct length |
604 | /// assert!(v.get_mut(0..5).is_some()); |
605 | /// // out of bounds |
606 | /// assert!(v.get_mut(..42).is_none()); |
607 | /// assert_eq!(Some("he" ), v.get_mut(0..2).map(|v| &*v)); |
608 | /// |
609 | /// assert_eq!("hello" , v); |
610 | /// { |
611 | /// let s = v.get_mut(0..2); |
612 | /// let s = s.map(|s| { |
613 | /// s.make_ascii_uppercase(); |
614 | /// &*s |
615 | /// }); |
616 | /// assert_eq!(Some("HE" ), s); |
617 | /// } |
618 | /// assert_eq!("HEllo" , v); |
619 | /// ``` |
620 | #[stable (feature = "str_checked_slicing" , since = "1.20.0" )] |
621 | #[inline ] |
622 | pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> { |
623 | i.get_mut(self) |
624 | } |
625 | |
626 | /// Returns an unchecked subslice of `str`. |
627 | /// |
628 | /// This is the unchecked alternative to indexing the `str`. |
629 | /// |
630 | /// # Safety |
631 | /// |
632 | /// Callers of this function are responsible that these preconditions are |
633 | /// satisfied: |
634 | /// |
635 | /// * The starting index must not exceed the ending index; |
636 | /// * Indexes must be within bounds of the original slice; |
637 | /// * Indexes must lie on UTF-8 sequence boundaries. |
638 | /// |
639 | /// Failing that, the returned string slice may reference invalid memory or |
640 | /// violate the invariants communicated by the `str` type. |
641 | /// |
642 | /// # Examples |
643 | /// |
644 | /// ``` |
645 | /// let v = "🗻∈🌏" ; |
646 | /// unsafe { |
647 | /// assert_eq!("🗻" , v.get_unchecked(0..4)); |
648 | /// assert_eq!("∈" , v.get_unchecked(4..7)); |
649 | /// assert_eq!("🌏" , v.get_unchecked(7..11)); |
650 | /// } |
651 | /// ``` |
652 | #[stable (feature = "str_checked_slicing" , since = "1.20.0" )] |
653 | #[inline ] |
654 | pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output { |
655 | // SAFETY: the caller must uphold the safety contract for `get_unchecked`; |
656 | // the slice is dereferenceable because `self` is a safe reference. |
657 | // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
658 | unsafe { &*i.get_unchecked(self) } |
659 | } |
660 | |
661 | /// Returns a mutable, unchecked subslice of `str`. |
662 | /// |
663 | /// This is the unchecked alternative to indexing the `str`. |
664 | /// |
665 | /// # Safety |
666 | /// |
667 | /// Callers of this function are responsible that these preconditions are |
668 | /// satisfied: |
669 | /// |
670 | /// * The starting index must not exceed the ending index; |
671 | /// * Indexes must be within bounds of the original slice; |
672 | /// * Indexes must lie on UTF-8 sequence boundaries. |
673 | /// |
674 | /// Failing that, the returned string slice may reference invalid memory or |
675 | /// violate the invariants communicated by the `str` type. |
676 | /// |
677 | /// # Examples |
678 | /// |
679 | /// ``` |
680 | /// let mut v = String::from("🗻∈🌏" ); |
681 | /// unsafe { |
682 | /// assert_eq!("🗻" , v.get_unchecked_mut(0..4)); |
683 | /// assert_eq!("∈" , v.get_unchecked_mut(4..7)); |
684 | /// assert_eq!("🌏" , v.get_unchecked_mut(7..11)); |
685 | /// } |
686 | /// ``` |
687 | #[stable (feature = "str_checked_slicing" , since = "1.20.0" )] |
688 | #[inline ] |
689 | pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output { |
690 | // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; |
691 | // the slice is dereferenceable because `self` is a safe reference. |
692 | // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
693 | unsafe { &mut *i.get_unchecked_mut(self) } |
694 | } |
695 | |
696 | /// Creates a string slice from another string slice, bypassing safety |
697 | /// checks. |
698 | /// |
699 | /// This is generally not recommended, use with caution! For a safe |
700 | /// alternative see [`str`] and [`Index`]. |
701 | /// |
702 | /// [`Index`]: crate::ops::Index |
703 | /// |
704 | /// This new slice goes from `begin` to `end`, including `begin` but |
705 | /// excluding `end`. |
706 | /// |
707 | /// To get a mutable string slice instead, see the |
708 | /// [`slice_mut_unchecked`] method. |
709 | /// |
710 | /// [`slice_mut_unchecked`]: str::slice_mut_unchecked |
711 | /// |
712 | /// # Safety |
713 | /// |
714 | /// Callers of this function are responsible that three preconditions are |
715 | /// satisfied: |
716 | /// |
717 | /// * `begin` must not exceed `end`. |
718 | /// * `begin` and `end` must be byte positions within the string slice. |
719 | /// * `begin` and `end` must lie on UTF-8 sequence boundaries. |
720 | /// |
721 | /// # Examples |
722 | /// |
723 | /// ``` |
724 | /// let s = "Löwe 老虎 Léopard" ; |
725 | /// |
726 | /// unsafe { |
727 | /// assert_eq!("Löwe 老虎 Léopard" , s.slice_unchecked(0, 21)); |
728 | /// } |
729 | /// |
730 | /// let s = "Hello, world!" ; |
731 | /// |
732 | /// unsafe { |
733 | /// assert_eq!("world" , s.slice_unchecked(7, 12)); |
734 | /// } |
735 | /// ``` |
736 | #[stable (feature = "rust1" , since = "1.0.0" )] |
737 | #[deprecated (since = "1.29.0" , note = "use `get_unchecked(begin..end)` instead" )] |
738 | #[must_use ] |
739 | #[inline ] |
740 | pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { |
741 | // SAFETY: the caller must uphold the safety contract for `get_unchecked`; |
742 | // the slice is dereferenceable because `self` is a safe reference. |
743 | // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
744 | unsafe { &*(begin..end).get_unchecked(self) } |
745 | } |
746 | |
747 | /// Creates a string slice from another string slice, bypassing safety |
748 | /// checks. |
749 | /// |
750 | /// This is generally not recommended, use with caution! For a safe |
751 | /// alternative see [`str`] and [`IndexMut`]. |
752 | /// |
753 | /// [`IndexMut`]: crate::ops::IndexMut |
754 | /// |
755 | /// This new slice goes from `begin` to `end`, including `begin` but |
756 | /// excluding `end`. |
757 | /// |
758 | /// To get an immutable string slice instead, see the |
759 | /// [`slice_unchecked`] method. |
760 | /// |
761 | /// [`slice_unchecked`]: str::slice_unchecked |
762 | /// |
763 | /// # Safety |
764 | /// |
765 | /// Callers of this function are responsible that three preconditions are |
766 | /// satisfied: |
767 | /// |
768 | /// * `begin` must not exceed `end`. |
769 | /// * `begin` and `end` must be byte positions within the string slice. |
770 | /// * `begin` and `end` must lie on UTF-8 sequence boundaries. |
771 | #[stable (feature = "str_slice_mut" , since = "1.5.0" )] |
772 | #[deprecated (since = "1.29.0" , note = "use `get_unchecked_mut(begin..end)` instead" )] |
773 | #[inline ] |
774 | pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { |
775 | // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; |
776 | // the slice is dereferenceable because `self` is a safe reference. |
777 | // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
778 | unsafe { &mut *(begin..end).get_unchecked_mut(self) } |
779 | } |
780 | |
781 | /// Divides one string slice into two at an index. |
782 | /// |
783 | /// The argument, `mid`, should be a byte offset from the start of the |
784 | /// string. It must also be on the boundary of a UTF-8 code point. |
785 | /// |
786 | /// The two slices returned go from the start of the string slice to `mid`, |
787 | /// and from `mid` to the end of the string slice. |
788 | /// |
789 | /// To get mutable string slices instead, see the [`split_at_mut`] |
790 | /// method. |
791 | /// |
792 | /// [`split_at_mut`]: str::split_at_mut |
793 | /// |
794 | /// # Panics |
795 | /// |
796 | /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past |
797 | /// the end of the last code point of the string slice. For a non-panicking |
798 | /// alternative see [`split_at_checked`](str::split_at_checked). |
799 | /// |
800 | /// # Examples |
801 | /// |
802 | /// ``` |
803 | /// let s = "Per Martin-Löf" ; |
804 | /// |
805 | /// let (first, last) = s.split_at(3); |
806 | /// |
807 | /// assert_eq!("Per" , first); |
808 | /// assert_eq!(" Martin-Löf" , last); |
809 | /// ``` |
810 | #[inline ] |
811 | #[must_use ] |
812 | #[stable (feature = "str_split_at" , since = "1.4.0" )] |
813 | #[rustc_const_stable (feature = "const_str_split_at" , since = "1.86.0" )] |
814 | pub const fn split_at(&self, mid: usize) -> (&str, &str) { |
815 | match self.split_at_checked(mid) { |
816 | None => slice_error_fail(self, 0, mid), |
817 | Some(pair) => pair, |
818 | } |
819 | } |
820 | |
821 | /// Divides one mutable string slice into two at an index. |
822 | /// |
823 | /// The argument, `mid`, should be a byte offset from the start of the |
824 | /// string. It must also be on the boundary of a UTF-8 code point. |
825 | /// |
826 | /// The two slices returned go from the start of the string slice to `mid`, |
827 | /// and from `mid` to the end of the string slice. |
828 | /// |
829 | /// To get immutable string slices instead, see the [`split_at`] method. |
830 | /// |
831 | /// [`split_at`]: str::split_at |
832 | /// |
833 | /// # Panics |
834 | /// |
835 | /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past |
836 | /// the end of the last code point of the string slice. For a non-panicking |
837 | /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked). |
838 | /// |
839 | /// # Examples |
840 | /// |
841 | /// ``` |
842 | /// let mut s = "Per Martin-Löf" .to_string(); |
843 | /// { |
844 | /// let (first, last) = s.split_at_mut(3); |
845 | /// first.make_ascii_uppercase(); |
846 | /// assert_eq!("PER" , first); |
847 | /// assert_eq!(" Martin-Löf" , last); |
848 | /// } |
849 | /// assert_eq!("PER Martin-Löf" , s); |
850 | /// ``` |
851 | #[inline ] |
852 | #[must_use ] |
853 | #[stable (feature = "str_split_at" , since = "1.4.0" )] |
854 | #[rustc_const_stable (feature = "const_str_split_at" , since = "1.86.0" )] |
855 | pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { |
856 | // is_char_boundary checks that the index is in [0, .len()] |
857 | if self.is_char_boundary(mid) { |
858 | // SAFETY: just checked that `mid` is on a char boundary. |
859 | unsafe { self.split_at_mut_unchecked(mid) } |
860 | } else { |
861 | slice_error_fail(self, 0, mid) |
862 | } |
863 | } |
864 | |
865 | /// Divides one string slice into two at an index. |
866 | /// |
867 | /// The argument, `mid`, should be a valid byte offset from the start of the |
868 | /// string. It must also be on the boundary of a UTF-8 code point. The |
869 | /// method returns `None` if that’s not the case. |
870 | /// |
871 | /// The two slices returned go from the start of the string slice to `mid`, |
872 | /// and from `mid` to the end of the string slice. |
873 | /// |
874 | /// To get mutable string slices instead, see the [`split_at_mut_checked`] |
875 | /// method. |
876 | /// |
877 | /// [`split_at_mut_checked`]: str::split_at_mut_checked |
878 | /// |
879 | /// # Examples |
880 | /// |
881 | /// ``` |
882 | /// let s = "Per Martin-Löf" ; |
883 | /// |
884 | /// let (first, last) = s.split_at_checked(3).unwrap(); |
885 | /// assert_eq!("Per" , first); |
886 | /// assert_eq!(" Martin-Löf" , last); |
887 | /// |
888 | /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö” |
889 | /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length |
890 | /// ``` |
891 | #[inline ] |
892 | #[must_use ] |
893 | #[stable (feature = "split_at_checked" , since = "1.80.0" )] |
894 | #[rustc_const_stable (feature = "const_str_split_at" , since = "1.86.0" )] |
895 | pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> { |
896 | // is_char_boundary checks that the index is in [0, .len()] |
897 | if self.is_char_boundary(mid) { |
898 | // SAFETY: just checked that `mid` is on a char boundary. |
899 | Some(unsafe { self.split_at_unchecked(mid) }) |
900 | } else { |
901 | None |
902 | } |
903 | } |
904 | |
905 | /// Divides one mutable string slice into two at an index. |
906 | /// |
907 | /// The argument, `mid`, should be a valid byte offset from the start of the |
908 | /// string. It must also be on the boundary of a UTF-8 code point. The |
909 | /// method returns `None` if that’s not the case. |
910 | /// |
911 | /// The two slices returned go from the start of the string slice to `mid`, |
912 | /// and from `mid` to the end of the string slice. |
913 | /// |
914 | /// To get immutable string slices instead, see the [`split_at_checked`] method. |
915 | /// |
916 | /// [`split_at_checked`]: str::split_at_checked |
917 | /// |
918 | /// # Examples |
919 | /// |
920 | /// ``` |
921 | /// let mut s = "Per Martin-Löf" .to_string(); |
922 | /// if let Some((first, last)) = s.split_at_mut_checked(3) { |
923 | /// first.make_ascii_uppercase(); |
924 | /// assert_eq!("PER" , first); |
925 | /// assert_eq!(" Martin-Löf" , last); |
926 | /// } |
927 | /// assert_eq!("PER Martin-Löf" , s); |
928 | /// |
929 | /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö” |
930 | /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length |
931 | /// ``` |
932 | #[inline ] |
933 | #[must_use ] |
934 | #[stable (feature = "split_at_checked" , since = "1.80.0" )] |
935 | #[rustc_const_stable (feature = "const_str_split_at" , since = "1.86.0" )] |
936 | pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> { |
937 | // is_char_boundary checks that the index is in [0, .len()] |
938 | if self.is_char_boundary(mid) { |
939 | // SAFETY: just checked that `mid` is on a char boundary. |
940 | Some(unsafe { self.split_at_mut_unchecked(mid) }) |
941 | } else { |
942 | None |
943 | } |
944 | } |
945 | |
946 | /// Divides one string slice into two at an index. |
947 | /// |
948 | /// # Safety |
949 | /// |
950 | /// The caller must ensure that `mid` is a valid byte offset from the start |
951 | /// of the string and falls on the boundary of a UTF-8 code point. |
952 | const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) { |
953 | let len = self.len(); |
954 | let ptr = self.as_ptr(); |
955 | // SAFETY: caller guarantees `mid` is on a char boundary. |
956 | unsafe { |
957 | ( |
958 | from_utf8_unchecked(slice::from_raw_parts(ptr, mid)), |
959 | from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)), |
960 | ) |
961 | } |
962 | } |
963 | |
964 | /// Divides one string slice into two at an index. |
965 | /// |
966 | /// # Safety |
967 | /// |
968 | /// The caller must ensure that `mid` is a valid byte offset from the start |
969 | /// of the string and falls on the boundary of a UTF-8 code point. |
970 | const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) { |
971 | let len = self.len(); |
972 | let ptr = self.as_mut_ptr(); |
973 | // SAFETY: caller guarantees `mid` is on a char boundary. |
974 | unsafe { |
975 | ( |
976 | from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)), |
977 | from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)), |
978 | ) |
979 | } |
980 | } |
981 | |
982 | /// Returns an iterator over the [`char`]s of a string slice. |
983 | /// |
984 | /// As a string slice consists of valid UTF-8, we can iterate through a |
985 | /// string slice by [`char`]. This method returns such an iterator. |
986 | /// |
987 | /// It's important to remember that [`char`] represents a Unicode Scalar |
988 | /// Value, and might not match your idea of what a 'character' is. Iteration |
989 | /// over grapheme clusters may be what you actually want. This functionality |
990 | /// is not provided by Rust's standard library, check crates.io instead. |
991 | /// |
992 | /// # Examples |
993 | /// |
994 | /// Basic usage: |
995 | /// |
996 | /// ``` |
997 | /// let word = "goodbye" ; |
998 | /// |
999 | /// let count = word.chars().count(); |
1000 | /// assert_eq!(7, count); |
1001 | /// |
1002 | /// let mut chars = word.chars(); |
1003 | /// |
1004 | /// assert_eq!(Some('g' ), chars.next()); |
1005 | /// assert_eq!(Some('o' ), chars.next()); |
1006 | /// assert_eq!(Some('o' ), chars.next()); |
1007 | /// assert_eq!(Some('d' ), chars.next()); |
1008 | /// assert_eq!(Some('b' ), chars.next()); |
1009 | /// assert_eq!(Some('y' ), chars.next()); |
1010 | /// assert_eq!(Some('e' ), chars.next()); |
1011 | /// |
1012 | /// assert_eq!(None, chars.next()); |
1013 | /// ``` |
1014 | /// |
1015 | /// Remember, [`char`]s might not match your intuition about characters: |
1016 | /// |
1017 | /// [`char`]: prim@char |
1018 | /// |
1019 | /// ``` |
1020 | /// let y = "y̆" ; |
1021 | /// |
1022 | /// let mut chars = y.chars(); |
1023 | /// |
1024 | /// assert_eq!(Some('y' ), chars.next()); // not 'y̆' |
1025 | /// assert_eq!(Some(' \u{0306}' ), chars.next()); |
1026 | /// |
1027 | /// assert_eq!(None, chars.next()); |
1028 | /// ``` |
1029 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1030 | #[inline ] |
1031 | #[rustc_diagnostic_item = "str_chars" ] |
1032 | pub fn chars(&self) -> Chars<'_> { |
1033 | Chars { iter: self.as_bytes().iter() } |
1034 | } |
1035 | |
1036 | /// Returns an iterator over the [`char`]s of a string slice, and their |
1037 | /// positions. |
1038 | /// |
1039 | /// As a string slice consists of valid UTF-8, we can iterate through a |
1040 | /// string slice by [`char`]. This method returns an iterator of both |
1041 | /// these [`char`]s, as well as their byte positions. |
1042 | /// |
1043 | /// The iterator yields tuples. The position is first, the [`char`] is |
1044 | /// second. |
1045 | /// |
1046 | /// # Examples |
1047 | /// |
1048 | /// Basic usage: |
1049 | /// |
1050 | /// ``` |
1051 | /// let word = "goodbye" ; |
1052 | /// |
1053 | /// let count = word.char_indices().count(); |
1054 | /// assert_eq!(7, count); |
1055 | /// |
1056 | /// let mut char_indices = word.char_indices(); |
1057 | /// |
1058 | /// assert_eq!(Some((0, 'g' )), char_indices.next()); |
1059 | /// assert_eq!(Some((1, 'o' )), char_indices.next()); |
1060 | /// assert_eq!(Some((2, 'o' )), char_indices.next()); |
1061 | /// assert_eq!(Some((3, 'd' )), char_indices.next()); |
1062 | /// assert_eq!(Some((4, 'b' )), char_indices.next()); |
1063 | /// assert_eq!(Some((5, 'y' )), char_indices.next()); |
1064 | /// assert_eq!(Some((6, 'e' )), char_indices.next()); |
1065 | /// |
1066 | /// assert_eq!(None, char_indices.next()); |
1067 | /// ``` |
1068 | /// |
1069 | /// Remember, [`char`]s might not match your intuition about characters: |
1070 | /// |
1071 | /// [`char`]: prim@char |
1072 | /// |
1073 | /// ``` |
1074 | /// let yes = "y̆es" ; |
1075 | /// |
1076 | /// let mut char_indices = yes.char_indices(); |
1077 | /// |
1078 | /// assert_eq!(Some((0, 'y' )), char_indices.next()); // not (0, 'y̆') |
1079 | /// assert_eq!(Some((1, ' \u{0306}' )), char_indices.next()); |
1080 | /// |
1081 | /// // note the 3 here - the previous character took up two bytes |
1082 | /// assert_eq!(Some((3, 'e' )), char_indices.next()); |
1083 | /// assert_eq!(Some((4, 's' )), char_indices.next()); |
1084 | /// |
1085 | /// assert_eq!(None, char_indices.next()); |
1086 | /// ``` |
1087 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1088 | #[inline ] |
1089 | pub fn char_indices(&self) -> CharIndices<'_> { |
1090 | CharIndices { front_offset: 0, iter: self.chars() } |
1091 | } |
1092 | |
1093 | /// Returns an iterator over the bytes of a string slice. |
1094 | /// |
1095 | /// As a string slice consists of a sequence of bytes, we can iterate |
1096 | /// through a string slice by byte. This method returns such an iterator. |
1097 | /// |
1098 | /// # Examples |
1099 | /// |
1100 | /// ``` |
1101 | /// let mut bytes = "bors" .bytes(); |
1102 | /// |
1103 | /// assert_eq!(Some(b'b' ), bytes.next()); |
1104 | /// assert_eq!(Some(b'o' ), bytes.next()); |
1105 | /// assert_eq!(Some(b'r' ), bytes.next()); |
1106 | /// assert_eq!(Some(b's' ), bytes.next()); |
1107 | /// |
1108 | /// assert_eq!(None, bytes.next()); |
1109 | /// ``` |
1110 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1111 | #[inline ] |
1112 | pub fn bytes(&self) -> Bytes<'_> { |
1113 | Bytes(self.as_bytes().iter().copied()) |
1114 | } |
1115 | |
1116 | /// Splits a string slice by whitespace. |
1117 | /// |
1118 | /// The iterator returned will return string slices that are sub-slices of |
1119 | /// the original string slice, separated by any amount of whitespace. |
1120 | /// |
1121 | /// 'Whitespace' is defined according to the terms of the Unicode Derived |
1122 | /// Core Property `White_Space`. If you only want to split on ASCII whitespace |
1123 | /// instead, use [`split_ascii_whitespace`]. |
1124 | /// |
1125 | /// [`split_ascii_whitespace`]: str::split_ascii_whitespace |
1126 | /// |
1127 | /// # Examples |
1128 | /// |
1129 | /// Basic usage: |
1130 | /// |
1131 | /// ``` |
1132 | /// let mut iter = "A few words" .split_whitespace(); |
1133 | /// |
1134 | /// assert_eq!(Some("A" ), iter.next()); |
1135 | /// assert_eq!(Some("few" ), iter.next()); |
1136 | /// assert_eq!(Some("words" ), iter.next()); |
1137 | /// |
1138 | /// assert_eq!(None, iter.next()); |
1139 | /// ``` |
1140 | /// |
1141 | /// All kinds of whitespace are considered: |
1142 | /// |
1143 | /// ``` |
1144 | /// let mut iter = " Mary had \ta \u{2009}little \n\t lamb" .split_whitespace(); |
1145 | /// assert_eq!(Some("Mary" ), iter.next()); |
1146 | /// assert_eq!(Some("had" ), iter.next()); |
1147 | /// assert_eq!(Some("a" ), iter.next()); |
1148 | /// assert_eq!(Some("little" ), iter.next()); |
1149 | /// assert_eq!(Some("lamb" ), iter.next()); |
1150 | /// |
1151 | /// assert_eq!(None, iter.next()); |
1152 | /// ``` |
1153 | /// |
1154 | /// If the string is empty or all whitespace, the iterator yields no string slices: |
1155 | /// ``` |
1156 | /// assert_eq!("" .split_whitespace().next(), None); |
1157 | /// assert_eq!(" " .split_whitespace().next(), None); |
1158 | /// ``` |
1159 | #[must_use = "this returns the split string as an iterator, \ |
1160 | without modifying the original" ] |
1161 | #[stable (feature = "split_whitespace" , since = "1.1.0" )] |
1162 | #[rustc_diagnostic_item = "str_split_whitespace" ] |
1163 | #[inline ] |
1164 | pub fn split_whitespace(&self) -> SplitWhitespace<'_> { |
1165 | SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) } |
1166 | } |
1167 | |
1168 | /// Splits a string slice by ASCII whitespace. |
1169 | /// |
1170 | /// The iterator returned will return string slices that are sub-slices of |
1171 | /// the original string slice, separated by any amount of ASCII whitespace. |
1172 | /// |
1173 | /// To split by Unicode `Whitespace` instead, use [`split_whitespace`]. |
1174 | /// |
1175 | /// [`split_whitespace`]: str::split_whitespace |
1176 | /// |
1177 | /// # Examples |
1178 | /// |
1179 | /// Basic usage: |
1180 | /// |
1181 | /// ``` |
1182 | /// let mut iter = "A few words" .split_ascii_whitespace(); |
1183 | /// |
1184 | /// assert_eq!(Some("A" ), iter.next()); |
1185 | /// assert_eq!(Some("few" ), iter.next()); |
1186 | /// assert_eq!(Some("words" ), iter.next()); |
1187 | /// |
1188 | /// assert_eq!(None, iter.next()); |
1189 | /// ``` |
1190 | /// |
1191 | /// All kinds of ASCII whitespace are considered: |
1192 | /// |
1193 | /// ``` |
1194 | /// let mut iter = " Mary had \ta little \n\t lamb" .split_ascii_whitespace(); |
1195 | /// assert_eq!(Some("Mary" ), iter.next()); |
1196 | /// assert_eq!(Some("had" ), iter.next()); |
1197 | /// assert_eq!(Some("a" ), iter.next()); |
1198 | /// assert_eq!(Some("little" ), iter.next()); |
1199 | /// assert_eq!(Some("lamb" ), iter.next()); |
1200 | /// |
1201 | /// assert_eq!(None, iter.next()); |
1202 | /// ``` |
1203 | /// |
1204 | /// If the string is empty or all ASCII whitespace, the iterator yields no string slices: |
1205 | /// ``` |
1206 | /// assert_eq!("" .split_ascii_whitespace().next(), None); |
1207 | /// assert_eq!(" " .split_ascii_whitespace().next(), None); |
1208 | /// ``` |
1209 | #[must_use = "this returns the split string as an iterator, \ |
1210 | without modifying the original" ] |
1211 | #[stable (feature = "split_ascii_whitespace" , since = "1.34.0" )] |
1212 | #[inline ] |
1213 | pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> { |
1214 | let inner = |
1215 | self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr); |
1216 | SplitAsciiWhitespace { inner } |
1217 | } |
1218 | |
1219 | /// Returns an iterator over the lines of a string, as string slices. |
1220 | /// |
1221 | /// Lines are split at line endings that are either newlines (`\n`) or |
1222 | /// sequences of a carriage return followed by a line feed (`\r\n`). |
1223 | /// |
1224 | /// Line terminators are not included in the lines returned by the iterator. |
1225 | /// |
1226 | /// Note that any carriage return (`\r`) not immediately followed by a |
1227 | /// line feed (`\n`) does not split a line. These carriage returns are |
1228 | /// thereby included in the produced lines. |
1229 | /// |
1230 | /// The final line ending is optional. A string that ends with a final line |
1231 | /// ending will return the same lines as an otherwise identical string |
1232 | /// without a final line ending. |
1233 | /// |
1234 | /// # Examples |
1235 | /// |
1236 | /// Basic usage: |
1237 | /// |
1238 | /// ``` |
1239 | /// let text = "foo \r\nbar \n\nbaz \r" ; |
1240 | /// let mut lines = text.lines(); |
1241 | /// |
1242 | /// assert_eq!(Some("foo" ), lines.next()); |
1243 | /// assert_eq!(Some("bar" ), lines.next()); |
1244 | /// assert_eq!(Some("" ), lines.next()); |
1245 | /// // Trailing carriage return is included in the last line |
1246 | /// assert_eq!(Some("baz \r" ), lines.next()); |
1247 | /// |
1248 | /// assert_eq!(None, lines.next()); |
1249 | /// ``` |
1250 | /// |
1251 | /// The final line does not require any ending: |
1252 | /// |
1253 | /// ``` |
1254 | /// let text = "foo \nbar \n\r\nbaz" ; |
1255 | /// let mut lines = text.lines(); |
1256 | /// |
1257 | /// assert_eq!(Some("foo" ), lines.next()); |
1258 | /// assert_eq!(Some("bar" ), lines.next()); |
1259 | /// assert_eq!(Some("" ), lines.next()); |
1260 | /// assert_eq!(Some("baz" ), lines.next()); |
1261 | /// |
1262 | /// assert_eq!(None, lines.next()); |
1263 | /// ``` |
1264 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1265 | #[inline ] |
1266 | pub fn lines(&self) -> Lines<'_> { |
1267 | Lines(self.split_inclusive(' \n' ).map(LinesMap)) |
1268 | } |
1269 | |
1270 | /// Returns an iterator over the lines of a string. |
1271 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1272 | #[deprecated (since = "1.4.0" , note = "use lines() instead now" , suggestion = "lines" )] |
1273 | #[inline ] |
1274 | #[allow (deprecated)] |
1275 | pub fn lines_any(&self) -> LinesAny<'_> { |
1276 | LinesAny(self.lines()) |
1277 | } |
1278 | |
1279 | /// Returns an iterator of `u16` over the string encoded |
1280 | /// as native endian UTF-16 (without byte-order mark). |
1281 | /// |
1282 | /// # Examples |
1283 | /// |
1284 | /// ``` |
1285 | /// let text = "Zażółć gęślą jaźń" ; |
1286 | /// |
1287 | /// let utf8_len = text.len(); |
1288 | /// let utf16_len = text.encode_utf16().count(); |
1289 | /// |
1290 | /// assert!(utf16_len <= utf8_len); |
1291 | /// ``` |
1292 | #[must_use = "this returns the encoded string as an iterator, \ |
1293 | without modifying the original" ] |
1294 | #[stable (feature = "encode_utf16" , since = "1.8.0" )] |
1295 | pub fn encode_utf16(&self) -> EncodeUtf16<'_> { |
1296 | EncodeUtf16 { chars: self.chars(), extra: 0 } |
1297 | } |
1298 | |
1299 | /// Returns `true` if the given pattern matches a sub-slice of |
1300 | /// this string slice. |
1301 | /// |
1302 | /// Returns `false` if it does not. |
1303 | /// |
1304 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1305 | /// function or closure that determines if a character matches. |
1306 | /// |
1307 | /// [`char`]: prim@char |
1308 | /// [pattern]: self::pattern |
1309 | /// |
1310 | /// # Examples |
1311 | /// |
1312 | /// ``` |
1313 | /// let bananas = "bananas" ; |
1314 | /// |
1315 | /// assert!(bananas.contains("nana" )); |
1316 | /// assert!(!bananas.contains("apples" )); |
1317 | /// ``` |
1318 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1319 | #[inline ] |
1320 | pub fn contains<P: Pattern>(&self, pat: P) -> bool { |
1321 | pat.is_contained_in(self) |
1322 | } |
1323 | |
1324 | /// Returns `true` if the given pattern matches a prefix of this |
1325 | /// string slice. |
1326 | /// |
1327 | /// Returns `false` if it does not. |
1328 | /// |
1329 | /// The [pattern] can be a `&str`, in which case this function will return true if |
1330 | /// the `&str` is a prefix of this string slice. |
1331 | /// |
1332 | /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a |
1333 | /// function or closure that determines if a character matches. |
1334 | /// These will only be checked against the first character of this string slice. |
1335 | /// Look at the second example below regarding behavior for slices of [`char`]s. |
1336 | /// |
1337 | /// [`char`]: prim@char |
1338 | /// [pattern]: self::pattern |
1339 | /// |
1340 | /// # Examples |
1341 | /// |
1342 | /// ``` |
1343 | /// let bananas = "bananas" ; |
1344 | /// |
1345 | /// assert!(bananas.starts_with("bana" )); |
1346 | /// assert!(!bananas.starts_with("nana" )); |
1347 | /// ``` |
1348 | /// |
1349 | /// ``` |
1350 | /// let bananas = "bananas" ; |
1351 | /// |
1352 | /// // Note that both of these assert successfully. |
1353 | /// assert!(bananas.starts_with(&['b' , 'a' , 'n' , 'a' ])); |
1354 | /// assert!(bananas.starts_with(&['a' , 'b' , 'c' , 'd' ])); |
1355 | /// ``` |
1356 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1357 | #[rustc_diagnostic_item = "str_starts_with" ] |
1358 | pub fn starts_with<P: Pattern>(&self, pat: P) -> bool { |
1359 | pat.is_prefix_of(self) |
1360 | } |
1361 | |
1362 | /// Returns `true` if the given pattern matches a suffix of this |
1363 | /// string slice. |
1364 | /// |
1365 | /// Returns `false` if it does not. |
1366 | /// |
1367 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1368 | /// function or closure that determines if a character matches. |
1369 | /// |
1370 | /// [`char`]: prim@char |
1371 | /// [pattern]: self::pattern |
1372 | /// |
1373 | /// # Examples |
1374 | /// |
1375 | /// ``` |
1376 | /// let bananas = "bananas" ; |
1377 | /// |
1378 | /// assert!(bananas.ends_with("anas" )); |
1379 | /// assert!(!bananas.ends_with("nana" )); |
1380 | /// ``` |
1381 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1382 | #[rustc_diagnostic_item = "str_ends_with" ] |
1383 | pub fn ends_with<P: Pattern>(&self, pat: P) -> bool |
1384 | where |
1385 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
1386 | { |
1387 | pat.is_suffix_of(self) |
1388 | } |
1389 | |
1390 | /// Returns the byte index of the first character of this string slice that |
1391 | /// matches the pattern. |
1392 | /// |
1393 | /// Returns [`None`] if the pattern doesn't match. |
1394 | /// |
1395 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1396 | /// function or closure that determines if a character matches. |
1397 | /// |
1398 | /// [`char`]: prim@char |
1399 | /// [pattern]: self::pattern |
1400 | /// |
1401 | /// # Examples |
1402 | /// |
1403 | /// Simple patterns: |
1404 | /// |
1405 | /// ``` |
1406 | /// let s = "Löwe 老虎 Léopard Gepardi" ; |
1407 | /// |
1408 | /// assert_eq!(s.find('L' ), Some(0)); |
1409 | /// assert_eq!(s.find('é' ), Some(14)); |
1410 | /// assert_eq!(s.find("pard" ), Some(17)); |
1411 | /// ``` |
1412 | /// |
1413 | /// More complex patterns using point-free style and closures: |
1414 | /// |
1415 | /// ``` |
1416 | /// let s = "Löwe 老虎 Léopard" ; |
1417 | /// |
1418 | /// assert_eq!(s.find(char::is_whitespace), Some(5)); |
1419 | /// assert_eq!(s.find(char::is_lowercase), Some(1)); |
1420 | /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); |
1421 | /// assert_eq!(s.find(|c: char| (c < 'o' ) && (c > 'a' )), Some(4)); |
1422 | /// ``` |
1423 | /// |
1424 | /// Not finding the pattern: |
1425 | /// |
1426 | /// ``` |
1427 | /// let s = "Löwe 老虎 Léopard" ; |
1428 | /// let x: &[_] = &['1' , '2' ]; |
1429 | /// |
1430 | /// assert_eq!(s.find(x), None); |
1431 | /// ``` |
1432 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1433 | #[inline ] |
1434 | pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> { |
1435 | pat.into_searcher(self).next_match().map(|(i, _)| i) |
1436 | } |
1437 | |
1438 | /// Returns the byte index for the first character of the last match of the pattern in |
1439 | /// this string slice. |
1440 | /// |
1441 | /// Returns [`None`] if the pattern doesn't match. |
1442 | /// |
1443 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1444 | /// function or closure that determines if a character matches. |
1445 | /// |
1446 | /// [`char`]: prim@char |
1447 | /// [pattern]: self::pattern |
1448 | /// |
1449 | /// # Examples |
1450 | /// |
1451 | /// Simple patterns: |
1452 | /// |
1453 | /// ``` |
1454 | /// let s = "Löwe 老虎 Léopard Gepardi" ; |
1455 | /// |
1456 | /// assert_eq!(s.rfind('L' ), Some(13)); |
1457 | /// assert_eq!(s.rfind('é' ), Some(14)); |
1458 | /// assert_eq!(s.rfind("pard" ), Some(24)); |
1459 | /// ``` |
1460 | /// |
1461 | /// More complex patterns with closures: |
1462 | /// |
1463 | /// ``` |
1464 | /// let s = "Löwe 老虎 Léopard" ; |
1465 | /// |
1466 | /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); |
1467 | /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); |
1468 | /// ``` |
1469 | /// |
1470 | /// Not finding the pattern: |
1471 | /// |
1472 | /// ``` |
1473 | /// let s = "Löwe 老虎 Léopard" ; |
1474 | /// let x: &[_] = &['1' , '2' ]; |
1475 | /// |
1476 | /// assert_eq!(s.rfind(x), None); |
1477 | /// ``` |
1478 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1479 | #[inline ] |
1480 | pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize> |
1481 | where |
1482 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
1483 | { |
1484 | pat.into_searcher(self).next_match_back().map(|(i, _)| i) |
1485 | } |
1486 | |
1487 | /// Returns an iterator over substrings of this string slice, separated by |
1488 | /// characters matched by a pattern. |
1489 | /// |
1490 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1491 | /// function or closure that determines if a character matches. |
1492 | /// |
1493 | /// [`char`]: prim@char |
1494 | /// [pattern]: self::pattern |
1495 | /// |
1496 | /// # Iterator behavior |
1497 | /// |
1498 | /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
1499 | /// allows a reverse search and forward/reverse search yields the same |
1500 | /// elements. This is true for, e.g., [`char`], but not for `&str`. |
1501 | /// |
1502 | /// If the pattern allows a reverse search but its results might differ |
1503 | /// from a forward search, the [`rsplit`] method can be used. |
1504 | /// |
1505 | /// [`rsplit`]: str::rsplit |
1506 | /// |
1507 | /// # Examples |
1508 | /// |
1509 | /// Simple patterns: |
1510 | /// |
1511 | /// ``` |
1512 | /// let v: Vec<&str> = "Mary had a little lamb" .split(' ' ).collect(); |
1513 | /// assert_eq!(v, ["Mary" , "had" , "a" , "little" , "lamb" ]); |
1514 | /// |
1515 | /// let v: Vec<&str> = "" .split('X' ).collect(); |
1516 | /// assert_eq!(v, ["" ]); |
1517 | /// |
1518 | /// let v: Vec<&str> = "lionXXtigerXleopard" .split('X' ).collect(); |
1519 | /// assert_eq!(v, ["lion" , "" , "tiger" , "leopard" ]); |
1520 | /// |
1521 | /// let v: Vec<&str> = "lion::tiger::leopard" .split("::" ).collect(); |
1522 | /// assert_eq!(v, ["lion" , "tiger" , "leopard" ]); |
1523 | /// |
1524 | /// let v: Vec<&str> = "abc1def2ghi" .split(char::is_numeric).collect(); |
1525 | /// assert_eq!(v, ["abc" , "def" , "ghi" ]); |
1526 | /// |
1527 | /// let v: Vec<&str> = "lionXtigerXleopard" .split(char::is_uppercase).collect(); |
1528 | /// assert_eq!(v, ["lion" , "tiger" , "leopard" ]); |
1529 | /// ``` |
1530 | /// |
1531 | /// If the pattern is a slice of chars, split on each occurrence of any of the characters: |
1532 | /// |
1533 | /// ``` |
1534 | /// let v: Vec<&str> = "2020-11-03 23:59" .split(&['-' , ' ' , ':' , '@' ][..]).collect(); |
1535 | /// assert_eq!(v, ["2020" , "11" , "03" , "23" , "59" ]); |
1536 | /// ``` |
1537 | /// |
1538 | /// A more complex pattern, using a closure: |
1539 | /// |
1540 | /// ``` |
1541 | /// let v: Vec<&str> = "abc1defXghi" .split(|c| c == '1' || c == 'X' ).collect(); |
1542 | /// assert_eq!(v, ["abc" , "def" , "ghi" ]); |
1543 | /// ``` |
1544 | /// |
1545 | /// If a string contains multiple contiguous separators, you will end up |
1546 | /// with empty strings in the output: |
1547 | /// |
1548 | /// ``` |
1549 | /// let x = "||||a||b|c" .to_string(); |
1550 | /// let d: Vec<_> = x.split('|' ).collect(); |
1551 | /// |
1552 | /// assert_eq!(d, &["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
1553 | /// ``` |
1554 | /// |
1555 | /// Contiguous separators are separated by the empty string. |
1556 | /// |
1557 | /// ``` |
1558 | /// let x = "(///)" .to_string(); |
1559 | /// let d: Vec<_> = x.split('/' ).collect(); |
1560 | /// |
1561 | /// assert_eq!(d, &["(" , "" , "" , ")" ]); |
1562 | /// ``` |
1563 | /// |
1564 | /// Separators at the start or end of a string are neighbored |
1565 | /// by empty strings. |
1566 | /// |
1567 | /// ``` |
1568 | /// let d: Vec<_> = "010" .split("0" ).collect(); |
1569 | /// assert_eq!(d, &["" , "1" , "" ]); |
1570 | /// ``` |
1571 | /// |
1572 | /// When the empty string is used as a separator, it separates |
1573 | /// every character in the string, along with the beginning |
1574 | /// and end of the string. |
1575 | /// |
1576 | /// ``` |
1577 | /// let f: Vec<_> = "rust" .split("" ).collect(); |
1578 | /// assert_eq!(f, &["" , "r" , "u" , "s" , "t" , "" ]); |
1579 | /// ``` |
1580 | /// |
1581 | /// Contiguous separators can lead to possibly surprising behavior |
1582 | /// when whitespace is used as the separator. This code is correct: |
1583 | /// |
1584 | /// ``` |
1585 | /// let x = " a b c" .to_string(); |
1586 | /// let d: Vec<_> = x.split(' ' ).collect(); |
1587 | /// |
1588 | /// assert_eq!(d, &["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
1589 | /// ``` |
1590 | /// |
1591 | /// It does _not_ give you: |
1592 | /// |
1593 | /// ```,ignore |
1594 | /// assert_eq!(d, &["a" , "b" , "c" ]); |
1595 | /// ``` |
1596 | /// |
1597 | /// Use [`split_whitespace`] for this behavior. |
1598 | /// |
1599 | /// [`split_whitespace`]: str::split_whitespace |
1600 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1601 | #[inline ] |
1602 | pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> { |
1603 | Split(SplitInternal { |
1604 | start: 0, |
1605 | end: self.len(), |
1606 | matcher: pat.into_searcher(self), |
1607 | allow_trailing_empty: true, |
1608 | finished: false, |
1609 | }) |
1610 | } |
1611 | |
1612 | /// Returns an iterator over substrings of this string slice, separated by |
1613 | /// characters matched by a pattern. |
1614 | /// |
1615 | /// Differs from the iterator produced by `split` in that `split_inclusive` |
1616 | /// leaves the matched part as the terminator of the substring. |
1617 | /// |
1618 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1619 | /// function or closure that determines if a character matches. |
1620 | /// |
1621 | /// [`char`]: prim@char |
1622 | /// [pattern]: self::pattern |
1623 | /// |
1624 | /// # Examples |
1625 | /// |
1626 | /// ``` |
1627 | /// let v: Vec<&str> = "Mary had a little lamb \nlittle lamb \nlittle lamb." |
1628 | /// .split_inclusive(' \n' ).collect(); |
1629 | /// assert_eq!(v, ["Mary had a little lamb \n" , "little lamb \n" , "little lamb." ]); |
1630 | /// ``` |
1631 | /// |
1632 | /// If the last element of the string is matched, |
1633 | /// that element will be considered the terminator of the preceding substring. |
1634 | /// That substring will be the last item returned by the iterator. |
1635 | /// |
1636 | /// ``` |
1637 | /// let v: Vec<&str> = "Mary had a little lamb \nlittle lamb \nlittle lamb. \n" |
1638 | /// .split_inclusive(' \n' ).collect(); |
1639 | /// assert_eq!(v, ["Mary had a little lamb \n" , "little lamb \n" , "little lamb. \n" ]); |
1640 | /// ``` |
1641 | #[stable (feature = "split_inclusive" , since = "1.51.0" )] |
1642 | #[inline ] |
1643 | pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> { |
1644 | SplitInclusive(SplitInternal { |
1645 | start: 0, |
1646 | end: self.len(), |
1647 | matcher: pat.into_searcher(self), |
1648 | allow_trailing_empty: false, |
1649 | finished: false, |
1650 | }) |
1651 | } |
1652 | |
1653 | /// Returns an iterator over substrings of the given string slice, separated |
1654 | /// by characters matched by a pattern and yielded in reverse order. |
1655 | /// |
1656 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1657 | /// function or closure that determines if a character matches. |
1658 | /// |
1659 | /// [`char`]: prim@char |
1660 | /// [pattern]: self::pattern |
1661 | /// |
1662 | /// # Iterator behavior |
1663 | /// |
1664 | /// The returned iterator requires that the pattern supports a reverse |
1665 | /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse |
1666 | /// search yields the same elements. |
1667 | /// |
1668 | /// For iterating from the front, the [`split`] method can be used. |
1669 | /// |
1670 | /// [`split`]: str::split |
1671 | /// |
1672 | /// # Examples |
1673 | /// |
1674 | /// Simple patterns: |
1675 | /// |
1676 | /// ``` |
1677 | /// let v: Vec<&str> = "Mary had a little lamb" .rsplit(' ' ).collect(); |
1678 | /// assert_eq!(v, ["lamb" , "little" , "a" , "had" , "Mary" ]); |
1679 | /// |
1680 | /// let v: Vec<&str> = "" .rsplit('X' ).collect(); |
1681 | /// assert_eq!(v, ["" ]); |
1682 | /// |
1683 | /// let v: Vec<&str> = "lionXXtigerXleopard" .rsplit('X' ).collect(); |
1684 | /// assert_eq!(v, ["leopard" , "tiger" , "" , "lion" ]); |
1685 | /// |
1686 | /// let v: Vec<&str> = "lion::tiger::leopard" .rsplit("::" ).collect(); |
1687 | /// assert_eq!(v, ["leopard" , "tiger" , "lion" ]); |
1688 | /// ``` |
1689 | /// |
1690 | /// A more complex pattern, using a closure: |
1691 | /// |
1692 | /// ``` |
1693 | /// let v: Vec<&str> = "abc1defXghi" .rsplit(|c| c == '1' || c == 'X' ).collect(); |
1694 | /// assert_eq!(v, ["ghi" , "def" , "abc" ]); |
1695 | /// ``` |
1696 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1697 | #[inline ] |
1698 | pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P> |
1699 | where |
1700 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
1701 | { |
1702 | RSplit(self.split(pat).0) |
1703 | } |
1704 | |
1705 | /// Returns an iterator over substrings of the given string slice, separated |
1706 | /// by characters matched by a pattern. |
1707 | /// |
1708 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1709 | /// function or closure that determines if a character matches. |
1710 | /// |
1711 | /// [`char`]: prim@char |
1712 | /// [pattern]: self::pattern |
1713 | /// |
1714 | /// Equivalent to [`split`], except that the trailing substring |
1715 | /// is skipped if empty. |
1716 | /// |
1717 | /// [`split`]: str::split |
1718 | /// |
1719 | /// This method can be used for string data that is _terminated_, |
1720 | /// rather than _separated_ by a pattern. |
1721 | /// |
1722 | /// # Iterator behavior |
1723 | /// |
1724 | /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
1725 | /// allows a reverse search and forward/reverse search yields the same |
1726 | /// elements. This is true for, e.g., [`char`], but not for `&str`. |
1727 | /// |
1728 | /// If the pattern allows a reverse search but its results might differ |
1729 | /// from a forward search, the [`rsplit_terminator`] method can be used. |
1730 | /// |
1731 | /// [`rsplit_terminator`]: str::rsplit_terminator |
1732 | /// |
1733 | /// # Examples |
1734 | /// |
1735 | /// ``` |
1736 | /// let v: Vec<&str> = "A.B." .split_terminator('.' ).collect(); |
1737 | /// assert_eq!(v, ["A" , "B" ]); |
1738 | /// |
1739 | /// let v: Vec<&str> = "A..B.." .split_terminator("." ).collect(); |
1740 | /// assert_eq!(v, ["A" , "" , "B" , "" ]); |
1741 | /// |
1742 | /// let v: Vec<&str> = "A.B:C.D" .split_terminator(&['.' , ':' ][..]).collect(); |
1743 | /// assert_eq!(v, ["A" , "B" , "C" , "D" ]); |
1744 | /// ``` |
1745 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1746 | #[inline ] |
1747 | pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> { |
1748 | SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 }) |
1749 | } |
1750 | |
1751 | /// Returns an iterator over substrings of `self`, separated by characters |
1752 | /// matched by a pattern and yielded in reverse order. |
1753 | /// |
1754 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1755 | /// function or closure that determines if a character matches. |
1756 | /// |
1757 | /// [`char`]: prim@char |
1758 | /// [pattern]: self::pattern |
1759 | /// |
1760 | /// Equivalent to [`split`], except that the trailing substring is |
1761 | /// skipped if empty. |
1762 | /// |
1763 | /// [`split`]: str::split |
1764 | /// |
1765 | /// This method can be used for string data that is _terminated_, |
1766 | /// rather than _separated_ by a pattern. |
1767 | /// |
1768 | /// # Iterator behavior |
1769 | /// |
1770 | /// The returned iterator requires that the pattern supports a |
1771 | /// reverse search, and it will be double ended if a forward/reverse |
1772 | /// search yields the same elements. |
1773 | /// |
1774 | /// For iterating from the front, the [`split_terminator`] method can be |
1775 | /// used. |
1776 | /// |
1777 | /// [`split_terminator`]: str::split_terminator |
1778 | /// |
1779 | /// # Examples |
1780 | /// |
1781 | /// ``` |
1782 | /// let v: Vec<&str> = "A.B." .rsplit_terminator('.' ).collect(); |
1783 | /// assert_eq!(v, ["B" , "A" ]); |
1784 | /// |
1785 | /// let v: Vec<&str> = "A..B.." .rsplit_terminator("." ).collect(); |
1786 | /// assert_eq!(v, ["" , "B" , "" , "A" ]); |
1787 | /// |
1788 | /// let v: Vec<&str> = "A.B:C.D" .rsplit_terminator(&['.' , ':' ][..]).collect(); |
1789 | /// assert_eq!(v, ["D" , "C" , "B" , "A" ]); |
1790 | /// ``` |
1791 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1792 | #[inline ] |
1793 | pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P> |
1794 | where |
1795 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
1796 | { |
1797 | RSplitTerminator(self.split_terminator(pat).0) |
1798 | } |
1799 | |
1800 | /// Returns an iterator over substrings of the given string slice, separated |
1801 | /// by a pattern, restricted to returning at most `n` items. |
1802 | /// |
1803 | /// If `n` substrings are returned, the last substring (the `n`th substring) |
1804 | /// will contain the remainder of the string. |
1805 | /// |
1806 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1807 | /// function or closure that determines if a character matches. |
1808 | /// |
1809 | /// [`char`]: prim@char |
1810 | /// [pattern]: self::pattern |
1811 | /// |
1812 | /// # Iterator behavior |
1813 | /// |
1814 | /// The returned iterator will not be double ended, because it is |
1815 | /// not efficient to support. |
1816 | /// |
1817 | /// If the pattern allows a reverse search, the [`rsplitn`] method can be |
1818 | /// used. |
1819 | /// |
1820 | /// [`rsplitn`]: str::rsplitn |
1821 | /// |
1822 | /// # Examples |
1823 | /// |
1824 | /// Simple patterns: |
1825 | /// |
1826 | /// ``` |
1827 | /// let v: Vec<&str> = "Mary had a little lambda" .splitn(3, ' ' ).collect(); |
1828 | /// assert_eq!(v, ["Mary" , "had" , "a little lambda" ]); |
1829 | /// |
1830 | /// let v: Vec<&str> = "lionXXtigerXleopard" .splitn(3, "X" ).collect(); |
1831 | /// assert_eq!(v, ["lion" , "" , "tigerXleopard" ]); |
1832 | /// |
1833 | /// let v: Vec<&str> = "abcXdef" .splitn(1, 'X' ).collect(); |
1834 | /// assert_eq!(v, ["abcXdef" ]); |
1835 | /// |
1836 | /// let v: Vec<&str> = "" .splitn(1, 'X' ).collect(); |
1837 | /// assert_eq!(v, ["" ]); |
1838 | /// ``` |
1839 | /// |
1840 | /// A more complex pattern, using a closure: |
1841 | /// |
1842 | /// ``` |
1843 | /// let v: Vec<&str> = "abc1defXghi" .splitn(2, |c| c == '1' || c == 'X' ).collect(); |
1844 | /// assert_eq!(v, ["abc" , "defXghi" ]); |
1845 | /// ``` |
1846 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1847 | #[inline ] |
1848 | pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> { |
1849 | SplitN(SplitNInternal { iter: self.split(pat).0, count: n }) |
1850 | } |
1851 | |
1852 | /// Returns an iterator over substrings of this string slice, separated by a |
1853 | /// pattern, starting from the end of the string, restricted to returning at |
1854 | /// most `n` items. |
1855 | /// |
1856 | /// If `n` substrings are returned, the last substring (the `n`th substring) |
1857 | /// will contain the remainder of the string. |
1858 | /// |
1859 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1860 | /// function or closure that determines if a character matches. |
1861 | /// |
1862 | /// [`char`]: prim@char |
1863 | /// [pattern]: self::pattern |
1864 | /// |
1865 | /// # Iterator behavior |
1866 | /// |
1867 | /// The returned iterator will not be double ended, because it is not |
1868 | /// efficient to support. |
1869 | /// |
1870 | /// For splitting from the front, the [`splitn`] method can be used. |
1871 | /// |
1872 | /// [`splitn`]: str::splitn |
1873 | /// |
1874 | /// # Examples |
1875 | /// |
1876 | /// Simple patterns: |
1877 | /// |
1878 | /// ``` |
1879 | /// let v: Vec<&str> = "Mary had a little lamb" .rsplitn(3, ' ' ).collect(); |
1880 | /// assert_eq!(v, ["lamb" , "little" , "Mary had a" ]); |
1881 | /// |
1882 | /// let v: Vec<&str> = "lionXXtigerXleopard" .rsplitn(3, 'X' ).collect(); |
1883 | /// assert_eq!(v, ["leopard" , "tiger" , "lionX" ]); |
1884 | /// |
1885 | /// let v: Vec<&str> = "lion::tiger::leopard" .rsplitn(2, "::" ).collect(); |
1886 | /// assert_eq!(v, ["leopard" , "lion::tiger" ]); |
1887 | /// ``` |
1888 | /// |
1889 | /// A more complex pattern, using a closure: |
1890 | /// |
1891 | /// ``` |
1892 | /// let v: Vec<&str> = "abc1defXghi" .rsplitn(2, |c| c == '1' || c == 'X' ).collect(); |
1893 | /// assert_eq!(v, ["ghi" , "abc1def" ]); |
1894 | /// ``` |
1895 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1896 | #[inline ] |
1897 | pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P> |
1898 | where |
1899 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
1900 | { |
1901 | RSplitN(self.splitn(n, pat).0) |
1902 | } |
1903 | |
1904 | /// Splits the string on the first occurrence of the specified delimiter and |
1905 | /// returns prefix before delimiter and suffix after delimiter. |
1906 | /// |
1907 | /// # Examples |
1908 | /// |
1909 | /// ``` |
1910 | /// assert_eq!("cfg" .split_once('=' ), None); |
1911 | /// assert_eq!("cfg=" .split_once('=' ), Some(("cfg" , "" ))); |
1912 | /// assert_eq!("cfg=foo" .split_once('=' ), Some(("cfg" , "foo" ))); |
1913 | /// assert_eq!("cfg=foo=bar" .split_once('=' ), Some(("cfg" , "foo=bar" ))); |
1914 | /// ``` |
1915 | #[stable (feature = "str_split_once" , since = "1.52.0" )] |
1916 | #[inline ] |
1917 | pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> { |
1918 | let (start, end) = delimiter.into_searcher(self).next_match()?; |
1919 | // SAFETY: `Searcher` is known to return valid indices. |
1920 | unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } |
1921 | } |
1922 | |
1923 | /// Splits the string on the last occurrence of the specified delimiter and |
1924 | /// returns prefix before delimiter and suffix after delimiter. |
1925 | /// |
1926 | /// # Examples |
1927 | /// |
1928 | /// ``` |
1929 | /// assert_eq!("cfg" .rsplit_once('=' ), None); |
1930 | /// assert_eq!("cfg=foo" .rsplit_once('=' ), Some(("cfg" , "foo" ))); |
1931 | /// assert_eq!("cfg=foo=bar" .rsplit_once('=' ), Some(("cfg=foo" , "bar" ))); |
1932 | /// ``` |
1933 | #[stable (feature = "str_split_once" , since = "1.52.0" )] |
1934 | #[inline ] |
1935 | pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> |
1936 | where |
1937 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
1938 | { |
1939 | let (start, end) = delimiter.into_searcher(self).next_match_back()?; |
1940 | // SAFETY: `Searcher` is known to return valid indices. |
1941 | unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } |
1942 | } |
1943 | |
1944 | /// Returns an iterator over the disjoint matches of a pattern within the |
1945 | /// given string slice. |
1946 | /// |
1947 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1948 | /// function or closure that determines if a character matches. |
1949 | /// |
1950 | /// [`char`]: prim@char |
1951 | /// [pattern]: self::pattern |
1952 | /// |
1953 | /// # Iterator behavior |
1954 | /// |
1955 | /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
1956 | /// allows a reverse search and forward/reverse search yields the same |
1957 | /// elements. This is true for, e.g., [`char`], but not for `&str`. |
1958 | /// |
1959 | /// If the pattern allows a reverse search but its results might differ |
1960 | /// from a forward search, the [`rmatches`] method can be used. |
1961 | /// |
1962 | /// [`rmatches`]: str::rmatches |
1963 | /// |
1964 | /// # Examples |
1965 | /// |
1966 | /// ``` |
1967 | /// let v: Vec<&str> = "abcXXXabcYYYabc" .matches("abc" ).collect(); |
1968 | /// assert_eq!(v, ["abc" , "abc" , "abc" ]); |
1969 | /// |
1970 | /// let v: Vec<&str> = "1abc2abc3" .matches(char::is_numeric).collect(); |
1971 | /// assert_eq!(v, ["1" , "2" , "3" ]); |
1972 | /// ``` |
1973 | #[stable (feature = "str_matches" , since = "1.2.0" )] |
1974 | #[inline ] |
1975 | pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> { |
1976 | Matches(MatchesInternal(pat.into_searcher(self))) |
1977 | } |
1978 | |
1979 | /// Returns an iterator over the disjoint matches of a pattern within this |
1980 | /// string slice, yielded in reverse order. |
1981 | /// |
1982 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
1983 | /// function or closure that determines if a character matches. |
1984 | /// |
1985 | /// [`char`]: prim@char |
1986 | /// [pattern]: self::pattern |
1987 | /// |
1988 | /// # Iterator behavior |
1989 | /// |
1990 | /// The returned iterator requires that the pattern supports a reverse |
1991 | /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse |
1992 | /// search yields the same elements. |
1993 | /// |
1994 | /// For iterating from the front, the [`matches`] method can be used. |
1995 | /// |
1996 | /// [`matches`]: str::matches |
1997 | /// |
1998 | /// # Examples |
1999 | /// |
2000 | /// ``` |
2001 | /// let v: Vec<&str> = "abcXXXabcYYYabc" .rmatches("abc" ).collect(); |
2002 | /// assert_eq!(v, ["abc" , "abc" , "abc" ]); |
2003 | /// |
2004 | /// let v: Vec<&str> = "1abc2abc3" .rmatches(char::is_numeric).collect(); |
2005 | /// assert_eq!(v, ["3" , "2" , "1" ]); |
2006 | /// ``` |
2007 | #[stable (feature = "str_matches" , since = "1.2.0" )] |
2008 | #[inline ] |
2009 | pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P> |
2010 | where |
2011 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
2012 | { |
2013 | RMatches(self.matches(pat).0) |
2014 | } |
2015 | |
2016 | /// Returns an iterator over the disjoint matches of a pattern within this string |
2017 | /// slice as well as the index that the match starts at. |
2018 | /// |
2019 | /// For matches of `pat` within `self` that overlap, only the indices |
2020 | /// corresponding to the first match are returned. |
2021 | /// |
2022 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2023 | /// function or closure that determines if a character matches. |
2024 | /// |
2025 | /// [`char`]: prim@char |
2026 | /// [pattern]: self::pattern |
2027 | /// |
2028 | /// # Iterator behavior |
2029 | /// |
2030 | /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
2031 | /// allows a reverse search and forward/reverse search yields the same |
2032 | /// elements. This is true for, e.g., [`char`], but not for `&str`. |
2033 | /// |
2034 | /// If the pattern allows a reverse search but its results might differ |
2035 | /// from a forward search, the [`rmatch_indices`] method can be used. |
2036 | /// |
2037 | /// [`rmatch_indices`]: str::rmatch_indices |
2038 | /// |
2039 | /// # Examples |
2040 | /// |
2041 | /// ``` |
2042 | /// let v: Vec<_> = "abcXXXabcYYYabc" .match_indices("abc" ).collect(); |
2043 | /// assert_eq!(v, [(0, "abc" ), (6, "abc" ), (12, "abc" )]); |
2044 | /// |
2045 | /// let v: Vec<_> = "1abcabc2" .match_indices("abc" ).collect(); |
2046 | /// assert_eq!(v, [(1, "abc" ), (4, "abc" )]); |
2047 | /// |
2048 | /// let v: Vec<_> = "ababa" .match_indices("aba" ).collect(); |
2049 | /// assert_eq!(v, [(0, "aba" )]); // only the first `aba` |
2050 | /// ``` |
2051 | #[stable (feature = "str_match_indices" , since = "1.5.0" )] |
2052 | #[inline ] |
2053 | pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> { |
2054 | MatchIndices(MatchIndicesInternal(pat.into_searcher(self))) |
2055 | } |
2056 | |
2057 | /// Returns an iterator over the disjoint matches of a pattern within `self`, |
2058 | /// yielded in reverse order along with the index of the match. |
2059 | /// |
2060 | /// For matches of `pat` within `self` that overlap, only the indices |
2061 | /// corresponding to the last match are returned. |
2062 | /// |
2063 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2064 | /// function or closure that determines if a character matches. |
2065 | /// |
2066 | /// [`char`]: prim@char |
2067 | /// [pattern]: self::pattern |
2068 | /// |
2069 | /// # Iterator behavior |
2070 | /// |
2071 | /// The returned iterator requires that the pattern supports a reverse |
2072 | /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse |
2073 | /// search yields the same elements. |
2074 | /// |
2075 | /// For iterating from the front, the [`match_indices`] method can be used. |
2076 | /// |
2077 | /// [`match_indices`]: str::match_indices |
2078 | /// |
2079 | /// # Examples |
2080 | /// |
2081 | /// ``` |
2082 | /// let v: Vec<_> = "abcXXXabcYYYabc" .rmatch_indices("abc" ).collect(); |
2083 | /// assert_eq!(v, [(12, "abc" ), (6, "abc" ), (0, "abc" )]); |
2084 | /// |
2085 | /// let v: Vec<_> = "1abcabc2" .rmatch_indices("abc" ).collect(); |
2086 | /// assert_eq!(v, [(4, "abc" ), (1, "abc" )]); |
2087 | /// |
2088 | /// let v: Vec<_> = "ababa" .rmatch_indices("aba" ).collect(); |
2089 | /// assert_eq!(v, [(2, "aba" )]); // only the last `aba` |
2090 | /// ``` |
2091 | #[stable (feature = "str_match_indices" , since = "1.5.0" )] |
2092 | #[inline ] |
2093 | pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P> |
2094 | where |
2095 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
2096 | { |
2097 | RMatchIndices(self.match_indices(pat).0) |
2098 | } |
2099 | |
2100 | /// Returns a string slice with leading and trailing whitespace removed. |
2101 | /// |
2102 | /// 'Whitespace' is defined according to the terms of the Unicode Derived |
2103 | /// Core Property `White_Space`, which includes newlines. |
2104 | /// |
2105 | /// # Examples |
2106 | /// |
2107 | /// ``` |
2108 | /// let s = " \n Hello \tworld \t\n" ; |
2109 | /// |
2110 | /// assert_eq!("Hello \tworld" , s.trim()); |
2111 | /// ``` |
2112 | #[inline ] |
2113 | #[must_use = "this returns the trimmed string as a slice, \ |
2114 | without modifying the original" ] |
2115 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2116 | #[rustc_diagnostic_item = "str_trim" ] |
2117 | pub fn trim(&self) -> &str { |
2118 | self.trim_matches(|c: char| c.is_whitespace()) |
2119 | } |
2120 | |
2121 | /// Returns a string slice with leading whitespace removed. |
2122 | /// |
2123 | /// 'Whitespace' is defined according to the terms of the Unicode Derived |
2124 | /// Core Property `White_Space`, which includes newlines. |
2125 | /// |
2126 | /// # Text directionality |
2127 | /// |
2128 | /// A string is a sequence of bytes. `start` in this context means the first |
2129 | /// position of that byte string; for a left-to-right language like English or |
2130 | /// Russian, this will be left side, and for right-to-left languages like |
2131 | /// Arabic or Hebrew, this will be the right side. |
2132 | /// |
2133 | /// # Examples |
2134 | /// |
2135 | /// Basic usage: |
2136 | /// |
2137 | /// ``` |
2138 | /// let s = " \n Hello \tworld \t\n" ; |
2139 | /// assert_eq!("Hello \tworld \t\n" , s.trim_start()); |
2140 | /// ``` |
2141 | /// |
2142 | /// Directionality: |
2143 | /// |
2144 | /// ``` |
2145 | /// let s = " English " ; |
2146 | /// assert!(Some('E' ) == s.trim_start().chars().next()); |
2147 | /// |
2148 | /// let s = " עברית " ; |
2149 | /// assert!(Some('ע' ) == s.trim_start().chars().next()); |
2150 | /// ``` |
2151 | #[inline ] |
2152 | #[must_use = "this returns the trimmed string as a new slice, \ |
2153 | without modifying the original" ] |
2154 | #[stable (feature = "trim_direction" , since = "1.30.0" )] |
2155 | #[rustc_diagnostic_item = "str_trim_start" ] |
2156 | pub fn trim_start(&self) -> &str { |
2157 | self.trim_start_matches(|c: char| c.is_whitespace()) |
2158 | } |
2159 | |
2160 | /// Returns a string slice with trailing whitespace removed. |
2161 | /// |
2162 | /// 'Whitespace' is defined according to the terms of the Unicode Derived |
2163 | /// Core Property `White_Space`, which includes newlines. |
2164 | /// |
2165 | /// # Text directionality |
2166 | /// |
2167 | /// A string is a sequence of bytes. `end` in this context means the last |
2168 | /// position of that byte string; for a left-to-right language like English or |
2169 | /// Russian, this will be right side, and for right-to-left languages like |
2170 | /// Arabic or Hebrew, this will be the left side. |
2171 | /// |
2172 | /// # Examples |
2173 | /// |
2174 | /// Basic usage: |
2175 | /// |
2176 | /// ``` |
2177 | /// let s = " \n Hello \tworld \t\n" ; |
2178 | /// assert_eq!(" \n Hello \tworld" , s.trim_end()); |
2179 | /// ``` |
2180 | /// |
2181 | /// Directionality: |
2182 | /// |
2183 | /// ``` |
2184 | /// let s = " English " ; |
2185 | /// assert!(Some('h' ) == s.trim_end().chars().rev().next()); |
2186 | /// |
2187 | /// let s = " עברית " ; |
2188 | /// assert!(Some('ת' ) == s.trim_end().chars().rev().next()); |
2189 | /// ``` |
2190 | #[inline ] |
2191 | #[must_use = "this returns the trimmed string as a new slice, \ |
2192 | without modifying the original" ] |
2193 | #[stable (feature = "trim_direction" , since = "1.30.0" )] |
2194 | #[rustc_diagnostic_item = "str_trim_end" ] |
2195 | pub fn trim_end(&self) -> &str { |
2196 | self.trim_end_matches(|c: char| c.is_whitespace()) |
2197 | } |
2198 | |
2199 | /// Returns a string slice with leading whitespace removed. |
2200 | /// |
2201 | /// 'Whitespace' is defined according to the terms of the Unicode Derived |
2202 | /// Core Property `White_Space`. |
2203 | /// |
2204 | /// # Text directionality |
2205 | /// |
2206 | /// A string is a sequence of bytes. 'Left' in this context means the first |
2207 | /// position of that byte string; for a language like Arabic or Hebrew |
2208 | /// which are 'right to left' rather than 'left to right', this will be |
2209 | /// the _right_ side, not the left. |
2210 | /// |
2211 | /// # Examples |
2212 | /// |
2213 | /// Basic usage: |
2214 | /// |
2215 | /// ``` |
2216 | /// let s = " Hello \tworld \t" ; |
2217 | /// |
2218 | /// assert_eq!("Hello \tworld \t" , s.trim_left()); |
2219 | /// ``` |
2220 | /// |
2221 | /// Directionality: |
2222 | /// |
2223 | /// ``` |
2224 | /// let s = " English" ; |
2225 | /// assert!(Some('E' ) == s.trim_left().chars().next()); |
2226 | /// |
2227 | /// let s = " עברית" ; |
2228 | /// assert!(Some('ע' ) == s.trim_left().chars().next()); |
2229 | /// ``` |
2230 | #[must_use = "this returns the trimmed string as a new slice, \ |
2231 | without modifying the original" ] |
2232 | #[inline ] |
2233 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2234 | #[deprecated (since = "1.33.0" , note = "superseded by `trim_start`" , suggestion = "trim_start" )] |
2235 | pub fn trim_left(&self) -> &str { |
2236 | self.trim_start() |
2237 | } |
2238 | |
2239 | /// Returns a string slice with trailing whitespace removed. |
2240 | /// |
2241 | /// 'Whitespace' is defined according to the terms of the Unicode Derived |
2242 | /// Core Property `White_Space`. |
2243 | /// |
2244 | /// # Text directionality |
2245 | /// |
2246 | /// A string is a sequence of bytes. 'Right' in this context means the last |
2247 | /// position of that byte string; for a language like Arabic or Hebrew |
2248 | /// which are 'right to left' rather than 'left to right', this will be |
2249 | /// the _left_ side, not the right. |
2250 | /// |
2251 | /// # Examples |
2252 | /// |
2253 | /// Basic usage: |
2254 | /// |
2255 | /// ``` |
2256 | /// let s = " Hello \tworld \t" ; |
2257 | /// |
2258 | /// assert_eq!(" Hello \tworld" , s.trim_right()); |
2259 | /// ``` |
2260 | /// |
2261 | /// Directionality: |
2262 | /// |
2263 | /// ``` |
2264 | /// let s = "English " ; |
2265 | /// assert!(Some('h' ) == s.trim_right().chars().rev().next()); |
2266 | /// |
2267 | /// let s = "עברית " ; |
2268 | /// assert!(Some('ת' ) == s.trim_right().chars().rev().next()); |
2269 | /// ``` |
2270 | #[must_use = "this returns the trimmed string as a new slice, \ |
2271 | without modifying the original" ] |
2272 | #[inline ] |
2273 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2274 | #[deprecated (since = "1.33.0" , note = "superseded by `trim_end`" , suggestion = "trim_end" )] |
2275 | pub fn trim_right(&self) -> &str { |
2276 | self.trim_end() |
2277 | } |
2278 | |
2279 | /// Returns a string slice with all prefixes and suffixes that match a |
2280 | /// pattern repeatedly removed. |
2281 | /// |
2282 | /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function |
2283 | /// or closure that determines if a character matches. |
2284 | /// |
2285 | /// [`char`]: prim@char |
2286 | /// [pattern]: self::pattern |
2287 | /// |
2288 | /// # Examples |
2289 | /// |
2290 | /// Simple patterns: |
2291 | /// |
2292 | /// ``` |
2293 | /// assert_eq!("11foo1bar11" .trim_matches('1' ), "foo1bar" ); |
2294 | /// assert_eq!("123foo1bar123" .trim_matches(char::is_numeric), "foo1bar" ); |
2295 | /// |
2296 | /// let x: &[_] = &['1' , '2' ]; |
2297 | /// assert_eq!("12foo1bar12" .trim_matches(x), "foo1bar" ); |
2298 | /// ``` |
2299 | /// |
2300 | /// A more complex pattern, using a closure: |
2301 | /// |
2302 | /// ``` |
2303 | /// assert_eq!("1foo1barXX" .trim_matches(|c| c == '1' || c == 'X' ), "foo1bar" ); |
2304 | /// ``` |
2305 | #[must_use = "this returns the trimmed string as a new slice, \ |
2306 | without modifying the original" ] |
2307 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2308 | pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str |
2309 | where |
2310 | for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>, |
2311 | { |
2312 | let mut i = 0; |
2313 | let mut j = 0; |
2314 | let mut matcher = pat.into_searcher(self); |
2315 | if let Some((a, b)) = matcher.next_reject() { |
2316 | i = a; |
2317 | j = b; // Remember earliest known match, correct it below if |
2318 | // last match is different |
2319 | } |
2320 | if let Some((_, b)) = matcher.next_reject_back() { |
2321 | j = b; |
2322 | } |
2323 | // SAFETY: `Searcher` is known to return valid indices. |
2324 | unsafe { self.get_unchecked(i..j) } |
2325 | } |
2326 | |
2327 | /// Returns a string slice with all prefixes that match a pattern |
2328 | /// repeatedly removed. |
2329 | /// |
2330 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2331 | /// function or closure that determines if a character matches. |
2332 | /// |
2333 | /// [`char`]: prim@char |
2334 | /// [pattern]: self::pattern |
2335 | /// |
2336 | /// # Text directionality |
2337 | /// |
2338 | /// A string is a sequence of bytes. `start` in this context means the first |
2339 | /// position of that byte string; for a left-to-right language like English or |
2340 | /// Russian, this will be left side, and for right-to-left languages like |
2341 | /// Arabic or Hebrew, this will be the right side. |
2342 | /// |
2343 | /// # Examples |
2344 | /// |
2345 | /// ``` |
2346 | /// assert_eq!("11foo1bar11" .trim_start_matches('1' ), "foo1bar11" ); |
2347 | /// assert_eq!("123foo1bar123" .trim_start_matches(char::is_numeric), "foo1bar123" ); |
2348 | /// |
2349 | /// let x: &[_] = &['1' , '2' ]; |
2350 | /// assert_eq!("12foo1bar12" .trim_start_matches(x), "foo1bar12" ); |
2351 | /// ``` |
2352 | #[must_use = "this returns the trimmed string as a new slice, \ |
2353 | without modifying the original" ] |
2354 | #[stable (feature = "trim_direction" , since = "1.30.0" )] |
2355 | pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str { |
2356 | let mut i = self.len(); |
2357 | let mut matcher = pat.into_searcher(self); |
2358 | if let Some((a, _)) = matcher.next_reject() { |
2359 | i = a; |
2360 | } |
2361 | // SAFETY: `Searcher` is known to return valid indices. |
2362 | unsafe { self.get_unchecked(i..self.len()) } |
2363 | } |
2364 | |
2365 | /// Returns a string slice with the prefix removed. |
2366 | /// |
2367 | /// If the string starts with the pattern `prefix`, returns the substring after the prefix, |
2368 | /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once. |
2369 | /// |
2370 | /// If the string does not start with `prefix`, returns `None`. |
2371 | /// |
2372 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2373 | /// function or closure that determines if a character matches. |
2374 | /// |
2375 | /// [`char`]: prim@char |
2376 | /// [pattern]: self::pattern |
2377 | /// [`trim_start_matches`]: Self::trim_start_matches |
2378 | /// |
2379 | /// # Examples |
2380 | /// |
2381 | /// ``` |
2382 | /// assert_eq!("foo:bar" .strip_prefix("foo:" ), Some("bar" )); |
2383 | /// assert_eq!("foo:bar" .strip_prefix("bar" ), None); |
2384 | /// assert_eq!("foofoo" .strip_prefix("foo" ), Some("foo" )); |
2385 | /// ``` |
2386 | #[must_use = "this returns the remaining substring as a new slice, \ |
2387 | without modifying the original" ] |
2388 | #[stable (feature = "str_strip" , since = "1.45.0" )] |
2389 | pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> { |
2390 | prefix.strip_prefix_of(self) |
2391 | } |
2392 | |
2393 | /// Returns a string slice with the suffix removed. |
2394 | /// |
2395 | /// If the string ends with the pattern `suffix`, returns the substring before the suffix, |
2396 | /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once. |
2397 | /// |
2398 | /// If the string does not end with `suffix`, returns `None`. |
2399 | /// |
2400 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2401 | /// function or closure that determines if a character matches. |
2402 | /// |
2403 | /// [`char`]: prim@char |
2404 | /// [pattern]: self::pattern |
2405 | /// [`trim_end_matches`]: Self::trim_end_matches |
2406 | /// |
2407 | /// # Examples |
2408 | /// |
2409 | /// ``` |
2410 | /// assert_eq!("bar:foo" .strip_suffix(":foo" ), Some("bar" )); |
2411 | /// assert_eq!("bar:foo" .strip_suffix("bar" ), None); |
2412 | /// assert_eq!("foofoo" .strip_suffix("foo" ), Some("foo" )); |
2413 | /// ``` |
2414 | #[must_use = "this returns the remaining substring as a new slice, \ |
2415 | without modifying the original" ] |
2416 | #[stable (feature = "str_strip" , since = "1.45.0" )] |
2417 | pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str> |
2418 | where |
2419 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
2420 | { |
2421 | suffix.strip_suffix_of(self) |
2422 | } |
2423 | |
2424 | /// Returns a string slice with all suffixes that match a pattern |
2425 | /// repeatedly removed. |
2426 | /// |
2427 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2428 | /// function or closure that determines if a character matches. |
2429 | /// |
2430 | /// [`char`]: prim@char |
2431 | /// [pattern]: self::pattern |
2432 | /// |
2433 | /// # Text directionality |
2434 | /// |
2435 | /// A string is a sequence of bytes. `end` in this context means the last |
2436 | /// position of that byte string; for a left-to-right language like English or |
2437 | /// Russian, this will be right side, and for right-to-left languages like |
2438 | /// Arabic or Hebrew, this will be the left side. |
2439 | /// |
2440 | /// # Examples |
2441 | /// |
2442 | /// Simple patterns: |
2443 | /// |
2444 | /// ``` |
2445 | /// assert_eq!("11foo1bar11" .trim_end_matches('1' ), "11foo1bar" ); |
2446 | /// assert_eq!("123foo1bar123" .trim_end_matches(char::is_numeric), "123foo1bar" ); |
2447 | /// |
2448 | /// let x: &[_] = &['1' , '2' ]; |
2449 | /// assert_eq!("12foo1bar12" .trim_end_matches(x), "12foo1bar" ); |
2450 | /// ``` |
2451 | /// |
2452 | /// A more complex pattern, using a closure: |
2453 | /// |
2454 | /// ``` |
2455 | /// assert_eq!("1fooX" .trim_end_matches(|c| c == '1' || c == 'X' ), "1foo" ); |
2456 | /// ``` |
2457 | #[must_use = "this returns the trimmed string as a new slice, \ |
2458 | without modifying the original" ] |
2459 | #[stable (feature = "trim_direction" , since = "1.30.0" )] |
2460 | pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str |
2461 | where |
2462 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
2463 | { |
2464 | let mut j = 0; |
2465 | let mut matcher = pat.into_searcher(self); |
2466 | if let Some((_, b)) = matcher.next_reject_back() { |
2467 | j = b; |
2468 | } |
2469 | // SAFETY: `Searcher` is known to return valid indices. |
2470 | unsafe { self.get_unchecked(0..j) } |
2471 | } |
2472 | |
2473 | /// Returns a string slice with all prefixes that match a pattern |
2474 | /// repeatedly removed. |
2475 | /// |
2476 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2477 | /// function or closure that determines if a character matches. |
2478 | /// |
2479 | /// [`char`]: prim@char |
2480 | /// [pattern]: self::pattern |
2481 | /// |
2482 | /// # Text directionality |
2483 | /// |
2484 | /// A string is a sequence of bytes. 'Left' in this context means the first |
2485 | /// position of that byte string; for a language like Arabic or Hebrew |
2486 | /// which are 'right to left' rather than 'left to right', this will be |
2487 | /// the _right_ side, not the left. |
2488 | /// |
2489 | /// # Examples |
2490 | /// |
2491 | /// ``` |
2492 | /// assert_eq!("11foo1bar11" .trim_left_matches('1' ), "foo1bar11" ); |
2493 | /// assert_eq!("123foo1bar123" .trim_left_matches(char::is_numeric), "foo1bar123" ); |
2494 | /// |
2495 | /// let x: &[_] = &['1' , '2' ]; |
2496 | /// assert_eq!("12foo1bar12" .trim_left_matches(x), "foo1bar12" ); |
2497 | /// ``` |
2498 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2499 | #[deprecated ( |
2500 | since = "1.33.0" , |
2501 | note = "superseded by `trim_start_matches`" , |
2502 | suggestion = "trim_start_matches" |
2503 | )] |
2504 | pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str { |
2505 | self.trim_start_matches(pat) |
2506 | } |
2507 | |
2508 | /// Returns a string slice with all suffixes that match a pattern |
2509 | /// repeatedly removed. |
2510 | /// |
2511 | /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
2512 | /// function or closure that determines if a character matches. |
2513 | /// |
2514 | /// [`char`]: prim@char |
2515 | /// [pattern]: self::pattern |
2516 | /// |
2517 | /// # Text directionality |
2518 | /// |
2519 | /// A string is a sequence of bytes. 'Right' in this context means the last |
2520 | /// position of that byte string; for a language like Arabic or Hebrew |
2521 | /// which are 'right to left' rather than 'left to right', this will be |
2522 | /// the _left_ side, not the right. |
2523 | /// |
2524 | /// # Examples |
2525 | /// |
2526 | /// Simple patterns: |
2527 | /// |
2528 | /// ``` |
2529 | /// assert_eq!("11foo1bar11" .trim_right_matches('1' ), "11foo1bar" ); |
2530 | /// assert_eq!("123foo1bar123" .trim_right_matches(char::is_numeric), "123foo1bar" ); |
2531 | /// |
2532 | /// let x: &[_] = &['1' , '2' ]; |
2533 | /// assert_eq!("12foo1bar12" .trim_right_matches(x), "12foo1bar" ); |
2534 | /// ``` |
2535 | /// |
2536 | /// A more complex pattern, using a closure: |
2537 | /// |
2538 | /// ``` |
2539 | /// assert_eq!("1fooX" .trim_right_matches(|c| c == '1' || c == 'X' ), "1foo" ); |
2540 | /// ``` |
2541 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2542 | #[deprecated ( |
2543 | since = "1.33.0" , |
2544 | note = "superseded by `trim_end_matches`" , |
2545 | suggestion = "trim_end_matches" |
2546 | )] |
2547 | pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str |
2548 | where |
2549 | for<'a> P::Searcher<'a>: ReverseSearcher<'a>, |
2550 | { |
2551 | self.trim_end_matches(pat) |
2552 | } |
2553 | |
2554 | /// Parses this string slice into another type. |
2555 | /// |
2556 | /// Because `parse` is so general, it can cause problems with type |
2557 | /// inference. As such, `parse` is one of the few times you'll see |
2558 | /// the syntax affectionately known as the 'turbofish': `::<>`. This |
2559 | /// helps the inference algorithm understand specifically which type |
2560 | /// you're trying to parse into. |
2561 | /// |
2562 | /// `parse` can parse into any type that implements the [`FromStr`] trait. |
2563 | |
2564 | /// |
2565 | /// # Errors |
2566 | /// |
2567 | /// Will return [`Err`] if it's not possible to parse this string slice into |
2568 | /// the desired type. |
2569 | /// |
2570 | /// [`Err`]: FromStr::Err |
2571 | /// |
2572 | /// # Examples |
2573 | /// |
2574 | /// Basic usage: |
2575 | /// |
2576 | /// ``` |
2577 | /// let four: u32 = "4" .parse().unwrap(); |
2578 | /// |
2579 | /// assert_eq!(4, four); |
2580 | /// ``` |
2581 | /// |
2582 | /// Using the 'turbofish' instead of annotating `four`: |
2583 | /// |
2584 | /// ``` |
2585 | /// let four = "4" .parse::<u32>(); |
2586 | /// |
2587 | /// assert_eq!(Ok(4), four); |
2588 | /// ``` |
2589 | /// |
2590 | /// Failing to parse: |
2591 | /// |
2592 | /// ``` |
2593 | /// let nope = "j" .parse::<u32>(); |
2594 | /// |
2595 | /// assert!(nope.is_err()); |
2596 | /// ``` |
2597 | #[inline ] |
2598 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2599 | pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> { |
2600 | FromStr::from_str(self) |
2601 | } |
2602 | |
2603 | /// Checks if all characters in this string are within the ASCII range. |
2604 | /// |
2605 | /// # Examples |
2606 | /// |
2607 | /// ``` |
2608 | /// let ascii = "hello! \n" ; |
2609 | /// let non_ascii = "Grüße, Jürgen ❤" ; |
2610 | /// |
2611 | /// assert!(ascii.is_ascii()); |
2612 | /// assert!(!non_ascii.is_ascii()); |
2613 | /// ``` |
2614 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
2615 | #[rustc_const_stable (feature = "const_slice_is_ascii" , since = "1.74.0" )] |
2616 | #[must_use ] |
2617 | #[inline ] |
2618 | pub const fn is_ascii(&self) -> bool { |
2619 | // We can treat each byte as character here: all multibyte characters |
2620 | // start with a byte that is not in the ASCII range, so we will stop |
2621 | // there already. |
2622 | self.as_bytes().is_ascii() |
2623 | } |
2624 | |
2625 | /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice |
2626 | /// of [ASCII characters](`ascii::Char`), otherwise returns `None`. |
2627 | #[unstable (feature = "ascii_char" , issue = "110998" )] |
2628 | #[must_use ] |
2629 | #[inline ] |
2630 | pub const fn as_ascii(&self) -> Option<&[ascii::Char]> { |
2631 | // Like in `is_ascii`, we can work on the bytes directly. |
2632 | self.as_bytes().as_ascii() |
2633 | } |
2634 | |
2635 | /// Checks that two strings are an ASCII case-insensitive match. |
2636 | /// |
2637 | /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, |
2638 | /// but without allocating and copying temporaries. |
2639 | /// |
2640 | /// # Examples |
2641 | /// |
2642 | /// ``` |
2643 | /// assert!("Ferris" .eq_ignore_ascii_case("FERRIS" )); |
2644 | /// assert!("Ferrös" .eq_ignore_ascii_case("FERRöS" )); |
2645 | /// assert!(!"Ferrös" .eq_ignore_ascii_case("FERRÖS" )); |
2646 | /// ``` |
2647 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
2648 | #[rustc_const_unstable (feature = "const_eq_ignore_ascii_case" , issue = "131719" )] |
2649 | #[must_use ] |
2650 | #[inline ] |
2651 | pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool { |
2652 | self.as_bytes().eq_ignore_ascii_case(other.as_bytes()) |
2653 | } |
2654 | |
2655 | /// Converts this string to its ASCII upper case equivalent in-place. |
2656 | /// |
2657 | /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
2658 | /// but non-ASCII letters are unchanged. |
2659 | /// |
2660 | /// To return a new uppercased value without modifying the existing one, use |
2661 | /// [`to_ascii_uppercase()`]. |
2662 | /// |
2663 | /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase |
2664 | /// |
2665 | /// # Examples |
2666 | /// |
2667 | /// ``` |
2668 | /// let mut s = String::from("Grüße, Jürgen ❤" ); |
2669 | /// |
2670 | /// s.make_ascii_uppercase(); |
2671 | /// |
2672 | /// assert_eq!("GRüßE, JüRGEN ❤" , s); |
2673 | /// ``` |
2674 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
2675 | #[rustc_const_stable (feature = "const_make_ascii" , since = "1.84.0" )] |
2676 | #[inline ] |
2677 | pub const fn make_ascii_uppercase(&mut self) { |
2678 | // SAFETY: changing ASCII letters only does not invalidate UTF-8. |
2679 | let me = unsafe { self.as_bytes_mut() }; |
2680 | me.make_ascii_uppercase() |
2681 | } |
2682 | |
2683 | /// Converts this string to its ASCII lower case equivalent in-place. |
2684 | /// |
2685 | /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
2686 | /// but non-ASCII letters are unchanged. |
2687 | /// |
2688 | /// To return a new lowercased value without modifying the existing one, use |
2689 | /// [`to_ascii_lowercase()`]. |
2690 | /// |
2691 | /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase |
2692 | /// |
2693 | /// # Examples |
2694 | /// |
2695 | /// ``` |
2696 | /// let mut s = String::from("GRÜßE, JÜRGEN ❤" ); |
2697 | /// |
2698 | /// s.make_ascii_lowercase(); |
2699 | /// |
2700 | /// assert_eq!("grÜße, jÜrgen ❤" , s); |
2701 | /// ``` |
2702 | #[stable (feature = "ascii_methods_on_intrinsics" , since = "1.23.0" )] |
2703 | #[rustc_const_stable (feature = "const_make_ascii" , since = "1.84.0" )] |
2704 | #[inline ] |
2705 | pub const fn make_ascii_lowercase(&mut self) { |
2706 | // SAFETY: changing ASCII letters only does not invalidate UTF-8. |
2707 | let me = unsafe { self.as_bytes_mut() }; |
2708 | me.make_ascii_lowercase() |
2709 | } |
2710 | |
2711 | /// Returns a string slice with leading ASCII whitespace removed. |
2712 | /// |
2713 | /// 'Whitespace' refers to the definition used by |
2714 | /// [`u8::is_ascii_whitespace`]. |
2715 | /// |
2716 | /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace |
2717 | /// |
2718 | /// # Examples |
2719 | /// |
2720 | /// ``` |
2721 | /// assert_eq!(" \t \u{3000}hello world \n" .trim_ascii_start(), " \u{3000}hello world \n" ); |
2722 | /// assert_eq!(" " .trim_ascii_start(), "" ); |
2723 | /// assert_eq!("" .trim_ascii_start(), "" ); |
2724 | /// ``` |
2725 | #[must_use = "this returns the trimmed string as a new slice, \ |
2726 | without modifying the original" ] |
2727 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
2728 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
2729 | #[inline ] |
2730 | pub const fn trim_ascii_start(&self) -> &str { |
2731 | // SAFETY: Removing ASCII characters from a `&str` does not invalidate |
2732 | // UTF-8. |
2733 | unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) } |
2734 | } |
2735 | |
2736 | /// Returns a string slice with trailing ASCII whitespace removed. |
2737 | /// |
2738 | /// 'Whitespace' refers to the definition used by |
2739 | /// [`u8::is_ascii_whitespace`]. |
2740 | /// |
2741 | /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace |
2742 | /// |
2743 | /// # Examples |
2744 | /// |
2745 | /// ``` |
2746 | /// assert_eq!(" \r hello world \u{3000}\n " .trim_ascii_end(), " \r hello world \u{3000}" ); |
2747 | /// assert_eq!(" " .trim_ascii_end(), "" ); |
2748 | /// assert_eq!("" .trim_ascii_end(), "" ); |
2749 | /// ``` |
2750 | #[must_use = "this returns the trimmed string as a new slice, \ |
2751 | without modifying the original" ] |
2752 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
2753 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
2754 | #[inline ] |
2755 | pub const fn trim_ascii_end(&self) -> &str { |
2756 | // SAFETY: Removing ASCII characters from a `&str` does not invalidate |
2757 | // UTF-8. |
2758 | unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) } |
2759 | } |
2760 | |
2761 | /// Returns a string slice with leading and trailing ASCII whitespace |
2762 | /// removed. |
2763 | /// |
2764 | /// 'Whitespace' refers to the definition used by |
2765 | /// [`u8::is_ascii_whitespace`]. |
2766 | /// |
2767 | /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace |
2768 | /// |
2769 | /// # Examples |
2770 | /// |
2771 | /// ``` |
2772 | /// assert_eq!(" \r hello world \n " .trim_ascii(), "hello world" ); |
2773 | /// assert_eq!(" " .trim_ascii(), "" ); |
2774 | /// assert_eq!("" .trim_ascii(), "" ); |
2775 | /// ``` |
2776 | #[must_use = "this returns the trimmed string as a new slice, \ |
2777 | without modifying the original" ] |
2778 | #[stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
2779 | #[rustc_const_stable (feature = "byte_slice_trim_ascii" , since = "1.80.0" )] |
2780 | #[inline ] |
2781 | pub const fn trim_ascii(&self) -> &str { |
2782 | // SAFETY: Removing ASCII characters from a `&str` does not invalidate |
2783 | // UTF-8. |
2784 | unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) } |
2785 | } |
2786 | |
2787 | /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`]. |
2788 | /// |
2789 | /// Note: only extended grapheme codepoints that begin the string will be |
2790 | /// escaped. |
2791 | /// |
2792 | /// # Examples |
2793 | /// |
2794 | /// As an iterator: |
2795 | /// |
2796 | /// ``` |
2797 | /// for c in "❤ \n!" .escape_debug() { |
2798 | /// print!("{c}" ); |
2799 | /// } |
2800 | /// println!(); |
2801 | /// ``` |
2802 | /// |
2803 | /// Using `println!` directly: |
2804 | /// |
2805 | /// ``` |
2806 | /// println!("{}" , "❤ \n!" .escape_debug()); |
2807 | /// ``` |
2808 | /// |
2809 | /// |
2810 | /// Both are equivalent to: |
2811 | /// |
2812 | /// ``` |
2813 | /// println!("❤ \\n!" ); |
2814 | /// ``` |
2815 | /// |
2816 | /// Using `to_string`: |
2817 | /// |
2818 | /// ``` |
2819 | /// assert_eq!("❤ \n!" .escape_debug().to_string(), "❤ \\n!" ); |
2820 | /// ``` |
2821 | #[must_use = "this returns the escaped string as an iterator, \ |
2822 | without modifying the original" ] |
2823 | #[stable (feature = "str_escape" , since = "1.34.0" )] |
2824 | pub fn escape_debug(&self) -> EscapeDebug<'_> { |
2825 | let mut chars = self.chars(); |
2826 | EscapeDebug { |
2827 | inner: chars |
2828 | .next() |
2829 | .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL)) |
2830 | .into_iter() |
2831 | .flatten() |
2832 | .chain(chars.flat_map(CharEscapeDebugContinue)), |
2833 | } |
2834 | } |
2835 | |
2836 | /// Returns an iterator that escapes each char in `self` with [`char::escape_default`]. |
2837 | /// |
2838 | /// # Examples |
2839 | /// |
2840 | /// As an iterator: |
2841 | /// |
2842 | /// ``` |
2843 | /// for c in "❤ \n!" .escape_default() { |
2844 | /// print!("{c}" ); |
2845 | /// } |
2846 | /// println!(); |
2847 | /// ``` |
2848 | /// |
2849 | /// Using `println!` directly: |
2850 | /// |
2851 | /// ``` |
2852 | /// println!("{}" , "❤ \n!" .escape_default()); |
2853 | /// ``` |
2854 | /// |
2855 | /// |
2856 | /// Both are equivalent to: |
2857 | /// |
2858 | /// ``` |
2859 | /// println!(" \\u{{2764}} \\n!" ); |
2860 | /// ``` |
2861 | /// |
2862 | /// Using `to_string`: |
2863 | /// |
2864 | /// ``` |
2865 | /// assert_eq!("❤ \n!" .escape_default().to_string(), " \\u{2764} \\n!" ); |
2866 | /// ``` |
2867 | #[must_use = "this returns the escaped string as an iterator, \ |
2868 | without modifying the original" ] |
2869 | #[stable (feature = "str_escape" , since = "1.34.0" )] |
2870 | pub fn escape_default(&self) -> EscapeDefault<'_> { |
2871 | EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) } |
2872 | } |
2873 | |
2874 | /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`]. |
2875 | /// |
2876 | /// # Examples |
2877 | /// |
2878 | /// As an iterator: |
2879 | /// |
2880 | /// ``` |
2881 | /// for c in "❤ \n!" .escape_unicode() { |
2882 | /// print!("{c}" ); |
2883 | /// } |
2884 | /// println!(); |
2885 | /// ``` |
2886 | /// |
2887 | /// Using `println!` directly: |
2888 | /// |
2889 | /// ``` |
2890 | /// println!("{}" , "❤ \n!" .escape_unicode()); |
2891 | /// ``` |
2892 | /// |
2893 | /// |
2894 | /// Both are equivalent to: |
2895 | /// |
2896 | /// ``` |
2897 | /// println!(" \\u{{2764}} \\u{{a}} \\u{{21}}" ); |
2898 | /// ``` |
2899 | /// |
2900 | /// Using `to_string`: |
2901 | /// |
2902 | /// ``` |
2903 | /// assert_eq!("❤ \n!" .escape_unicode().to_string(), " \\u{2764} \\u{a} \\u{21}" ); |
2904 | /// ``` |
2905 | #[must_use = "this returns the escaped string as an iterator, \ |
2906 | without modifying the original" ] |
2907 | #[stable (feature = "str_escape" , since = "1.34.0" )] |
2908 | pub fn escape_unicode(&self) -> EscapeUnicode<'_> { |
2909 | EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) } |
2910 | } |
2911 | |
2912 | /// Returns the range that a substring points to. |
2913 | /// |
2914 | /// Returns `None` if `substr` does not point within `self`. |
2915 | /// |
2916 | /// Unlike [`str::find`], **this does not search through the string**. |
2917 | /// Instead, it uses pointer arithmetic to find where in the string |
2918 | /// `substr` is derived from. |
2919 | /// |
2920 | /// This is useful for extending [`str::split`] and similar methods. |
2921 | /// |
2922 | /// Note that this method may return false positives (typically either |
2923 | /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a |
2924 | /// zero-length `str` that points at the beginning or end of another, |
2925 | /// independent, `str`. |
2926 | /// |
2927 | /// # Examples |
2928 | /// ``` |
2929 | /// #![feature(substr_range)] |
2930 | /// |
2931 | /// let data = "a, b, b, a" ; |
2932 | /// let mut iter = data.split(", " ).map(|s| data.substr_range(s).unwrap()); |
2933 | /// |
2934 | /// assert_eq!(iter.next(), Some(0..1)); |
2935 | /// assert_eq!(iter.next(), Some(3..4)); |
2936 | /// assert_eq!(iter.next(), Some(6..7)); |
2937 | /// assert_eq!(iter.next(), Some(9..10)); |
2938 | /// ``` |
2939 | #[must_use ] |
2940 | #[unstable (feature = "substr_range" , issue = "126769" )] |
2941 | pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> { |
2942 | self.as_bytes().subslice_range(substr.as_bytes()) |
2943 | } |
2944 | |
2945 | /// Returns the same string as a string slice `&str`. |
2946 | /// |
2947 | /// This method is redundant when used directly on `&str`, but |
2948 | /// it helps dereferencing other string-like types to string slices, |
2949 | /// for example references to `Box<str>` or `Arc<str>`. |
2950 | #[inline ] |
2951 | #[unstable (feature = "str_as_str" , issue = "130366" )] |
2952 | pub fn as_str(&self) -> &str { |
2953 | self |
2954 | } |
2955 | } |
2956 | |
2957 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2958 | impl AsRef<[u8]> for str { |
2959 | #[inline ] |
2960 | fn as_ref(&self) -> &[u8] { |
2961 | self.as_bytes() |
2962 | } |
2963 | } |
2964 | |
2965 | #[stable (feature = "rust1" , since = "1.0.0" )] |
2966 | impl Default for &str { |
2967 | /// Creates an empty str |
2968 | #[inline ] |
2969 | fn default() -> Self { |
2970 | "" |
2971 | } |
2972 | } |
2973 | |
2974 | #[stable (feature = "default_mut_str" , since = "1.28.0" )] |
2975 | impl Default for &mut str { |
2976 | /// Creates an empty mutable str |
2977 | #[inline ] |
2978 | fn default() -> Self { |
2979 | // SAFETY: The empty string is valid UTF-8. |
2980 | unsafe { from_utf8_unchecked_mut(&mut []) } |
2981 | } |
2982 | } |
2983 | |
2984 | impl_fn_for_zst! { |
2985 | /// A nameable, cloneable fn type |
2986 | #[derive (Clone)] |
2987 | struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str { |
2988 | let Some(line) = line.strip_suffix(' \n' ) else { return line }; |
2989 | let Some(line) = line.strip_suffix(' \r' ) else { return line }; |
2990 | line |
2991 | }; |
2992 | |
2993 | #[derive (Clone)] |
2994 | struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug { |
2995 | c.escape_debug_ext(EscapeDebugExtArgs { |
2996 | escape_grapheme_extended: false, |
2997 | escape_single_quote: true, |
2998 | escape_double_quote: true |
2999 | }) |
3000 | }; |
3001 | |
3002 | #[derive (Clone)] |
3003 | struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode { |
3004 | c.escape_unicode() |
3005 | }; |
3006 | #[derive (Clone)] |
3007 | struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault { |
3008 | c.escape_default() |
3009 | }; |
3010 | |
3011 | #[derive (Clone)] |
3012 | struct IsWhitespace impl Fn = |c: char| -> bool { |
3013 | c.is_whitespace() |
3014 | }; |
3015 | |
3016 | #[derive (Clone)] |
3017 | struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool { |
3018 | byte.is_ascii_whitespace() |
3019 | }; |
3020 | |
3021 | #[derive (Clone)] |
3022 | struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool { |
3023 | !s.is_empty() |
3024 | }; |
3025 | |
3026 | #[derive (Clone)] |
3027 | struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool { |
3028 | !s.is_empty() |
3029 | }; |
3030 | |
3031 | #[derive (Clone)] |
3032 | struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str { |
3033 | // SAFETY: not safe |
3034 | unsafe { from_utf8_unchecked(bytes) } |
3035 | }; |
3036 | } |
3037 | |
3038 | // This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap. |
3039 | #[stable (feature = "error_in_core_neg_impl" , since = "1.65.0" )] |
3040 | impl !crate::error::Error for &str {} |
3041 | |