1 | //! Provides the [GeneralPurpose] engine and associated config types. |
2 | use crate::{ |
3 | alphabet, |
4 | alphabet::Alphabet, |
5 | engine::{Config, DecodeMetadata, DecodePaddingMode}, |
6 | DecodeError, |
7 | }; |
8 | use core::convert::TryInto; |
9 | |
10 | mod decode; |
11 | pub(crate) mod decode_suffix; |
12 | |
13 | pub use decode::GeneralPurposeEstimate; |
14 | |
15 | pub(crate) const INVALID_VALUE: u8 = 255; |
16 | |
17 | /// A general-purpose base64 engine. |
18 | /// |
19 | /// - It uses no vector CPU instructions, so it will work on any system. |
20 | /// - It is reasonably fast (~2-3GiB/s). |
21 | /// - It is not constant-time, though, so it is vulnerable to timing side-channel attacks. For loading cryptographic keys, etc, it is suggested to use the forthcoming constant-time implementation. |
22 | |
23 | #[derive (Debug, Clone)] |
24 | pub struct GeneralPurpose { |
25 | encode_table: [u8; 64], |
26 | decode_table: [u8; 256], |
27 | config: GeneralPurposeConfig, |
28 | } |
29 | |
30 | impl GeneralPurpose { |
31 | /// Create a `GeneralPurpose` engine from an [Alphabet]. |
32 | /// |
33 | /// While not very expensive to initialize, ideally these should be cached |
34 | /// if the engine will be used repeatedly. |
35 | pub const fn new(alphabet: &Alphabet, config: GeneralPurposeConfig) -> Self { |
36 | Self { |
37 | encode_table: encode_table(alphabet), |
38 | decode_table: decode_table(alphabet), |
39 | config, |
40 | } |
41 | } |
42 | } |
43 | |
44 | impl super::Engine for GeneralPurpose { |
45 | type Config = GeneralPurposeConfig; |
46 | type DecodeEstimate = GeneralPurposeEstimate; |
47 | |
48 | fn internal_encode(&self, input: &[u8], output: &mut [u8]) -> usize { |
49 | let mut input_index: usize = 0; |
50 | |
51 | const BLOCKS_PER_FAST_LOOP: usize = 4; |
52 | const LOW_SIX_BITS: u64 = 0x3F; |
53 | |
54 | // we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need |
55 | // 2 trailing bytes to be available to read.. |
56 | let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2); |
57 | let mut output_index = 0; |
58 | |
59 | if last_fast_index > 0 { |
60 | while input_index <= last_fast_index { |
61 | // Major performance wins from letting the optimizer do the bounds check once, mostly |
62 | // on the output side |
63 | let input_chunk = |
64 | &input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))]; |
65 | let output_chunk = |
66 | &mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)]; |
67 | |
68 | // Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent |
69 | // to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for |
70 | // large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect |
71 | // that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte |
72 | // SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once. |
73 | // Plus, single-digit percentage performance differences might well be quite different |
74 | // on different hardware. |
75 | |
76 | let input_u64 = read_u64(&input_chunk[0..]); |
77 | |
78 | output_chunk[0] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
79 | output_chunk[1] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
80 | output_chunk[2] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
81 | output_chunk[3] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
82 | output_chunk[4] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
83 | output_chunk[5] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
84 | output_chunk[6] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
85 | output_chunk[7] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
86 | |
87 | let input_u64 = read_u64(&input_chunk[6..]); |
88 | |
89 | output_chunk[8] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
90 | output_chunk[9] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
91 | output_chunk[10] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
92 | output_chunk[11] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
93 | output_chunk[12] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
94 | output_chunk[13] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
95 | output_chunk[14] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
96 | output_chunk[15] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
97 | |
98 | let input_u64 = read_u64(&input_chunk[12..]); |
99 | |
100 | output_chunk[16] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
101 | output_chunk[17] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
102 | output_chunk[18] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
103 | output_chunk[19] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
104 | output_chunk[20] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
105 | output_chunk[21] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
106 | output_chunk[22] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
107 | output_chunk[23] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
108 | |
109 | let input_u64 = read_u64(&input_chunk[18..]); |
110 | |
111 | output_chunk[24] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; |
112 | output_chunk[25] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; |
113 | output_chunk[26] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; |
114 | output_chunk[27] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; |
115 | output_chunk[28] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; |
116 | output_chunk[29] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; |
117 | output_chunk[30] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; |
118 | output_chunk[31] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; |
119 | |
120 | output_index += BLOCKS_PER_FAST_LOOP * 8; |
121 | input_index += BLOCKS_PER_FAST_LOOP * 6; |
122 | } |
123 | } |
124 | |
125 | // Encode what's left after the fast loop. |
126 | |
127 | const LOW_SIX_BITS_U8: u8 = 0x3F; |
128 | |
129 | let rem = input.len() % 3; |
130 | let start_of_rem = input.len() - rem; |
131 | |
132 | // start at the first index not handled by fast loop, which may be 0. |
133 | |
134 | while input_index < start_of_rem { |
135 | let input_chunk = &input[input_index..(input_index + 3)]; |
136 | let output_chunk = &mut output[output_index..(output_index + 4)]; |
137 | |
138 | output_chunk[0] = self.encode_table[(input_chunk[0] >> 2) as usize]; |
139 | output_chunk[1] = self.encode_table |
140 | [((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize]; |
141 | output_chunk[2] = self.encode_table |
142 | [((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize]; |
143 | output_chunk[3] = self.encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize]; |
144 | |
145 | input_index += 3; |
146 | output_index += 4; |
147 | } |
148 | |
149 | if rem == 2 { |
150 | output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize]; |
151 | output[output_index + 1] = |
152 | self.encode_table[((input[start_of_rem] << 4 | input[start_of_rem + 1] >> 4) |
153 | & LOW_SIX_BITS_U8) as usize]; |
154 | output[output_index + 2] = |
155 | self.encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize]; |
156 | output_index += 3; |
157 | } else if rem == 1 { |
158 | output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize]; |
159 | output[output_index + 1] = |
160 | self.encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize]; |
161 | output_index += 2; |
162 | } |
163 | |
164 | output_index |
165 | } |
166 | |
167 | fn internal_decoded_len_estimate(&self, input_len: usize) -> Self::DecodeEstimate { |
168 | GeneralPurposeEstimate::new(input_len) |
169 | } |
170 | |
171 | fn internal_decode( |
172 | &self, |
173 | input: &[u8], |
174 | output: &mut [u8], |
175 | estimate: Self::DecodeEstimate, |
176 | ) -> Result<DecodeMetadata, DecodeError> { |
177 | decode::decode_helper( |
178 | input, |
179 | estimate, |
180 | output, |
181 | &self.decode_table, |
182 | self.config.decode_allow_trailing_bits, |
183 | self.config.decode_padding_mode, |
184 | ) |
185 | } |
186 | |
187 | fn config(&self) -> &Self::Config { |
188 | &self.config |
189 | } |
190 | } |
191 | |
192 | /// Returns a table mapping a 6-bit index to the ASCII byte encoding of the index |
193 | pub(crate) const fn encode_table(alphabet: &Alphabet) -> [u8; 64] { |
194 | // the encode table is just the alphabet: |
195 | // 6-bit index lookup -> printable byte |
196 | let mut encode_table: [u8; 64] = [0_u8; 64]; |
197 | { |
198 | let mut index: usize = 0; |
199 | while index < 64 { |
200 | encode_table[index] = alphabet.symbols[index]; |
201 | index += 1; |
202 | } |
203 | } |
204 | |
205 | encode_table |
206 | } |
207 | |
208 | /// Returns a table mapping base64 bytes as the lookup index to either: |
209 | /// - [INVALID_VALUE] for bytes that aren't members of the alphabet |
210 | /// - a byte whose lower 6 bits are the value that was encoded into the index byte |
211 | pub(crate) const fn decode_table(alphabet: &Alphabet) -> [u8; 256] { |
212 | let mut decode_table: [u8; 256] = [INVALID_VALUE; 256]; |
213 | |
214 | // Since the table is full of `INVALID_VALUE` already, we only need to overwrite |
215 | // the parts that are valid. |
216 | let mut index: usize = 0; |
217 | while index < 64 { |
218 | // The index in the alphabet is the 6-bit value we care about. |
219 | // Since the index is in 0-63, it is safe to cast to u8. |
220 | decode_table[alphabet.symbols[index] as usize] = index as u8; |
221 | index += 1; |
222 | } |
223 | |
224 | decode_table |
225 | } |
226 | |
227 | #[inline ] |
228 | fn read_u64(s: &[u8]) -> u64 { |
229 | u64::from_be_bytes(s[..8].try_into().unwrap()) |
230 | } |
231 | |
232 | /// Contains configuration parameters for base64 encoding and decoding. |
233 | /// |
234 | /// ``` |
235 | /// # use base64::engine::GeneralPurposeConfig; |
236 | /// let config = GeneralPurposeConfig::new() |
237 | /// .with_encode_padding(false); |
238 | /// // further customize using `.with_*` methods as needed |
239 | /// ``` |
240 | /// |
241 | /// The constants [PAD] and [NO_PAD] cover most use cases. |
242 | /// |
243 | /// To specify the characters used, see [Alphabet]. |
244 | #[derive (Clone, Copy, Debug)] |
245 | pub struct GeneralPurposeConfig { |
246 | encode_padding: bool, |
247 | decode_allow_trailing_bits: bool, |
248 | decode_padding_mode: DecodePaddingMode, |
249 | } |
250 | |
251 | impl GeneralPurposeConfig { |
252 | /// Create a new config with `padding` = `true`, `decode_allow_trailing_bits` = `false`, and |
253 | /// `decode_padding_mode = DecodePaddingMode::RequireCanonicalPadding`. |
254 | /// |
255 | /// This probably matches most people's expectations, but consider disabling padding to save |
256 | /// a few bytes unless you specifically need it for compatibility with some legacy system. |
257 | pub const fn new() -> Self { |
258 | Self { |
259 | // RFC states that padding must be applied by default |
260 | encode_padding: true, |
261 | decode_allow_trailing_bits: false, |
262 | decode_padding_mode: DecodePaddingMode::RequireCanonical, |
263 | } |
264 | } |
265 | |
266 | /// Create a new config based on `self` with an updated `padding` setting. |
267 | /// |
268 | /// If `padding` is `true`, encoding will append either 1 or 2 `=` padding characters as needed |
269 | /// to produce an output whose length is a multiple of 4. |
270 | /// |
271 | /// Padding is not needed for correct decoding and only serves to waste bytes, but it's in the |
272 | /// [spec](https://datatracker.ietf.org/doc/html/rfc4648#section-3.2). |
273 | /// |
274 | /// For new applications, consider not using padding if the decoders you're using don't require |
275 | /// padding to be present. |
276 | pub const fn with_encode_padding(self, padding: bool) -> Self { |
277 | Self { |
278 | encode_padding: padding, |
279 | ..self |
280 | } |
281 | } |
282 | |
283 | /// Create a new config based on `self` with an updated `decode_allow_trailing_bits` setting. |
284 | /// |
285 | /// Most users will not need to configure this. It's useful if you need to decode base64 |
286 | /// produced by a buggy encoder that has bits set in the unused space on the last base64 |
287 | /// character as per [forgiving-base64 decode](https://infra.spec.whatwg.org/#forgiving-base64-decode). |
288 | /// If invalid trailing bits are present and this is `true`, those bits will |
289 | /// be silently ignored, else `DecodeError::InvalidLastSymbol` will be emitted. |
290 | pub const fn with_decode_allow_trailing_bits(self, allow: bool) -> Self { |
291 | Self { |
292 | decode_allow_trailing_bits: allow, |
293 | ..self |
294 | } |
295 | } |
296 | |
297 | /// Create a new config based on `self` with an updated `decode_padding_mode` setting. |
298 | /// |
299 | /// Padding is not useful in terms of representing encoded data -- it makes no difference to |
300 | /// the decoder if padding is present or not, so if you have some un-padded input to decode, it |
301 | /// is perfectly fine to use `DecodePaddingMode::Indifferent` to prevent errors from being |
302 | /// emitted. |
303 | /// |
304 | /// However, since in practice |
305 | /// [people who learned nothing from BER vs DER seem to expect base64 to have one canonical encoding](https://eprint.iacr.org/2022/361), |
306 | /// the default setting is the stricter `DecodePaddingMode::RequireCanonicalPadding`. |
307 | /// |
308 | /// Or, if "canonical" in your circumstance means _no_ padding rather than padding to the |
309 | /// next multiple of four, there's `DecodePaddingMode::RequireNoPadding`. |
310 | pub const fn with_decode_padding_mode(self, mode: DecodePaddingMode) -> Self { |
311 | Self { |
312 | decode_padding_mode: mode, |
313 | ..self |
314 | } |
315 | } |
316 | } |
317 | |
318 | impl Default for GeneralPurposeConfig { |
319 | /// Delegates to [GeneralPurposeConfig::new]. |
320 | fn default() -> Self { |
321 | Self::new() |
322 | } |
323 | } |
324 | |
325 | impl Config for GeneralPurposeConfig { |
326 | fn encode_padding(&self) -> bool { |
327 | self.encode_padding |
328 | } |
329 | } |
330 | |
331 | /// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [PAD] config. |
332 | pub const STANDARD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, PAD); |
333 | |
334 | /// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [NO_PAD] config. |
335 | pub const STANDARD_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD); |
336 | |
337 | /// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [PAD] config. |
338 | pub const URL_SAFE: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, PAD); |
339 | |
340 | /// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [NO_PAD] config. |
341 | pub const URL_SAFE_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, NO_PAD); |
342 | |
343 | /// Include padding bytes when encoding, and require that they be present when decoding. |
344 | /// |
345 | /// This is the standard per the base64 RFC, but consider using [NO_PAD] instead as padding serves |
346 | /// little purpose in practice. |
347 | pub const PAD: GeneralPurposeConfig = GeneralPurposeConfig::new(); |
348 | |
349 | /// Don't add padding when encoding, and require no padding when decoding. |
350 | pub const NO_PAD: GeneralPurposeConfig = GeneralPurposeConfigGeneralPurposeConfig::new() |
351 | .with_encode_padding(false) |
352 | .with_decode_padding_mode(DecodePaddingMode::RequireNone); |
353 | |